EP3502797B1 - Piece d'horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation - Google Patents

Piece d'horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation Download PDF

Info

Publication number
EP3502797B1
EP3502797B1 EP17209121.7A EP17209121A EP3502797B1 EP 3502797 B1 EP3502797 B1 EP 3502797B1 EP 17209121 A EP17209121 A EP 17209121A EP 3502797 B1 EP3502797 B1 EP 3502797B1
Authority
EP
European Patent Office
Prior art keywords
voltage
storage unit
lobe
time
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17209121.7A
Other languages
German (de)
English (en)
Other versions
EP3502797A1 (fr
Inventor
Lionel TOMBEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Priority to EP17209121.7A priority Critical patent/EP3502797B1/fr
Priority to JP2018233294A priority patent/JP6873094B2/ja
Priority to US16/220,232 priority patent/US11422510B2/en
Priority to CN201811555788.7A priority patent/CN109991834B/zh
Publication of EP3502797A1 publication Critical patent/EP3502797A1/fr
Application granted granted Critical
Publication of EP3502797B1 publication Critical patent/EP3502797B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/06Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
    • G04C3/065Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance the balance controlling gear-train by means of static switches, e.g. transistor circuits
    • G04C3/067Driving circuits with distinct detecting and driving coils
    • G04C3/068Driving circuits with distinct detecting and driving coils provided with automatic control
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G19/00Electric power supply circuits specially adapted for use in electronic time-pieces
    • G04G19/02Conversion or regulation of current or voltage
    • G04G19/06Regulation

Definitions

  • the present invention relates to a timepiece comprising a mechanical oscillator associated with a system for regulating its average frequency.
  • the regulation is of the electronic type, that is to say that the regulation system comprises an electronic circuit connected to an auxiliary oscillator which is arranged to supply an electric clock signal of high precision.
  • the regulation system is arranged to correct a possible temporal drift of the mechanical oscillator relative to the auxiliary oscillator.
  • the mechanical oscillator comprises a mechanical resonator formed by a balance-spring and a maintenance device formed by a conventional escapement, for example with Swiss anchor.
  • the auxiliary oscillator is formed in particular by a quartz resonator or by a resonator integrated in the electronic regulation circuit.
  • Movements forming timepieces as defined in the field of the invention have been proposed in some prior documents.
  • the patent CH 597 636 published in 1977, proposes such a movement with reference to its figure 3 .
  • the movement is equipped with a resonator formed by a balance-spring and a conventional maintenance device comprising an anchor and an escape wheel in kinematic connection with a barrel provided with a spring.
  • This watch movement includes a system for regulating the frequency of the mechanical oscillator.
  • This regulation system comprises an electronic circuit and an electromagnetic assembly formed by a flat coil, arranged on a support under the pendulum serge, and two magnets mounted on the pendulum and arranged close to each other so as to both pass over the coil when the oscillator is activated.
  • the electronic circuit comprises a time base comprising a quartz resonator and serving to generate a reference frequency signal FR, this reference frequency being compared with the frequency FG of the mechanical oscillator.
  • the detection of the frequency FG is carried out via the electrical signals generated in the coil by the pair of magnets.
  • the regulating circuit is arranged to be able to temporarily generate a braking torque via a magnetic magnet-coil coupling and a switchable load connected to the coil.
  • the document CH 597 636 gives the following teaching: "The resonator thus formed must have a variable oscillation frequency according to the amplitude on either side of the frequency FR (lack of isochronism)".
  • the load is formed by a switchable rectifier via a transistor which recharges a storage capacity during the pulses of braking, to recover electrical energy in order to power the electronic circuit.
  • the constant teaching given in the document CH 597 636 is as follows: When FG> FR the transistor is conductive; a power Pa is then taken from the generator / oscillator. When FG ⁇ FR, the transistor is non-conductive; Onne therefore takes more energy from the generator / oscillator. In other words, we only regulate when the frequency of the generator / oscillator is higher than the reference frequency FR.
  • This regulation consists in braking the generator / oscillator in order to decrease its FG frequency.
  • the mechanical oscillator a person skilled in the art understands that regulation is only possible when the barrel spring is heavily armed and that the free oscillation frequency (natural frequency) of the oscillator mechanical is greater than the reference frequency FR, as a result of a desired isochronism defect in the selected mechanical oscillator.
  • the mechanical oscillator is selected for what is normally a defect in a mechanical movement and the electronic regulation is functional only when the natural frequency of this oscillator is greater than a nominal frequency.
  • the patent application EP 1521 142 also deals with the electronic regulation of a balance spring.
  • the regulation system proposed in this document is similar in its general operation to that of the patent CH 597 636 .
  • a piezoelectric system is associated with the escapement to detect a tilting of its anchor in each period of oscillation. Thanks to such a detection system, it is planned, on the one hand, to compare the oscillation period with a reference period, defined by a quartz oscillator, to determine whether the running of the timepiece presents a advance or a delay and, on the other hand, to determine in an alternation on two the passage of the mechanical oscillator by its neutral point.
  • the time drift corresponds to an advance or a delay
  • the electromagnetic assembly is that given to figures 2 and 4 of the document and the electronic circuit is shown schematically in the Figure 5 of this document.
  • the coils are made conductive during constant time intervals which are centered on respective passages of the mechanical resonator (balance-spring) by its neutral position (middle position alternations); 2) during these time intervals an induced current is rectified and stored in the capacitor; and 3) during said intervals of time, the period of oscillation of the balance spring can be effectively regulated by adjusting the value of the power generated by the induced current, without further details given.
  • the induced voltage and the current induced in the coils vary in intensity with the angular speed of the balance-spring, this intensity decreasing when moving away from a neutral position where the angular speed is maximum.
  • the electromagnetic assembly disclosed makes it possible to determine the form of the induced voltage / induced current signal.
  • a general objective within the framework of the development which led to the present invention, was to produce a timepiece, comprising a mechanical movement with a mechanical oscillator and an electronic regulation system of this mechanical oscillator, for which it is not necessary to initially adjust the mechanical oscillator so that it advances, so as to have a timepiece which has the precision of an auxiliary electronic oscillator (in particular provided with a quartz resonator) when the regulation system is functional and, if not, the precision of the mechanical oscillator corresponding to its best setting.
  • an attempt is made to add electronic regulation to a mechanical movement which is moreover regulated as precisely as possible so that it remains functional, with the best possible operation, when the electronic regulation is not active.
  • the main objective of the present invention is to provide a timepiece of the type described above and which is capable of correcting a delay or an advance in the temporal drift of the mechanical oscillator while allowing efficient self-supply of the regulation system.
  • a particular objective is to provide such a timepiece which is capable, for a defined electromagnetic assembly, of supplying continuous or almost continuous electrical supply voltage which remains above a supply voltage which is sufficient to supply the regulating device, and this independently of the regulation of the average frequency of the mechanical oscillator, in particular of the electric energy generated by the regulation, and therefore also in the absence of correction of a time drift (case where it remains weak, even zero).
  • Another particular objective is to ensure the self-supply of the regulation system without inducing a parasitic temporal drift, in particular in the absence of a correction of temporal drift, or for the less so that such a possible parasitic temporal drift remains minimal and negligible.
  • Another objective is to use the regulating electric energy to supply an auxiliary function and therefore an auxiliary charge, by efficiently accumulating this electric energy without inducing instability in the operation of the regulation device or disturbance of the regulation.
  • 'voltage lobe' is meant a voltage pulse which is located entirely above or entirely below a zero value (defining a zero voltage), i.e. a voltage variation in a certain time interval with either a positive voltage whose value positive goes up then goes back down, that is to say a negative tension whose negative value goes down then goes up.
  • the transfer of a first electrical charge into a first time zone as defined is provided to increase the recharging of the supply capacity during the appearance of a first voltage lobe following this transfer, relative to the case where no transfer would not take place.
  • This increase in recharging means greater mechanical energy taken up by the mechanical oscillator by the braking system and therefore greater braking of this mechanical oscillator.
  • braking in a first half-wave before the mechanical resonator passes through its neutral position generates a negative time shift in the oscillation of the resonator, and thus the duration of the half-cycle in question is increased .
  • the instantaneous frequency of the mechanical oscillator is therefore momentarily reduced and this results in a certain delay in the operation of the mechanism which at least partially corrects the advance detected by the measuring device.
  • the transfer of a second electric charge into a second time zone as defined is provided to increase the recharging of the supply capacity when a second voltage lobe appears following this sampling, relative to the case where no withdrawal would take place. As will be understood later, this generates a positive time phase shift in the oscillation of the resonator, and thus the duration of the alternation in question is reduced.
  • the instantaneous frequency of the mechanical oscillator is therefore temporarily increased and this results in a certain advance in the operation of the mechanism which at least partially corrects the delay detected by the measuring device.
  • the timepiece comprises a main load connected or capable of being regularly connected to the electric converter in order to be supplied by the primary accumulation unit, the main load notably comprising the regulation device.
  • the timepiece comprises an auxiliary load connected or capable of being connected intermittently to the secondary accumulation unit so as to be able to be powered by this secondary accumulation unit.
  • the charge pump device is arranged so as to form a voltage booster which is arranged so that an auxiliary supply voltage across the terminals of the secondary storage unit is greater than a voltage of main power supply at the terminals of the primary storage unit.
  • the regulating device comprises at least one dissipative circuit for dissipating electrical energy accumulated in the primary storage unit, at least one switch associated with the dissipative circuit in order to be able to connect this dissipative circuit momentarily to the primary storage unit and a measuring circuit arranged to detect if the voltage across the secondary storage unit is greater than a first voltage limit or if the filling level of the secondary storage unit is greater than a first filling limit.
  • control logic circuit is arranged so as to be able, when the voltage across the terminals of the secondary accumulation unit is greater than the first voltage or filling limit, momentarily connect said at least one dissipative circuit to the primary accumulation unit so as to effect, when the measured temporal drift corresponds to said at least a certain advance, a first dissipative discharge from the primary accumulation unit so that a recharge thereof, following this first discharge, or generated for the most part by at least one first tension lobe among said plurality of first tension lobes, and so as to effect, when the measured temporal drift corresponds to said at least a certain delay, a second discharge of the primary accumulation unit so that a recharge thereof, following this second discharge, is generated for the most part by at least one second tension lobe among said plurality of second tension lobes.
  • the timepiece further comprises a measurement circuit arranged to detect whether the voltage across the terminals of the secondary accumulation unit is less than a second voltage limit (lower at the first voltage limit mentioned above) or if the filling level of the secondary accumulation unit is lower than a second filling limit (lower than the first filling limit mentioned above).
  • control logic circuit is arranged so as to be able, when the voltage across the terminals of the secondary accumulation unit is less than the second voltage or filling limit and when the measured time drift is between said at least a certain delay and said at least a certain advance, activating the charge pump device so that it transfers a third electrical charge from the primary accumulation unit to the secondary accumulation unit, so that a recharge of the primary accumulation unit following this transfer of a third electrical charge is generated for the most part by at least one first voltage lobe among said plurality of first voltage lobes, and a transfer of a fourth electrical charge from the primary storage unit in the secondary storage unit, so that a recharge of the primary storage unit following this transfer of a fourth electrical charge is mainly generated by at least one second tension lobe among said plurality of second tension lobes, the fourth electric charge being substantially equal to the third electric charge.
  • the Figure 1 is a partial plan view of a timepiece 2 comprising a mechanical movement 4, equipped with a mechanical resonator 6, and a regulation system 8.
  • the maintenance means 10 for the mechanical resonator are conventional. They include a barrel 12 with a mainspring, an exhaust 14 formed by an escape wheel and a pallet anchor, as well as an intermediate train 16 kinematically connecting the barrel to the escape wheel.
  • the resonator 6 comprises a balance 18 and a usual balance spring, the balance being pivotally mounted about an axis of rotation 20 between a plate and a bridge.
  • the mechanical resonator 6 and the maintenance means 10 also called excitation means
  • together form a mechanical oscillator.
  • the gear train 16 is part of a mechanism of the watch movement whose progress is clocked by the mechanical oscillator. This mechanism comprises, in addition to the train 16, other mobiles and analog indicators (not shown) kinematically connected to this train 16, the movement of these analog indicators being rhythmic by the mechanical oscillator.
  • Various mechanisms known to those skilled in the art can be provided.
  • the Figure 2 is a partial view of the Figure 1 , in horizontal section at the balance 18, showing a magnet 22 and a coil 28 forming an electromagnetic assembly 27 according to the invention.
  • the coil 28 is preferably of the wafer type (disc shape having a relatively small thickness). It is arranged on the plate of the watch movement and conventionally comprises two connection ends E1 and E2.
  • the electromagnetic assembly comprises at least one coil and a magnetized structure formed by at least one magnet generating a magnetic flux, in the direction of a general plane of the coil, which passes through the latter when the mechanical resonator oscillates with an amplitude within a useful operating range.
  • the pendulum 18 carries, preferably in an area located near its outer diameter defined by its serge, the bipolar magnet 22 which has a magnetization axis oriented axially. It will be noted that it is preferable to confine the magnetic flux of the magnet or magnets carried by the balance using a shield formed by parts of the balance, in particular by magnetic parts arranged on both sides of the magnet in the axial direction so that the coil is partially located between these two magnetic parts.
  • the balance 18 defines a half-axis 24, from its axis of rotation 20 and perpendicular to the latter which passes through the center of the magnet 22.
  • the half-axis 24 defines a neutral position (angular rest position of the balance spring corresponding to a zero angle) around which the balance spring can oscillate at a certain frequency, in particular at a free frequency F0 corresponding to the natural oscillation frequency of the mechanical oscillator , i.e. not subject to external force torques (other than that supplied periodically via the exhaust).
  • the mechanical resonator 6 shown without its hairspring which is located above the cutting plane
  • the mechanical resonator 6 is shown in its neutral position, corresponding to its state of minimum potential mechanical energy.
  • the half-axis 24 defines a reference half-axis 48 which is angularly offset by an angle ⁇ relative to the fixed half-axis 50 which perpendicularly intercepts the axis of rotation 20 and the central axis of the coil 28.
  • the center of the coil 28 has an angular offset ⁇ relative to the reference half-axis 48.
  • this angular offset equals 120 ° in absolute value.
  • the angular offset ⁇ is between 30 ° and 120 ° in absolute value.
  • Each oscillation of the mechanical resonator defines a period of oscillation and it has a first alternation followed by a second alternation each between two extreme positions defining the amplitude of oscillation of the mechanical resonator (note that we consider here the oscillating resonator and therefore the mechanical oscillator as a whole, the amplitude of oscillation of the balance-spring being defined among other things by the means of maintenance).
  • Each alternation has a passage of the mechanical resonator through its neutral position at a median instant and a certain duration between an initial instant and a final instant which are defined respectively by the two extreme positions occupied by the mechanical resonator respectively at the start and at the end of this alternation.
  • Each alternation thus consists of a first half-cycle ending at said median instant and a second half-cycle starting at this median instant.
  • the system 8 for regulating the frequency of the mechanical oscillator comprises an electronic circuit 30 and an auxiliary oscillator 32, this auxiliary oscillator comprising a clock circuit and for example a quartz resonator connected to this clock circuit. It will be noted that in a variant, the auxiliary oscillator is integrated at least partially into the electronic circuit.
  • the regulation system further comprises the electromagnetic assembly 27 described above, namely the coil 28 which is electrically connected to the electronic circuit 30 and the bipolar magnet 22 mounted on the balance.
  • the various elements of the regulation system 8, with the exception of the magnet are arranged on a support 34 with which they form an independent module. of the watch movement. Thus, this module can be assembled or associated with the mechanical movement 4 only when they are mounted in a watch case.
  • the aforementioned module is fixed to a casing circle 36 which surrounds the watch movement. It is understood that the regulation module can therefore be associated with the timepiece movement once the latter is fully assembled and adjusted, the assembly and disassembly of this module being able to intervene without having to intervene on the mechanical movement itself.
  • the mechanical resonator 40 of which only the pendulum 42 has been shown in Figures 4A-4C and 6A-6C , carries a single bipolar magnet 44 whose magnetization axis is substantially parallel to the axis of rotation 20 of the balance, that is to say with an axial orientation.
  • the considered half-axis 46 of the mechanical resonator 40 passes through the center of rotation 20 and the center of the magnet 44.
  • the angle ⁇ between the reference half-axis 48 and the half-axis 50 has a value of approximately 90 °.
  • the two half-axes 48 and 50 are fixed relative to the timepiece movement, while the half-axis 46 oscillates with the balance wheel and gives the angular position ⁇ of the magnet mounted on this balance wheel relative to the reference half-axis, the latter defining the zero angular position for the mechanical resonator.
  • the angular offset ⁇ is such that an induced voltage signal generated in the coil when the magnet passes opposite this coil is located, during a first half-wave of any oscillation, before the passage of the median half-axis by the reference half-axis (therefore in a first half-cycle) and, during a second half-cycle of any oscillation, after the passage of this median half-axis by the reference half-axis (so in a second half-cycle).
  • the Figure 3 shows four graphs.
  • the first graph gives the voltage in the coil 28 as a function of time when the resonator 40 oscillates, i.e. when the mechanical oscillator is activated.
  • the second graph indicates the instant t P1 at which a braking pulse is applied to the resonator 40 to effect a correction in the operation of the mechanism clocked by the mechanical oscillator.
  • the instant of the application of a pulse of rectangular shape (that is to say of a binary signal) is considered here as the time position of the middle of this pulse.
  • each oscillation has two successive alternations which are defined in the present text as the two half-periods during which the pendulum undergoes respectively an oscillation movement in one direction and then an oscillation movement in the other direction.
  • an alternation corresponds to a rocking of the pendulum in one direction or the other direction between its two extreme positions defining the amplitude of oscillation.
  • braking pulse an application, substantially during a limited time interval, of a certain torque of force to the mechanical resonator to brake it, that is to say of a torque of force which opposes the oscillation movement of this mechanical resonator.
  • the braking torque can be of various kinds, in particular magnetic, electrostatic or mechanical.
  • the braking torque is obtained by the magnet-coil coupling and it therefore corresponds to a magnetic braking torque exerted on the magnet 44 via the coil 28 which is controlled by a regulating device.
  • Such braking pulses can for example be generated by temporarily short-circuiting the coil.
  • the oscillation period T0 corresponds to a 'free' oscillation (that is to say without the application of regulation pulses) of the mechanical oscillator.
  • Each of the two half-waves of an oscillation period has a duration T0 / 2 without disturbance or external constraint (in particular by a regulation pulse).
  • the braking pulse is generated between the start of a half-wave and the passage of the resonator through its neutral position, that is to say in a first half-wave of this half-wave.
  • the angular speed in absolute value decreases at the time of the braking pulse P1.
  • This induces a negative time shift Tci in the oscillation of the resonator, as shown by the two graphs of the angular velocity and the angular position at the Figure 3 , or a delay relative to the undisturbed theoretical signal (shown in broken lines).
  • the duration of the alternation A1 is increased by a time interval T C1 .
  • the oscillation period T1, including the alternation A1 is therefore extended relative to the value T0. This generates a punctual decrease in the frequency of the mechanical oscillator and a momentary slowdown in the walking of the associated mechanism.
  • the braking pulse is therefore generated, in an alternation, between the median instant at which the resonator passes through its neutral position and the final instant at which this alternation ends.
  • the angular speed in absolute value decreases at the time of the braking pulse P2.
  • the braking pulse here induces a positive time phase shift T C2 in the oscillation period of the resonator, as shown by the two graphs of the angular velocity and the angular position at the Figure 5 , or an advance relative to the undisturbed theoretical signal (shown in dashed lines).
  • the duration of the alternation A2 is reduced by the time interval T C2 .
  • the oscillation period T2 comprising the alternation A2 is therefore shorter than the value T0. This consequently generates a “punctual” increase in the instantaneous frequency of the mechanical oscillator and a momentary acceleration of the operation of the associated mechanism.
  • the electromagnetic assembly 27 also partly forms the measuring device.
  • This measurement device further comprises a bidirectional counter CB and a comparator 64 (of the Schmidt trigger type).
  • the comparator receives at one input the induced voltage signal Ui (t) and at the other input a threshold voltage signal U th whose value is positive in the example given.
  • the comparator outputs a signal 'Comp' having two pulses S1 and S2 ( Fig. 10C ) per period of oscillation.
  • This signal 'Comp' is supplied on the one hand to a logic control circuit 62 and on the other hand to a flip-flop 66 which inhibits one pulse out of two so as to supply a single pulse per period of oscillation to a first input ' UP 'of the bidirectional counter CB.
  • the bidirectional counter includes a second 'Down' input which receives a clock signal S hor at a nominal frequency / set frequency for the oscillation frequency, this clock signal being derived from the auxiliary oscillator which supplies a signal digital reference defining a reference frequency.
  • the auxiliary oscillator comprises a clock circuit CLK used to energize the quartz resonator 58 and to provide in return the reference signal which is composed of a succession of pulses corresponding respectively to the periods of oscillation of the quartz resonator.
  • the clock circuit supplies its reference signal to a divider DIV1 & DIV2 which divides the number of pulses in this reference signal by the ratio between the nominal period of the mechanical oscillator and the nominal reference period of the oscillator auxiliary.
  • the divider thus supplies a clock signal S hor defining a set frequency (for example 4 Hz) and having one pulse per set period (for example 250 ms) to the counter CB.
  • S hor defining a set frequency (for example 4 Hz) and having one pulse per set period (for example 250 ms) to the counter CB.
  • the state of the counter is supplied to a logic control circuit 62 which is arranged to determine whether this state corresponds to at least a certain advance (CB> N1, N1 being a natural number) or to at least a certain delay (CB ⁇ -N2, N2 being a natural number).
  • the electrical converter 56 comprises an electrical energy accumulation circuit D1 & C AL which is arranged, in the variant described, to be able to recharge the supply capacity C AL only with a positive voltage at the input of the electrical converter, c ' that is to say only with a positive induced voltage supplied by the coil 28.
  • This supply capacity here alone forms a primary accumulation unit.
  • a main load is connected or capable of being regularly connected to the electric converter 56 and supplied by the supply capacitor which supplies the main supply voltage U AL (t), shown in the Figure 10A , between the two supply terminals V DD and V SS , this main load notably comprising the regulation circuit 54.
  • the timepiece 2 is remarkable in that the regulating circuit 54 of the regulating device comprises a charge pump 60 arranged to be able to transfer on command a certain electric charge from the supply capacity C AL into a unit of secondary accumulation formed here of a capacity C Aux .
  • This capacitor C Aux is provided as a secondary power source for an auxiliary load, for example a light diode, an RFID circuit, a temperature sensor, or another electronic unit which can be incorporated in the timepiece according to the invention.
  • the capacitor C Aux has at its two terminals respectively a lower potential V L and an upper potential V H defining an auxiliary supply voltage.
  • An alternative embodiment of such a charge pump is shown in the Figure 8 .
  • the charge pump 60 comprises an input switch Sw1 and an output switch Sw2 with a transfer capacity C Tr .
  • the switches Sw1 and Sw2 are controlled by the logic control circuit 62 according to a regulation method ( Figure 9 ) implemented in the first embodiment of the timepiece according to the invention and which will be described later.
  • the induced voltage signal Ui (t) corresponds to that generated by the electromagnetic assembly 27 associated with the mechanical resonator 6 when the latter oscillates within a useful operating range.
  • the braking device 27 & 56 is arranged so that, in each period of oscillation of the mechanical resonator 6 at least when the amplitude of oscillation of this mechanical resonator is within the useful operating range, the induced voltage signal Ui (t) has a first voltage lobe LU 1 involved in a first half-wave DA1 1 , DA1 P and a second voltage lobe LU 2 involved in a second half-wave DA2 1 , DA2 P.
  • the induced voltage signal thus alternately presents a succession of first voltage lobes LU 1 and second voltage lobes LU 2 .
  • Each first voltage lobe LU 1 has a first maximum value UM 1 at a first instant ti of the corresponding first half-wave and each second lobe of voltage LU 2 has a second maximum value UM 2 at a second instant t 2 of the corresponding second half-wave.
  • the first and second tension lobes define, on the one hand, first time zones ZT1 each located before the first instant ti of a first different tension lobe and after the second instant t 2 of the second tension lobe preceding this first lobe voltage and, on the other hand, second time zones ZT2 each located before the second time t 2 of a second different voltage lobe and after the first time ti of the first voltage lobe preceding this second voltage lobe.
  • the first voltage lobes LU 1 generate pulses S1 in the signal 'Comp' at the output of comparator 64, while the second voltage lobes LU 2 generate pulses S2 in this signal 'Comp' ( Fig. 10C ).
  • the lobes considered for the generation of signals S1 and S2 are the positive voltage lobes because the threshold voltage U th has been chosen positive.
  • the braking device is arranged so that, at least when no time drift is detected by the measuring device and at least when said main load, connected to the terminals Vss and V DD , consumes continuously or so almost continuous electrical energy accumulated in the supply capacity C AL (during a normal operating phase of the timepiece, as shown in the Figure 10A where the supply voltage U AL (t) has a certain negative slope in the absence of correction of the operation of the mechanical oscillator), the first voltage lobes LU 1 and the second voltage lobes LU 2 alternately generate pulses induced current P1 and P2 ( Fig. 10B ) which recharge the supply capacity.
  • the electrical converter 56 comprises a diode D1 arranged to so that only the positive voltage lobes are capable of recharging the capacitance C AL .
  • the electrical converter may have a diode arranged so as to define a single-wave rectifier so that it is then the negative voltage lobes which are capable of recharging the capacity C AL . In this case, it is thus the negative voltage lobes which generate the pulses of induced current and which are considered to determine the time zones for sampling a certain electrical charge as a function of the measured time drift, as set out below.
  • the converter can comprise a full-wave converter.
  • the charge pump 60 is arranged so as to be able to take a certain electric charge on command from the supply capacity C AL and transfer it to the auxiliary capacity C Aux , so as to momentarily decrease the voltage level U AL (t) of the supply capacity C AL .
  • the control logic circuit 62 receives as input a measurement signal supplied by the measurement device, namely from the bidirectional counter CB.
  • This logic control circuit is arranged to activate the charge pump 60 so that it performs, when the measured time drift corresponds to at least a certain advance (CB> N1), a sampling of a first electrical charge from the supply capacity C AL in a first time zone ZT1 and a transfer of this first charge into the auxiliary capacity which forms a secondary supply source. This results in a drop in the voltage U AL (t).
  • the logic control circuit is arranged to activate the charge pump 60 so that it performs, when the measured time drift corresponds to at least a certain delay (CB ⁇ -N2), a sampling of a second charge electric power supply C AL in a second time zone ZT2, to lower the voltage U AL (t), and a transfer of this second electric charge in the auxiliary capacity.
  • the regulation method implemented in the first embodiment of the invention is given in the form of a flowchart to the Figure 9 .
  • the counter CB is reset.
  • the logic circuit 62 Upon detection of the aforementioned second rising edge in the signal 'Comp', the logic circuit 62 transfers the state / value of the time counter CT in a register and compares this value with a differentiation value Tdiff which is selected to be less than a first time interval between a first pulse S1 and a second pulse S2 and greater than a second time interval between a second pulse S2 and a first pulse S1. As soon as the state of the time counter CT is transferred to the register, this time counter is reset and a timer associated with the logic circuit 62 is started to measure a certain delay whose value T C1 or T D1 is selected according to the result of comparing the value of the counter CT with the value Tdiff.
  • the regulating device therefore comprises a detection device, arranged to be able to detect the successive appearance alternately of first voltage lobes and second voltage lobes, and a time counter CT associated with the control logic circuit 62 to allow the latter to distinguish a first interval of time, separating a first tension lobe from a second tension lobe that follows, and a second time interval separating a second tension lobe from a first tension lobe that follows, the first and second time intervals being different due to the arrangement of the electromagnetic assembly.
  • the curve of the induced voltage signal Ui (t) shown in the Figure 10A follows from the electromagnetic assembly 27 described above.
  • the coil 28 has at its center an angular offset ⁇ relative to the reference half-axis 48 ( Fig.
  • the angular offset ⁇ is between 30 ° and 120 ° in absolute value.
  • the timer associated with the logic circuit waits for either a delay Tci when the value of the time counter CT is greater than the differentiation value Tdiff, or a delay T D1 when the value of the time counter CT is less than the differentiation value Tdiff.
  • the comparison makes it possible to know that the detected pulse is a S2 pulse generated by a second voltage lobe LU 2 and the delay T C1 is chosen so that it ends in a first time zone ZT1 following this second lobe Of voltage.
  • the comparison makes it possible to know that the detected pulse is a pulse S1 generated by a first lobe of voltage LU 1 and the delay T D1 is chosen so that it ends in a second time zone ZT2 following this first lobe Of voltage.
  • the regulation device comprises a timer associated with the logic control circuit to allow the latter to activate, if necessary, the charge pump device after a first delay determined since the detection of a second lobe of voltage, this first delay being selected so that it ends in a first time zone, or after a second delay determined since the detection of a first voltage lobe, this second delay being selected so that it ends in a second time zone.
  • the instantaneous frequency of the mechanical oscillator is momentarily reduced and this results in a certain delay in the operation of the mechanism which it cadences, which at least partially corrects the advance detected by the measuring device.
  • the instantaneous frequency of the mechanical oscillator is temporarily increased and this results in a certain advance in the operation of the mechanism which it cadences, which at least partially corrects the delay detected by the measuring device.
  • the Figure 11 is similar to the Figure 2 , but for an electromagnetic assembly 29 forming the electromagnetic transducer of a timepiece according to the second embodiment. It shows the mechanical resonator 6a in horizontal section at the level of its balance 18a, this mechanical resonator being incorporated in a watch movement, similar to that of the Figure 1 , instead of the resonator 6 shown in this Figure 1 .
  • the references already described will not be described again here.
  • a set electromagnetic which comprises at least the coil 28 and a magnetized structure formed of at least one magnet and having at least one pair of magnetic poles, of opposite polarities, each generating a magnetic flux towards a general plane of the coil, this pair of magnetic poles being arranged so that, when the mechanical resonator 6a oscillates with an amplitude comprised within a useful operating range, their respective magnetic fluxes cross the coil with a time shift but with at least in part a simultaneity of the incoming magnetic flux and outgoing magnetic flux, so as to form a central tension lobe having a peak value which is maximum.
  • the balance 18a carries a pair of bipolar magnets 22 and 23 having magnetization axes oriented axially with opposite polarities.
  • This pair of magnets and the coil 28 form the electromagnetic assembly 29 which is part of the regulation system.
  • the magnets are arranged close to each other, at a distance allowing an addition of their respective interactions with the coil 28 with regard to the voltage induced in it (more precisely for the generation of central voltage lobes) .
  • a single bipolar magnet can be arranged with its magnetization axis parallel to the plane of the pendulum and oriented tangentially to a geometric circle centered on the axis of rotation 20.
  • the voltage signal induced in the coil can have substantially the same profile as for the pair of magnets described above, but with a smaller amplitude since only part of the magnetic flux of the magnet crosses the coil.
  • Elements for conduction of the magnetic flux can be associated with the single magnet to direct its magnetic flux substantially towards the general plane of the coil.
  • the pendulum 18a defines a half-axis 26, from its axis of rotation 20 and perpendicular to the latter, which passes through the middle of the pair of magnets.
  • the semi-axis 26 defines a neutral position around which the balance spring can oscillate.
  • the mechanical resonator 6a is shown in its neutral position at the Figure 11 and its half-axis 26 defines a reference half-axis 48 which is angularly offset by an angle ⁇ relative to the fixed half-axis 50 which intercepts the axis of rotation 20 and the central axis of the coil 28.
  • the angular offset ⁇ is between 30 ° and 120 ° in absolute value.
  • the induced voltage signal Ui (t) generated by the electromechanical assembly 29 has, in each period of oscillation of the mechanical oscillator, a first central voltage lobe LUC 1 (also called first voltage lobe) having a voltage maximum negative UM 1 and a second voltage lobe LUC 2 (also called second voltage lobe) having a maximum positive voltage UM 2 .
  • a first central voltage lobe LUC 1 also called first voltage lobe
  • LUC 2 also called second voltage lobe
  • AN 1 , N being a natural number
  • AN 2 , N being a natural number
  • the polarities of the tension lobes are opposite, that is to say that the first tension lobes have a positive tension while the second tension lobes have a negative tension.
  • a simple inversion of the terminals E1 and E2 of the coil 28 or, in an equivalent manner, of the direction of winding of the wire forming this coil generates a change of polarity for the induced voltage so that such an inversion makes it possible to switch from one variant to another.
  • the electromagnetic assembly 29 also partly forms the measuring device, as in the first embodiment.
  • the part of the electrical diagram of the Figure 12 relating to the device for measuring a possible time drift of the mechanical oscillator will not be described again in detail.
  • the comparator 64 delivers a signal 'Comp', shown at Figure 14 , which presents a pulse S2 per period of oscillation.
  • this signal can be directly supplied to the bidirectional counter CB.
  • the electric converter 57 comprises a first circuit D1 & C1 of accumulation of electric energy which is arranged to be able to recharge a first supply capacity C1 of the primary accumulation unit only with a positive voltage at the input of the electric converter and a second electrical energy accumulation circuit D2 & C2 which is arranged to be able to recharge a second supply capacity C2 of the primary accumulation unit only with a negative voltage at the input of the electric converter.
  • the quantity of electrical energy selectively supplied by the braking device to the first supply capacity and to the second supply capacity is greater the higher the voltage level in absolute value of this first supply capacity, respectively of this second supply capacity is low.
  • a main load is connected or capable of being regularly connected at the output of the electric converter 57 and supplied by the primary supply unit which supplies the supply voltages V DD and V SS .
  • This main load notably comprises the regulation circuit 55.
  • the first and second supply capacities have substantially the same capacity value.
  • the regulating circuit 55 of the regulating device 53 comprises a charge pump device 61 formed by two charge pumps PC1 and PC2, advantageously identical, which are arranged to transfer on command electrical charges respectively from the first supply capacity C1 and of the second supply capacity C2 in the auxiliary capacity C Aux .
  • this auxiliary capacity forms a secondary accumulation unit which supplies an auxiliary supply voltage between its two terminals V L and V H.
  • the two charge pumps PC1 and PC2 are controlled by the logic control circuit 62a.
  • An alternative embodiment of a load that can form each of the two charge pumps has already been described with reference to the Figure 8 .
  • the two charge pumps are replaced by a single charge pump which then includes switches controlled by the control circuit 62a so as to be able to transfer electric charges into the auxiliary capacity by selectively removing these electric charges in the first capacitor C1 and in the second capacitor C2 as a function of the desired correction, as will be described later in the description of the regulation method implemented in the control circuit 62a in the context of the second embodiment.
  • the regulation circuit 55 further comprises two dissipative circuits each formed by a resistor and a switch Sw3, respectively Sw4. These two dissipative circuits include a certain resistance and are respectively arranged in parallel with the two capacitors C1 and C2, between these and the two charge pumps PC1 and PC2.
  • the positive voltage Vci at the upper terminal (defining V DD ) of the supply capacity C1 and the negative voltage V C2 at the lower terminal (defining V SS ) of the supply capacity C2 are also represented (the zero voltage being that of the end E1 of the coil connected between the two capacitors arranged in series).
  • the available supply voltage V AL is therefore given by V C1 - V C2 , ie the addition of the respective voltages of the first and second capacitors C1 and C2.
  • a main load is arranged at the output of the electric converter. It includes in particular the regulation circuit 55 which is supplied by the first and second supply capacitors arranged in series and delivering the supply voltage V AL .
  • the voltage lobes LUC 1 and LUC 2 which respectively have the maximum negative induced voltage UM 1 (in absolute value) and the maximum positive induced voltage UM 2 are used to recharge the capacitors C2 and C1 respectively.
  • the voltage lobes LUC 1 and LUC 2 which respectively have the maximum negative induced voltage UM 1 (in absolute value) and the maximum positive induced voltage UM 2 are used to recharge the capacitors C2 and C1 respectively.
  • an induced current pulse I1 2 recharges the capacity C1 in a second half-wave and an induced current pulse I1 1 recharges the capacity C2 in a first half-cycle.
  • These induced current pulses correspond to electrical powers generated by the electromechanical transducer in the electromagnetic assembly 29 and absorbed by the electrical converter 57. These electrical powers thus correspond to mechanical powers supplied by the mechanical oscillator. They are converted by the electric converter and consumed by the main load associated with it.
  • the induced current pulses IN 2 each intervening in a second half-wave, cause a reduction in the duration of the half-waves during which they occur, and therefore an increase in the instantaneous frequency of the mechanical oscillator
  • the pulses of induced current IN 1 each involved in a first half-wave, generate an increase in the duration of the half-waves during which they occur, and therefore a decrease in the instantaneous frequency of the mechanical oscillator.
  • the positive time phase shift which occurs globally in the two second half-wave is compensated by the negative time phase which occurs globally in the first two half-wave of each period of oscillation.
  • the positive time shift which occurs in the first half-wave A0 1 is compensated by the negative time shift which occurs in the second half-wave A0 2 of the corresponding oscillation period. It is therefore understood that, although the duration of the first half-wave is different from that of the second half-wave, their sum is equal to a period of natural oscillation T0 of the mechanical oscillator not subjected to a regulating action.
  • the regulation method implemented in the logic control circuit 62a of the charge pump device 61 is given by the flowchart of the Figure 13 .
  • a certain delay is expected, that is to say a certain time interval, for example a period T0 or several periods T0, and the control circuit 62a determines whether at least a certain advance (CB> N1) has occurred in the running of the timepiece.
  • the regulation circuit is arranged so that the control circuit can detect whether the voltage V AC across the terminals of the auxiliary capacity is greater than a voltage threshold V th , which corresponds at a certain voltage for which the auxiliary capacity is filled to a level such that the charge pumps do not can no longer transfer significant electrical charges from one or other of the capacities C1 and C2 into the auxiliary capacity.
  • the switch Sw2 is closed for a short time interval ⁇ t to generate a certain discharge of the capacitor C2 through the corresponding dissipative circuit, indicated by the step D C2 (which is falling in absolute value because the voltage of the capacitor C2 decreases) in the voltage V C2 at the Figure 14 .
  • the control circuit activates the charge pump PC2 so that it performs a transfer of a first electric charge from the second supply capacity C2 into the capacity auxiliary C Aux .
  • This regulation action also results in a reduction in the voltage V C2 indicated by the downward movement D C2 .
  • This reduction in the voltage V C2 generates, at least in an oscillation period following such a transfer, an increase in the recharging of the second capacitor C2 relative to the hypothetical case where such a transfer of the first electric charge would not take place .
  • the reduction in the voltage V C2 operated by the control circuit in the alternation A1 1 generates at the appearance of the next voltage lobe LUC 1 in the following alternation A1 2 an induced current pulse I2 1 whose amplitude (value of the voltage peak) is greater than that of the previous I1 1 . Since this induced current pulse I2 1 occurs in a first half-wave, like all the induced current pulses which recharge the capacitor C2, a reduction in the voltage of this capacitor C2 always generates at least one regulation pulse which generates a negative phase shift in the oscillation of the mechanical resonator and therefore which momentarily decreases the frequency of oscillation to at least partially correct the advance detected in the running of the timepiece (positive time drift).
  • the pulses I1 2 and I2 2 have an amplitude, in absolute value, substantially equal to that of the pulse I1 1 , these pulses each corresponding to an induced current pulse. generated by the consumption of the main load only. These are therefore standard / nominal charging pulses.
  • the control circuit determines whether at least a certain delay (CB ⁇ -N2) has occurred in the running of this timepiece. If this is the case, the regulation circuit detects whether the voltage V AC at the terminals of the auxiliary capacity is greater than the voltage threshold V th . In this case, to correct the detected delay, the switch Sw1 is closed for a short time interval ⁇ t to generate a certain discharge of the capacitor C1 through the corresponding dissipative circuit, indicated by the step D C1 (which is falling in absolute value because the voltage of the capacitor C2 decreases) in the voltage V C2 at the Figure 15 .
  • the control circuit activates the charge pump PC1 so that it performs a transfer of a second electrical charge from the first supply capacity C1 into the auxiliary capacity C Aux .
  • This regulation action also results in a reduction in the voltage Vci indicated by the step D C1 .
  • This reduction in the voltage V C1 generates, at least in an oscillation period following such a transfer, an increase in the recharging of the second capacity C1 relative to the hypothetical case where such a transfer of the second electric charge would not take place .
  • the reduction in the voltage V C1 operated by the control circuit in the alternation A1 1 generates, when the next voltage lobe LUC 2 appears in this same alternation, an induced current pulse I3 2 whose amplitude is greater than that of the previous I1 2 . Since this induced current pulse I3 2 intervenes in a second half-wave, like all the induced current pulses which recharge the capacitor C1, a reduction in the voltage of this capacitor C1 always generates at least one regulation pulse which generates a positive phase shift in the oscillation of the mechanical resonator and therefore momentarily increases the oscillation frequency to at least partially correct the delay detected in the running of the timepiece (negative time drift).
  • the next pulse I3 1 again has substantially a standard / nominal amplitude.
  • the second embodiment has an important advantage in that the selective removal of an electric charge in the capacity C1 or C2 according to a time drift detected in the running of the timepiece can occur at any time since the first voltage lobes, which occur only in first half-waves, have the same first polarity while the second voltage lobes, which occur only in second half-waves, have the same second polarity opposite to the first polarity and by the fact that the capacities C1 and C2 can only be recharged respectively by induced voltages of opposite polarities.
  • the logic control circuit knows which polarity, first or second, is capable of recharging which capacity, C1 or C2, to selectively sample a certain electrical charge from one or the other of these two capacities as a function of the nature of a time drift detected, advance or delay, by a transfer of this certain electrical charge into the auxiliary capacity or by its dissipation through one of the two dissipative circuits provided if the auxiliary capacity is full.
  • a timer is provided which determines a certain delay following the appearance of a pulse S2 in the signal 'Comp' to carry out the selective removal of an electrical charge.
  • the number of cycles of transfer of lower electrical charges by a charge pump is increased when the voltage V AC at the terminals of the auxiliary capacity increases, so as to take a charge substantially constant electrical capacity of C1 and C2 by sequence of the regulation precedent.
  • the increase in the voltage V AC generally generates a reduction in the first or second electrical charge taken and therefore less correction by regulation sequence.
  • the regulation system is configured to be able to easily correct drifts in a standard drift range for the watch movement in question, a decrease in the value of the first and second electrical charges per regulation sequence, for a drift given time, will generate an increase in regulation sequences per time unit.
  • the remarks above relate to conventional capacities and also to super-capacities whose characteristic curve voltage - electric charge is substantially linear.
  • the electric charges transferred by the charge pump (s) are substantially constant regardless of the charge level of this secondary accumulation unit.
  • the regulation method described above can vary as regards the decision to transfer a certain electrical charge in the secondary storage unit or to consume this electrical charge in the dissipative circuit provided.
  • the regulating device will generally include means for determining the filling level of the secondary accumulation unit.
  • the electromagnetic assembly includes two pairs 82 and 84 of bipolar magnets 90 and 91, respectively 92 and 93, which are mounted on a balance 18b of the mechanical resonator 6b and which have respective magnetization axes which are parallel to the axis of rotation 20 of the balance, and a coil 28 which is integral with the support of the mechanical resonator.
  • Each of the two pairs 82, 84 of magnets, with its two bipolar magnets having respective opposite polarities, is similar to the pair of magnets 22, 23 of the electromagnetic assembly of the second embodiment and their interaction with the coil 28 is identical.
  • Each pair of bipolar magnets defines a median half-axis 24a, 24b starting from the axis of rotation 20 of the pendulum and passing through the middle of the pair of bipolar magnets considered.
  • Each median half-axis defines a respective reference half-axis 48a, 48b when the resonator 6a is at rest and thus in its neutral position, as shown in FIG. Figure 16 .
  • the coil 28 has in its center a first angular offset ⁇ relative to the first reference half-axis 48a and a second angular offset - ⁇ (same absolute value as the first angular offset, but opposite mathematical sign) relative to the second half-axis of reference 48a, so as to generate in each alternation of the mechanical resonator, in a useful operating range, two central voltage lobes LUC 1 and LUC 2 having opposite polarities (negative and positive) and substantially the same amplitude UM 1 , UM 2 in absolute value and forming respectively a first tension lobe and a second tension lobe ( Fig. 20A ).
  • the first and second voltage lobes LUC 1 and LUC 2 occur respectively in first half-vibrations and second half-vibrations.
  • the first and second angular phase shifts have an absolute value of 90 ° (variant shown in the Figure 16 ).
  • the two pairs of magnets 82 and 84 are arranged so that the polarities of the magnets of a pair are symmetrical to the polarities of the magnets of the other pair relative to a plane passing through the center of the coil and comprising the axis of rotation 20 (this plane comprising the half-axis 50 passing through the center of the coil and perpendicularly intercepting the axis of rotation 20).
  • the variant of the third embodiment described with reference to the figures is an improved variant.
  • a single pair of magnets having an angular offset of between 30 ° and 120 ° (in absolute value).
  • This other variant comprises a regulation circuit without the flip-flop 66.
  • the regulation method remains similar and the person skilled in the art will know how to adapt it to this particular variant.
  • the induced voltage signal Ui (t), shown in the Figure 20A alternately has voltage lobes LUC 1 having a negative voltage and voltage lobes LUC 2 having a positive voltage.
  • the electrical converter 76 comprises a full-wave rectifier 78 formed by a bridge of four diodes well known to those skilled in the art.
  • the first tension lobes are rectified, which is shown in the Figure 20A by the lobes in broken lines.
  • the first and second voltage lobes LUC 1 and LUC 2 alternately recharge the supply capacity C AL which in particular supplies the regulation circuit 74.
  • each half wave has a first voltage lobe in a first half wave and a second voltage lobe in a second half wave.
  • a flip-flop 66 is provided upstream of the bidirectional counter CB so as to inhibit one pulse out of two in the signal supplied to this counter.
  • the variant shown in Figures 20A and 20C provides a positive threshold voltage U th while the first voltage lobes are negative.
  • the threshold voltage can be chosen positive or negative.
  • the regulation device comprises a detection device which is arranged to be able to detect the successive appearance of first tension lobes or second tension lobes. Note that it is also possible to alternately detect these first and second voltage lobes using two comparators having respectively a positive voltage threshold and a negative voltage threshold. Those skilled in the art will be able to adapt the regulation method implemented in the logic control circuit 62b accordingly, in particular for determining the delays T C2 and T D2 .
  • the charge pump device is formed by a charge pump 60b which defines a voltage booster and which is arranged between the supply capacity C AL (primary storage unit) and an electric capacitor (secondary storage unit ) so that electrical charges can be transferred from the primary storage unit to the secondary storage unit.
  • the charge pump 60b quadruples the main supply voltage U AL delivered by the primary supply so that the voltage of the auxiliary supply V AC of the electric capacitor can be higher, in particular twice the voltage U AL .
  • the construction and operation of such a voltage booster are well known to those skilled in the art.
  • the electrical diagram of a variant is given in Figure 18 . It includes four transfer capacities C Tr , two input switches Sw1, six switches 82, three switches 84 and two output switches Sw2.
  • the switches Sw1 and 82 are closed while the switches Sw2 and 84 are open (the capacities C Tr are then arranged in parallel).
  • the switches Sw1 and 82 are open while the switches Sw2 and 84 are closed (the capacitors C Tr are then arranged in series).
  • the primary storage unit of this third embodiment is identical to that of the first embodiment with a single capacity C AL which receives all of the induced currents supplied by the electromagnetic transducer, the fact that the electromagnetic assembly 86 is arranged in a similar manner to that of the second embodiment, with the first voltage lobes and the second voltage lobes having opposite polarities, allows the comparator 64 to directly detect either the first tension lobes, i.e. the second tension lobes (case shown in the Fig. 20A ).
  • the Figure 19 is a flowchart of the regulation method implemented in the logic control circuit 62b of the third embodiment. We will no longer describe in detail all the elements, all the electrical signals and the consequences of the various events which occur, since they follow from the explanations already given previously and the results are easily understood in the light of these explanations.
  • the regulation circuit 74 When the regulation device is put into operation, the regulation circuit 74 is initialized to 'POR', in particular the bidirectional counter CB. The logic circuit then waits for the appearance of a pulse S2, namely in particular its rising edge in the signal 'Comp'. The detection of this rising edge triggers the timer which measures a first time interval T C2 the duration of which is chosen so that its end occurs in a first time zone ZT1 situated temporally between a second voltage lobe LUC 2 and a first voltage lobe LUC 1 , in particular between instant t 2 and instant ti where these two lobes respectively present their maximum values UM 2 and UM 1 ( Fig. 20A ).
  • the logic circuit detects whether the value of the counter bidirectional CB is greater than a natural number N1 to determine if there is an advance in the progress of the mechanism considered. If this is the case, the control circuit waits for the end of the delay T C2 and, in an equivalent manner to the regulation method of the second embodiment, determines whether the electric capacitor C Acc is full (that is to say detects if its level of electrical charge accumulation is above a certain given limit). If the electric capacitor C Acc is full, it discharges the supply capacity C AL of a first electrical charge by closing the switch Sw5 of the dissipative circuit comprising a certain resistance and provided in parallel with the charge pump for a certain interval time ⁇ t ( Fig. 17 ).
  • a sampling of a first electric charge generates a downward movement PC 1 in the supply voltage U AL (t) and the following induced current pulse P1 PC , which occurs in a first half-wave, then has a higher amplitude to that of a P1 pulse in the absence of prior removal of an electrical charge (see right-hand side of Fig. 20A to Fig. 20C ), so that the mechanical oscillator then undergoes greater braking in the first half-cycle considered.
  • the logic circuit waits for a second delay T D2 , directly following the first delay T C2 , to come to an end ( Fig. 20C ). To do this, at the end of a first time interval T C2 , the timer begins to measure a second time interval T D2 .
  • This second delay T D2 is chosen so that its end occurs in a second time zone ZT2 situated between a first voltage lobe LUC 1 and a second voltage lobe LUC 2 .
  • the logic circuit detects whether the value of the bidirectional counter CB is less than a number - N2, N2 being a natural number, to determine whether there is a delay in the operation of the mechanism considered. If this is the case, the control circuit waits for the end of the delay T C2 + T D2 and determines whether the electric capacitor C Acc is full. Depending on whether the capacitor is full or not, the control circuit then operates in a similar manner to that described above in the case of the detection of an advance.
  • a delay or an advance observed in the operation of the mechanism considered is corrected by the temporally selective removal of an electric charge in the capacity C AL forming the unit primary accumulation of the regulating device.
  • the regulation method of the third embodiment further includes an improvement in connection with the fact that the secondary accumulation unit continuously or intermittently supplies an auxiliary load by supplying an auxiliary supply voltage V AC to this auxiliary load .
  • the auxiliary load is preferably associated with a useful auxiliary function of the timepiece, so that it is desirable to be able to supply this auxiliary load.
  • the control circuit 62b determines using appropriate means whether the capacitor is empty or not.
  • the control circuit performs an operation of recharging the electric capacitor by taking a first charge in a first time zone ZT1 and a second electric charge, substantially of the same value as the first electric charge, in a second time zone ZT2. These two events generate phase shifts in the oscillation of the mechanical resonator which compensate each other, so that a double electrical charge is transferred from the primary storage unit to the secondary storage unit without causing any time drift in the timepiece market.
  • the control logic circuit waits for the detection of the rising edge of the next pulse S2 to carry out the next regulation sequence.
  • the transfer of a first electric charge, respectively of a second electric charge can be carried out by a plurality of transfer cycles of lower electric charges by the charge pump in the same regulation sequence, in particular in a same time zone ZT1, respectively ZT2.
  • the control logic circuit is arranged so as to be able to carry out, when the measured time drift corresponds to at least a certain advance, a plurality of samples of electrical charges respectively in a plurality of first time zones during a same regulatory sequence. Similarly, when the measured temporal drift corresponds to at least a certain delay, a plurality of samples of electrical charges respectively from a plurality of second time zones are carried out.
  • the resonator 106 is formed by a balance 18c which comprises two plates of ferromagnetic material 112 and 114.
  • the upper plate 112 carries on the side of its lower face the two bipolar magnets 22 and 23. This upper plate also serves to close the lines of the upper fields of the two magnets.
  • the lower plate 114 serves to close the field lines of the two magnets below.
  • the two balance plates thus axially form a magnetic shield for the two magnets so that their respective magnetic fields remain substantially confined in a volume located between the respective external surfaces of these two plates.
  • the coil 28 is partially arranged between the two plates which are fixedly mounted on a cylindrical piece 116 of non-magnetic material, this piece being fixedly mounted on a shaft 118 of the pendulum.
  • the part 116 can be made of steel and thus conduct a magnetic field, which can be an advantage in a variant provided with a single bipolar magnet, having its magnetic axis oriented axially, on one of the two plates or on each of the two trays.
  • the cylindrical connecting piece is non-magnetic
  • at least one plate may have a ferromagnetic part which approaches the other or touches it to close the field lines of each magnet through the two plates and thus allow the coil or coils to be crossed axially by substantially the entire magnetic field produced by each magnet when the balance oscillates.
  • the plates can be made only partially by a material with high magnetic permeability which forms two parts situated respectively above and below the magnet or, where appropriate, magnets, these two parts being arranged in so as to allow the coil or, where applicable, the coils of the control system to pass between them when the balance oscillates.
  • the resonator 106 also comprises a spiral spring 110, one end of which is conventionally fixed to the shaft 118.
  • the spiral spring is preferably made of non-magnetic material, for example silicon, or paramagnetic material.
  • an escape mechanism formed by a pin arranged on a small plate secured to the balance shaft, an anchor 120 and an escape wheel 122 (shown partially).
  • magnets are also carried by the lower plate. Such magnets are preferably arranged opposite the magnets carried by the upper plate.
  • the balance generally includes a magnetic structure which is arranged so as to define a magnetic shield for the magnet or magnets carried by the balance while promoting coupling. magnetic of this magnet or these magnets with the coil or coils provided.

Description

    Domaine technique
  • La présente invention concerne une pièce d'horlogerie comprenant un oscillateur mécanique associé à un système de régulation de sa fréquence moyenne. La régulation est du type électronique, c'est-à-dire que le système de régulation comprend un circuit électronique relié à un oscillateur auxiliaire qui est agencé pour fournir un signal d'horloge électrique de grande précision. Le système de régulation est agencé pour corriger une dérive temporelle éventuelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire.
  • En particulier, l'oscillateur mécanique comprend un résonateur mécanique formé par un balancier-spiral et un dispositif d'entretien formé par un échappement classique, par exemple à ancre suisse. L'oscillateur auxiliaire est formé notamment par un résonateur à quartz ou par un résonateur intégré dans le circuit électronique de régulation.
  • Arrière-plan technologique
  • Des mouvements formant des pièces d'horlogerie telles que définies dans le domaine de l'invention ont été proposés dans quelques documents antérieurs. Le brevet CH 597 636 , publié en 1977, propose un tel mouvement en référence à sa figure 3. Le mouvement est équipé d'un résonateur formé par un balancier-spiral et d'un dispositif d'entretien classique comprenant une ancre et une roue d'échappement en liaison cinématique avec un barillet muni d'un ressort. Ce mouvement horloger comprend un système de régulation de la fréquence de l'oscillateur mécanique. Ce système de régulation comprend un circuit électronique et un ensemble électromagnétique formé d'une bobine plate, agencée sur un support sous la serge du balancier, et de deux aimants montés sur le balancier et agencés proches l'un de l'autre de manière à passer tous deux au-dessus de la bobine lorsque l'oscillateur est activé.
  • Le circuit électronique comprend une base de temps comprenant un résonateur à quartz et servant à générer un signal de fréquence de référence FR, cette fréquence de référence étant comparée avec la fréquence FG de l'oscillateur mécanique. La détection de la fréquence FG est réalisée via les signaux électriques générés dans la bobine par la paire d'aimants. Le circuit de régulation est agencé pour pouvoir engendrer momentanément un couple de freinage via un couplage magnétique aimant-bobine et une charge commutable reliée à la bobine. Le document CH 597 636 donne l'enseignement suivant : « Le résonateur ainsi formé doit présenter une fréquence d'oscillation variable selon l'amplitude de part et d'autre de la fréquence FR (défaut d'isochronisme) ». On enseigne donc que l'on obtient une variation de la fréquence d'oscillation d'un résonateur non isochrone en variant son amplitude d'oscillation. Une analogie est faîte entre l'amplitude d'oscillation d'un résonateur et la vitesse angulaire d'une génératrice comprenant un rotor muni d'aimants et agencé dans un rouage du mouvement horloger pour en réguler sa marche. Comme un couple de freinage diminue la vitesse de rotation d'une telle génératrice et ainsi sa fréquence de rotation, il est ici seulement envisagé de pouvoir diminuer la fréquence d'oscillation d'un résonateur obligatoirement non isochrone par l'application d'un couple de freinage diminuant son amplitude d'oscillation.
  • Pour effectuer une régulation électronique de la fréquence de la génératrice, respectivement de l'oscillateur mécanique, il est prévu dans un mode de réalisation donné que la charge soit formée par un redresseur commutable via un transistor qui recharge une capacité de stockage lors des impulsions de freinage, pour récupérer l'énergie électrique afin d'alimenter le circuit électronique. L'enseignement constant donné dans le document CH 597 636 est le suivant : Lorsque FG > FR le transistor est conducteur ; on prélève alors une puissance Pa sur la génératrice / l'oscillateur. Lorsque FG < FR, le transistor est non-conducteur ; on ne prélève donc plus d'énergie sur la génératrice / l'oscillateur. En d'autres termes, on régule seulement lorsque la fréquence de la génératrice / de l'oscillateur est supérieure à la fréquence de référence FR. Cette régulation consiste à freiner la génératrice / l'oscillateur dans le but de diminuer sa fréquence FG. Ainsi, dans le cas de l'oscillateur mécanique, l'homme du métier comprend qu'une régulation n'est possible que lorsque le ressort de barillet est fortement armé et que la fréquence d'oscillation libre (fréquence propre) de l'oscillateur mécanique est supérieure à la fréquence de référence FR, comme résultat d'un défaut d'isochronisme voulu de l'oscillateur mécanique sélectionné. On a donc un double problème, à savoir l'oscillateur mécanique est sélectionné pour ce qui est normalement un défaut dans un mouvement mécanique et la régulation électronique n'est fonctionnelle que lorsque la fréquence propre de cet oscillateur est supérieure à une fréquence nominale.
  • La demande de brevet EP 1521 142 traite également de la régulation électronique d'un balancier-spiral. Le système de régulation proposé dans ce document est similaire dans son fonctionnement général à celui du brevet CH 597 636 .
  • La demande de brevet EP 1 241 538 enseigne que le moment du freinage de l'oscillateur mécanique, au cours d'une alternance d'une quelconque oscillation de ce dernier, permet soit de diminuer la valeur de la période d'oscillation en cours, soit de l'augmenter. Pour ce faire, il est prévu un ensemble électromagnétique aimants-bobines et un circuit de commande qui est agencé pour rendre conducteur ou non les bobines durant certains intervalles de temps déterminés. De manière générale, un freinage de l'oscillateur mécanique, par la génération d'une puissance électrique dans les bobines lors d'un couplage aimants-bobines, au cours d'une période d'oscillation engendre soit une augmentation de la période correspondante lorsque ce freinage intervient avant le passage du résonateur mécanique par son point neutre (position de repos), soit une diminution de la période correspondante lorsque ce freinage intervient après le passage du résonateur mécanique par son point neutre.
  • Concernant l'implémentation d'une régulation électronique tirant profit de la constatation susmentionnée, le document EP 1 241 538 propose deux réalisations. Dans ces deux réalisations, il est prévu un système piézo-électrique associé à l'échappement pour détecter un basculement de son ancre dans chaque période d'oscillation. Grâce à un tel système de détection, il est prévu, d'une part, de comparer la période d'oscillation avec une période de référence, définie par un oscillateur à quartz, pour déterminer si la marche de la pièce d'horlogerie présente une avance ou un retard et, d'autre part, de déterminer dans une alternance sur deux le passage de l'oscillateur mécanique par son point neutre. Dans la première réalisation, selon que la dérive temporelle correspond à une avance ou un retard, il est prévu de rendre conducteur les bobines durant un certain intervalle de temps respectivement avant ou après le passage par la position neutre de l'oscillateur mécanique dans une alternance. En d'autres termes, il est prévu ici de court-circuiter les bobines avant ou après le passage par la position neutre selon que la régulation requière respectivement une augmentation ou une diminution de la période d'oscillation.
  • Dans la deuxième réalisation, il est prévu d'alimenter le système de régulation en prenant périodiquement de l'énergie à l'oscillateur mécanique via l'ensemble électromagnétique. A cet effet, les bobines sont reliées à un redresseur qui est agencé pour recharger un condensateur (capacité de stockage), lequel sert de source d'alimentation pour le circuit électronique. L'ensemble électromagnétique est celui donné aux figures 2 et 4 du document et le circuit électronique est représenté schématiquement à la Figure 5 de ce document. Les seules indications données pour le fonctionnement du système de régulation sont les suivantes : 1) les bobines sont rendues conductrices durant des intervalles de temps constants qui sont centrés sur des passages respectifs du résonateur mécanique (balancier-spiral) par sa position neutre (position médiane des alternances) ; 2) durant ces intervalles de temps un courant induit est redressé et stocké dans le condensateur ; et 3) au cours desdits intervalles de temps, la période d'oscillation du balancier-spiral peut être régulée efficacement en ajustant la valeur de la puissance générée par le courant induit, sans autres précisions données.
  • On peut penser que le choix d'intervalles de conduction des bobines centrés sur les positions neutres du résonateur mécanique a pour objectif de ne pas induire de dérive temporelle parasite dans l'oscillateur mécanique en prélevant de l'énergie à ce dernier pour alimenter le circuit électronique. En rendant conductrices les bobines pour une même durée avant et après le passage par la position neutre, l'auteur pense peut-être équilibrer l'effet d'un freinage précédant un tel passage par la position neutre avec l'effet d'un freinage suivant ce passage pour ainsi ne pas modifier la période d'oscillation en l'absence d'un signal de correction du circuit de régulation intervenant suite à la mesure d'une dérive temporelle. On peut fortement douter qu'il y parvienne avec l'ensemble électromagnétique divulgué et un redresseur classique relié à une capacité de stockage. Premièrement, la recharge de cette capacité de stockage dépend de sa tension initiale au début d'un intervalle de temps donné. Ensuite, la tension induite et le courant induit dans les bobines varient en intensité avec la vitesse angulaire du balancier-spiral, cette intensité diminuant lorsqu'on s'éloigne d'une position neutre où la vitesse angulaire est maximale. L'ensemble électromagnétique divulgué permet de déterminer la forme du signal de tension induite / de courant induit. Bien que la position angulaire des aimants relativement aux bobines pour la position neutre (position de repos) ne soit pas donnée et qu'on ne peut pas déduire un enseignement sur la phase du signal, on peut en déduire que la recharge de la capacité de stockage aura lieu normalement en majeure partie avant le passage par la position neutre. Ainsi, il en résulte un freinage qui n'est pas symétrique relativement à la position neutre et un retard parasite dans la marche de pièce d'horlogerie. Finalement, quant à l'ajustement de la puissance induite au cours des intervalles de temps prévus pour réguler la marche de la pièce d'horlogerie, rien n'est indiqué. On ne comprend pas comment un tel ajustement est effectué, aucun enseignement n'étant donné à ce sujet.
  • Résumé de l'invention
  • Un objectif général, dans le cadre du développement ayant conduit à la présente invention, était de réaliser une pièce d'horlogerie, comprenant un mouvement mécanique avec un oscillateur mécanique et un système de régulation électronique de cet oscillateur mécanique, pour laquelle il ne soit pas nécessaire de dérégler initialement l'oscillateur mécanique pour qu'il avance, de manière à avoir ainsi une pièce d'horlogerie qui a la précision d'un oscillateur électronique auxiliaire (notamment muni d'un résonateur à quartz) lorsque le système de régulation est fonctionnel et, dans le cas contraire, la précision de l'oscillateur mécanique correspondant à son meilleur réglage. En d'autres termes, on cherche à adjoindre une régulation électronique à un mouvement mécanique par ailleurs réglé le plus précisément possible de sorte qu'il reste fonctionnel, avec la meilleure marche possible, lorsque la régulation électronique est non active.
  • La présente invention a pour objectif premier de fournir une pièce d'horlogerie du type décrit précédemment et qui soit capable de corriger un retard ou une avance dans la dérive temporelle de l'oscillateur mécanique tout en permettant d'assurer efficacement une auto-alimentation du système de régulation.
  • Un objectif particulier est de fournir une telle pièce d'horlogerie qui soit capable, pour un ensemble électromagnétique défini, de fournir en continu ou quasi continu une tension électrique d'alimentation qui demeure au-dessus d'une tension d'alimentation qui soit suffisante pour alimenter le dispositif de régulation, et ceci indépendamment de la régulation de la fréquence moyenne de l'oscillateur mécanique, notamment de l'énergie électrique engendrée par la régulation, et donc également en l'absence de correction d'une dérive temporelle (cas où elle demeure faible, voire nulle).
  • Un autre objectif particulier est d'assurer l'auto-alimentation du système de régulation sans induire une dérive temporelle parasite, en particulier en l'absence d'une correction d'une dérive temporelle, ou pour le moins de sorte qu'une telle dérive temporelle parasite éventuelle reste minime et négligeable.
  • Un autre objectif est d'utiliser l'énergie électrique de régulation pour alimenter une fonction auxiliaire et donc une charge auxiliaire, en accumulant efficacement cette énergie électrique sans induire d'instabilité dans le fonctionnement du dispositif de régulation ou de perturbation de la régulation.
  • A cet effet, la présente invention concerne une pièce d'horlogerie, comprenant :
    • un mécanisme, notamment un mécanisme d'indication de l'heure,
    • un résonateur mécanique susceptible d'osciller autour d'une position neutre correspondant à son état d'énergie potentielle mécanique minimale, chaque oscillation du résonateur mécanique définissant une période d'oscillation et présentant deux alternances successives chacune entre deux positions extrêmes qui définissent l'amplitude d'oscillation du résonateur mécanique, chaque alternance présentant un passage du résonateur mécanique par sa position neutre à un instant médian et étant constituée d'une première demi-alternance entre un instant initial de cette alternance et son instant médian et d'une seconde demi-alternance entre cet instant médian et un instant final de cette alternance,
    • un dispositif d'entretien du résonateur mécanique formant avec ce résonateur mécanique un oscillateur mécanique qui définit la cadence de la marche dudit mécanisme,
    • un transducteur électromécanique agencé pour pouvoir convertir de la puissance mécanique de l'oscillateur mécanique en puissance électrique lorsque le résonateur mécanique oscille avec une amplitude comprise dans une plage de fonctionnement utile, ce transducteur électromagnétique étant formé par un ensemble électromagnétique comprenant au moins une bobine, montée sur un élément parmi l'ensemble mécanique constitué du résonateur mécanique et de son support, et au moins un aimant monté sur l'autre élément de cet ensemble mécanique, l'ensemble électromagnétique étant agencé de manière à pouvoir fournir un signal de tension induite entre les deux bornes de sortie du transducteur électromécanique au moins lorsque le résonateur mécanique oscille avec une amplitude comprise dans la plage de fonctionnement utile,
    • un convertisseur électrique relié aux deux bornes de sortie du transducteur électromécanique de manière à pouvoir recevoir de ce transducteur électromécanique un courant électrique induit, ce convertisseur électrique comprenant une unité d'accumulation primaire agencée pour accumuler de l'énergie électrique fournie par le transducteur électromécanique, ce transducteur électromécanique et le convertisseur électrique formant ensemble un dispositif de freinage du résonateur mécanique,
    • un dispositif de régulation de la fréquence de l'oscillateur mécanique, ce dispositif de régulation comprenant un oscillateur auxiliaire et un dispositif de mesure agencé pour pouvoir détecter une dérive temporelle éventuelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire, le dispositif de régulation étant agencé pour pouvoir déterminer si la dérive temporelle mesurée correspond à au moins une certaine avance.
  • La pièce d'horlogerie selon l'invention est caractérisée en ce que :
    • le dispositif de régulation est agencé pour pouvoir également déterminer si la dérive temporelle mesurée correspond à au moins un certain retard,
    • le dispositif de freinage est agencé de manière que, dans chaque période d'oscillation du résonateur mécanique lorsque l'amplitude d'oscillation de celui-ci est dans la plage de fonctionnement utile, le signal de tension induite présente au moins un premier lobe de tension intervenant au moins en majeure partie dans une première demi-alternance et susceptible d'engendrer dans cette première demi-alternance une première impulsion de courant induit pour recharger l'unité d'accumulation primaire après un prélèvement d'une charge électrique de celle-ci et au moins un deuxième lobe de tension intervenant au moins en majeure partie dans une seconde demi-alternance et susceptible d'engendrer dans cette seconde demi-alternance une deuxième impulsion de courant induit pour recharger l'unité d'accumulation primaire après un prélèvement d'une charge électrique de celle-ci, le signal de tension induite présentant ainsi une pluralité de tels premiers lobes de tension et une pluralité de tels deuxièmes lobes de tension,
    • le dispositif de régulation comprend un dispositif de pompe de charge agencé pour pouvoir transférer sur commande une certaine charge électrique de l'unité d'accumulation primaire dans une unité d'accumulation secondaire,
    • le dispositif de régulation comprend en outre un circuit logique de commande qui reçoit en entrée un signal de mesure fourni par le dispositif de mesure et qui est agencé pour pouvoir activer le dispositif de pompe de charge de sorte qu'il effectue, lorsque la dérive temporelle mesurée correspond à ladite au moins une certaine avance, un transfert d'une première charge électrique de l'unité d'accumulation primaire dans l'unité d'accumulation secondaire de manière qu'une recharge de l'unité d'accumulation primaire, suite à ce transfert de la première charge électrique, soit générée en majeure partie par au moins un premier lobe de tension parmi ladite pluralité de premiers lobes de tension, le circuit logique de commande étant en outre agencé pour pouvoir activer le dispositif de pompe de charge de sorte qu'il effectue, lorsque la dérive temporelle mesurée correspond audit au moins un certain retard, un transfert d'une deuxième charge électrique de l'unité d'accumulation primaire dans l'unité d'accumulation secondaire de manière qu'une recharge de l'unité d'accumulation primaire, suite à ce transfert de la deuxième charge électrique, soit générée en majeure partie par au moins un deuxième lobe de tension parmi ladite pluralité de deuxième lobes de tension.
  • Par 'lobe de tension', on comprend une impulsion de tension qui est située entièrement en-dessus ou entièrement en-dessous d'une valeur nulle (définissant une tension zéro), c'est-à-dire une variation de tension dans un certain intervalle de temps avec soit une tension positive dont la valeur positive monte puis redescend, soit une tension négative dont la valeur négative descend puis remonte.
  • Le transfert d'une première charge électrique dans une première zone temporelle telle que définie est prévu pour augmenter la recharge de la capacité d'alimentation lors de l'apparition d'un premier lobe de tension suivant ce transfert, relativement au cas où aucun transfert n'aurait lieu. Cette augmentation de la recharge signifie une plus grande énergie mécanique prise à l'oscillateur mécanique par le système de freinage et donc un freinage supérieur de cet oscillateur mécanique. Comme ceci sera exposé par la suite, un freinage dans une première demi-alternance avant le passage du résonateur mécanique par sa position neutre engendre un déphasage temporel négatif dans l'oscillation du résonateur, et ainsi la durée de l'alternance en question est augmentée. On diminue donc momentanément la fréquence instantanée de l'oscillateur mécanique et il en résulte un certain retard dans la marche du mécanisme qui corrige au moins partiellement l'avance détectée par le dispositif de mesure. De même, le transfert d'une deuxième charge électrique dans une deuxième zone temporelle telle que définie est prévu pour augmenter la recharge de la capacité d'alimentation lors de l'apparition d'un deuxième lobe de tension suivant ce prélèvement, relativement au cas où aucun prélèvement n'aurait lieu. Comme on le comprendra par la suite, ceci engendre un déphasage temporel positif dans l'oscillation du résonateur, et ainsi la durée de l'alternance en question est diminuée. On augmente donc momentanément la fréquence instantanée de l'oscillateur mécanique et il en résulte une certaine avance dans la marche du mécanisme qui corrige au moins partiellement le retard détecté par le dispositif de mesure.
  • Dans un mode de réalisation principal, la pièce d'horlogerie comprend une charge principale connectée ou susceptible d'être régulièrement connectée au convertisseur électrique pour être alimentée par l'unité d'accumulation primaire, la charge principale comprenant notamment le dispositif de régulation.
  • Dans un mode de réalisation avantageux, la pièce d'horlogerie comprend une charge auxiliaire connectée ou susceptible d'être connectée par intermittence à l'unité d'accumulation secondaire de manière à pouvoir être alimentée par cette unité d'accumulation secondaire.
  • Dans une variante préférée, le dispositif de pompe de charge est agencé de manière à former un élévateur de tension qui est agencé pour qu'une tension d'alimentation auxiliaire aux bornes de l'unité d'accumulation secondaire soit supérieure à une tension d'alimentation principale aux bornes de l'unité d'accumulation primaire.
  • Dans un mode de réalisation particulier, le dispositif de régulation comprend au moins un circuit dissipatif pour dissiper de l'énergie électrique accumulée dans l'unité d'accumulation primaire, au moins un interrupteur associé au circuit dissipatif pour pouvoir connecter momentanément ce circuit dissipatif à l'unité d'accumulation primaire et un circuit de mesure agencé pour détecter si la tension aux bornes de l'unité d'accumulation secondaire est supérieure à une première limite de tension ou si le niveau de remplissage de l'unité d'accumulation secondaire est supérieure à une première limite de remplissage. Ensuite, le circuit logique de commande est agencé de manière à pouvoir, lorsque la tension aux bornes de l'unité d'accumulation secondaire est supérieure à la première limite de tension ou de remplissage, connecter momentanément ledit au moins un circuit dissipatif à l'unité d'accumulation primaire de sorte à effectuer, lorsque la dérive temporelle mesurée correspond à ladite au moins une certaine avance, une première décharge dissipative de l'unité d'accumulation primaire de manière qu'une recharge de celle-ci, suite à cette première décharge, soit générée en majeure partie par au moins un premier lobe de tension parmi ladite pluralité de premiers lobes de tension, et de sorte à effectuer, lorsque la dérive temporelle mesurée correspond audit au moins un certain retard, une deuxième décharge de l'unité d'accumulation primaire de manière qu'une recharge de celle-ci, suite à cette deuxième décharge, soit générée en majeure partie par au moins un deuxième lobe de tension parmi ladite pluralité de deuxièmes lobes de tension.
  • Dans une variante particulière du mode de réalisation avantageux mentionné précédemment, la pièce d'horlogerie comprend en outre un circuit de mesure agencé pour détecter si la tension aux bornes de l'unité d'accumulation secondaire est inférieure à une deuxième limite de tension (inférieure à la première limite de tension mentionnée ci-avant) ou si le niveau de remplissage de l'unité d'accumulation secondaire est inférieur à une deuxième limite de remplissage (inférieure à la première limite de remplissage mentionnée ci-avant). Ensuite, le circuit logique de commande est agencé de manière à pouvoir, lorsque la tension aux bornes de l'unité d'accumulation secondaire est inférieure à la deuxième limite de tension ou de remplissage et lorsque la dérive temporelle mesurée est comprise entre ledit au moins un certain retard et ladite au moins une certaine avance, activer le dispositif de pompe de charge de sorte qu'il effectue un transfert d'une troisième charge électrique de l'unité d'accumulation primaire dans l'unité d'accumulation secondaire, de manière qu'une recharge de l'unité d'accumulation primaire suite à ce transfert d'une troisième charge électrique soit générée en majeure partie par au moins un premier lobe de tension parmi ladite pluralité de premiers lobes de tension, et un transfert d'une quatrième charge électrique de l'unité d'accumulation primaire dans l'unité d'accumulation secondaire, de manière qu'une recharge de l'unité d'accumulation primaire suite à ce transfert d'une quatrième charge électrique soit générée en majeure partie par au moins un deuxième lobe de tension parmi ladite pluralité de deuxième lobes de tension, la quatrième charge électrique étant sensiblement égale à la troisième charge électrique.
  • Brève description des dessins
  • L'invention sera décrite ci-après de manière plus détaillée à l'aide de dessins annexés, donnés à titre d'exemples nullement limitatifs, dans lesquels :
    • La Figure 1 est une vue générale de dessus d'un premier mode de réalisation d'une pièce d'horlogerie selon l'invention,
    • La Figure 2 est une vue partielle et agrandie de la pièce d'horlogerie de la Figure 1, montrant l'ensemble électromagnétique formant un transducteur électromagnétique d'un système de régulation incorporé dans cette pièce d'horlogerie,
    • La Figure 3 représente, pour un ensemble électromagnétique donné aux Figures 4A à 4C qui correspond au premier mode de réalisation, la tension induite dans la bobine de cet ensemble électromagnétique lorsque le balancier-spiral oscille et l'application d'une première impulsion de freinage dans une certaine alternance avant que le balancier-spiral passe par sa position neutre, ainsi que la vitesse angulaire du balancier et sa position angulaire dans un intervalle temporel dans lequel intervient la première impulsion de freinage,
    • Les Figures 4A à 4C montrent, pour le transducteur électro-magnétique considéré à la Figure 3, le balancier à trois instants particuliers d'une alternance de l'oscillateur mécanique au cours de laquelle la première impulsion de freinage est fournie,
    • La Figure 5 est une figure similaire à celle de la Figure 3 avec l'application d'une deuxième impulsion de freinage dans une certaine alternance après que le balancier-spiral a passé par sa position neutre,
    • Les Figures 6A à 6C montrent le balancier à trois instants particuliers d'une alternance de l'oscillateur mécanique au cours de laquelle la deuxième impulsion de freinage est fournie,
    • La Figure 7 montre le schéma électrique d'un convertisseur électrique et d'un dispositif de régulation de l'oscillateur mécanique prévus dans le premier mode de réalisation d'une pièce d'horlogerie,
    • La Figure 8 montre le circuit électronique d'une variante de pompe de charge formant le dispositif de régulation représenté à la Figure 7,
    • La Figure 9 est un organigramme d'un mode de régulation de la marche de la pièce d'horlogerie selon le premier mode de réalisation,
    • Les Figures 10A à 10C représentent divers signaux électriques intervenant dans le schéma électrique de la Figure 7,
    • La Figure 11 est une vue partielle d'un deuxième mode de réalisation d'une pièce d'horlogerie selon l'invention, montrant l'agencement particulier de son transducteur électromagnétique,
    • La Figure 12 montre le schéma électrique du convertisseur électrique et du dispositif de régulation de l'oscillateur mécanique tels qu'agencés dans le deuxième mode de réalisation d'une pièce d'horlogerie selon l'invention,
    • La Figure 13 est un organigramme d'un mode de régulation de la marche de la pièce d'horlogerie selon le deuxième mode de réalisation,
    • La Figure 14 représente divers signaux électriques intervenant dans le schéma électrique de la Figure 12 dans le cas d'une correction d'une avance constatée dans la dérive temporelle mesurée,
    • La Figure 15 représente divers signaux électriques intervenant dans le schéma électrique de la Figure 12 dans le cas d'une correction d'un retard constaté dans la dérive temporelle mesurée,
    • La Figure 16 est une vue partielle d'un troisième mode de réalisation d'une pièce d'horlogerie selon l'invention, montrant l'agencement particulier de son transducteur électromagnétique,
    • La Figure 17 montre le schéma électrique du convertisseur électrique et du dispositif de régulation de l'oscillateur mécanique tels qu'agencés dans le troisième mode de réalisation d'une pièce d'horlogerie selon l'invention,
    • La Figure 18 montre le circuit électronique d'une variante de pompe de charge formant l'élévateur de tension du dispositif de régulation représenté à la Figure 17,
    • La Figure 19 est un organigramme d'un mode de régulation de la marche de la pièce d'horlogerie selon le troisième mode de réalisation,
    • Les Figures 20A à 20C représentent divers signaux électriques intervenant dans le schéma électrique de la Figure 17, et
    • Les Figures 21 et 22 montrent une variante de réalisation avantageuse d'un résonateur mécanique associé à un ensemble électromagnétique de la pièce d'horlogerie selon l'invention.
    Description détaillée de l'invention
  • En référence aux Figures 1 et 2, on décrira ci-après une pièce d'horlogerie objet de la présente invention. La Figure 1 est une vue en plan partielle d'une pièce d'horlogerie 2 comprenant un mouvement mécanique 4, équipé d'un résonateur mécanique 6, et un système de régulation 8. Les moyens d'entretien 10 du résonateur mécanique sont classiques. Ils comprennent un barillet 12 avec un ressort-moteur, un échappement 14 formé d'une roue d'échappement et d'une ancre à palettes, ainsi qu'un rouage intermédiaire 16 reliant cinématiquement le barillet à la roue d'échappement. Le résonateur 6 comprend un balancier 18 et un ressort-spiral usuel, le balancier étant monté pivotant autour d'un axe de rotation 20 entre une platine et un pont. Le résonateur mécanique 6 et les moyens d'entretien 10 (aussi nommés moyens d'excitation) forment ensemble un oscillateur mécanique. On notera que, en général, on ne retient dans la définition d'un oscillateur mécanique horloger que l'échappement comme moyen d'entretien / moyen d'excitation de cet oscillateur mécanique, la source d'énergie et un train d'engrenage intermédiaire étant considérés séparément. Le balancier-spiral oscille autour de l'axe 20 lorsqu'il reçoit des impulsions mécaniques de l'échappement dont la roue d'échappement est entraînée par le barillet. Le rouage 16 fait partie d'un mécanisme du mouvement horloger dont la marche est cadencée par l'oscillateur mécanique. Ce mécanisme comprend, outre le rouage 16, d'autres mobiles et des indicateurs analogiques (non représentés) reliés cinématiquement à ce rouage 16, le déplacement de ces indicateurs analogiques étant rythmé par l'oscillateur mécanique. Divers mécanismes connus de l'homme du métier peuvent être prévus.
  • La Figure 2 est une vue partielle de la Figure 1, en coupe horizontale au niveau du balancier 18, montrant un aimant 22 et une bobine 28 formant un ensemble électromagnétique 27 selon l'invention. La bobine 28 est de préférence du type galette (forme de disque ayant une épaisseur relativement petite). Elle est agencée sur la platine du mouvement horloger et comprend classiquement deux extrémités de connexion E1 et E2. De manière générale, l'ensemble électromagnétique comprend au moins une bobine et une structure aimantée formée d'au moins un aimant générant un flux magnétique, en direction d'un plan général de la bobine, qui passe au travers de celle-ci lorsque le résonateur mécanique oscille avec une amplitude comprise dans une plage de fonctionnement utile. Dans l'exemple représenté, le balancier 18 porte, de préférence dans une zone située à proximité de son diamètre extérieur défini par sa serge, l'aimant bipolaire 22 qui présente un axe d'aimantation orienté axialement. On remarquera qu'il est préférable de confiner le flux magnétique de l'aimant ou des aimants portés par le balancier à l'aide d'un blindage formé par des parties du balancier, en particulier par des parties magnétiques agencées des deux côtés de l'aimant selon la direction axiale de manière que la bobine soit partiellement située entre ces deux parties magnétiques.
  • Le balancier 18 définit un demi-axe 24, depuis son axe de rotation 20 et perpendiculairement à ce dernier qui passe au centre de l'aimant 22. Lorsque le balancier-spiral est dans sa position de repos, le demi-axe 24 définit une position neutre (position angulaire de repos du balancier-spiral correspondant à un angle zéro) autour de laquelle le balancier-spiral peut osciller à une certaine fréquence, notamment à une fréquence libre F0 correspondant à la fréquence d'oscillation naturelle de l'oscillateur mécanique, c'est-à-dire non soumis à des couples de force externes (autres que celui fourni périodiquement via l'échappement). A la Figure 2, le résonateur mécanique 6 (représenté sans son spiral qui est situé au-dessus du plan de coupe) est représenté dans sa position neutre, correspondant à son état d'énergie mécanique potentielle minimale. On remarque que, dans la position neutre, le demi-axe 24 définit un demi-axe de référence 48 qui est décalé angulairement d'un angle θ relativement au demi-axe fixe 50 qui intercepte perpendiculairement l'axe de rotation 20 et l'axe central de la bobine 28. En d'autres termes, en projection dans le plan général du balancier, le centre de la bobine 28 présente un décalage angulaire θ relativement au demi-axe de référence 48. A la Figure 2, ce décalage angulaire vaut 120° en valeur absolue. De préférence, le décalage angulaire θ est compris entre 30° et 120° en valeur absolue.
  • Chaque oscillation du résonateur mécanique définit une période d'oscillation et elle présente une première alternance suivie d'une deuxième alternance chacune entre deux positions extrêmes définissant l'amplitude d'oscillation du résonateur mécanique (à noter que l'on considère ici le résonateur oscillant et donc l'oscillateur mécanique dans son ensemble, l'amplitude d'oscillation du balancier-spiral étant définie entre autres choses par les moyens d'entretien). Chaque alternance présente un passage du résonateur mécanique par sa position neutre à un instant médian et une certaine durée entre un instant initial et un instant final qui sont définis respectivement par les deux positions extrêmes occupées par le résonateur mécanique respectivement au début et à la fin de cette alternance. Chaque alternance est ainsi constituée d'une première demi-alternance se terminant audit instant médian et d'une seconde demi-alternance débutant à cet instant médian.
  • Le système 8 de régulation de la fréquence de l'oscillateur mécanique comprend un circuit électronique 30 et un oscillateur auxiliaire 32, cet oscillateur auxiliaire comprenant un circuit d'horloge et par exemple un résonateur à quartz relié à ce circuit d'horloge. On notera que dans une variante, l'oscillateur auxiliaire est intégré au moins partiellement dans le circuit électronique. Le système de régulation comprend en outre l'ensemble électromagnétique 27 décrit précédemment, à savoir la bobine 28 qui est reliée électriquement au circuit électronique 30 et l'aimant bipolaire 22 monté sur le balancier. De manière avantageuse, les divers éléments du système de régulation 8, à l'exception de l'aimant, sont agencés sur un support 34 avec lequel ils forment un module indépendant du mouvement horloger. Ainsi, ce module peut être assemblé ou associé au mouvement mécanique 4 que lors de leur montage dans une boîte de montre. En particulier, comme représenté à la Figure 1, le module susmentionné est fixé à un cercle d'emboîtage 36 qui entoure le mouvement horloger. On comprend que le module de régulation peut donc être associé au mouvement horloger une fois ce dernier entièrement monté et réglé, le montage et démontage de ce module pouvant intervenir sans devoir intervenir sur le mouvement mécanique lui-même.
  • En référence aux Figures 3 à 6C, on décrira premièrement le phénomène physique sur lequel se fonde le principe de régulation implémenté dans la pièce d'horlogerie selon l'invention. On considère ici une pièce d'horlogerie semblable à celle de la Figure 1. Le résonateur mécanique 40, dont seul le balancier 42 a été représenté aux Figures 4A-4C et 6A-6C, porte un seul aimant bipolaire 44 dont l'axe d'aimantation est sensiblement parallèle à l'axe de rotation 20 du balancier, c'est-à-dire avec une orientation axiale. Dans ce cas, le demi-axe considéré 46 du résonateur mécanique 40 passe par le centre de rotation 20 et le centre de l'aimant 44. Dans l'exemple traité ici, l'angle θ entre le demi-axe de référence 48 et le demi-axe 50 a une valeur d'environ 90°. Les deux demi-axes 48 et 50 sont fixes relativement au mouvement horloger, alors que le demi-axe 46 oscille avec le balancier et donne la position angulaire β de l'aimant monté sur ce balancier relativement au demi-axe de référence, ce dernier définissant la position angulaire zéro pour le résonateur mécanique. Plus généralement, le décalage angulaire θ est tel qu'un signal de tension induite généré dans la bobine au passage de l'aimant en regard de cette bobine est situé, lors d'une première alternance d'une quelconque oscillation, avant le passage du demi-axe médian par le demi-axe de référence (donc dans une première demi-alternance) et, lors d'une seconde alternance d'une quelconque oscillation, après le passage de ce demi-axe médian par le demi-axe de référence (donc dans une seconde demi-alternance).
  • La Figure 3 montre quatre graphes. Le premier graphe donne la tension dans la bobine 28 en fonction du temps lorsque le résonateur 40 oscille, c'est-à-dire lorsque l'oscillateur mécanique est activé. Le deuxième graphe indique l'instant tP1 auquel une impulsion de freinage est appliquée au résonateur 40 pour effectuer une correction dans la marche du mécanisme cadencé par l'oscillateur mécanique. L'instant de l'application d'une impulsion de forme rectangulaire (c'est-à-dire d'un signal binaire) est considéré ici comme la position temporelle du milieu de cette impulsion. On observe une variation de la période d'oscillation au cours de laquelle interviennent l'impulsion de freinage et donc une variation ponctuelle de la fréquence de l'oscillateur mécanique. De fait, comme on le voit sur les deux derniers graphes de la Figure 3, qui montrent respectivement la vitesse angulaire (valeurs en radian par seconde : [rad/s]) et la position angulaire (valeurs en radian : [rad]) du balancier au cours du temps, la variation temporelle concerne la seule alternance au cours de laquelle intervient l'impulsion de freinage. On notera que chaque oscillation présente deux alternances successives qui sont définies dans le présent texte comme les deux demi-périodes au cours desquelles le balancier subit respectivement un mouvement d'oscillation dans un sens et ensuite un mouvement d'oscillation dans l'autre sens. En d'autres termes, comme déjà exposé, une alternance correspond à un balancement du balancier dans un sens ou l'autre sens entre ses deux positions extrêmes définissant l'amplitude d'oscillation.
  • Par impulsion de freinage, on comprend une application, substantiellement durant un intervalle de temps limité, d'un certain couple de force au résonateur mécanique pour le freiner, c'est-à-dire d'un couple de force qui s'oppose au mouvement d'oscillation de ce résonateur mécanique. De manière générale, le couple de freinage peut être de natures diverses, notamment magnétique, électrostatique ou mécanique. Dans le mode de réalisation décrit, le couple de freinage est obtenu par le couplage aimant-bobine et il correspond donc à un couple magnétique de freinage exercé sur l'aimant 44 via la bobine 28 qui est commandée par un dispositif de régulation. De telles impulsions de freinage peuvent par exemple être générées en court-circuitant momentanément la bobine. Cette action est reconnaissable sur le graphe de la tension de bobine dans la zone temporelle au cours de laquelle l'impulsion de freinage est appliquée, cette zone temporelle étant prévue lors de l'apparition d'une impulsion de tension induite dans la bobine par le passage de l'aimant. C'est évidemment dans cette zone temporelle que le couplage aimant-bobine permet une action sans contact via un couple magnétique sur l'aimant fixé au balancier. On observe en effet que la tension de bobine descend vers zéro au cours d'une impulsion de freinage par court-circuit (la tension induite dans la bobine 28 par l'aimant 44 étant représentée en traits interrompus dans la zone temporelle susmentionnée). A noter que les impulsions de freinage par court-circuit représentées aux Figures 3 et 5 sont mentionnées ici dans le cadre des explications données, car la présente invention prévoit une récupération de l'énergie de freinage pour alimenter notamment le dispositif de régulation.
  • Dans les Figures 3 et 5, la période d'oscillation T0 correspond à une oscillation 'libre' (c'est-à-dire sans application d'impulsions de régulation) de l'oscillateur mécanique. Chacune des deux alternances d'une période d'oscillation a une durée T0 / 2 sans perturbation ou contrainte extérieure (notamment par une impulsion de régulation). Le temps t = 0 marque le début d'une première alternance. On notera que la fréquence 'libre' F0 de l'oscillateur mécanique est ici approximativement égale à quatre Hertz (F0 = 4 Hz), de sorte que la période T0 = 250 ms environ.
  • En référence aux Figures 3 et 4A-4C, on décrira le comportement de l'oscillateur mécanique dans un premier cas. Après une première période T0 commence une nouvelle période T1, respectivement une nouvelle alternance A1 au cours de laquelle intervient une impulsion de freinage P1. A l'instant initial tD1 débute l'alternance A1, le résonateur 40 étant alors dans l'état de la Figure 4A où l'aimant 44 occupe une position angulaire β correspondant à une position extrême (position angulaire positive maximale Am). Ensuite intervient l'impulsion de freinage P1 à l'instant tP1 qui est situé avant l'instant médian tN1 auquel le résonateur passe par sa position neutre, les Figures 4B, 4C représentant le résonateur respectivement aux deux instants successifs tP1 et tN1. Finalement l'alternance A1 se termine à l'instant final tF1.
  • Dans le premier cas, l'impulsion de freinage est générée entre le début d'une alternance et le passage du résonateur par sa position neutre, c'est-à-dire dans une première demi-alternance de cette alternance. Comme prévu, la vitesse angulaire en valeur absolue diminue au moment de l'impulsion de freinage P1. Ceci induit un déphasage temporel négatif Tci dans l'oscillation du résonateur, comme le montrent les deux graphes de la vitesse angulaire et de la position angulaire à la Figure 3, soit un retard relativement au signal théorique non perturbé (représenté en traits interrompus). Ainsi, la durée de l'alternance A1 est augmentée d'un intervalle de temps TC1. La période d'oscillation T1, comprenant l'alternance A1, est donc prolongée relativement à la valeur T0. Ceci engendre une diminution ponctuelle de la fréquence de l'oscillateur mécanique et un ralentissement momentané de la marche du mécanisme associé.
  • En référence aux Figures 5 et 6A-6C, on décrira le comportement de l'oscillateur mécanique dans un deuxième cas. Les graphes de la Figure 5 représentent l'évolution temporelle des mêmes variables qu'à la Figure 3. Après une première période T0 commence une nouvelle période T2, respectivement une alternance A2 au cours de laquelle intervient une impulsion de freinage P2. A l'instant initial tD2 débute l'alternance A2, le résonateur 40 étant alors dans une position extrême (position angulaire négative maximale non représentée). Après un quart de période (T0 / 4) correspondant à une première demi-alternance, le résonateur atteint sa position neutre à l'instant médian tN2 (configuration représentée à la Figure 6A). Ensuite intervient l'impulsion de freinage P2 à l'instant tP2 qui est situé après l'instant médian tN2 auquel le résonateur passe par sa position neutre dans l'alternance A2, c'est-à-dire dans une seconde demi-alternance de cette alternance. Finalement, cette alternance se termine à l'instant final tF2 auquel le résonateur occupe à nouveau une position extrême (position angulaire positive maximale). Les Figures 6B et 6C représentent le résonateur respectivement aux deux instants successifs tN2 et tF2. On remarquera en particulier que la configuration de la Figure 6A se distingue de la configuration de la Figure 4C par les sens inverses des mouvements d'oscillation respectifs. En effet, à la Figure 4C, le balancier tourne dans un sens horaire lorsqu'il passe par la position neutre dans l'alternance A1, alors qu'à la Figure 6A ce balancier tourne dans le sens antihoraire lors du passage par la position neutre dans l'alternance A2.
  • Dans le deuxième cas considéré, l'impulsion de freinage est donc générée, dans une alternance, entre l'instant médian auquel le résonateur passe par sa position neutre et l'instant final auquel se termine cette alternance. Comme prévu, la vitesse angulaire en valeur absolue diminue au moment de l'impulsion de freinage P2. De manière remarquable, l'impulsion de freinage induit ici un déphasage temporel positif TC2 dans la période d'oscillation du résonateur, comme le montrent les deux graphes de la vitesse angulaire et de la position angulaire à la Figure 5, soit une avance relativement au signal théorique non perturbé (représenté en traits interrompus). Ainsi, la durée de l'alternance A2 est diminuée de l'intervalle de temps TC2. La période d'oscillation T2 comprenant l'alternance A2 est donc plus courte que la valeur T0. Ceci engendre par conséquent une augmentation 'ponctuelle' de la fréquence instantanée de l'oscillateur mécanique et une accélération momentanée de la marche du mécanisme associé.
  • En référence aux Figures 1 et 2 déjà décrites et aux Figures 7 à 10C, on décrira ci-après un premier mode de réalisation d'une pièce d'horlogerie selon l'invention. Cette pièce d'horlogerie 2 comprend :
    • un mécanisme 12,16 (montré partiellement),
    • un résonateur mécanique 6 (balancier-spiral) susceptible d'osciller autour d'une position neutre 48 correspondant à son état d'énergie potentielle mécanique minimale, chaque alternance des oscillations successives présentant un passage du résonateur mécanique par sa position neutre à un instant médian et étant constituée d'une première demi-alternance se terminant à son instant médian et d'une seconde demi-alternance débutant à son instant médian,
    • un dispositif d'entretien 14 du résonateur mécanique formant avec ce résonateur mécanique un oscillateur mécanique qui cadence la marche du mécanisme,
    • un transducteur électromécanique agencé pour pouvoir convertir de la puissance mécanique de l'oscillateur mécanique en puissance électrique lorsque le résonateur mécanique 6 oscille avec une amplitude comprise dans une plage de fonctionnement utile, ce transducteur électromagnétique étant formé par un ensemble électromagnétique 27 comprenant une bobine 28 (seul élément de l'ensemble électromagnétique représenté schématiquement à la Figure 7), montée sur le support (en particulier la platine du mouvement 4) du résonateur mécanique, et un aimant 22 monté sur ce résonateur mécanique, l'ensemble électromagnétique 27 étant agencé de manière à pouvoir fournir un signal de tension induite Ui(t) (Fig.10A), entre les deux bornes de sortie E1 et E2 du transducteur électromécanique lorsque le résonateur mécanique oscille avec une amplitude comprise dans la plage de fonctionnement utile,
    • un convertisseur électrique 56 relié aux deux bornes de sortie du transducteur électromécanique de manière à pouvoir recevoir de ce transducteur électromécanique un courant électrique induit IRec (Fig.10B), ce convertisseur électrique comprenant une capacité d'alimentation CAL agencée pour accumuler de l'énergie électrique fournie par le transducteur électromécanique, ce transducteur électromécanique et le convertisseur électrique formant ensemble un dispositif de freinage du résonateur mécanique,
    • un dispositif de régulation 52 de la fréquence de l'oscillateur mécanique, ce dispositif de régulation comprenant un oscillateur auxiliaire 58 & CLK et un dispositif de mesure agencé pour pouvoir mesurer une dérive temporelle éventuelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire, le dispositif de régulation étant agencé pour pouvoir déterminer si la dérive temporelle mesurée correspond à au moins une certaine avance ou à au moins un certain retard.
  • De préférence, l'ensemble électromagnétique 27 forme également en partie le dispositif de mesure. Ce dispositif de mesure comprend en outre un compteur bidirectionnel CB et un comparateur 64 (du type Schmidt trigger). Le comparateur reçoit à une entrée le signal de tension induite Ui(t) et à l'autre entrée un signal de tension de seuil Uth dont la valeur est positive dans l'exemple donné. Comme le signal de tension induite Ui(t) présente dans chaque période d'oscillation du résonateur 6 deux lobes positifs (Fig.10A) dépassant la valeur Uth, le comparateur fournit en sortie un signal 'Comp' présentant deux impulsions S1 et S2 (Fig.10C) par période d'oscillation. Ce signal 'Comp' est fourni d'une part à un circuit logique de commande 62 et d'autre part à une bascule 66 qui inhibe une impulsion sur deux de manière à fournir une seule impulsion par période d'oscillation à une première entrée 'UP' du compteur bidirectionnel CB. Le compteur bidirectionnel comprend une deuxième entrée 'Down' qui reçoit un signal d'horloge Shor à une fréquence nominale / fréquence de consigne pour la fréquence d'oscillation, ce signal d'horloge étant dérivé de l'oscillateur auxiliaire qui fournit un signal digital de référence définissant une fréquence de référence. L'oscillateur auxiliaire comprend un circuit d'horloge CLK servant à exciter le résonateur à quartz 58 et à fournir en retour le signal de référence qui est composé d'une succession d'impulsions correspondant respectivement aux périodes d'oscillation du résonateur à quartz.
  • Le circuit d'horloge fournit son signal de référence à un diviseur DIV1 & DIV2 qui divise le nombre d'impulsions dans ce signal de référence par le rapport entre la période nominale de l'oscillateur mécanique et la période de référence nominale de l'oscillateur auxiliaire. Le diviseur fournit ainsi un signal d'horloge Shor définissant une fréquence de consigne (par exemple 4Hz) et présentant une impulsion par période de consigne (par exemple 250 ms) au compteur CB. Ainsi, l'état du compteur CB détermine l'avance (si le nombre est positif) ou le retard (si le nombre est négatif) accumulé(e) au cours du temps par l'oscillateur mécanique relativement à l'oscillateur auxiliaire avec une résolution correspondant sensiblement à une période de consigne. L'état du compteur est fourni à un circuit logique de commande 62 qui est agencé pour déterminer si cet état correspond à au moins une certaine avance (CB > N1, N1 étant un nombre naturel) ou à au moins un certain retard (CB < -N2, N2 étant un nombre naturel).
  • Le convertisseur électrique 56 comprend un circuit d'accumulation d'énergie électrique D1 & CAL qui est agencé, dans la variante décrite, pour pouvoir recharger la capacité d'alimentation CAL seulement avec une tension positive en entrée du convertisseur électrique, c'est-à-dire seulement avec une tension induite positive fournie par la bobine 28. Cette capacité d'alimentation forme ici à elle seule une unité d'accumulation primaire. Lors d'une recharge de la capacité d'alimentation, la quantité d'énergie électrique fournie par le dispositif de freinage à cette capacité d'alimentation est d'autant plus grande que le niveau de tension de cette capacité d'alimentation est bas. Une charge principale est connectée ou susceptible d'être régulièrement connectée au convertisseur électrique 56 et alimentée par la capacité d'alimentation qui fournit la tension d'alimentation principale UAL(t), représentée à la Figure 10A, entre les deux bornes d'alimentation VDD et VSS, cette charge principale comprenant notamment le circuit de régulation 54.
  • La pièce d'horlogerie 2 est remarquable par le fait que le circuit de régulation 54 du dispositif de régulation comprend une pompe de charge 60 agencée pour pouvoir transférer sur commande une certaine charge électrique de la capacité d'alimentation CAL dans une unité d'accumulation secondaire formée ici d'une capacité CAux. Cette capacité CAux est prévue comme source d'alimentation secondaire pour une charge auxiliaire, par exemple une diode lumineuse, un circuit RFID, un capteur de température, ou une autre unité électronique pouvant être incorporée dans la pièce d'horlogerie selon l'invention. A cet effet, la capacité CAux présente à ses deux bornes respectivement un potentiel inférieur VL et un potentiel supérieur VH définissant une tension d'alimentation auxiliaire. Une variante de réalisation d'une telle pompe de charge est représentée à la Figure 8. Il s'agit d'une forme simple de pompe de charge qui ne fait que transférer des charges sans augmentation de tension de sorte que dans ce cas la tension d'alimentation auxiliaire est prévue inférieure à la tension d'alimentation principale fournie par le convertisseur électrique 56. On notera qu'il s'agit d'un cas particulier qui n'est pas préféré. D'autres variantes de pompe de charge connues de l'homme du métier peuvent être prévues, notamment celles qui ont une fonction d'élévateur de tension. Une telle variante sera décrite par la suite dans le troisième mode de réalisation. La pompe de charge 60 comprend un interrupteur d'entrée Sw1 et un interrupteur de sortie Sw2 avec une capacité de transfert CTr. Les interrupteurs Sw1 et Sw2 sont commandés par le circuit logique de commande 62 selon un procédé de régulation (Figure 9) implémenté dans le premier mode de réalisation de la pièce d'horlogerie selon l'invention et qui sera décrit par la suite.
  • Aux Figures 10A et 10B, le signal de tension induite Ui(t) correspond à celui généré par l'ensemble électromagnétique 27 associé au résonateur mécanique 6 lorsque ce dernier oscille dans une plage de fonctionnement utile. Sur l'axe du temps [t] sont indiqués les instants médians TNn, n = 0, 1, 2, ..., correspondant aux passages successifs du résonateur mécanique par sa position neutre, ainsi que les instants TMn, n = 0, 1, 2, ..., correspondant aux passages successifs du résonateur mécanique alternativement par ses deux positions extrêmes où sa vitesse angulaire est nulle et le sens de son balancement s'inverse. Selon l'invention, le dispositif de freinage 27 & 56 est agencé de manière que, dans chaque période d'oscillation du résonateur mécanique 6 au moins lorsque l'amplitude d'oscillation de ce résonateur mécanique est dans la plage de fonctionnement utile, le signal de tension induite Ui(t) présente un premier lobe de tension LU1 intervenant dans une première demi-alternance DA11, DA1P et un deuxième lobe de tension LU2 intervenant dans une seconde demi-alternance DA21, DA2P. Le signal de tension induite présente ainsi alternativement une succession de premiers lobes de tension LU1 et de deuxièmes lobes de tension LU2. Chaque premier lobe de tension LU1 présente une première valeur maximale UM1 à un premier instant ti de la première demi-alternance correspondante et chaque deuxième lobe de tension LU2 présente une deuxième valeur maximale UM2 à un deuxième instant t2 de la seconde demi-alternance correspondante.
  • Les premiers et deuxièmes lobes de tension définissent, d'une part, des premières zones temporelles ZT1 situées chacune avant le premier instant ti d'un premier lobe de tension différent et après le deuxième instant t2 du deuxième lobe de tension précédant ce premier lobe de tension et, d'autre part, des deuxièmes zones temporelles ZT2 situées chacune avant le deuxième instant t2 d'un deuxième lobe de tension différent et après le premier instant ti du premier lobe de tension précédant ce deuxième lobe de tension. Les premiers lobes de tension LU1 génèrent des impulsions S1 dans le signal 'Comp' en sortie du comparateur 64, alors que les deuxièmes lobes de tension LU2 génèrent des impulsions S2 dans ce signal 'Comp' (Fig.10C). Dans la variante représentée à la Figure 10A, les lobes considérés pour la génération des signaux S1 et S2 sont les lobes de tension positive car la tension de seuil Uth a été choisie positive. Dans une variante qui ne sera pas décrite plus en détail par la suite, on peut choisir une tension de seuil négative fournie à l'entrée '+' du comparateur 64 (le signal de tension induite étant alors fourni à son entrée '-') et ce sont alors les lobes de tension négative qui génèrent les signaux S1 et S2.
  • Ensuite, le dispositif de freinage est agencé de manière que, au moins lorsqu'aucune dérive temporelle n'est détectée par le dispositif de mesure et au moins lorsque ladite charge principale, connectée aux bornes Vss et VDD, consomme en continu ou de manière quasi continue de l'énergie électrique accumulée dans la capacité d'alimentation CAL (lors d'une phase de fonctionnement normal de la pièce d'horlogerie, comme représenté à la Figure 10A où la tension d'alimentation UAL(t) présente une certaine pente négative en l'absence de correction du fonctionnement de l'oscillateur mécanique), les premiers lobes de tension LU1 et les deuxièmes lobes de tension LU2 engendrent alternativement des impulsions de courant induit P1 et P2 (Fig.10B) qui rechargent la capacité d'alimentation . On remarquera que le convertisseur électrique 56 comprend une diode D1 agencée de sorte que seuls les lobes de tension positive sont susceptibles de recharger la capacité CAL. Cependant, dans une variante qui ne sera pas décrite plus en détail par la suite, le convertisseur électrique peut avoir une diode agencée de manière à définir un redresseur simple alternance de sorte que ce sont alors les lobes de tension négative qui sont susceptibles de recharger la capacité CAL. Dans ce cas, ce sont ainsi les lobes de tension négative qui engendrent les impulsions de courant induit et qui sont considérés pour déterminer les zones temporelles de prélèvement d'une certaine charge électrique en fonction de la dérive temporelle mesurée, comme exposé ci-après. On notera que dans une autre variante, le convertisseur peut comprendre un convertisseur double alternance. Dans ce cas, on obtient à chaque passage de l'aimant 22 devant la bobine 28 une première paire de premiers lobes de tension consécutifs ou une deuxième paire de deux deuxième lobes de tension consécutifs ayant tous sensiblement une même amplitude. On obtient donc des doublons des premiers de deuxièmes lobes de tension décrits ci-avant. Ce cas particulier doit être traité en relation avec l'exposé ci-dessus en prenant les premières et deuxièmes paires de lobes de tension en lieu et place des premiers et deuxièmes lobes de tension, et en prenant pour déterminer les premières et deuxièmes zones temporelles ZT1 et ZT2 les temps t1 et t2 des deux lobes adjacents parmi deux paires qui se succèdent.
  • La pompe de charge 60 est agencée pour pouvoir prélever sur commande une certaine charge électrique de la capacité d'alimentation CAL et la transférer dans la capacité auxiliaire CAux, de manière à diminuer momentanément le niveau de tension UAL(t) de la capacité d'alimentation CAL. Dès que la capacité d'alimentation a été suffisamment chargée pour pouvoir alimenter le circuit de régulation 54, le circuit logique de commande 62 reçoit en entrée un signal de mesure fourni par le dispositif de mesure, à savoir du compteur bidirectionnel CB. Ce circuit logique de commande est agencé pour activer la pompe de charge 60 de manière qu'elle effectue, lorsque la dérive temporelle mesurée correspond à au moins une certaine avance (CB > N1), un prélèvement d'une première charge électrique de la capacité d'alimentation CAL dans une première zone temporelle ZT1 et un transfert de cette première charge dans la capacité auxiliaire qui forme une source d'alimentation secondaire. Il en résulte une baisse de la tension UAL(t). De même, le circuit logique de commande est agencé pour activer la pompe de charge 60 de manière qu'elle effectue, lorsque la dérive temporelle mesurée correspond à au moins un certain retard (CB < -N2), un prélèvement d'une deuxième charge électrique de la capacité d'alimentation CAL dans une deuxième zone temporelle ZT2, pour baisser la tension UAL(t), et un transfert de cette deuxième charge électrique dans la capacité auxiliaire.
  • Le procédé de régulation implémenté dans le premier mode de réalisation de l'invention est donné sous forme d'organigramme à la Figure 9. Après une initialisation du circuit de régulation à 'POR', on réinitialise le compteur CB. Ensuite, on attend la détection d'un flanc montant d'une impulsion S1 ou S2 fournie par le comparateur 64 dans le signal 'Comp' (voir Fig. 10C) qu'il transmet au circuit logique de commande 62, et on initialise alors le compteur temporel CT. Ensuite, on attend la détection du flanc montant suivant dans le signal 'Comp' (deuxième flanc montant d'une impulsion S2 ou S1).
  • Dès la détection du deuxième flanc montant susmentionné dans le signal 'Comp', le circuit logique 62 transfert l'état / la valeur du compteur temporel CT dans un registre et compare cette valeur à une valeur de différentiation Tdiff qui est sélectionnée inférieure à un premier intervalle de temps entre une première impulsion S1 et une deuxième impulsion S2 et supérieure à un deuxième intervalle de temps entre une deuxième impulsion S2 et une première impulsion S1. Dès le transfert de l'état du compteur temporel CT dans le registre, ce compteur temporel est réinitialisé et un temporisateur associé au circuit logique 62 est enclenché pour mesurer un certain délai dont la valeur TC1 ou TD1 est sélectionnée en fonction du résultat de la comparaison de la valeur du compteur CT avec la valeur Tdiff. Dans le premier mode de réalisation, le dispositif de régulation comprend donc un dispositif de détection, agencé pour pouvoir détecter l'apparition successive alternativement de premiers lobes de tension et de deuxièmes lobes de tension, et un compteur temporel CT associé au circuit logique de commande 62 pour permettre à ce dernier de distinguer un premier intervalle de temps, séparant un premier lobe de tension d'un deuxième lobe de tension qui suit, et un deuxième intervalle de temps séparant un deuxième lobe de tension d'un premier lobe de tension qui suit, les premier et deuxième intervalles de temps étant différents du fait de l'agencement de l'ensemble électro-magnétique.
  • L'agencement de l'ensemble électromagnétique est prévu ici tel que la courbe du signal de tension induite Ui(t) présente deux lobes de tension LU2 et LU1, avec une même amplitude maximale (UM2 = UM1), qui interviennent dans une seconde demi-alternance et dans la première demi-alternance suivante, mais aucun lobe de tension de sensiblement même amplitude n'est engendré dans les deux demi-alternances suivantes. La courbe du signal de tension induite Ui(t) représentée à la Figure 10A découle de l'ensemble électromagnétique 27 décrit précédemment. Dans le premier mode de réalisation, la bobine 28 présente en son centre un décalage angulaire θ relativement au demi-axe de référence 48 (Fig. 2 ; position angulaire de l'aimant 22 lorsque le résonateur mécanique 6 est dans sa position de repos) de sorte à engendrer dans chaque période d'oscillation du résonateur mécanique, dans ladite plage de fonctionnement utile, seulement deux lobes de tension de même polarité et de sensiblement même amplitude maximale qui interviennent dans deux demi-alternances consécutives et qui forment respectivement un desdits deuxièmes lobes de tension et un desdits premiers lobes de tension. De préférence, le décalage angulaire θ est compris entre 30° et 120° en valeur absolue.
  • Lors de la comparaison susmentionnée entre la valeur du compteur temporel CT et la valeur de différentiation Tdiff, le temporisateur associé au circuit logique attend soit un délai Tci lorsque la valeur du compteur temporel CT est supérieure à la valeur de différentiation Tdiff, soit un délai TD1 lorsque la valeur du compteur temporel CT est inférieure à la valeur de différentiation Tdiff. Dans le premier cas, la comparaison permet de savoir que l'impulsion détectée est une impulsion S2 générée par un deuxième lobe de tension LU2 et le délai TC1 est choisi pour qu'il termine dans une première zone temporelle ZT1 suivant ce deuxième lobe de tension. Dans le second cas, la comparaison permet de savoir que l'impulsion détectée est une impulsion S1 générée par un premier lobe de tension LU1 et le délai TD1 est choisi pour qu'il termine dans une deuxième zone temporelle ZT2 suivant ce premier lobe de tension. De manière générale, le dispositif de régulation comprend un temporisateur associé au circuit logique de commande pour permettre à ce dernier d'activer, le cas échéant, le dispositif de pompe de charge après un premier délai déterminé depuis la détection d'un deuxième lobe de tension, ce premier délai étant sélectionné de sorte qu'il se termine dans une première zone temporelle, ou après un deuxième délai déterminé depuis la détection d'un premier lobe de tension, ce deuxième délai étant sélectionné de sorte qu'il se termine dans une deuxième zone temporelle.
  • Dans le premier cas susmentionné, lorsque le délai TC1 est atteint, on détecte si le compteur CB, indiquant une dérive temporelle éventuelle de l'oscillateur mécanique, a une valeur supérieure à un nombre naturel donné N1 (nombre positif ou égal à zéro). Si tel est le cas, l'oscillateur mécanique présente une avance relativement à l'oscillateur auxiliaire. Pour corriger une telle avance, il est prévu selon l'invention de transférer une première charge électrique de la capacité d'alimentation dans la capacité auxiliaire à la fin du délai TC1 susmentionné et donc dans la première zone temporelle ZT1 correspondante. La baisse de la tension d'alimentation UAL(t) qui en résulte (indiqué par la référence PC1 à la Fig.10A) engendre, lors de l'apparition du premier lobe de tension suivant le transfert susmentionné, une impulsion de courant induit P1PC ayant une amplitude supérieure à celle d'une impulsion P1 qui interviendrait en l'absence d'activation de la pompe de charge. Cette augmentation du courant induit dans la bobine 28 signifie une plus grande énergie mécanique prise à l'oscillateur mécanique par le dispositif de freinage dans une première demi-alternance DA1P. Comme déjà exposé, un freinage dans une première demi-alternance engendre un déphasage temporel négatif dans l'oscillation du résonateur mécanique 6, et ainsi la durée de la demi-alternance en question est augmentée. Par le freinage plus intense opéré dans la première demi-alternance DA1P, on diminue momentanément la fréquence instantanée de l'oscillateur mécanique et il en résulte un certain retard dans la marche du mécanisme qu'il cadence, ce qui corrige au moins partiellement l'avance détectée par le dispositif de mesure.
  • Dans le second cas susmentionné, lorsque le délai TD1 est atteint, on détecte si le compteur CB a une valeur inférieure à un nombre négatif donné - N2, N2 étant un nombre naturel. Si tel est le cas, l'oscillateur mécanique présente un retard relativement à l'oscillateur auxiliaire. Pour corriger un tel retard, il est prévu selon l'invention de transférer une deuxième charge électrique de la capacité d'alimentation dans la capacité auxiliaire à la fin du délai TD1 susmentionné et donc dans la deuxième zone temporelle ZT2 correspondante. La baisse de la tension d'alimentation UAL(t) qui en résulte (indiqué par la référence PC2 à la Fig.10A) engendre, lors de l'apparition du deuxième lobe de tension suivant le transfert susmentionné, une impulsion de courant induit P2PC ayant une amplitude supérieure à celle de l'impulsion P2 qui interviendrait en l'absence de régulation. Cette augmentation du courant induit dans la bobine 28 signifie une plus grande énergie mécanique prise à l'oscillateur mécanique par le dispositif de freinage dans une seconde demi-alternance DA2P. Comme déjà exposé, un freinage dans une seconde demi-alternance engendre un déphasage temporel positif dans l'oscillation du résonateur mécanique, et ainsi la durée de la demi-alternance en question est diminuée. Par le freinage plus intense opéré dans la seconde demi-alternance DA2P, on augmente momentanément la fréquence instantanée de l'oscillateur mécanique et il en résulte une certaine avance dans la marche du mécanisme qu'il cadence, ce qui corrige au moins partiellement le retard détecté par le dispositif de mesure.
  • Un prélèvement d'une charge électrique dans une première zone temporelle ZT1 à la fin du délai TC1, indiqué par la référence PC1 qui pointe une marche descendante dans la tension d'alimentation UAL(t), engendre donc une impulsion de courant induit P1PC d'amplitude supérieure dans une première demi-alternance DA1P d'une alternance A2, cette première demi-alternance ayant une durée supérieure à celles des secondes demi-alternances DA10 et DA11 qui correspondent respectivement à une demi-alternance au cours de laquelle aucune impulsion de courant induit n'est engendrée et à une demi-alternance au cours de laquelle une impulsion de compensation P1 de la consommation électrique de la charge principale intervient. Un prélèvement d'une charge électrique dans une deuxième zone temporelle ZT2 à la fin du délai TD1, indiqué par la référence PC2 qui pointe une marche descendante dans la tension d'alimentation UAL(t), engendre donc une impulsion de courant induit P2PC d'amplitude supérieure dans une seconde demi-alternance DA2P d'une alternance A1, cette seconde demi-alternance ayant une durée moindre que les secondes demi-alternances DA20 et DA21 qui correspondent respectivement à une demi-alternance au cours de laquelle aucune impulsion de courant induit n'est engendrée et à une demi-alternance au cours de laquelle une impulsion de compensation P2 de la consommation électrique de la charge principale intervient.
  • A l'aide des Figures 11 à 15, on décrira ci-après un deuxième mode de réalisation d'une pièce d'horlogerie selon l'invention.
  • La Figure 11 est similaire à la Figure 2, mais pour un ensemble électromagnétique 29 formant le transducteur électromagnétique d'une pièce d'horlogerie selon le deuxième mode de réalisation. Elle montre le résonateur mécanique 6a en coupe horizontale au niveau de son balancier 18a, ce résonateur mécanique étant incorporé dans un mouvement horloger, semblable à celui de la Figure 1, en lieu et place du résonateur 6 montré à cette Figure 1. Les références déjà décrites ne seront pas à nouveau décrites ici. De manière générale, il est prévu un ensemble électromagnétique qui comprend au moins la bobine 28 et une structure aimantée formée d'au moins un aimant et présentant au moins une paire de pôles magnétiques, de polarités opposées, générant chacun un flux magnétique en direction d'un plan général de la bobine, cette paire de pôles magnétiques étant agencée de manière que, lorsque le résonateur mécanique 6a oscille avec une amplitude comprise dans une plage de fonctionnement utile, leurs flux magnétiques respectifs traversent la bobine avec un décalage temporel mais avec au moins en partie une simultanéité du flux magnétique entrant et du flux magnétique sortant, de manière à former un lobe de tension central présentant une valeur de pic qui est maximale.
  • Dans la variante avantageuse de la Figure 11, le balancier 18a porte une paire d'aimants bipolaires 22 et 23 ayant des axes d'aimantation orientés axialement avec des polarités opposées. Cette paire d'aimants et la bobine 28 forment l'ensemble électromagnétique 29 qui fait partie du système de régulation. Les aimants sont agencés proches l'un de l'autre, à une distance permettant une addition de leurs interactions respectives avec la bobine 28 pour ce qui concerne la tension induite dans celle-ci (plus précisément pour la génération de lobes de tension centraux). Dans une variante non représentée, on peut agencer un seul aimant bipolaire avec son axe d'aimantation parallèle au plan du balancier et orienté tangentiellement à un cercle géométrique centré sur l'axe de rotation 20. Le signal de tension induite dans la bobine peut présenter sensiblement un même profil que pour la paire d'aimants décrite ci-avant, mais avec une amplitude moindre étant donné que seule une partie du flux magnétique de l'aimant traverse la bobine. Des éléments de conduction du flux magnétique peuvent être associés au seul aimant pour diriger son flux magnétique substantiellement en direction du plan général de la bobine.
  • Le balancier 18a définit un demi-axe 26, depuis son axe de rotation 20 et perpendiculairement à ce dernier, qui passe au milieu de la paire d'aimants. Lorsque le balancier-spiral est dans sa position de repos, le demi-axe 26 définit une position neutre autour de laquelle le balancier-spiral peut osciller. Le résonateur mécanique 6a est représenté dans sa position neutre à la Figure 11 et son demi-axe 26 définit un demi-axe de référence 48 qui est décalé angulairement d'un angle θ relativement au demi-axe fixe 50 qui intercepte l'axe de rotation 20 et l'axe central de la bobine 28. De préférence, le décalage angulaire θ est compris entre 30° et 120° en valeur absolue.
  • Dans la variante représentée aux Figures 14 et 15, le signal de tension induite Ui(t) généré par l'ensemble électromécanique 29 présente, dans chaque période d'oscillation de l'oscillateur mécanique, un premier lobe de tension central LUC1 (aussi nommé premier lobe de tension) ayant une tension négative maximale UM1 et un deuxième lobe de tension LUC2 (aussi nommé deuxième lobe de tension) ayant une tension positive maximale UM2. Grâce au décalage angulaire θ de la bobine relativement au demi-axe de référence 48, un deuxième lobe de tension et un premier lobe de tension interviennent respectivement dans une seconde demi-alternance d'une alternance A01, A11, .... (AN1, N étant un nombre naturel) et dans une première demi-alternance de l'alternance suivante A02, A12, .... (AN2, N étant un nombre naturel) de chaque période d'oscillation. Dans une autre variante, les polarités des lobes de tension sont opposées, c'est-à-dire que les premiers lobes de tension ont une tension positive alors que les deuxièmes lobes de tension ont une tension négative. On notera qu'une simple inversion des bornes E1 et E2 de la bobine 28 ou, de manière équivalente, du sens d'enroulement du fil formant cette bobine engendre un changement de polarité pour la tension induite de sorte qu'une telle inversion permet de passer d'une variante à l'autre.
  • De préférence, l'ensemble électromagnétique 29 forme également en partie le dispositif de mesure, comme dans le premier mode de réalisation. La partie du schéma électrique de la Figure 12 relative au dispositif de mesure d'une dérive temporelle éventuelle de l'oscillateur mécanique ne sera pas décrite à nouveau en détails. On remarquera que le comparateur 64 délivre un signal 'Comp', représenté à la Figure 14, qui présente une impulsion S2 par période d'oscillation. Ainsi ce signal peut être directement fourni au compteur bidirectionnel CB.
  • A la Figure 12, le convertisseur électrique 57 comprend un premier circuit D1 & C1 d'accumulation d'énergie électrique qui est agencé pour pouvoir recharger une première capacité d'alimentation C1 de l'unité d'accumulation primaire seulement avec une tension positive en entrée du convertisseur électrique et un deuxième circuit D2 & C2 d'accumulation d'énergie électrique qui est agencé pour pouvoir recharger une deuxième capacité d'alimentation C2 de l'unité d'accumulation primaire seulement avec une tension négative en entrée du convertisseur électrique. Lors d'une recharge, la quantité d'énergie électrique fournie sélectivement par le dispositif de freinage à la première capacité d'alimentation et à la deuxième capacité d'alimentation est d'autant plus grande que le niveau de tension en valeur absolue de cette première capacité d'alimentation, respectivement de cette deuxième capacité d'alimentation est bas.
  • Une charge principale est connectée ou susceptible d'être régulièrement connectée en sortie du convertisseur électrique 57 et alimentée par l'unité d'alimentation primaire qui fournit les tensions d'alimentation VDD et VSS. Cette charge principale comprend notamment le circuit de régulation 55. De préférence, les première et deuxième capacités d'alimentation ont sensiblement une même valeur de capacité.
  • Le circuit de régulation 55 du dispositif de régulation 53 comprend un dispositif de pompe de charge 61 formé par deux pompes de charge PC1 et PC2, avantageusement identiques, qui sont agencées pour transférer sur commande des charges électriques respectivement de la première capacité d'alimentation C1 et de la deuxième capacité d'alimentation C2 dans la capacité auxiliaire CAux. Comme dans le premier mode de réalisation, cette capacité auxiliaire forme une unité d'accumulation secondaire qui fournit une tension d'alimentation auxiliaire entre ses deux bornes VL et VH. Les deux pompes de charge PC1 et PC2 sont commandées par le circuit logique de commande 62a. Une variante de réalisation d'une pompe de charge pouvant former chacune des deux pompes de charge a déjà été décrite en référence à la Figure 8. Dans une variante principale, les deux pompes de charge sont remplacées par une seule et même pompe de charge qui comprend alors des commutateurs commandés par le circuit de commande 62a de manière à pouvoir transférer des charges électriques dans la capacité auxiliaire en prélevant sélectivement ces charges électriques dans la première capacité C1 et dans la deuxième capacité C2 en fonction de la correction souhaitée, comme cela sera décrit par la suite dans la description du procédé de régulation implémenté dans le circuit de commande 62a dans le cadre du deuxième mode de réalisation. Dans la variante décrite, le circuit de régulation 55 comprend en outre deux circuits dissipatifs formés chacun d'une résistance et d'un interrupteur Sw3, respectivement Sw4. Ces deux circuits dissipatifs comprennent une certaine résistance et sont respectivement agencés en parallèle des deux capacités C1 et C2, entre celles-ci et les deux pompes de charge PC1 et PC2.
  • Aux Figures 14 et 15 sont également représentées la tension positive Vci à la borne supérieure (définissant VDD) de la capacité d'alimentation C1 et la tension négative VC2 à la borne inférieure (définissant VSS) de la capacité d'alimentation C2 (la tension zéro étant celle de l'extrémité E1 de la bobine connectée entre les deux capacités agencées en série). La tension d'alimentation VAL disponible est donc donnée par VC1 - VC2, soit l'addition des tensions respectives des première et deuxième capacités C1 et C2. Dans la variante préférée décrite ici, une charge principale est agencée en sortie du convertisseur électrique. Elle comprend notamment le circuit de régulation 55 qui est alimenté par les première et deuxième capacités d'alimentation agencées en série et délivrant la tension d'alimentation VAL. Les lobes de tension LUC1 et LUC2 qui présentent respectivement la tension induite négative maximale UM1 (en valeur absolue) et la tension induite positive maximale UM2 servent à recharger respectivement les capacités C2 et C1. Ainsi, en dehors de courtes périodes de recharge de l'une et l'autre des deux capacités d'alimentation, il y a une certaine diminution progressive (en valeur absolue) des tensions VC1 et VC2 au cours du temps.
  • Dans la première période d'oscillation T0 au cours de laquelle aucun événement de régulation n'intervient, une impulsion de courant induit I12 recharge la capacité C1 dans une seconde demi-alternance et une impulsion de courant induit I11 recharge la capacité C2 dans une première demi-alternance. Ces impulsions de courant induit correspondent à des puissances électriques engendrées par le transducteur électromécanique dans l'ensemble électromagnétique 29 et absorbées par le convertisseur électrique 57. Ces puissances électriques correspondent ainsi à des puissances mécaniques fournies par l'oscillateur mécanique. Elles sont converties par le convertisseur électrique et consommées par la charge principale qui lui est associée. Ainsi chaque impulsion de courant induit Ini et IN2, N = 1, 2, ..., fourni par le transducteur électromécanique au convertisseur électrique correspond à une impulsion de freinage et donc à un certain couple de freinage momentané appliqué à l'oscillateur mécanique. Selon le phénomène physique exposé précédemment en référence aux Figures 3 à 6, les impulsions de courant induit IN2, intervenant chacune dans une seconde demi-alternance, engendrent une diminution de la durée des alternances au cours desquelles elles interviennent, et donc une augmentation de la fréquence instantanée de l'oscillateur mécanique, alors que les impulsions de courant induit IN1, intervenant chacune dans une première demi-alternance, engendrent une augmentation de la durée des alternances au cours desquelles elles interviennent, et donc une diminution de la fréquence instantanée de l'oscillateur mécanique.
  • Dans une période de fonctionnement au cours de laquelle aucun événement de régulation et aucun comportement particulier découlant d'un tel événement de régulation n'intervient, c'est-à-dire dans une période correspondant à un fonctionnement normal sans régulation, on a donc la situation représentée dans la première période d'oscillation aux Figures 14 et 15 concernant les tensions VC1 et VC2 et les impulsions de recharge des capacités C1 et C2 engendrées respectivement par les impulsions de courant induit I12 et I11, à savoir une situation équilibrée dans laquelle une première énergie électrique absorbée par le convertisseur électrique globalement dans les deux premières demi-alternances de chaque période d'oscillation est sensiblement identique à une deuxième énergie électrique absorbée par le convertisseur électrique globalement dans les deux secondes demi-alternances de cette période d'oscillation. Ainsi, le déphasage temporel positif qui intervient globalement dans les deux secondes demi-alternances est compensé par le déphasage temporel négatif qui intervient globalement dans les deux premières demi-alternances de chaque période d'oscillation. Dans le cas particulier représenté aux Figures 14 et 15, le déphasage temporel positif qui intervient dans la première alternance A01 est compensé par le déphasage temporel négatif qui intervient dans la seconde alternance A02 de la période d'oscillation correspondante. On comprend donc que, bien que la durée de la première alternance soit différente de celle de la seconde alternance, leur somme est égale à une période d'oscillation naturelle T0 de l'oscillateur mécanique non soumis à une action de régulation.
  • Le procédé de régulation implémenté dans le circuit logique de commande 62a du dispositif de pompe de charge 61 est donné par l'organigramme de la Figure 13. Après avoir initialisé le circuit de régulation à 'POR' et en particulier le compteur bidirectionnel CB, on attend un certain délai, c'est-à-dire un certain intervalle de temps, par exemple une période T0 ou plusieurs périodes T0, et le circuit de commande 62a détermine si au moins une certaine avance (CB > N1) est intervenue dans la marche de la pièce d'horlogerie. Si c'est le cas, dans la présente variante, le circuit de régulation est agencé de sorte que le circuit de commande peut détecter si la tension VCA aux bornes de la capacité auxiliaire est supérieure à un seuil de tension Vth, lequel correspond à une certaine tension pour laquelle la capacité auxiliaire est remplie à un niveau tel que les pompes de charge ne peuvent plus transférer des charges électriques significatives de l'une ou l'autre des capacités C1 et C2 dans la capacité auxiliaire. Dans ce cas, pour effectuer une correction de l'avance détectée, l'interrupteur Sw2 est fermé durant un court intervalle de temps Δt pour engendrer une certaine décharge de la capacité C2 au travers du circuit dissipatif correspondant, indiqué par la marche DC2 (qui est descendante en valeur absolue car la tension de la capacité C2 diminue) dans la tension VC2 à la Figure 14.
  • Si la tension VCA est égale ou inférieure au seuil de tension Vth, alors le circuit de commande active la pompe de charge PC2 pour qu'elle effectue un transfert d'une première charge électrique de la deuxième capacité d'alimentation C2 dans la capacité auxiliaire CAux. Il résulte de cette action de régulation également une diminution de la tension VC2 indiquée par la marche descendante DC2. Cette diminution de la tension VC2 engendre, au moins dans une période d'oscillation suivant un tel transfert, une augmentation de la recharge de la deuxième capacité C2 relativement au cas hypothétique où un tel transfert de la première charge électrique n'aurait pas lieu. La diminution de la tension VC2 opérée par le circuit de commande dans l'alternance A11 engendre lors de l'apparition du prochain lobe de tension LUC1 dans l'alternance suivante A12 une impulsion de courant induit I21 dont l'amplitude (valeur du pic de tension) est supérieure à celle de la précédente I11. Etant donné que cette impulsion de courant induit I21 intervient dans une première demi-alternance, comme toutes les impulsions de courant induit qui rechargent la capacité C2, une diminution de la tension de cette capacité C2 engendre toujours au moins une impulsion de régulation qui génère un déphasage négatif dans l'oscillation du résonateur mécanique et donc qui diminue momentanément la fréquence d'oscillation pour corriger au moins partiellement l'avance détectée dans la marche de la pièce d'horlogerie (dérive temporelle positive). On remarquera que les impulsions I12 et I22 ont une amplitude, en valeur absolue, sensiblement égale à celle de l'impulsion I11, ces impulsions correspondant chacune à une impulsion de courant induit générée par la seule consommation de la charge principale. Il s'agit donc d'impulsions de recharge standard / nominales.
  • Si aucune avance n'est détectée dans la marche de la pièce d'horlogerie, alors le circuit de commande détermine si au moins un certain retard (CB < -N2) est intervenu dans la marche de cette pièce d'horlogerie. Si c'est le cas, le circuit de régulation détecte si la tension VCA aux bornes de la capacité auxiliaire est supérieure au seuil de tension Vth. Dans ce cas, pour effectuer une correction du retard détecté, l'interrupteur Sw1 est fermé durant un court intervalle de temps Δt pour engendrer une certaine décharge de la capacité C1 au travers du circuit dissipatif correspondant, indiqué par la marche DC1 (qui est descendante en valeur absolue car la tension de la capacité C2 diminue) dans la tension VC2 à la Figure 15. Si la tension VCA est égale ou inférieure au seuil de tension Vth, alors le circuit de commande active la pompe de charge PC1 pour qu'elle effectue un transfert d'une deuxième charge électrique de la première capacité d'alimentation C1 dans la capacité auxiliaire CAux. Il résulte de cette action de régulation également une diminution de la tension Vci indiquée par la marche DC1. Cette diminution de la tension VC1 engendre, au moins dans une période d'oscillation suivant un tel transfert, une augmentation de la recharge de la deuxième capacité C1 relativement au cas hypothétique où un tel transfert de la deuxième charge électrique n'aurait pas lieu. La diminution de la tension VC1 opérée par le circuit de commande dans l'alternance A11 engendre lors de l'apparition du prochain lobe de tension LUC2 dans cette même alternance une impulsion de courant induit I32 dont l'amplitude est supérieure à celle de la précédente I12. Etant donné que cette impulsion de courant induit I32 intervient dans une seconde demi-alternance, comme toutes les impulsions de courant induit qui rechargent la capacité C1, une diminution de la tension de cette capacité C1 engendre toujours au moins une impulsion de régulation qui génère un déphasage positif dans l'oscillation du résonateur mécanique et donc augmente momentanément la fréquence d'oscillation pour corriger au moins partiellement le retard détecté dans la marche de la pièce d'horlogerie (dérive temporelle négative). L'impulsion suivante I31 présente à nouveau sensiblement une amplitude standard / nominale.
  • Le deuxième mode de réalisation présente un avantage important par le fait que le prélèvement sélectif d'une charge électrique dans la capacité C1 ou C2 en fonction d'une dérive temporelle détectée dans la marche de la pièce d'horlogerie peut intervenir en tout temps puisque les premiers lobes de tension, qui interviennent seulement dans des premières demi-alternances, ont une même première polarité alors que les deuxièmes lobes de tension, qui interviennent seulement dans des secondes demi-alternances, ont une même deuxième polarité opposée à la première polarité et par le fait que les capacités C1 et C2 ne peuvent être rechargées respectivement que par des tensions induites de polarités opposées. Il suffit donc que le circuit logique de commande connaisse quelle polarité, première ou deuxième, est susceptible de recharger quelle capacité, C1 ou C2, pour effectuer sélectivement un prélèvement d'une certaine charge électrique dans l'une ou l'autre de ces deux capacités en fonction de la nature d'une dérive temporelle détectée, avance ou retard, par un transfert de cette certaine charge électrique dans la capacité auxiliaire ou par sa dissipation au travers d'un des deux circuits dissipatifs prévus si la capacité auxiliaire est pleine. Dans une variante, on prévoit cependant un temporisateur qui détermine un certain délai suite à l'apparition d'une impulsion S2 dans le signal 'Comp' pour effectuer le prélèvement sélectif d'une charge électrique.
  • Dans une variante avantageuse, pour transférer une première ou deuxième charge électrique, le nombre de cycles de transfert de moindres charges électriques par une pompe de charge est augmenté lorsque la tension VCA aux bornes de la capacité auxiliaire augmente, de manière à prélever une charge électrique sensiblement constante des capacités C1 et C2 par séquence du précédé de régulation. Dans une autre variante où le nombre de cycles de transfert de moindres charges électriques est prévu constant, l'augmentation de la tension VCA engendre généralement une diminution de la première ou deuxième charge électrique prélevée et donc une moindre correction par séquence de régulation. Toutefois, dans la mesure où le système de régulation est configuré pour pouvoir aisément corriger des dérives dans une plage de dérive standard pour le mouvement horloger en question, une diminution de la valeur des premières et deuxièmes charges électriques par séquence de régulation, pour une dérive temporelle donnée, engendrera une augmentation de séquences de régulation par unité de temps. Les remarques ci-dessus concernent des capacités classiques et également des super-capacités dont la courbe caractéristique tension - charge électrique est sensiblement linéaire. Par contre, il est aussi possible de prévoir comme unité d'accumulation secondaire un condensateur électrique dont la tension varie peu, au-delà d'un certain niveau de charge minimal, en fonction de la charge électrique accumulée. Dans ce cas, les charges électriques transférées par la ou les pompe(s) de charge sont sensiblement constantes indépendamment du niveau de charge de cette unité d'accumulation secondaire. Dans un tel cas, le procédé de régulation décrit précédemment peut varier pour ce qui concerne la décision de transférer une certaine charge électrique dans l'unité d'accumulation secondaire ou de consommer cette charge électrique dans le circuit dissipatif prévu. Le dispositif de régulation comprendra généralement des moyens pour déterminer le niveau de remplissage de l'unité d'accumulation secondaire.
  • A l'aide des Figures 16 à 19 et 20A à 20C, on décrira par la suite un troisième mode de réalisation d'une pièce d'horlogerie selon l'invention. Le mouvement horloger de cette pièce d'horlogerie se différencie de celui représenté en Fig.1 essentiellement par la configuration du balancier 18b, formant le résonateur mécanique 6b, qui porte ici deux paires d'aimants bipolaires 82 et 84. Les enseignements déjà donnés qui interviennent à nouveau ici ne seront plus exposés en détails. Ce qui rend remarquable ce troisième mode de réalisation relativement au premier mode de réalisation réside en particulier dans le choix de l'ensemble électromagnétique 86 formant le transducteur électromagnétique et du convertisseur électrique 76 associé à ce dernier. L'ensemble électromagnétique comprend deux paires 82 et 84 d'aimants bipolaires 90 et 91, respectivement 92 et 93, qui sont montés sur balancier 18b du résonateur mécanique 6b et qui ont des axes d'aimantation respectifs qui sont parallèles à l'axe de rotation 20 du balancier, et une bobine 28 qui est solidaire du support du résonateur mécanique.
  • Chacune des deux paires 82, 84 d'aimants, avec ses deux aimants bipolaires ayant des polarités respectives opposées, est semblable à la paire d'aimants 22, 23 de l'ensemble électromagnétique du deuxième mode de réalisation et leur interaction avec la bobine 28 est identique. Chaque paire d'aimants bipolaires définit un demi-axe médian 24a, 24b partant de l'axe de rotation 20 du balancier et passant par le milieu de la paire d'aimants bipolaires considérée. Chaque demi-axe médian définit un demi-axe de référence respectif 48a, 48b lorsque le résonateur 6a est au repos et ainsi dans sa position neutre, comme représenté à la Figure 16. La bobine 28 présente en son centre un premier décalage angulaire θ relativement au premier demi-axe de référence 48a et un second décalage angulaire - θ (même valeur absolue que le premier décalage angulaire, mais signe mathématique opposé) relativement au second demi-axe de référence 48a, de sorte à engendrer dans chaque alternance du résonateur mécanique, dans une plage de fonctionnement utile, deux lobes de tension centraux LUC1 et LUC2 ayant des polarités opposées (négative et positive) et sensiblement une même amplitude UM1, UM2 en valeur absolue et formant respectivement un premier lobe de tension et un deuxième lobe de tension (Fig. 20A).
  • Comme dans le deuxième mode de réalisation, les premiers et deuxièmes lobes de tension LUC1 et LUC2 interviennent respectivement dans des premières demi-alternances et des secondes demi-alternances. De préférence, pour équilibrer le balancier 18a, les premier et second déphasages angulaires ont une valeur absolue de 90° (variante représentée à la Figure 16). Les deux paires d'aimants 82 et 84 sont agencées de manière que les polarités des aimants d'une paire soient symétriques aux polarités des aimants de l'autre paire relativement à un plan passant par le centre de la bobine et comprenant l'axe de rotation 20 (ce plan comprenant le demi-axe 50 passant par le centre de la bobine et interceptant perpendiculairement l'axe de rotation 20). On notera que la variante du troisième mode de réalisation décrite en référence aux figures est une variante perfectionnée. Dans une autre variante qui ne sera pas décrite plus en détails par la suite, il est prévu une seule paire d'aimants présentant un décalage angulaire compris entre 30° et 120° (en valeur absolue). Cette autre variante comprend un circuit de régulation sans la bascule 66. Le procédé de régulation reste similaire et l'homme du métier saura l'adapter à cette variante particulière.
  • Le signal de tension induite Ui(t), représenté à la Figure 20A, présente alternativement des lobes de tension LUC1 ayant une tension négative et des lobes de tension LUC2 ayant une tension positive. Le convertisseur électrique 76 comprend un redresseur double alternance 78 formé par un pont de quatre diodes bien connu de l'homme du métier. Ainsi, en sortie du redresseur 78, les premiers lobes de tension sont redressés, ce qui est représenté à la Figure 20A par les lobes en traits interrompus. Comme dans le premier mode de réalisation, en l'absence d'activation de la pompe de charge 60b, les premiers et deuxièmes lobes de tension LUC1 et LUC2 rechargent alternativement la capacité d'alimentation CAL qui alimente notamment le circuit de régulation 74. Etant donné qu'il y a deux paires d'aimants, chaque alternance présente un premier lobe de tension dans une première demi-alternance et un deuxième lobe de tension dans une seconde demi-alternance. Comme le signal 'Comp' présente deux impulsions par période d'oscillation, il est prévu une bascule 66 en amont du compteur bidirectionnel CB de manière à inhiber une impulsion sur deux dans le signal fourni à ce compteur. La variante représentée aux Figures 20A et 20C prévoit une tension de seuil Uth positive alors que les premiers lobes de tensions sont négatifs. La tension de seuil peut être choisie positive ou négative. Ces choix déterminent les instants auxquels interviennent les impulsions S2 ou S1 (voir Fig.10C) dans le signal 'Comp' fourni par le comparateur 64. Ainsi, le dispositif de régulation comprend un dispositif de détection qui est agencé pour pouvoir détecter l'apparition successive de premiers lobes de tension ou de deuxièmes lobes de tension. A noter qu'on peut aussi prévoir de détecter alternativement ces premiers et deuxièmes lobes de tension à l'aide de deux comparateurs ayant en entrée respectivement un seuil de tension positif et un seuil de tension négatif. L'homme du métier saura adapter le procédé de régulation implémenté dans le circuit logique de commande 62b en conséquence, en particulier pour la détermination des délais TC2 et TD2.
  • Le dispositif de pompe de charge est formé d'une pompe de charge 60b qui définit un élévateur de tension et qui est agencée entre la capacité d'alimentation CAL (unité d'accumulation primaire) et un condensateur électrique (unité d'accumulation secondaire) de manière à pouvoir transférer des charges électriques de l'unité d'accumulation primaire dans l'unité d'accumulation secondaire. La pompe de charge 60b quadruple la tension d'alimentation principale UAL délivrée par l'alimentation primaire de sorte que la tension de l'alimentation auxiliaire VCA du condensateur électrique peut être supérieure, notamment le double de la tension UAL. La construction et le fonctionnement d'un tel élévateur de tension sont bien connus de l'homme du métier. Le schéma électrique d'une variante est donné à la Figure 18. Elle comprend quatre capacités de transfert CTr, deux interrupteurs d'entrée Sw1, six interrupteurs 82, trois interrupteurs 84 et deux interrupteurs de sortie Sw2. Pour prélever une certaine charge électrique de la capacité CAL, les interrupteurs Sw1 et 82 sont fermés alors que les interrupteurs Sw2 et 84 sont ouverts (les capacités CTr sont alors agencées en parallèle). Pour charger ensuite le condensateur électrique CAcc, les interrupteurs Sw1 et 82 sont ouverts alors que les interrupteurs Sw2 et 84 sont fermés (les capacités CTr sont alors agencées en série).
  • Bien que l'unité d'accumulation primaire de ce troisième mode de réalisation est identique à celle du premier mode de réalisation avec une seule capacité CAL qui reçoit la totalité des courants induits fournis par le transducteur électromagnétique, le fait que l'ensemble électromagnétique 86 est agencé de manière similaire à celui du deuxième mode de réalisation, avec les premiers lobes de tension et les deuxièmes lobes de tension ayant des polarités opposées, permet au comparateur 64 de détecter directement soit les premiers lobes de tension, soit les deuxièmes lobes de tension (cas représenté à la Fig.20A). Il n'est donc ici pas nécessaire de devoir différencier dans les impulsions fournies par le comparateur celles qui correspondent aux premiers lobes de celles qui correspondent aux deuxièmes lobes, raison pour laquelle il n'y a pas de compteur temporel CT, mais seulement un temporisateur associé au circuit logique de commande, lequel peut être intégré à l'intérieur de ce circuit logique, pour mesurer deux délais TC2 et TD2. A la Figure 20C, on observe que le signal 'Comp' présente seulement des impulsions S2 qui correspondent chacune à l'apparition d'un deuxième lobe de tension LUC2.
  • La Figure 19 est un organigramme du procédé de régulation implémenté dans le circuit logique de commande 62b du troisième mode de réalisation. On ne décrira plus en détails tous les éléments, tous les signaux électriques et les conséquences des divers événements qui interviennent, car ils découlent des explications déjà données précédemment et les résultats se comprennent aisément à la lumière de ces explications.
  • Lors de la mise en fonction du dispositif de régulation, le circuit de régulation 74 est initialisé à 'POR', en particulier le compteur bidirectionnel CB. Le circuit logique attend ensuite l'apparition d'une impulsion S2, à savoir notamment son flanc montant dans le signal 'Comp'. La détection de ce flanc montant déclenche le temporisateur qui mesure un premier intervalle de temps TC2 dont la durée est choisie pour que sa fin intervienne dans une première zone temporelle ZT1 située temporellement entre un deuxième lobe de tension LUC2 et un premier lobe de tension LUC1, notamment entre l'instant t2 et l'instant ti où ces deux lobes présentent respectivement leurs valeurs maximales UM2 et UM1 (Fig. 20A). Parallèlement, le circuit logique détecte si la valeur du compteur bidirectionnel CB est supérieure à un nombre naturel N1 pour déterminer s'il y a une avance dans la marche du mécanisme considéré. Si tel est le cas, le circuit de commande attend la fin du délai TC2 et, de manière équivalente au procédé de régulation du deuxième mode de réalisation, détermine si le condensateur électrique CAcc est plein (c'est-à-dire détecte si son niveau d'accumulation de charges électriques est supérieur à une certaine limite donnée). Si le condensateur électrique CAcc est plein, il décharge la capacité d'alimentation CAL d'une première charge électrique en fermant l'interrupteur Sw5 du circuit dissipatif comprenant une certaine résistance et prévu en parallèle de la pompe de charge pour un certain intervalle de temps Δt (Fig. 17). Dans le cas contraire, il effectue un transfert d'une première charge électrique de la capacité CAL dans le condensateur électrique CAcc dans une première zone temporelle ZT1. Un prélèvement d'une première charge électrique engendre une marche descendante PC1 dans la tension d'alimentation UAL(t) et l'impulsion de courant induit suivante P1PC, qui intervient dans une première demi-alternance, présente alors une amplitude supérieure à celle d'une impulsion P1 en l'absence de prélèvement antérieur d'une charge électrique (voir partie droite des Fig.20A à Fig.20C), de sorte que l'oscillateur mécanique subit alors un freinage supérieur dans la première demi-alternance considérée.
  • Si le compteur CB a une valeur égale ou inférieure au nombre naturel N1, alors le circuit logique attend qu'un deuxième délai TD2, suivant directement le premier délai TC2, arrive à sa fin (Fig.20C). Pour ce faire, dès la fin d'un premier intervalle de temps TC2, le temporisateur commence à mesurer un deuxième intervalle de temps TD2. Ce deuxième délai TD2 est choisi de sorte que sa fin intervienne dans une deuxième zone temporelle ZT2 située entre un premier lobe de tension LUC1 et un deuxième lobe de tension LUC2. Parallèlement, le circuit logique détecte si la valeur du compteur bidirectionnel CB est inférieure à un nombre - N2, N2 étant un nombre naturel, pour déterminer s'il y a du retard dans la marche du mécanisme considéré. Si tel est le cas, le circuit de commande attend la fin du délai TC2 +TD2 et détermine si le condensateur électrique CAcc est plein. Selon que le condensateur est plein ou non, le circuit de commande opère alors de manière semblable à celle décrite ci-avant dans le cas de la détection d'une avance. Le prélèvement d'une deuxième charge électrique dans la capacité CAL engendre une marche descendante PC2 dans la tension d'alimentation UAL(t) et l'impulsion de courant induit suivante P2PC, qui intervient dans une seconde demi-alternance, présente alors une amplitude supérieure à celle d'une impulsion P2 en l'absence de prélèvement antérieur d'une charge électrique (voir partie gauche des Fig.20A à Fig.20C), de sorte que l'oscillateur mécanique subit alors un freinage supérieur dans la seconde demi-alternance considérée.
  • En conclusion, comme dans le premier mode de réalisation, un retard ou une avance constaté(e) dans la marche du mécanisme considéré est corrigé(e) par le prélèvement temporellement sélectif d'une charge électrique dans la capacité CAL formant l'unité d'accumulation primaire du dispositif de régulation.
  • Le procédé de régulation du troisième mode de réalisation comprend en outre un perfectionnement en lien avec le fait que l'unité d'accumulation secondaire alimente en continu ou par intermittence une charge auxiliaire en délivrant une tension d'alimentation auxiliaire VCA à cette charge auxiliaire. En effet, la charge auxiliaire est de préférence associée à une fonction auxiliaire utile de la pièce d'horlogerie, de sorte qu'il est souhaitable de pouvoir assurer l'alimentation de cette charge auxiliaire. A cet effet, comme indiqué dans l'organigramme de la Figure 19, si le compteur CB a une valeur égale ou supérieure au nombre - N2 et une valeur égale ou inférieure au nombre N1, alors le circuit de commande 62b détermine à l'aide de moyens appropriés si le condensateur est vide ou non. Par 'vide', on comprend que le niveau d'accumulation de charges électriques dans le condensateur CAcc est en-dessous d'une limite inférieure donnée et donc à une situation ne permettant plus d'assurer une alimentation correcte de la fonction auxiliaire (diode lumineuse, circuit RFID, mesure de température, indication du Nord (fonction boussole), etc.). Une telle situation intervient donc dans le cas où aucune dérive temporelle, engendrant une correction de la fréquence instantanée de l'oscillateur mécanique selon l'invention, n'est détectée. Si cette situation intervient et que le condensateur électrique CAcc est vide (en d'autres termes pas suffisamment rechargé), alors le circuit de commande effectue une opération de recharge du condensateur électrique en prélevant une première charge dans une première zone temporelle ZT1 et une deuxième charge électrique, sensiblement de même valeur que la première charge électrique, dans une deuxième zone temporelle ZT2. Ces deux événements engendrent des déphasages dans l'oscillation du résonateur mécanique qui se compensent, de sorte qu'une double charge électrique est transférée de l'unité d'accumulation primaire dans l'unité d'accumulation secondaire sans engendrer de dérive temporelle dans la marche de la pièce d'horlogerie. Une fois la séquence de régulation terminée, le circuit logique de commande attend la détection du flanc montant de l'impulsion S2 suivante pour effectuer la séquence de régulation suivante.
  • Comme déjà évoqué, le transfert d'une première charge électrique, respectivement d'une deuxième charge électrique peut être effectué par une pluralité de cycles de transfert de moindres charges électriques par la pompe de charge dans une même séquence de régulation, en particulier dans une même zone temporelle ZT1, respectivement ZT2. Dans une variante, le circuit logique de commande est agencé de manière à pouvoir effectuer, lorsque la dérive temporelle mesurée correspond à au moins une certaine avance, une pluralité de prélèvements de charges électriques respectivement dans une pluralité de premières zones temporelles au cours d'une même séquence de régulation. De même, lorsque la dérive temporelle mesurée correspond à au moins un certain retard, une pluralité de prélèvements de charges électriques respectivement dans une pluralité de deuxièmes zones temporelles sont réalisés.
  • Aux Figures 21 et 22 est montrée une variante avantageuse de réalisation d'un oscillateur mécanique 106 incorporé dans un mouvement selon l'invention. Le résonateur 106 est formé par un balancier 18c qui comprend deux plateaux en matériau ferromagnétique 112 et 114. Le plateau supérieur 112 porte du côté de sa face inférieure les deux aimants bipolaires 22 et 23. Ce plateau supérieur sert aussi à fermer supérieurement les lignes de champs des deux aimants. Le plateau inférieur 114 sert à fermer inférieurement les lignes de champs des deux aimants. Les deux plateaux du balancier forment ainsi axialement un blindage magnétique pour les deux aimants de manière à ce que leurs champs magnétiques respectifs restent substantiellement confiner dans un volume situé entre les surfaces externes respectives de ces deux plateaux. La bobine 28 est agencée partiellement entre les deux plateaux qui sont montés fixement sur une pièce cylindrique 116 en matériau non-magnétique, cette pièce étant montée fixement sur un arbre 118 du balancier. Dans une variante, la pièce 116 peut être réalisée en acier et ainsi conduire un champ magnétique, ce qui peut être un avantage dans une variante prévue avec un seul aimant bipolaire, ayant son axe magnétique orienté axialement, sur un des deux plateaux ou sur chacun des deux plateaux. Dans ce dernier cas, si la pièce de liaison cylindrique est non magnétique, alors au moins un plateau peut présenter une partie ferromagnétique qui s'approche de l'autre ou le touche pour fermer les lignes de champs de chaque aimant au travers des deux plateaux et ainsi permettre que la bobine ou les bobines soit / soient traversée(s) axialement par sensiblement l'entier du champ magnétique produit par chaque aimant lorsque le balancier oscille. On remarquera encore que les plateaux peuvent être réalisés seulement partiellement par un matériau à haute perméabilité magnétique qui forme deux parties situées respectivement au-dessus et au-dessous de l'aimant ou, le cas échéant, des aimants, ces deux parties étant agencées de manière à laisser passer la bobine ou, le cas échéant, les bobines du système de régulation entre elles lorsque le balancier oscille.
  • Le résonateur 106 comprend encore un ressort-spiral 110 dont une extrémité est fixée de manière classique à l'arbre 118. On notera que le ressort-spiral est de préférence réalisé en matériau non magnétique, par exemple en silicium, ou en matériau paramagnétique. A la Figure 22 est également représenté un mécanisme d'échappement formé d'une goupille agencée sur un petit plateau solidaire de l'arbre du balancier, d'une ancre 120 et d'une roue d'échappement 122 (montrée partiellement). Sous le plateau supérieur, à l'opposé des aimants 22 et 23, est prévu une masse 124 d'équilibrage du balancier. D'autres moyens pour effectuer un réglage fin de l'inertie et un équilibrage du balancier peuvent également être prévus. On notera que dans une variante, des aimants sont également portés par le plateau inférieur. De tels aimants sont de préférence agencés en face des aimants portés par le plateau supérieur.
  • Ainsi, dans le cadre de la variante avantageuse décrite ci-avant, le balancier comprend généralement une structure magnétique qui est agencée de manière à définir un blindage magnétique pour l'aimant ou les aimants porté(s) par le balancier tout en favorisant le couplage magnétique de cet aimant ou de ces aimants avec la bobine ou les bobines prévue(s).

Claims (22)

  1. Pièce d'horlogerie (2), comprenant :
    - un mécanisme,
    - un résonateur mécanique (6; 6a; 6b) susceptible d'osciller autour d'une position neutre correspondant à son état d'énergie potentielle mécanique minimale, chaque oscillation du résonateur mécanique définissant une période d'oscillation et présentant deux alternances successives chacune entre deux positions extrêmes qui définissent l'amplitude d'oscillation du résonateur mécanique, chaque alternance présentant un passage du résonateur mécanique par sa position neutre à un instant médian (TNi, i=1,2,3...) et étant constituée d'une première demi-alternance (DA1) entre un instant initial de cette alternance et son instant médian et d'une seconde demi-alternance (DA2) entre cet instant médian et un instant final de cette alternance,
    - un dispositif d'entretien (14) du résonateur mécanique formant avec ce résonateur mécanique un oscillateur mécanique qui définit la cadence de la marche dudit mécanisme,
    - un transducteur électromécanique agencé pour pouvoir convertir de la puissance mécanique de l'oscillateur mécanique en puissance électrique lorsque le résonateur mécanique oscille avec une amplitude comprise dans une plage de fonctionnement utile, ce transducteur électromagnétique étant formé par un ensemble électromagnétique (27; 29; 86) comprenant au moins une bobine (28), montée sur un élément parmi l'ensemble mécanique constitué du résonateur mécanique et de son support, et au moins un aimant (22; 90) monté sur l'autre élément de cet ensemble mécanique, l'ensemble électromagnétique étant agencé de manière à pouvoir fournir un signal de tension induite Ui(t) entre les deux bornes de sortie (E1, E2) du transducteur électromécanique au moins lorsque le résonateur mécanique oscille avec une amplitude comprise dans la plage de fonctionnement utile,
    - un convertisseur électrique (56; 57; 76) relié aux deux bornes de sortie du transducteur électromécanique de manière à pouvoir recevoir de ce transducteur électromécanique un courant électrique induit (IREC), ce convertisseur électrique comprenant une unité d'accumulation primaire (CAL; C1,C2) agencée pour accumuler de l'énergie électrique fournie par le transducteur électromécanique, ce transducteur électromécanique et le convertisseur électrique formant ensemble un dispositif de freinage du résonateur mécanique,
    - un dispositif de régulation (52; 53; 72) de la fréquence de l'oscillateur mécanique, ce dispositif de régulation comprenant un oscillateur auxiliaire (58) et un dispositif de mesure (64,66, CB) agencé pour pouvoir détecter une dérive temporelle éventuelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire, le dispositif de régulation étant agencé pour pouvoir déterminer si la dérive temporelle mesurée correspond à au moins une certaine avance ;
    la pièce d'horlogerie étant caractérisée en ce que le dispositif de régulation (52; 53; 72) est agencé pour pouvoir également déterminer si la dérive temporelle mesurée correspond à au moins un certain retard ; en ce que le dispositif de freinage est agencé de manière que, dans chaque période d'oscillation du résonateur mécanique lorsque l'amplitude d'oscillation de celui-ci est dans ladite plage de fonctionnement utile, le signal de tension induite présente au moins un premier lobe de tension (LU1, LUC1) intervenant au moins en majeure partie dans une première demi-alternance (DA1) et susceptible d'engendrer dans cette première demi-alternance une première impulsion de courant induit (P1; In1, n=1,2,3) pour recharger l'unité d'accumulation primaire après un certain prélèvement d'une charge électrique de celle-ci et au moins un deuxième lobe de tension (LU2, LUC2) intervenant au moins en majeure partie dans une seconde demi-alternance (DA2) et susceptible d'engendrer dans cette seconde demi-alternance une deuxième impulsion de courant induit (P2 ; In2, n=1,2,3) pour recharger l'unité d'accumulation primaire après un certain prélèvement d'une charge électrique de celle-ci, le signal de tension induite présentant ainsi une pluralité de tels premiers lobes de tension et une pluralité de tels deuxièmes lobes de tension ; en ce que le dispositif de régulation comprend un dispositif de pompe de charge (60; 61; 60b) agencé pour pouvoir transférer sur commande une certaine charge électrique de l'unité d'accumulation primaire (CAL; C1, C2) dans une unité d'accumulation secondaire (CAux ; CAcc) ; et en ce que le dispositif de régulation comprend en outre un circuit logique de commande (62; 62a; 62b) qui reçoit en entrée un signal de mesure fourni par le dispositif de mesure et qui est agencé pour pouvoir activer le dispositif de pompe de charge de sorte qu'il effectue, lorsque la dérive temporelle mesurée correspond à ladite au moins une certaine avance, un transfert d'une première charge électrique de l'unité d'accumulation primaire dans l'unité d'accumulation secondaire de manière qu'une recharge de l'unité d'accumulation primaire, suite à ce transfert de la première charge électrique, soit générée en majeure partie par au moins un premier lobe de tension parmi ladite pluralité de premiers lobes de tension, le circuit logique de commande étant en outre agencé pour pouvoir activer le dispositif de pompe de charge de sorte qu'il effectue, lorsque la dérive temporelle mesurée correspond audit au moins un certain retard, un transfert d'une deuxième charge électrique de l'unité d'accumulation primaire dans l'unité d'accumulation secondaire de manière qu'une recharge de l'unité d'accumulation primaire, suite à ce transfert de la deuxième charge électrique, soit générée en majeure partie par au moins un deuxième lobe de tension parmi ladite pluralité de deuxièmes lobes de tension.
  2. Pièce d'horlogerie selon la revendication 1, caractérisée en ce qu'elle comprend une charge principale (54; 55; 74) connectée ou susceptible d'être régulièrement connectée au convertisseur électrique pour être alimentée par l'unité d'accumulation primaire, la charge principale comprenant le dispositif de régulation.
  3. Pièce d'horlogerie selon la revendication 2, caractérisée en ce qu'elle comprend une charge auxiliaire connectée ou susceptible d'être connectée par intermittence à l'unité d'accumulation secondaire de manière à pouvoir être alimentée par cette unité d'accumulation secondaire.
  4. Pièce d'horlogerie selon la revendication 3, caractérisée en ce que le dispositif de pompe de charge (60b) est agencé de manière à former un élévateur de tension qui est agencé pour qu'une tension d'alimentation auxiliaire aux bornes de l'unité d'accumulation secondaire (CAcc) soit supérieure à une tension d'alimentation principale aux bornes de l'unité d'accumulation primaire.
  5. Pièce d'horlogerie selon une quelconque des revendications 2 à 4, caractérisée en ce que l'unité d'accumulation primaire est formée par une capacité d'alimentation (CAL) susceptible d'être rechargée par chaque premier lobe de tension de ladite pluralité de premiers lobes de tension et de ladite pluralité de deuxièmes lobes de tension après un prélèvement d'une charge électrique dans cette capacité d'alimentation ; en ce que chaque premier lobe de tension présente, en valeur absolue, une première valeur maximale (UM1) à un premier instant (t1) de la première demi-alternance correspondante et chaque deuxième lobe de tension présente, en valeur absolue, une deuxième valeur maximale (UM2) à un deuxième instant (t2) de la seconde demi-alternance correspondante, les premiers et deuxièmes lobes de tension définissant, d'une part, des premières zones temporelles (ZT1) situées chacune avant ledit premier instant d'un premier lobe de tension différent et après le deuxième instant du deuxième lobe de tension précédant ce premier lobe de tension et, d'autre part, des deuxièmes zones temporelles (ZT2) situées chacune avant ledit deuxième instant d'un deuxième lobe de tension différent et après le premier instant du premier lobe tension précédant ce deuxième lobe de tension ; et en ce que ledit transfert d'une première charge électrique comprend un prélèvement de cette première charge électrique de la capacité d'alimentation dans une première zone temporelle parmi lesdites premières zones temporelles (ZT1) et ledit transfert d'une deuxième charge électrique comprend un prélèvement d'une deuxième charge électrique de la capacité d'alimentation dans une deuxième zone temporelle parmi lesdites deuxièmes zones temporelles (ZT2).
  6. Pièce d'horlogerie selon la revendication 5, caractérisée en ce que le dispositif de régulation (52; 72) comprend en outre un temporisateur associé au circuit logique de commande (62; 62b) pour permettre à ce dernier d'activer, le cas échéant, la pompe de charge (60; 60b) après un premier délai donné (TC1 ; TC2) depuis la détection d'un premier lobe de tension ou d'un deuxième lobe de tension ou après un deuxième délai donné (TD1 ; TC2 + TD2) depuis la détection d'un premier lobe de tension ou d'un deuxième lobe de tension.
  7. Pièce d'horlogerie selon la revendication 5 ou 6, caractérisée en ce que le dispositif de pompe de charge est constitué d'une pompe de charge (60; 60b), cette pompe de charge et le circuit logique de commande étant agencés de manière que le prélèvement de ladite première charge électrique et le prélèvement de ladite deuxième charge électrique sont chacun effectués en plusieurs cycles de transfert d'une moindre charge électrique entre la capacité d'alimentation (CAL) et l'unité d'accumulation secondaire (CAux ; CAcc) par la pompe de charge.
  8. Pièce d'horlogerie selon une quelconque des revendications 5 à 7, caractérisée en ce que le circuit logique de commande (60; 60b) est agencé de manière à pouvoir effectuer, lorsque la dérive temporelle mesurée correspond à ladite au moins une certaine avance ou à au moins une avance donnée supérieure à cette dernière, une pluralité de transferts de premières charges électriques respectivement au cours d'une pluralité de premières zones temporelles et de manière à pouvoir effectuer, lorsque la dérive temporelle mesurée correspond audit au moins un certain retard ou à au moins un retard supérieur à ce dernier, une pluralité de prélèvements de deuxièmes charges électriques respectivement au cours d'une pluralité de deuxièmes zones temporelles.
  9. Pièce d'horlogerie selon une quelconque des revendications 5 à 8, caractérisée en ce que l'ensemble électromagnétique (26) comprend un aimant bipolaire (22), monté sur un balancier (18) du résonateur mécanique (6) et ayant un axe d'aimantation dans un plan géométrique comprenant l'axe de rotation du balancier, et une bobine (28) qui est solidaire du support du résonateur mécanique et agencée de manière à être traversée par le flux magnétique de l'aimant bipolaire, un demi-axe médian (24) partant de l'axe de rotation (20) du balancier et passant par ledit axe d'aimantation axial définissant un demi-axe de référence (48) lorsque le résonateur est au repos et ainsi dans sa position neutre ; et en ce que ladite bobine présente en son centre un décalage angulaire (θ) relativement au demi-axe de référence et ledit aimant bipolaire est agencé sur le balancier de sorte que le seul couplage entre cet aimant bipolaire et la bobine puisse engendre dans chaque période d'oscillation du résonateur mécanique, dans ladite plage de fonctionnement utile, deux lobes de tension (LU1, LU2) de même polarité qui forment respectivement un desdits premiers lobes de tension et un desdits deuxièmes lobes de tension.
  10. Pièce d'horlogerie selon la revendication 9, caractérisée en ce que ledit décalage angulaire est compris entre 30° et 120° en valeur absolue.
  11. Pièce d'horlogerie selon la revendication 9 ou 10, caractérisée en ce que le dispositif de régulation comprend un dispositif de détection (64), agencé pour pouvoir détecter alternativement l'apparition successive de dits premiers lobes de tension (LU1) et de dits deuxièmes lobes de tension (LU2), et un compteur temporel (CT) associé au circuit logique de commande (62) pour permettre à ce dernier de distinguer un premier intervalle de temps, séparant un premier lobe de tension d'un deuxième lobe de tension qui suit, et un deuxième intervalle de temps séparant un deuxième lobe de tension d'un premier lobe de tension qui suit, les premier et deuxième intervalles de temps étant différents du fait de l'agencement dudit ensemble électromagnétique.
  12. Pièce d'horlogerie selon une quelconque des revendications 5 à 8, caractérisée en ce que l'unité d'accumulation primaire comprend une première capacité d'alimentation (C2) et une deuxième capacité d'alimentation (C1), agencées toutes deux pour pouvoir alimenter ladite charge principale ; en ce que le transducteur électromagnétique (6a, 29) est agencé de manière que la pluralité de premiers lobes de tension (LUC1) présentent chacun une première polarité et la pluralité de deuxièmes lobes de tension (LUC2) présentent chacun une deuxième polarité opposée à la première polarité ; en ce que le convertisseur électrique (57) est formé par un premier circuit d'accumulation d'énergie électrique (D2,C2) qui comprend la première capacité d'alimentation et qui est agencé pour pouvoir recharger cette première capacité d'alimentation seulement avec une tension ayant la première polarité en entrée du convertisseur électrique et par un deuxième circuit d'accumulation d'énergie électrique (D1,C1) qui comprend la deuxième capacité d'alimentation et qui est agencé pour pouvoir recharger cette deuxième capacité d'alimentation seulement avec une tension ayant la deuxième polarité en entrée du convertisseur électrique, la quantité d'énergie électrique fournie lors d'une recharge par le dispositif de freinage à la première capacité d'alimentation, respectivement à la deuxième capacité d'alimentation étant d'autant plus grande que le niveau de tension de cette première capacité d'alimentation, respectivement de cette deuxième capacité d'alimentation est bas ; et en ce que le dispositif de régulation est agencé de manière que ledit transfert de ladite première charge électrique consiste en un transfert de cette première charge électrique de la première capacité d'alimentation dans l'unité d'accumulation secondaire et ledit transfert de ladite deuxième charge électrique consiste en un transfert de cette deuxième charge électrique de la deuxième capacité d'alimentation dans l'unité d'accumulation secondaire.
  13. Pièce d'horlogerie selon la revendication 12, caractérisée en ce que les première et deuxième capacités d'alimentation (C2, C1) ont sensiblement une même valeur de capacité et sont agencées pour alimenter conjointement ladite charge principale.
  14. Pièce d'horlogerie selon la revendication 12 ou 13, caractérisée en ce que les première et deuxième capacités d'alimentation sont agencées de manière à délivrer une tension d'alimentation correspondant à l'addition des tensions respectives (VC1, -VC2) de ces première et deuxième capacités d'alimentation.
  15. Pièce d'horlogerie selon une quelconque des revendications 5 à 8 et 12 à 14, caractérisée en ce que l'ensemble électromagnétique (86) comprend une paire d'aimants bipolaires (22,23; 82) montés sur un balancier (18a; 18b) du résonateur mécanique (6a; 6b)) et ayant deux axes d'aimantation respectifs qui sont parallèles à un plan géométrique comprenant l'axe de rotation (20) du balancier avec des polarités respectives opposées, et une bobine (28) qui est solidaire du support du résonateur mécanique, les deux aimants bipolaires (22,23 ; 90,91) de ladite paire étant agencés sur le balancier de manière que leurs flux magnétiques respectifs traversent la bobine avec un décalage temporel mais avec en partie une simultanéité du flux magnétique entrant et du flux magnétique sortant de sorte qu'une impulsion de tension induite générée entre les deux extrémités (E1, E2) de la bobine au passage de la paire d'aimants en regard de cette bobine présente un lobe central (LUC1, LUC2) ayant une amplitude maximale résultant d'un couplage simultané des deux aimants de la paire d'aimants avec la bobine ; en ce qu'un demi-axe médian (26; 24a) partant de l'axe de rotation du balancier et passant par le milieu de la paire d'aimants bipolaires définit un demi-axe de référence (48; 48a) lorsque le résonateur est au repos et ainsi dans sa position neutre, la bobine présentant en son centre un décalage angulaire (θ) relativement au demi-axe de référence de sorte à engendrer dans chaque période d'oscillation du résonateur mécanique, dans ladite plage de fonctionnement utile, deux lobes de tension centraux (LUC1, LUC2) ayant des polarités opposées et formant respectivement ledit premier lobe de tension et ledit deuxième lobe de tension.
  16. Pièce d'horlogerie selon la revendication 15, caractérisée en ce que ledit décalage angulaire est compris entre 30° et 120° en valeur absolue.
  17. Pièce d'horlogerie selon la revendication 15 ou 16, caractérisée en ce que le dispositif de régulation (53; 72) comprend au moins un dispositif de détection (64), agencé pour pouvoir détecter l'apparition successive de premiers lobes de tension (LUC1) et/ou de deuxièmes lobes de tension (LUC2).
  18. Pièce d'horlogerie selon une quelconque des revendications précédentes, caractérisée en ce que le dispositif de régulation (53; 72) comprend au moins un circuit dissipatif pour dissiper de l'énergie électrique accumulée dans l'unité d'accumulation primaire, au moins un interrupteur (Sw3, Sw4; Sw5) associé au circuit dissipatif pour pouvoir connecter momentanément ce circuit dissipatif à l'unité d'accumulation primaire et un circuit de mesure agencé pour détecter si la tension aux bornes de l'unité d'accumulation secondaire est supérieure à une première limite de tension ou si le niveau de remplissage de l'unité d'accumulation secondaire est supérieure à une première limite de remplissage; et en ce que le circuit logique de commande est en outre agencé de manière à pouvoir, lorsque la tension aux bornes de l'unité d'accumulation secondaire est supérieure ou égale à la première limite de tension ou de remplissage, connecter momentanément ledit au moins un circuit dissipatif à l'unité d'accumulation primaire de sorte à effectuer, lorsque la dérive temporelle mesurée correspond à ladite au moins une certaine avance, une première décharge dissipative de l'unité d'accumulation primaire de manière qu'une recharge de celle-ci, suite à cette première décharge, soit générée en majeure partie par au moins un premier lobe de tension parmi ladite pluralité de premiers lobes de tension, et de sorte à effectuer, lorsque la dérive temporelle mesurée correspond audit au moins un certain retard, une deuxième décharge de l'unité d'accumulation primaire de manière qu'une recharge de celle-ci, suite à cette deuxième décharge, soit générée en majeure partie par au moins un deuxième lobe de tension parmi ladite pluralité de deuxièmes lobes de tension.
  19. Pièce d'horlogerie selon une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend un circuit de mesure agencé pour détecter si la tension aux bornes de l'unité d'accumulation secondaire est inférieure à une deuxième limite de tension ou si le niveau de remplissage de l'unité d'accumulation secondaire est inférieur à une deuxième limite de remplissage ; et en ce que le circuit logique de commande est agencé de manière à pouvoir, lorsque la tension aux bornes de l'unité d'accumulation secondaire est inférieure à la deuxième limite de tension ou de remplissage et lorsque la dérive temporelle mesurée est comprise entre ledit au moins un certain retard et ladite au moins une certaine avance, activer le dispositif de pompe de charge de sorte qu'il effectue un transfert d'une troisième charge électrique de l'unité d'accumulation primaire dans l'unité d'accumulation secondaire, de manière qu'une recharge de l'unité d'accumulation primaire suite à ce transfert d'une troisième charge électrique soit générée en majeure partie par au moins un premier lobe de tension parmi ladite pluralité de premiers lobes de tension, et un transfert d'une quatrième charge électrique de l'unité d'accumulation primaire dans l'unité d'accumulation secondaire, de manière qu'une recharge de l'unité d'accumulation primaire suite à ce transfert d'une quatrième charge électrique soit générée en majeure partie par au moins un deuxième lobe de tension parmi ladite pluralité de deuxième lobes de tension, la quatrième charge électrique étant sensiblement égale à la troisième charge électrique.
  20. Pièce d'horlogerie selon une quelconque des revendications précédentes, caractérisée en ce que l'unité d'accumulation secondaire est formée par une super capacité ou un condensateur électrique.
  21. Pièce d'horlogerie selon une quelconque des revendications précédentes, caractérisée en ce que le résonateur mécanique comprend un balancier-spiral ; et en ce que ledit dispositif d'entretien comprend un échappement (14) relié cinématiquement à un barillet (12) muni d'un ressort-moteur, l'échappement étant capable de fournir au balancier-spiral un couple mécanique d'entretien de ses oscillations.
  22. Pièce d'horlogerie selon une quelconque des revendications précédentes, caractérisée en ce que ledit ensemble électromagnétique (26; 86) forme également partiellement le dispositif de mesure.
EP17209121.7A 2017-12-20 2017-12-20 Piece d'horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation Active EP3502797B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17209121.7A EP3502797B1 (fr) 2017-12-20 2017-12-20 Piece d'horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation
JP2018233294A JP6873094B2 (ja) 2017-12-20 2018-12-13 調速システムと連携した機械式発振器を備える時計
US16/220,232 US11422510B2 (en) 2017-12-20 2018-12-14 Timepiece comprising a mechanical oscillator associated with a regulation system
CN201811555788.7A CN109991834B (zh) 2017-12-20 2018-12-19 包括与调节系统相关联的机械振荡器的钟表

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17209121.7A EP3502797B1 (fr) 2017-12-20 2017-12-20 Piece d'horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation

Publications (2)

Publication Number Publication Date
EP3502797A1 EP3502797A1 (fr) 2019-06-26
EP3502797B1 true EP3502797B1 (fr) 2020-07-08

Family

ID=60702429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17209121.7A Active EP3502797B1 (fr) 2017-12-20 2017-12-20 Piece d'horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation

Country Status (4)

Country Link
US (1) US11422510B2 (fr)
EP (1) EP3502797B1 (fr)
JP (1) JP6873094B2 (fr)
CN (1) CN109991834B (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502798B1 (fr) * 2017-12-20 2020-06-24 The Swatch Group Research and Development Ltd Piece d'horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation
EP3502796B1 (fr) * 2017-12-20 2020-05-20 The Swatch Group Research and Development Ltd Piece d'horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124731A (en) * 1964-03-10 Electronic time pieces
US3407344A (en) * 1964-09-26 1968-10-22 Shigeru Kakubari Electronic timekeeper
US3568431A (en) * 1969-07-07 1971-03-09 Voumard Machines Co Sa Electric time piece with balance wheel and hairspring
US3618311A (en) * 1970-01-13 1971-11-09 Timex Corp Synchronized horological system
JPS5535587Y1 (fr) * 1970-02-17 1980-08-22
US3803829A (en) * 1970-03-31 1974-04-16 Suwa Seikosha Kk Coil structure for electric watches
CH1691872A4 (fr) * 1972-11-21 1977-05-31
ES430659A1 (es) * 1973-10-24 1976-11-01 Jauch Un procedimiento y un dispositivo para la sincronizacion deun sistema oscilante accionado por un acumulador mecanico deenergia, en especial de un reloj.
JPS5129027Y1 (fr) * 1975-04-16 1976-07-22
JPS5236066A (en) * 1975-09-16 1977-03-19 Rhythm Watch Co Ltd Balance device
CN87203228U (zh) * 1987-05-06 1988-06-01 李刚 一种可自动充电的电子手表
WO1989006834A1 (fr) * 1988-01-25 1989-07-27 Seiko Epson Corporation Montre electronique pourvue d'un generateur de courant
JP3335986B2 (ja) * 1994-08-03 2002-10-21 セイコーエプソン株式会社 電子制御時計
EP1164441A1 (fr) 1999-12-24 2001-12-19 Seiko Instruments Inc. Montre mecanique avec unite de commande de rouage
DE60314143T2 (de) * 2003-10-01 2008-01-31 Asulab S.A. Uhr mit einem mechanischen Uhrwerk, das mit einem elektronischen Regulator gekoppelt ist
JP5079366B2 (ja) * 2007-03-28 2012-11-21 本田技研工業株式会社 回動工具
EP2561409B1 (fr) * 2010-04-21 2019-08-28 Team Smartfish GmbH Organe de réglage pour une piece d'horlogerie et un procédé correspondant
EP3339982B1 (fr) * 2016-12-23 2021-08-25 The Swatch Group Research and Development Ltd Régulation par freinage mécanique d'un oscillateur mécanique horloger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6873094B2 (ja) 2021-05-19
CN109991834A (zh) 2019-07-09
US11422510B2 (en) 2022-08-23
US20190187623A1 (en) 2019-06-20
JP2019113547A (ja) 2019-07-11
EP3502797A1 (fr) 2019-06-26
CN109991834B (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
EP1521141B1 (fr) Pièce d&#39;horlogerie ayant un mouvement mécanique associé à un régulateur électronique
EP1521142B1 (fr) Pièce d&#39;horlogerie ayant un mouvement mécanique associé à un régulateur électronique
EP3339982B1 (fr) Régulation par freinage mécanique d&#39;un oscillateur mécanique horloger
EP3620867B1 (fr) Pièce d&#39;horlogerie comprenant un oscillateur mécanique dont la fréquence moyenne est synchronisée sur celle d&#39;un oscillateur électronique de référence
EP3629104B1 (fr) Piece d&#39;horlogerie mécanique comportant un dispositif electronique de regulation de la précision de marche de la pièce d&#39;horlogerie
EP3502797B1 (fr) Piece d&#39;horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation
CH713306A2 (fr) Ensemble horloger comprenant un oscillateur mécanique associé à un dispositif de régulation de sa fréquence moyenne.
WO2015140332A2 (fr) Organe tournant horloger, oscillateur horloger
WO2018177779A1 (fr) Pièce d&#39;horlogerie comprenant un mouvement mécanique dont la marche est améliorée par un dispositif de correction
EP3502796B1 (fr) Piece d&#39;horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation
WO2018177774A1 (fr) Piece d&#39;horlogerie mecanique comprenant un mouvement dont la marche est amelioree par un dispositif de correction
EP3502798B1 (fr) Piece d&#39;horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation
CH714484A2 (fr) Pièce d&#39;horlogerie comprenant un oscillateur mécanique associé à un système de régulation.
EP0024737B1 (fr) Détecteur d&#39;avance d&#39;un moteur pas à pas
CH714485A2 (fr) Pièce d&#39;horlogerie comprenant un oscillateur mécanique associé à un système de régulation.
CH714483A2 (fr) Pièce d&#39;horlogerie comprenant un oscillateur mécanique associé à un système de régulation.
EP4009119B1 (fr) Mouvement horloger muni d&#39;une generatrice et d&#39;un circuit de regulation de la frequence de rotation de cette generatrice
EP1544692A1 (fr) Pièce d&#39;horlogerie électroméchanique comprenant un indicateur de réserve de marche
WO2014090830A2 (fr) Organe régulateur pour montre-bracelet
WO2021121711A1 (fr) Piece d&#39;horlogerie munie d&#39;un mouvement mecanique et d&#39;un dispositif de correction d&#39;une heure affichee
CH713332A2 (fr) Ensemble horloger comprenant un oscillateur mécanique associé à un dispositif de régulation.
EP0848306B1 (fr) Pièce d&#39;horlogerie comportant une génératrice d&#39;énergie électrique
CH718138A2 (fr) Mouvement horloger muni d&#39;une génératrice et d&#39;un circuit de régulation de la fréquence de rotation de cette génératrice.
CH713637A2 (fr) Pièce d&#39;horlogerie comprenant un mouvement mécanique dont la marche est améliorée par un dispositif de correction.
CH715295A2 (fr) Pièce d`horlogerie comprenant un oscillateur mécanique dont la fréquence moyenne est synchronisée sur celle d`un oscillateur électronique de référence.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

17P Request for examination filed

Effective date: 20200102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G04C 3/04 20060101ALI20200117BHEP

Ipc: G04C 10/00 20060101AFI20200117BHEP

INTG Intention to grant announced

Effective date: 20200204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1289112

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017019317

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1289112

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200708

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017019317

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26N No opposition filed

Effective date: 20210409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230101

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 7

Ref country code: DE

Payment date: 20231121

Year of fee payment: 7