EP3502784A1 - Uhrresonator mit flexibler führung - Google Patents
Uhrresonator mit flexibler führung Download PDFInfo
- Publication number
- EP3502784A1 EP3502784A1 EP18201466.2A EP18201466A EP3502784A1 EP 3502784 A1 EP3502784 A1 EP 3502784A1 EP 18201466 A EP18201466 A EP 18201466A EP 3502784 A1 EP3502784 A1 EP 3502784A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- serge
- resonator
- clock
- elastic member
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010355 oscillation Effects 0.000 claims abstract description 19
- 210000003423 ankle Anatomy 0.000 claims abstract description 5
- 238000012423 maintenance Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000000708 deep reactive-ion etching Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 1
- 239000010956 nickel silver Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000009527 percussion Methods 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/045—Oscillators acting by spring tension with oscillating blade springs
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/063—Balance construction
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B15/00—Escapements
- G04B15/06—Free escapements
- G04B15/08—Lever escapements
Definitions
- the present invention relates to a flexible guide clock resonator intended to serve as a time base for a watch movement, like a sprung balance.
- the flexible guide resonators are advantageous in that they have no axis of physical rotation and thus eliminate the friction generated by the rotation of such an axis.
- This resonator is very specific and the use of such an anchor connected to a central rigid part does not seem applicable to other types of flexible guide resonators such as cross-blade resonators.
- the anchor is located between two blades of the first resilient return means and has little room for its oscillations, which creates the risk of collision likely to disturb the operation of the resonator.
- the state of the art does not propose a flexible guide resonator that can be serviced by a conventional exhaust in an optimized manner.
- the present invention aims at satisfying, in part at least, this need.
- a clock resonator comprising a base, a serge, an elastic member and an ankle, the elastic member connecting the serge to the base and guiding oscillations of the serge relative to the base around a virtual axis of rotation, the pin being intended to cooperate with a fork of an escapement for the maintenance of said oscillations, characterized in that the pin is carried by a free end of a support member extending from the serge to the virtual axis of rotation and forming with the serge a rigid part.
- This arrangement allows a direct interaction between the exhaust and the movable rigid part of the resonator, as for the maintenance of the oscillations of a sprung balance.
- the support member makes it possible to place the dowel at a location close to the virtual axis of rotation which is favorable in particular for the lifting angle and / or for reducing disturbances related to vertical shocks.
- the pin is located, at least in part, out of the thickness of the serge to be able to cooperate with the fork of the escapement without possible collision between the resonator and the exhaust.
- the present invention further provides a clock oscillator comprising the resonator defined above and an exhaust, and a method of manufacturing the resonator.
- a resonator 1 intended to form the time base of a watch movement, in particular a wristwatch movement, comprises a base 2, a serge 3 and an elastic member 4 connecting the serge 3 to the base 2.
- the base 2 may be in one part, as shown, or in two separate parts. It is intended to be fixed on a fixed or mobile support such as the movement stage or a tourbillon cage.
- the serge 3 is suspended at the base 2 by the elastic member 4, that is to say is held only by the elastic member 4. It is preferably continuous, to promote its inertia compared to its mass but could be in the form of an interrupted ring.
- the serge 3 is coplanar with the base 2 and surrounds it, in part at least.
- the elastic member 4 serves as guiding means guiding the serge 3 in rotation relative to the base 2 about a virtual axis of rotation A substantially corresponding to the geometric axis of the serge 3.
- the elastic member 4 also serves of elastic return means reminding serge 3 in an angular position of rest relative to the base 2.
- the elastic member 4 is of the separated cross-leaf type: it comprises two elastic blades 4a, 4b crossing in plan view from above or below the resonator 1 but extending in two different parallel planes for to cross without contact.
- the ends of each of these blades 4a, 4b are respectively joined to the base 2 and to the serge 3.
- the crossing between these blades 4a, 4b defines the virtual axis of rotation A.
- This type of flexible guidance is advantageous in that it has a low stiffness and allows a relatively large amplitude of oscillation of the serge 3.
- the base 2 can be as described in the patent application WO 2017/055983 of the applicant, to allow adjustment of the position of the cross point of the blades 4a, 4b.
- a support member 5 consisting of one or more rigid arms 5a, 5b extends, preferably in the plane of the serge 3, preferably radially, from the inner face 3a of the serge 3 towards the virtual axis of rotation A to a free end 5c.
- the support member 5 consists of two rigid arms 5a, 5b which meet to form the free end 5c.
- This free end 5c carries an ankle or ellipse 6 whose axis is parallel to the virtual axis of rotation A and perpendicular to the plane of the serge 3.
- the peg 6 has the classic shape of a half -cylinder, but it could have another form. As visible at figure 2 , the peg 6 exceeds the thickness e of the serge 3, more precisely the plane defined by the lower face 3b of the serge 3.
- the part of the peg 6 situated outside the thickness e cooperates in a conventional manner with the fork 7a of an escape anchor 7, for example a Swiss anchor.
- an escape anchor 7 located under the resonator 1 and which interacts with the escape wheel 8a of an exhaust mobile 8 itself located under the resonator 1 and its serge 3.
- the direct interaction between the exhaust 7, 8 and the rigid moving part of the resonator 1, comprising the serge 3, the support member 5 and the pin 6, contributes to obtaining a good performance.
- the radial length of the support member 5 is chosen in particular according to the desired angle of lift for the resonator 1, that is to say the angle of the serge 3 during which the pin 6 is in contact with the the fork 7a.
- the desired angle of lift for the resonator 1 that is to say the angle of the serge 3 during which the pin 6 is in contact with the the fork 7a.
- arranging the pin 6 close to the virtual axis of rotation A increases the angle of lift, while moving it away from the virtual axis of rotation A decreases the angle of rotation. lifted.
- With a Swiss lever escapement if one wishes to promote the yield, it is generally advantageous to have a relatively large lifting angle. If, on the other hand, it is desired to favor chronometry, a small angle of lift is generally preferable.
- the stiffness of the flexible guide and the frequency are high compared to the spiral stiffness and the frequency of a balance spring, so that the disturbances caused by the exhaust are much weaker. It will therefore be possible to give priority to the efficiency with respect to chronometry and to place the peg 6 close to the virtual axis of rotation A. It is also important that the amplitude of oscillation of the resonator is greater than the angle of lift. In exemplary embodiments of the invention, the lifting angle is two times smaller than the oscillation amplitude of the resonator 1 and the oscillation frequency is several tens of Hertz.
- the peg 6 is traversed symmetrically by an axis of symmetry D1 of the elastic member 4, allowing the resonator 1 to be symmetrically maintained, the elastic member 4 being biased identically during the two alternations of an oscillation. This feature improves chronometry.
- the pin 6 is located on the same side of a straight line D2, perpendicular to the axis of symmetry D1 and cutting the virtual axis of rotation A, all the attachment points of the elastic member 4 to the serge 3, the base 2 being located on the other side of this line D2.
- said attachment points are two in number and designated 4c, 4d.
- the resonator 1 is balanced in that the center of mass of its movable rigid part 3, 5, 6 is situated substantially on the virtual axis of rotation A.
- a recess 3c (cf. figure 1 ) is formed in the lower face 3b of the serge 3, in the region of the serge 3 from which the support member 5 extends.
- the support member 5 is preferably symmetrical with respect to the axis of symmetry D1 of the elastic member 4 in plan view from above or below the resonator 1 and when the serge 3 is in its rest position (cf. figure 3 ).
- the Figures 7 and 8 is represented a resonator 1 according to a second embodiment of the invention.
- the resonator 1 according to this second embodiment differs from that according to the first embodiment essentially by the shape of its support member 5, its base 2 and its serge 3.
- the support member 5 is constituted here of the two arms 5a, 5b, of different form from that of the first embodiment, and a third arm 5e which connects these two arms 5a, 5b.
- the symmetry characteristics described above in relation to the first embodiment are found in the second embodiment.
- the axis of rotation 7b of the anchor 7 passes through the central opening defined by the serge 3, in other words is surrounded by the serge 3, as can be seen in FIG. Figures 5 to 8 .
- This characteristic makes the oscillator 1, 7, 8 compact in plan view from above or below while allowing the anchor 7 to have a long axis of rotation 7b, longer than that of the anchors interacting with balance-springs .
- a long axis of rotation improves the guidance of the anchor, making it less prone to movements out of its plane.
- the axis of rotation 7b of the anchor 7 has its pivots which rotate in bearings 9a, 9b respectively provided in the plate 10 of the watch movement and in an oscillator bridge 11 located above the resonator 1 and fixed by screws 11a to the plate 10.
- This mounting of the anchor 7 between the plate 10 and the oscillator bridge 11 avoids the use of the traditional anchor bridge interposed between the plate and the resonator.
- the anchor 7 and the resonator 1 can thus be close to each other in the direction of the height (direction of the virtual axis of rotation A), allowing the peg 6 to be shorter.
- a short peg 6 reduces the risk of tilting of the resonator 1 around the axis BB of the figure 7 during the contacts between the pin 6 and the fork 7a and the effect of a possible defect perpendicularity of the pin 6.
- the positioning of the pin 6 in the fork 7a and the operation of the oscillator can be particularly accurate .
- the axis of rotation 7b of the anchor 7 passes through the central opening of the serge 3 between the arms 5a, 5b of the support member 5.
- the axis 7b can serve as a stop to these arms 5a, 5b to allow oscillations of the serge 3 only in a predetermined angular range and prevent too high amplitude oscillation of the serge 3 or that a shock leads to exceeding the yield strength of the serge 3 elastic member 4.
- the anchor 7 used in the present invention can be replaced by another type of fork energy transmission member capable of communicating pulses of mechanical energy to the pin 6.
- the anchor 7 can for example be replaced by the trigger rocker of a percussion escapement as described in the patent application WO 2018/002778 of the plaintiff.
- the base 2 of the resonator 1 is mounted on the plate 10 via a bridge 12. Alternatively, however, it could be mounted directly on the plate 10.
- the attachment of the base 2 and the bridge 12 to the plate 10 is provided by positioning pins 13 and holding screws 14.
- the bearings 9b and 9a in which the pivots of the axis of rotation 7b of the anchor 7 rotate are provided respectively in the bridges 11 and 12, allowing these bridges to anchor 7. and the resonator 1 to form together a module, the module of which the escape mobile 8 can also be part by pivoting itself also in the bridges 11, 12.
- stops 15, 16 integral with the oscillator bridge 11 limit undesirable movements of the serge 3 during shocks.
- the abutment 15 is arranged to act on the serge 3 in several directions of translation of the plane of the resonator 1 and in the direction of the height.
- the stop 16 is arranged to act on the serge 3 in the direction of the height.
- the stops 15, 16 are driven into the oscillator bridge 11 and can therefore be adjusted in height to ensure an ideal operating clearance.
- the abutments 15, 16 could, however, be in one piece with the oscillator bridge 11.
- the serge 3 of the resonator 1 according to the invention can be equipped with flyweights 17 for adjusting the moment of inertia of the movable rigid part 3, 5, 6.
- the resonator 1 may be entirely monolithic and made for example of silicon or any other suitable material according to the technique of deep reactive ionic etching ("DRIE") (Deep Reactive Ion Etching), in nickel, nickel alloy or any other material suitable for LIGA (lithography, electroplating, molding), steel, copper-beryllium, nickel silver or other metallic alloy by milling, electroerosion or 3D printing, in metallic glass by molding, or glass, sapphire or any other suitable material according to the laser micro-structuring technique coupled with chemical etching (eg FEMTOPRINT®).
- DRIE deep reactive ionic etching
- the coplanar parts that are the base 2, the serge 3, the elastic member 4 and the organ 5 are made together so as to form a monolithic piece, for example according to one of the aforementioned techniques such as the DRIE or LIGA technique, then the peg 6, made of the same material or another material, is assembled at the same time.
- support member 5 can be introduced into a hole 5d previously formed in the end 5c of the support member 5 and be fixed there for example by gluing or brazing.
- the assembly 2, 3, 4, 5 and the pin 6 are both made of silicon.
- the blades 4a, 4b forming the elastic member 4 are preferably oriented each in a crystalline direction in which the modulus of elasticity is the lowest.
- the blades 4a, 4b are each oriented in a crystalline direction of the family ⁇ 100>. In this way, for a given stiffness of the elastic member 4, the thickness of the blades 4a, 4b may be larger, which facilitates the manufacture.
- All or part of the surface of the resonator 1 may be covered with one or more layers.
- a thermal compensation layer typically made of silicon dioxide in the case of a silicon assembly 2, 3, 4, 5, over the entire resonator 1 or at least on the elastic member 4 in order to compensate the thermal variations of the stiffness of the elastic member 4.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17210038 | 2017-12-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3502784A1 true EP3502784A1 (de) | 2019-06-26 |
EP3502784B1 EP3502784B1 (de) | 2020-06-10 |
Family
ID=60782050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18201466.2A Active EP3502784B1 (de) | 2017-12-22 | 2018-10-19 | Uhrresonator mit flexibler führung |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3502784B1 (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020100004A1 (fr) | 2018-11-13 | 2020-05-22 | Patek Philippe Sa Geneve | Piece d'horlogerie comprenant deux sources d'energie |
CN112711183A (zh) * | 2019-10-24 | 2021-04-27 | 斯沃奇集团研究和开发有限公司 | 用于枢转质量块的枢转引导装置和钟表谐振器机构 |
EP3862818A1 (de) | 2020-02-06 | 2021-08-11 | Patek Philippe SA Genève | Armband, die einen aufziehmechanismus umfasst |
CN114127641A (zh) * | 2019-07-12 | 2022-03-01 | 百达翡丽日内瓦公司 | 调节挠性枢轴钟表振荡器的方法 |
CN115702396A (zh) * | 2020-07-10 | 2023-02-14 | 百达翡丽日内瓦公司 | 具有柔性枢轴的钟表振荡器 |
EP4250019A1 (de) | 2022-03-21 | 2023-09-27 | Patek Philippe SA Genève | Uhr-oszillator für ein ultraflaches uhrwerk |
EP4286959A1 (de) | 2022-06-02 | 2023-12-06 | Patek Philippe SA Genève | Oszillator einer uhr mit flexiblem zapfen |
EP4310603A1 (de) | 2022-07-18 | 2024-01-24 | Patek Philippe SA Genève | Uhrwerk |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2894520A2 (de) * | 2010-07-19 | 2015-07-15 | Nivarox-FAR S.A. | Schwingungsmechanismus mit elastischem und beweglichen Zapfen zur Energieübertragung |
CH710025A2 (fr) * | 2013-12-23 | 2016-02-29 | Eta Sa Manufacture Horlogère Suisse | Mouvement horloger mécanique à échappement magnétique. |
EP3032352A1 (de) * | 2014-12-09 | 2016-06-15 | LVMH Swiss Manufactures SA | Uhrregler, Uhrwerk und Uhr mit solch einem Regler |
-
2018
- 2018-10-19 EP EP18201466.2A patent/EP3502784B1/de active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2894520A2 (de) * | 2010-07-19 | 2015-07-15 | Nivarox-FAR S.A. | Schwingungsmechanismus mit elastischem und beweglichen Zapfen zur Energieübertragung |
CH710025A2 (fr) * | 2013-12-23 | 2016-02-29 | Eta Sa Manufacture Horlogère Suisse | Mouvement horloger mécanique à échappement magnétique. |
EP3032352A1 (de) * | 2014-12-09 | 2016-06-15 | LVMH Swiss Manufactures SA | Uhrregler, Uhrwerk und Uhr mit solch einem Regler |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020100004A1 (fr) | 2018-11-13 | 2020-05-22 | Patek Philippe Sa Geneve | Piece d'horlogerie comprenant deux sources d'energie |
CN114127641A (zh) * | 2019-07-12 | 2022-03-01 | 百达翡丽日内瓦公司 | 调节挠性枢轴钟表振荡器的方法 |
CN114127641B (zh) * | 2019-07-12 | 2024-03-22 | 百达翡丽日内瓦公司 | 调节挠性枢轴钟表振荡器的方法 |
CN112711183A (zh) * | 2019-10-24 | 2021-04-27 | 斯沃奇集团研究和开发有限公司 | 用于枢转质量块的枢转引导装置和钟表谐振器机构 |
CN112711183B (zh) * | 2019-10-24 | 2022-04-12 | 斯沃奇集团研究和开发有限公司 | 用于枢转质量块的枢转引导装置和钟表谐振器机构 |
EP3862818A1 (de) | 2020-02-06 | 2021-08-11 | Patek Philippe SA Genève | Armband, die einen aufziehmechanismus umfasst |
CN115702396A (zh) * | 2020-07-10 | 2023-02-14 | 百达翡丽日内瓦公司 | 具有柔性枢轴的钟表振荡器 |
EP4250019A1 (de) | 2022-03-21 | 2023-09-27 | Patek Philippe SA Genève | Uhr-oszillator für ein ultraflaches uhrwerk |
EP4286959A1 (de) | 2022-06-02 | 2023-12-06 | Patek Philippe SA Genève | Oszillator einer uhr mit flexiblem zapfen |
EP4310603A1 (de) | 2022-07-18 | 2024-01-24 | Patek Philippe SA Genève | Uhrwerk |
Also Published As
Publication number | Publication date |
---|---|
EP3502784B1 (de) | 2020-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3502784B1 (de) | Uhrresonator mit flexibler führung | |
EP3356690B1 (de) | Mechanische komponente mit flexibler drehachse, insbesondere für uhrwerke | |
EP3035127B1 (de) | Stimmgabeloszillator einer stimmgabelgesteuerten Uhr | |
EP3545365B1 (de) | Sich drehender resonator mit einer flexiblen führung, der von einer freien ankerhemmung gehalten wird | |
EP3548973B1 (de) | Vorrichtung für uhren, uhrmechanismus und uhr mit einer solchen vorrichtung. | |
CH709291A2 (fr) | Oscillateur de pièce d'horlogerie. | |
EP3561607B1 (de) | Stossdämpfungsschutz eines resonatormechanismus mit flexibler drehführung | |
EP3382470B1 (de) | Oszillator einer uhr mit flexiblem zapfen | |
CH700059A2 (fr) | Spiral à élévation de courbe en matériau à base de silicium. | |
EP3457221A2 (de) | Oszillator einer uhr mit flexiblem zapfen | |
EP2690506B1 (de) | Antischwingungsspirale für Uhr | |
EP3112953A1 (de) | Uhrkomponente mit einem bauteil mit entkoppelter schweissoberfläche | |
EP3555708B1 (de) | Uhrkomponente mit flexiblem zapfen | |
EP3217228B1 (de) | Zweischneidige vorrichtung, die empfindlich auf temperaturveränderungen reagiert | |
EP3792700B1 (de) | Oszillator einer uhr mit flexiblem zapfen | |
EP3037893B1 (de) | Mikromechanische Komponente oder Uhr mit flexiblem Führungsdraht | |
WO2022009102A1 (fr) | Oscillateur horloger a pivot flexible | |
EP3839651B1 (de) | Mechanischer oszillator einer uhr mit flexibler führung | |
EP3637196B1 (de) | Mechanischer oszillator | |
CH712193B1 (fr) | Dispositif bilame sensible aux variations de température pour composants horlogers ainsi que pour un capteur de température. | |
FR3065542B1 (fr) | Procede de fabrication d'un mecanisme | |
EP4191346B1 (de) | Stossdämpfungsschutz eines resonatormechanismus mit flexibler drehführung | |
EP4286959A1 (de) | Oszillator einer uhr mit flexiblem zapfen | |
EP4432020A1 (de) | Uhrwerk | |
EP3971655A1 (de) | Stossdämpfungsschutz mit anschlag eines resonatormechanismus mit flexibler drehführung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190902 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G04B 17/04 20060101AFI20200106BHEP Ipc: G04B 15/08 20060101ALN20200106BHEP Ipc: G04B 17/06 20060101ALI20200106BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200220 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1279674 Country of ref document: AT Kind code of ref document: T Effective date: 20200615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018005194 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI AND CIE SA, CH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200910 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200911 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200910 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1279674 Country of ref document: AT Kind code of ref document: T Effective date: 20200610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201012 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201010 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018005194 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 |
|
26N | No opposition filed |
Effective date: 20210311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201019 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200610 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230521 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230822 Year of fee payment: 6 Ref country code: CH Payment date: 20231101 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240829 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240923 Year of fee payment: 7 |