EP3500818B1 - Système d'exploseur-détonateur électronique - Google Patents

Système d'exploseur-détonateur électronique Download PDF

Info

Publication number
EP3500818B1
EP3500818B1 EP17768867.8A EP17768867A EP3500818B1 EP 3500818 B1 EP3500818 B1 EP 3500818B1 EP 17768867 A EP17768867 A EP 17768867A EP 3500818 B1 EP3500818 B1 EP 3500818B1
Authority
EP
European Patent Office
Prior art keywords
iccu
detonator
edm
power source
exploder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17768867.8A
Other languages
German (de)
English (en)
Other versions
EP3500818A1 (fr
Inventor
Ravi Theja PAVULURI
Rama Lakshmana Rao PAVULURI
Bharath PAVULURI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3500818A1 publication Critical patent/EP3500818A1/fr
Application granted granted Critical
Publication of EP3500818B1 publication Critical patent/EP3500818B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay

Definitions

  • the present invention relates to a novel electronic detonator-exploder system having a novel delay setting technique for each detonator units of said system.
  • the present invention is particularly useful in setting and executing precise delays in explosives used in mining and construction.
  • a detonator is a device used to initiate an explosive process in an explosive device.
  • Detonators can be chemically, mechanically, or electrically initiated.
  • Commercial explosives use electrical detonators or the capped fuse which is a length of safety fuse to which an ordinary detonator is been crimped.
  • IED instantaneous electrical detonators
  • SPD short period delay detonators
  • LPD long period delay detonators
  • Electronic detonators In mining, electronic detonators have a better precision for delays. Electronic detonators are designed to provide the precise control necessary to produce accurate and consistent blasting results in a variety of blasting applications in mining, quarrying, and construction industries. Electronic detonators may be programmed in 1-millisecond increments from 1 millisecond to many seconds using the dedicated programing device. There are a variety of electronic detonators offering features like verification of the connections, wide delay range, high precision etc. However, there exists a gap in terms of a robust two-way communication between the control unit and the field detonator apart from diagnostic facilities to ensure high reliability. This invention proposes to overcome some of the limitations of known devices while offering many new features.
  • US patent document US8176848 discloses a system and a method for conducting a firing sequence including a master device and a plurality of electronic pyrotechnic devices.
  • the disadvantage of the technique disclosed in US8176848 is that two different control units are required for executing the detonation process which further demands two different supply voltages. Further the communication from detonator's ASIC chip to logger is by current modulation and this mode of communication is prone to errors.
  • the invention disclosed in EP0434883 relates to an exploder detonator unit capable of electronically sequencing a blast.
  • the disadvantage associated with EP0434883 is that identification system for each individual detonator follows a complex model based on 'delay loaded' and 'directive of each detonator'.
  • Another disadvantage of the invention disclosed in EP0434883 is the mode of communication technique. The communication messages are sent and received by superimposing voltages on the supply lines. Two-pass channel is used to differentiate communication signals and supply voltage. In such communication mechanism, as suggested in EP0434883 , there is every possibility of errors due to noise or other external disturbances.
  • US 8 176 848 B2 discloses a system and a method for conducting a firing sequence including a master device and a plurality of electronic pyrotechnic devices, wherein the master device broadcasts, multiple times, a fire command to the plurality of electronic pyrotechnic devices.
  • WO 02/099356 A2 describes an electronic detonator delay assembly, having an associated detonator that can be pre-programmed on site with a time delay and installed in a borehole to carry out a blast operation.
  • WO 01/67031 A1 discloses a method for firing electronic detonators in an electronic detonator system, said detonators being connected to a control unit via a bus.
  • EP 0434883 A1 relates to an exploder detonator unit capable of electronically sequencing a blast.
  • WO 95/04253 A1 discloses a programmable electronic time delay initiator including a digital time-delay circuit that counts in response to a dual-resonator clock and, at the end of the programmed time delay, gates the pre-stored charge on a capacitor to a semiconductor bridge initiator to fire an explosive.
  • WO 2011/032189 A1 describes a connector which connects a detonator to a two-wire harness from a control unit and which includes a timer which, after a timing interval, enables the connection of a following detonator in a sequence to the harness.
  • the inventors felt the need to develop a novel detonator-exploder system having precise timing for individual detonators that will eventually result in the most efficient explosion.
  • the present invention proposes a system in which the final result would be closer to their theoretical calculations. Increased precision in the delay, as proposed in the present invention, will help to achieve a better result in all applications.
  • the present invention provides a novel electronic detonator-exploder system according to claim 1. Further embodiments of the invention are disclosed in dependent claims 2-15.
  • the invented system proposes to offer high precision and is more advanced than known techniques and mechanisms of setting delay to individual detonators.
  • two types of messages are sent by the ICCU, namely individual messages and broadcast messages.
  • Individual messages are received and replied by detonator units based on time division multiplexing concept. Since each detonator is given a serial number the communication decoding and response to and from the detonator follows the serial number slot corresponding to the detonator. Detonator units with other serial numbers ignore the messages and not reply when the time slot is not directed to those serial numbers. This ensures a two-way communication which is immune to electromagnetic radiation and radio noise. Broadcast messages are from the ICCU to the detonator units only.
  • the invented electronic detonator-exploder system (100) comprises of an exploder unit (102) and plurality of detonator units (104-1,104-2,...,104-n) connected to said exploder unit (102), as seen in figure 1 .
  • the exploder unit (102) is provided with an integrated command and control unit (ICCU-1) for setting predefined delay in each of said detonator units (104-1, 104-2,...,104-n) and each of said detonator units (104-1,104-2,...104-n) is provided with an electronic delay module (EDM) unit for counting down said set delay to initiate the process of explosion.
  • ICCU-1 integrated command and control unit
  • EDM electronic delay module
  • the integrated command and control unit (ICCU-1), according to one embodiment of the invention, is electrically powered by the power source (P-1).
  • the ICCU-1 comprises, a ICCU rectifier block (106), a power source control circuit (108), an input device (110), an ICCU pulse-generator and pulse-detector circuit (112), a display means (114), an ICCU control circuit (116), a voltage regulation block (118), and status indicators (136).
  • the ICCU control circuit (116) is linked with:
  • the ICCU rectifier block (106) takes input from the power source (P-1) and gives stable DC supply as output.
  • This ICCU rectifier block (106) is configured to provide protection to the ICCU-1 even if supply cables are connected to the terminals (T 1 -1, T 2 -1) with opposite polarity. This has high practical need in the actual field conditions. There could be situations when the positive and negative cables cannot be identified at a distance from the power supply.
  • the circuit of the ICCU rectifier block (106) prevents misfire and unintended firing in such events.
  • the ICCU rectifier block (106) has a bridge rectifier formed by diodes D 1 , D 2 , D 3 and D 4 , as seen in figure 3A .
  • the power source control circuit (108), as seen in figure 2A checks the voltage output from said ICCU rectifier block (106) of the ICCU-1.
  • the integrated command and control unit is electrically powered by the power source (P-2) and comprises a ICCU rectifier block (206), a power source control circuit (208), an input device (210), an ICCU pulse-generator and pulse-detector circuit (212), a display means (214), an ICCU control circuit (216), a voltage regulation block (218), and status indicators (236).
  • the ICCU control circuit (216) is linked with:
  • the ICCU rectifier block (206) takes input from power source (P-2) and gives stable DC supply as output.
  • BT1 is an auxiliary power source.
  • the power source control circuit (208) determines the optimum charging cycle of the auxiliary power source (BT1) and also protects the auxiliary power source (BT1) from overcharging and thus preventing it from damage.
  • the auxiliary power source (BT1) may be in the form of a battery which acts as a backup power source and supplies electric power to the ICCU-2 in case of power failure from the main power source (P-2).
  • This ICCU rectifier block (206) is configured to provide protection to the ICCU-2 even if supply cables are connected to the terminals (T1-2, T2-2) with opposite polarity.
  • the circuit of the ICCU rectifier block (206) prevents misfire and unintended firing in such events.
  • the ICCU rectifier block (206) has a bridge rectifier formed by diodes D 1 , D 2 , D 3 and D 4 , as seen in figure 3B .
  • the power source control circuit (208), as seen in figure 2B checks the voltage output from said ICCU rectifier block (206) of the ICCU-2.
  • the power source P-2 is an AC power source. It is also possible to replace the AC power source with a DC power source, such a battery, which will charge the auxiliary power source (BT1).
  • the integrated command and control unit comprises a battery (BT2) which is the power source, a power source control circuit (308), an input device (310), an ICCU pulse-generator and pulse-detector circuit (312), a display means (314), an ICCU control circuit (316) and a voltage regulation block (318).
  • the ICCU control circuit (316) is linked with:
  • the power source control circuit (108) has a feedback line.
  • the resistors R 1 and R 2 form a divider bridge. This divider bridge lets the ICCU control circuit (116) to know if main power is available or not.
  • This power source control circuit (108) can also be constructed using a combination of active and passive devices.
  • the power source control circuits 208 and 308 have identical construction.
  • the power source control circuit (208) has a feedback line (shown as feedback A) and a control line.
  • the feedback is received by the ICCU control circuit (216) thus enabling it to switch OFF/ON the power source control circuit (208) via the control line.
  • the feedback line sends the voltage level across the ICCU power source control circuit (208) having the auxiliary power source (BT1).
  • the resistors R 1 and R 2 form a divider bridge to step down the voltage suitable for operation of electronic switching devices and provide feedback about the status of V IN to the ICCU control circuit (216).
  • the resistors R 3 , R 4 and R 5 limit current flowing through the switching elements.
  • the resistors R 6 , R 7 form a divider bridge to create a reference value for the feedback signal of ICCU control circuit (216).
  • the first semiconductor switch Q 1 and the second semiconductor switch (Q2) are MOSFETS and are interconnected to drive the power source control circuit (208). When both the semiconductor switches Q 1 and Q 2 are in OFF position, current will not flow through either Q 1 or Q 2 . By driving the gate of Q 1 , the gate of Q 2 conducts thus enabling the flow of current through the diode D 5 and charging the auxiliary power source (BT1).
  • the control line is connected to the ICCU control circuit (216) which in turn controls the switching element Q 1 .
  • Q 1 in turn controls Q2 that breaks or makes the current path from V IN to the auxiliary power source (BT1).
  • This power source control circuit can also be constructed using standard battery charging ICs or a current and voltage controlling devices, or a combination of active and passive devices.
  • the capacitor C 1 is provided to stabilize feedback.
  • the power source control circuit (308) has a feedback line and a control line.
  • the feedback is received by the ICCU control circuit (316) thus enabling it to switch OFF/ON the power source control circuit (308) via the control line.
  • the feedback line A sends the voltage level across the battery (BT2).
  • the resistors R 1 and R 2 form a divider bridge to step down the voltage suitable for operation of electronic switching devices.
  • the resistors R 3 , R 4 and R 5 limit current flowing through the switching elements.
  • the resistors R 6 , R 7 form a divider bridge to create a reference value for the feedback signal of ICCU control circuit (316).
  • the semiconductor switches (MOSFETs) Q 1 and Q 2 are interconnected to drive the power source control circuit (308). When both the semiconductor switches Q 1 and Q 2 are in OFF position, current will not flow through either Q 1 or Q 2 . By driving the gate of Q 1 , the gate of Q 2 conducts thus enabling the flow of current through D 5 which is the V OUT .
  • the control line is connected to the ICCU control circuit (316) which again controls the switching element Q 1 .
  • Q 1 in turn controls Q 2 that breaks or makes the current path from V IN to V OUT .
  • This power source control circuit can also be constructed using standard battery charging ICs or a current and voltage controlling devices, or a combination of active and passive devices.
  • the capacitor C 1 is provided to stabilize the feedback.
  • each of the ICCU-1, ICCU-2 and ICCU-3 is provided with a respective voltage regulation block 118, 218, 318.
  • the voltage regulation block (118), as shown in figure 5A maintains the voltage coming from the ICCU rectifier block (106) at a constant value.
  • voltage regulation block (218), as shown in figure 5B maintains the voltage coming from the ICCU rectifier block (206) at a constant value; and voltage regulation block (318), as shown in figure 5C , maintains the voltage coming from the battery (BT2).
  • each of the voltage regulation block 118, 218, 318 maintains the output voltage from the respective ICCU rectifier blocks (106, 206) and said battery (BT2) at a constant predefined value.
  • Capacitors C 2 and C 3 act as decoupling capacitors to help stabilize the output (V OUT ). These capacitors (C 2 and C 3 ) remove sudden spikes and dips in the voltage output (V OUT ) and make it smoother.
  • FIG. 6A A preferred embodiment of the ICCU pulse-generator and pulse-detector circuit (112) of ICCU-1 has been shown in figure 6A .
  • This circuit (112) generates the required pulses for communication messages and commands such as FIRE and PRE-FIRE commands.
  • This circuit (112) also detects and decodes incoming messages from the connected EDM units of the respective detonator units (104-1,104-2,..,104-n).
  • the communication messages are in the form of pulses.
  • communication messages are sent from the ICCU-1 to the detonator units (104-1,104-2,..104-n) by cutting off the supply voltage, in effect making it zero.
  • the detonator units while communicating with the ICCU-1, short the supply line with ground in effect making it zero again.
  • Each individual message follows a defined pattern of active low duration juxtaposed with high.
  • the messages are encoded and decoded based solely on the duty cycle. In other words, the messages are encoded and decoded based on the duration the pulse remains at zero voltage.
  • the ICCU pulse-generator and pulse-detector circuit (112) has two control lines (viz. control line-1 and control line-2), and two feedback lines, namely a first feedback line and a second feedback line, shown as feedback line-1 and feedback line-2 in figure 6A respectively.
  • the ICCU control circuit (116) (shown in figure 2 ) controls the switching element (a third semiconductor switch) Q 3 through the control line-1 which in turn controls the communication mode of the ICCU-1.
  • the switching element Q 3 in turn controls the fourth semiconductor switch (Q 4 ), Q 4 lets V_IN pass through D6, R 10 to the connected EDM units.
  • the feedback line-1 helps the ICCU control circuit (116) to determine if there is any short circuit at V_OUT. If there is a short connection at the output, voltage detected by feedback line-1 and feedback line-2 will have a difference. Feedback line-2 is also used for communication.
  • the change in voltage while receiving messages from EDM units is determined by detecting the voltage level between R 11 and R 12 .
  • the fifth semiconductor switch (Q 5 ) is to ensure the voltage level reaches zero when the ICCU-1 is not in communication mode. When there is no communication happening, Q 3 is OFF. In order to ensure that there is no floating voltage present on the lines connected to the EDM units, Q 5 is switched ON via control line 2 to make sure that the lines are connected to ground and the voltage remains at zero voltage.
  • Resistors R 6 , R 7 , and R 13 limit the current flowing through electronic switching elements. This is required to make sure the electronic devices do not get damaged.
  • the resistors R 8 , R 9 and R 11 , R 12 form divider bridges. They help create reference values so the ICCU control circuit (116) can use them as reference points for further processing.
  • Resistor R 10 limits the current flowing out of the ICCU-1 to connected EDMs.
  • Capacitors C 4 and C 5 act as decoupling capacitors which help stabilize the output voltage so it is smooth for ICCU control circuit (116) processing.
  • the components of the ICCU pulse-generator and pulse-detector circuits 212 and 312 function in the same way as the components of the ICCU pulse-generator and pulse-detector circuit 112, as explained above with reference to figure 6A .
  • Each of these sub-systems (112,212 and 312) can be constructed using a different combination of semiconductor devices or pulse generator or timer IC or bi-stable oscillator or any such similar devices.
  • the communication can also be achieved by wireless communication including but not limited to RF, Bluetooth, IR, Wi-fi.
  • each of the display means (114, 214, 314) interacts with the respective ICCU control circuit (116,216,316) in order to display concerned information.
  • the display means (114,214,314) is a LCD screen.
  • the display means can also be in the form of LED screen.
  • the display means (114,214,314) may also be external and not integrated with the ICCU.
  • Each of the input devices (110,210,310) lets the user select accessible functions and input other information.
  • Figure 7A schematically shows how the pins of the input device (110) are connected to the ICCU control circuit (116). Few connections are provided to capacitors C6 to C 11 in order to eliminate noise. While sending commands through the input mechanism, physical components are expected to generate noise. The capacitors C 6 to C 11 help eliminate this noise.
  • the construction and functionality of the input devices 210,310 are identical with that of the input device 110.
  • the resistors R 14 , R 15 , R 16 , R 17 , R 18 and R 19 are provided to pull down the voltage used to detect the switch state.
  • each EDM unit comprises an EDM rectifier circuit (120) fed with voltage of predefined value, an inrush current limiter (122) connected in series with said power supply line, an EDM pulse-generator and pulse-detector circuit (124), an energy source (126) with an energy transfer means (128) for detonation process, an EDM control circuit (130), a timing circuit (132) and a backup voltage supply means (134).
  • the EDM rectifier circuit (120) includes a full wave rectifier circuit comprising of the diodes D9, D10, D11 and D12.
  • the EDM rectifier circuit (120) ensures stable DC voltage supply to the EDM unit. Even if opposite terminals are connected at the EDM unit's input, this sub-system provides dedicated positive and negative DC voltage.
  • the inrush current limiter (122) renders said detonator unit (104) inoperative if voltage applied at input terminals of said detonator unit exceeds a predefined value.
  • the EDM pulse-generator and pulse-detector circuit (124) reads PRE-FIRE and FIRE commands generated from said exploder unit (102) and is configured for generating and receiving communication message transmitted to and from said exploder unit (102). In other words, said EDM pulse-generator and pulse-detector circuit (124) handles the messages being sent and received by each EDM units.
  • the feedback line-4 detects the voltage change in V IN , which is the voltage received from said inrush current limiter (122). Since communication messages are modulation of the supply voltage, the changes are accurately measured by the EDM control circuit (130).
  • the diode D13 protects the EDM control circuit (130) from overvoltage by limiting the voltage on that path.
  • Transistor Q 6 which is a switching element, is used to send communication messages from the EDM unit to the ICCU.
  • switching element Q 6 is controlled by the control circuit (130).
  • the control circuit (130) By switching ON Q 6 , the voltage at V IN is pulled to ground thus making the voltage zero for a predefined duration.
  • the EDM control circuit (130) operates Q 6 accordingly.
  • the messages are unique based on the duration the voltage is reduced to zero. Communication is achieved this way rather than superimposing voltage on the supply lines. This minimizes the possibility of communication errors.
  • Q 6 can also be a semiconductor switch of any type including a thyristor or a relay.
  • the resistors R 22 and R 23 ensure there is no floating voltage present on the Q 6 's control line.
  • the resistors R 20 and R 21 are provided to ensure limiting the power dissipation at D 13 .
  • a backup voltage supply means (134) provides backup voltage to the EDM control circuit (130).
  • the input voltage of the EDM unit is stored in a second energy storage device, C 12 .
  • the diode D 14 limits the voltage to protect the components from damage.
  • the diode D 15 restricts the movement of current in a single direction.
  • This second energy storage device, C 12 provides backup energy to the EDM control circuit (130) in the absence of main power.
  • the circuit of backup voltage supply means (134) is configured to provide backup energy for the maximum delay time possible so the operation is ensured even without power supply.
  • a battery or any device capable of storing and discharging energy can also be used as a backup voltage supply means (134).
  • the EDM control circuit (130) consists of the microcontroller/IC that gathers input, processes it and produces required output.
  • the EDM control circuit can also be in the form of ASIC.
  • FIG 12 is the circuit diagram of the energy source (126) and the energy transfer means (128). This circuit handles the charging and discharging process of the energy source (126) that is used to initiate the explosion process.
  • the energy source (126) is in the form of a capacitor C 13 which can be charged, via R 26 , with signal received from said EDM control circuit (130) through the control line-4.
  • the signal received through control line-5 is used to drive the switching element Q7.
  • the energy is discharged through Q7 in order to initiate the firing sequence.
  • the resistors R 24 and R 25 eliminate any floating charge present on Q7 by connecting to ground. Alternatively, a mechanical switching device or any electronic or electrical device that can close the circuit when activated can be used to implement this sub-system.
  • the resistor R 27 is meant to ensure the discharge of C 13 in the event system is left unattended.
  • the timing circuit (132) contains the oscillator (Y1) which produces the required clock for the operation of the EDM control circuit (130). This clock decides the operating frequency of the EDM control circuit (130) which ultimately decides the precision and accuracy of the system's (100) operation.
  • the capacitors C 14 and C 15 add the required capacitive load to the oscillator (Y1).
  • any timing/clock source can be used for this purpose. Even an internal source can be used to generate the clock cycles, but the accuracy and precision may not be achieved with that process.
  • the status indicators (136, 236, 336) are connected to the respective ICCU control circuit (116,216,316). These indicators (136, 236, 336) let the user know battery (BT1) status, battery (BT1) charging status, main power availability. In addition, certain indicators have been provided to indicate the status of operation of certain functions such as pre-fire, fire, attendance check among others. These indicators (136, 236,336) help user know the real-time status of these functions visually without having to press any key or perform any process.
  • Each of the ICCU control circuits (116,216,316) has the ability to read the serial number loaded into each EDM. While performing functions like read delay, attendance check, and load delay, the ICCU control circuit (116,216,316) reads the serial number of the EDM of respective detonator units (104-1, 104-2,...104n) and displays it via the display means (114, 214,314). While performing the function of read delay, each of the ICCUs (i.e. ICCU-1, ICCU-2, ICCU-3) displays the delay time and serial number of the respective EDM. Similarly, the ICCU (i.e. ICCU-1, ICCU-2, ICCU-3) displays the serial numbers of the present and missing EDMs when performing the attendance check. The provision of displaying the serial number ensures added security to the field user.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)

Claims (15)

  1. Système électronique de détonateur-exploseur (100) comprenant une unité d'exploseur (102) et une pluralité d'unités de détonateur (104-1, 104-2,...104-n) connectées à ladite unité d'exploseur (102),
    dans lequel ladite unité d'exploseur (102) est alimentée électriquement par une source d'alimentation (P-1, P-2, BT2) et est équipée d'une unité de commande et de régulation intégrée (ICCU1, ICCU-2, ICCU-3) pour régler le retard prédéfini dans chacune desdites unités de détonateurs (104-1, 104-2,..., 104-n), ladite unité de commande et de régulation intégrée (ICCU-I, ICCU-2, ICCU-3) comprend :
    - un circuit de commande de source d'alimentation (108, 208, 308) pour surveiller le niveau de tension de ladite source d'alimentation (P-1, P-2),
    - un dispositif d'entrée (110, 210, 310) pour :
    - régler des temps de retard pour lesdites unités de détonateur (104-1, 104-2, ... 104-n), et initier et envoyer des commandes et des messages de communication auxdites unités de détonateur (104-1, 104-2,..., 104-n),
    - un circuit générateur d'impulsions et détecteur d'impulsions ICCU (112, 212, 312) pour envoyer des commandes auxdites unités de détonateur (104-1,104-2,..., 104-n) sous la forme d'une commande PRE-FIRE et d'une commande FIRE et recevoir des messages vers et depuis lesdites unités de détonateur (104-1, 104-2,... 104-n), et
    - un circuit de commande ICCU (116, 216, 316) relié audit dispositif d'entrée (110, 210, 310) pour recevoir des commandes dudit dispositif d'entrée (110, 210, 310), et pour envoyer et recevoir des messages de communication vers et depuis lesdites unités de détonateur (104-1, 104-2, ..., 104-n),
    dans lequel chacune desdites unités de détonateur (104-1, 104-2, .. 104-n) est pourvue d'une unité de module de retard électronique (EDM) pour décompter ledit retard prédéfini réglé pour lancer le processus d'explosion, et dans lequel ladite unité de module de retard électronique (EDM) comprend :
    - un circuit redresseur EDM (120) connecté à une ligne d'alimentation et alimenté avec une tension de valeur prédéfinie,
    - un limiteur de courant d'appel (122), connecté en série avec ladite ligne d'alimentation, pour rendre une unité de détonateur (104-1,104-2,... ou 104-n) inopérante si la tension appliquée aux bornes d'entrée de l'une desdites unités de détonateur (104-1,1042, ... ou 104-n) dépasse une valeur prédéfinie,
    - un circuit générateur d'impulsions EDM et détecteur d'impulsions (124) pour lire les commandes PREFIRE et FIRE générées à partir de ladite unité d'exploseur (102) et pour générer et recevoir un message de communication transmis vers et depuis ladite unité d'exploseur (102),
    - une source d'énergie (126) qui est chargée uniquement dans ladite étape de pré-tir lors de la réception de ladite commande PRE-FIRE de ladite unité de commande et de régulation intégrée (ICCU-1, ICCU-2, ICCU-3),
    - un moyen de transfert d'énergie (128) pour le processus de détonation, et
    - un circuit de commande EDM (130) pour :
    - vérifier le niveau de tension de ladite source d'énergie (126) et
    - connecter ladite source d'énergie (126) auxdits moyens de transfert d'énergie (128), après écoulement dudit retard réglé, permettant ainsi la décharge de ladite source d'énergie (126) à travers lesdits moyens de transfert d'énergie (1 28) ;
    - dans lequel ledit circuit générateur d'impulsions et détecteur d'impulsions ICCU (112, 212, 312) comprend trois commutateurs à semiconducteurs :
    - un commutateur à semi-conducteur (Q3), commandé par ledit circuit de commande ICCU (116, 216, 316) via une première ligne de commande, ledit troisième commutateur à semi-conducteur (Q3) reste sur OFF lorsque ladite unité de commande et de régulation intégrée (ICCU-1, ICCU-2, ICCU-3) n'est pas en mode de communication,
    - un autre commutateur semi-conducteur (Q4), commandé par ledit troisième commutateur semi-conducteur (Q3) via une deuxième ligne de commande, pour activer/désactiver le mode de communication de ladite unité de commande et régulation intégrée (ICCU-1, ICCU-2, ICCU-3),
    - un autre commutateur à semi-conducteur (Q5), commandé par ledit circuit de commande ICCU (116, 216, 316), ledit cinquième commutateur à semi-conducteur (Q5) est activé pour maintenir le niveau de tension dans ledit circuit générateur d'impulsions et ledit circuit détecteur d'impulsions (112, 212, 312) est nul lorsque ladite unité de commande et de régulation intégrée (ICCU-1, ICCU-2, ICCU-3) n'est pas en mode de communication,
    - et dans lequel ledit circuit générateur d'impulsions et détecteur d'impulsions ICCU (112, 212, 312) est pourvu de deux lignes de rétroaction, une première ligne de rétroaction et une seconde ligne de rétroaction, connectées audit circuit de commande ICCU (116, 216, 316) et dans lequel ledit circuit de commande ICCU (116, 216, 316) détermine un court-circuit à la sortie de tension dudit générateur d'impulsions ICCU et du circuit détecteur d'impulsions (112, 212, 312) à partir de la différence de tension détectée par ladite première ligne de rétroaction et ladite seconde ligne de rétroaction.
  2. Système électronique de détonateur-exploseur (100) selon la revendication 1, dans lequel ladite source d'alimentation (P-1) est une source d'alimentation CA connectée audit circuit de commande de source d'alimentation (108).
  3. Système électronique de détonateur-exploseur (100) selon la revendication 1, dans lequel ladite source d'alimentation (P-2) est une source d'alimentation CA connectée audit circuit de commande de source d'alimentation (208) et dans lequel ladite unité de commande et de régulation intégrée (ICCU-2) est pourvue d'une source d'alimentation auxiliaire (BTI) et dans lequel ledit circuit de commande de source d'alimentation (208) protège ladite source d'alimentation auxiliaire (BTI) d'une surcharge.
  4. Système électronique de détonateur-exploseur (100) selon la revendication 1, caractérisé en ce que ladite source d'alimentation se présente sous la forme d'un dispositif de stockage d'énergie électrique (BT2) connecté à ladite source d'alimentation (308).
  5. Système électronique de détonateur-exploseur (100) selon une quelconque des revendications 2 et 3 ci-dessus, dans lequel ladite unité de commande et de régulation intégrée (ICCU-I, ICCU-2) est pourvue d'un bloc redresseur (106, 206) pour fournir une protection à ladite unité de commande et de régulation intégrée (ICCU-I, ICCU-2) si les câbles d'alimentation sont connectés avec une polarité opposée aux bornes (T1-1, T2-1, T1-2, T2-2) de ladite unité de commande et de régulation intégrée (ICCU-I, ICCU-2).
  6. Système électronique de détonateur-exploseur (100) selon une quelconque des revendications ci-dessus, dans lequel ladite unité de commande et de régulation intégrée (ICCU-I, ICCU-2, ICCU-3) est pourvue d'indicateurs d'état (136, 236, 336) pour indiquer la disponibilité de puissance d'entrée et le niveau de puissance de ladite source d'alimentation (P-1, P-2, BT2).
  7. Système électronique de détonateur-exploseur (100) selon une quelconque des revendications précédentes, dans lequel ladite unité de commande et de régulation intégrée (ICCU-I, ICCU-2, ICCU-3) est pourvue de moyens d'affichage (114, 214, 314) pour afficher des informations sur l'état et/ou la présence desdites unités de détonateurs (104-1, 104-2, ..., 104-n).
  8. Système électronique de détonateur-exploseur (100) selon une quelconque des revendications précédentes, dans lequel ledit dispositif d'entrée (110, 210, 310) est adapté pour entrer un code d'accès de détonateur.
  9. Système électronique de détonateur-exploseur (100) selon une quelconque des revendications ci-dessus, dans lequel ladite unité de module de retard électronique (EDM) est pourvue d'un circuit redresseur EDM (120) pour rectifier la tension alternative d'entrée en tension continue pour protéger ledit circuit de commande EDM (130) si des câbles d'alimentation électrique vers l'EDM sont connectés à des bornes de polarité opposée.
  10. Système électronique de détonateur-exploseur (100) selon une quelconque des revendications précédentes, dans lequel lesdits moyens de transfert d'énergie (128) se présentent sous la forme d'un fusible.
  11. Système électronique de détonateur-exploseur (100) selon une quelconque des revendications ci-dessus, dans lequel ladite source d'énergie (126) est sous la forme d'un condensateur de tir (C13) et dans lequel ledit circuit de commande EDM (130) est configuré pour vérifier la capacité dudit condensateur d'allumage (C13).
  12. Système électronique de détonateur-exploseur (100) selon une quelconque des revendications ci-dessus, dans lequel ledit module de retard électronique (EDM) est alimenté avec une tension de sortie de ladite unité de commande et de régulation intégrée (ICCU-1, ICCU-2, ICCU-3).
  13. Système électronique de détonateur-exploseur (100) selon une quelconque des revendications ci-dessus, dans lequel lesdits messages de communication sont générés à partir de ladite unité de module de retard électronique (EDM) en réduisant la tension dans ladite ligne d'alimentation du module de retard électronique (EDM) à zéro volt, au moyen dudit circuit de commande EDM (130), et ensuite en vérifiant la durée pendant laquelle ladite tension de la ligne d'alimentation est maintenue à zéro.
  14. Système électronique de détonateur-exploseur (100) selon la revendication 13, dans lequel la tension dans ladite ligne d'alimentation est réduite à zéro volt en court-circuitant ladite ligne d'alimentation à la masse.
  15. Système électronique de détonateur-exploseur (100) selon une quelconque des revendications précédentes, dans lequel ladite unité de commande et de régulation intégrée (ICCU-I, ICCU-2, ICCU-3) est configurée pour détecter la variation de tension dans ladite ligne d'alimentation et ainsi décoder lesdits messages de communication.
EP17768867.8A 2016-08-19 2017-08-18 Système d'exploseur-détonateur électronique Active EP3500818B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201641028312 2016-08-19
PCT/IB2017/055008 WO2018033881A1 (fr) 2016-08-19 2017-08-18 Système d'exploseur-détonateur électronique

Publications (2)

Publication Number Publication Date
EP3500818A1 EP3500818A1 (fr) 2019-06-26
EP3500818B1 true EP3500818B1 (fr) 2020-08-12

Family

ID=59901557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17768867.8A Active EP3500818B1 (fr) 2016-08-19 2017-08-18 Système d'exploseur-détonateur électronique

Country Status (2)

Country Link
EP (1) EP3500818B1 (fr)
WO (1) WO2018033881A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768334A (zh) * 2019-11-05 2020-02-07 深圳市中安利业科技技术有限公司 一种电子雷管起爆电容充放电电路
CN110986710A (zh) * 2019-12-24 2020-04-10 西安迈瑞智联信息技术有限公司 一种智能选发开关及起爆系统
CN114646243B (zh) * 2022-05-07 2023-06-23 浙江航芯科技有限公司 一种提高安全性的数码雷管起爆控制方法及系统
CN115371505B (zh) * 2022-07-29 2023-12-29 上海芯飏科技有限公司 适用浅孔爆破的电子雷管通信速率自适应调整方法及系统
CN115493464B (zh) * 2022-09-26 2023-10-17 上海芯跳科技有限公司 提高电子雷管通信组网能力的方法和系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2027197T1 (es) 1989-12-29 1992-06-01 Union Espanola De Explosivos S.A. Sistema explosor-detonadores electronicos para detonacion escalonada de alta fiabilidad.
US5460093A (en) * 1993-08-02 1995-10-24 Thiokol Corporation Programmable electronic time delay initiator
NO309690B1 (no) * 1995-01-23 2001-03-12 Western Atlas Int Inc Detonasjonsanordning av type eksploderende brotråd for bruk med et perforeringsverktöy i en brönn
SE515809C2 (sv) * 2000-03-10 2001-10-15 Dyno Nobel Sweden Ab Förfarande vid avfyring av elektroniksprängkapslar i ett detonatorsystem samt ett detonatorsystem innefattande elektroniksprängkapslarna
EP1405011A4 (fr) * 2001-06-06 2010-03-24 Senex Explosives Inc Systeme permettant l'amoreage de serie de detonateurs a retardement individuel
US7577756B2 (en) 2003-07-15 2009-08-18 Special Devices, Inc. Dynamically-and continuously-variable rate, asynchronous data transfer
WO2011032189A1 (fr) * 2009-09-09 2011-03-17 Detnet South Africa (Pty) Ltd Connecteur de détonateur et système de détonateur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2018033881A1 (fr) 2018-02-22
EP3500818A1 (fr) 2019-06-26

Similar Documents

Publication Publication Date Title
EP3500818B1 (fr) Système d'exploseur-détonateur électronique
EP1644693B1 (fr) Diagnostic de l'etat de preparation a la mise a feu dans un dispositif pyrotechnique tel qu'un detonateur electronique
EP0208480B1 (fr) Commande pour détonateur
EP1644692B1 (fr) Procede pour identifier un dispositif esclave inconnu ou non marque, par exemple dans un systeme de sautage electronique
US5014622A (en) Blasting system and components therefor
US4324182A (en) Apparatus and method for selectively activating plural electrical loads at predetermined relative times
US7082877B2 (en) Current modulation-based communication for slave device
AU2004256313B2 (en) Detonator utilizing selection of logger mode or blaster mode based on sensed voltages
EP3055621B1 (fr) Commutateur de tir et procédé de fonctionnement
WO2007085916A1 (fr) Dispositif de consignation esclave multiple
US5571985A (en) Sequential blasting system
EP1644687B1 (fr) Detonateur electronique a charge regulee a courant constant a la tension d'alimentation
AU2004256315A1 (en) Staggered charging of slave devices such as in an electronic blasting system
EP1644691B1 (fr) Compte a rebours de pre-mise a feu dans un detonateur electronique, et systeme de sautage electronique
KR20040013242A (ko) 전기 발파기의 전자 지연 방법 및 장치
CN101819013A (zh) 一种雷管系统
KR20220155417A (ko) Mcu로 제어되는 비전기 뇌관용 기폭장치, 이를 이용한 비전기 뇌관 기폭방법 및 기폭시스템
EA038822B1 (ru) Беспроводной электронный детонатор
TW406184B (en) Electronic type delay detonator
US20050190525A1 (en) Status flags in a system of electronic pyrotechnic devices such as electronic detonators
CN112444172A (zh) 一种菊花链的电子雷管
CN201514167U (zh) 一种雷管系统
NZ525983A (en) Programmable pyrotechnical firing installation having each detonator capable of responding to the central programming and firing control unit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017021617

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1301978

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1301978

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201212

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017021617

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

26N No opposition filed

Effective date: 20210514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200818

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210930

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017021617

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230215

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230206

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901