EP3491225A1 - Dispositif et méthode de contrôle de l'introduction conjointe d'air et de gaz d'échappement à l'admission d'un moteur à combustion interne suralimenté - Google Patents

Dispositif et méthode de contrôle de l'introduction conjointe d'air et de gaz d'échappement à l'admission d'un moteur à combustion interne suralimenté

Info

Publication number
EP3491225A1
EP3491225A1 EP17742206.0A EP17742206A EP3491225A1 EP 3491225 A1 EP3491225 A1 EP 3491225A1 EP 17742206 A EP17742206 A EP 17742206A EP 3491225 A1 EP3491225 A1 EP 3491225A1
Authority
EP
European Patent Office
Prior art keywords
exhaust
compressed air
exhaust gas
gas outlet
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17742206.0A
Other languages
German (de)
English (en)
Inventor
Thierry Colliou
Bruno Walter
Stéphane Venturi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3491225A1 publication Critical patent/EP3491225A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/168Control of the pumps by bypassing charging air into the exhaust conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/105Final actuators by passing part of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/164Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a device for controlling a device for introducing the co-introduction of air and exhaust gas to the intake of a supercharged internal combustion engine. amount of air at the intake of a supercharged internal combustion engine, in particular a stationary engine or for a motor vehicle or industrial vehicle.
  • the present invention is suitable for diesel engines equipped with an exhaust gas recirculation system.
  • the power delivered by an internal combustion engine is dependent on the amount of air introduced into the combustion chamber of the engine, amount of air which is itself proportional to the density of this air.
  • a turbocharger In the case of supercharging by a turbocharger, the latter comprises a rotary turbine, single flow or double flow, connected by an axis to a rotary compressor.
  • the exhaust gases from the engine pass through the turbine which is then rotated. This rotation is then transmitted to the compressor which, by its rotation, compresses the outside air before it is introduced into the combustion chamber.
  • Boost circuit a fluid amplifier circuit
  • Boost circuit Boost circuit
  • This turbine is then traversed by a larger amount of fluid (mixture of compressed air and exhaust gas), which increases the speed of rotation of the turbine and consequently the compressor.
  • This increase in compressor speed thus makes it possible to increase the pressure of the outside air that will be compressed in this compressor and then introduced into the combustion chamber of the engine.
  • the compressed air has a higher density which increases the amount of air contained in the combustion chamber.
  • Exhaust gas recirculation is usually done using a high pressure (HP) circuit that draws gas upstream of the turbine to return it downstream of the intake air compressor.
  • HP high pressure
  • the circulation of recirculated flue gases being exactly the opposite of that of the air derived from the Boost circuit, there is a risk of a conflict between the two systems with a cancellation of the effects. It is therefore necessary to define a specific air loop architecture to make the Boost circuit and the EGR circuit compatible, and in particular in simultaneous operation.
  • EP1 138928 is known which describes a separate EGR circuit and Boost circuit in all points, but not optimized for simultaneous operation.
  • the present invention relates to an optimized architecture of the air loop and recirculation of engine exhaust gas for use on the same engine EGR circuit and Boost circuit, and substantially simultaneous operation.
  • the present invention relates to a device for controlling the amount of air introduced to the intake of a supercharged internal combustion engine comprising a supercharging system comprising a turbocharger with a turbine connected to at least one gas outlet of Exhaust manifold exhaust of said engine as well as an external air compressor, a conduit for partial transfer of compressed air from the compressor to an inlet on the collector in communication with the turbine, and a flue gas recirculation duct connecting an exhaust gas outlet to a compressed air intake pipe, characterized in that said compressed air inlet and said exhaust gas outlet are disposed remote from each other on the collector exhaust gas.
  • the exhaust gas outlet from the manifold to said turbine may be disposed between the inlet of said compressed air inlet and said exhaust gas outlet.
  • the compressed air inlet and the exhaust gas outlet can be arranged opposite each other on the exhaust manifold.
  • the device may include a control system controlled on the compressed air transfer circuit and on the recirculation circuit of burnt gases to control the flow of exhaust gas and to control the transfer of compressed air.
  • the winnowing system may comprise at least one valve on the recirculated exhaust gas circuit and a valve on the partial transfer circuit.
  • the winnowing system may comprise at least one four-way valve.
  • the invention also relates to a method for controlling the amount of air introduced to the intake of a supercharged internal combustion engine comprising a supercharging system comprising a turbocharger with a turbine connected to at least one exhaust gas outlet.
  • a supercharging system comprising a turbocharger with a turbine connected to at least one exhaust gas outlet.
  • an exhaust manifold of said engine and an outdoor air compressor a conduit for partially transferring compressed air from the compressor to an inlet on the manifold in communication with the turbine, and a recirculated exhaust gas duct connecting an exhaust gas outlet to a compressed air intake pipe, characterized in that said compressed air inlet and said compressed air inlet are arranged at a distance from one another on the exhaust gas manifold; said exhaust gas outlet.
  • the exhaust gas outlet from the manifold to said turbine may be disposed between the inlet of said compressed air inlet and said exhaust gas outlet.
  • the exhaust manifold may be disposed opposite one another: said compressed air inlet and said exhaust gas outlet.
  • the two circuits are connected to the exhaust manifold at two points sufficiently distant from each other and the output of the exhaust gases. exhaust to the inlet of the turbine is positioned between said two points.
  • the air of the Boost circuit will preferentially go towards the inlet of the turbine instead of mixing substantially with the exhaust gas EGR, and not disturbing the EGR circulation.
  • the internal combustion engine 1 comprises at least two cylinders, here four cylinders referenced 12i to 12 4 from the left of the figure.
  • this engine is a direct injection internal combustion engine, especially diesel type, but this in no way discards any other type of internal combustion engine.
  • Each cylinder comprises intake means with at least one intake valve controlling an intake manifold 2.
  • the intake manifolds result in an intake manifold 3 fed by a supply duct 4 for intake air , such as compressed air.
  • Each cylinder also comprises exhaust gas exhaust means with at least one exhaust valve controlling an exhaust manifold resulting in an exhaust manifold 5.
  • the exhaust gas outlet 6 of the exhaust manifold results in a turbocharger 7 for the compression of air and more particularly to the expansion turbine 8 of this turbocharger.
  • the turbocharger is a single-input turbocharger.
  • the invention is not limited to a single inlet turbocharger, it is also applicable to twin-scroll turbochargers called "Twin scroll”.
  • the gas evacuation 9 of the turbine 8 is conventionally connected to the exhaust line of the engine.
  • the compressor 10 of the turbocharger 7 has an external air intake 1 1 fed by a supply line.
  • the compressed air outlet of this compressor is connected to the supply duct 4 of the intake manifold 3 via a duct 12.
  • the connection point between the ducts 4 and 12 is noted.
  • a transfer duct 18 makes it possible to circulate a portion of the compressed air leaving the compressor 10 to the inlet of the turbine 8.
  • this partial transfer duct 18 originates on line 12, at a point of intersection 1 6 between the compressor and the cooling radiator 14.
  • the branch 18 leads to the exhaust manifold 5 and the outlet of exhaust gas 6 to the turbine 8.
  • a duct 21 connects the exhaust manifold 5 to the intake duct 4. It preferably passes through an exchanger 22 adapted to the cooling of the exhaust gas.
  • this duct 21 is connected to an exhaust manifold orifice situated away from the air intake of the Boost circuit brought by the transfer duct 18.
  • the duct gas outlet 6 is located between the output ports of the EGR circuit and Boost circuit input so as to be compatible with the fluid flows induced by the EGR and Boost circuits.
  • the referenced branch 18 also comprises a nonreturn valve 20 which prevents the flow of fluids from the exhaust manifold to the compressor 10 and the EGR duct 21 also comprises a nonreturn valve 25.
  • This configuration thus makes it possible, during the operation of the engine, to take advantage of the zones of low exhaust pressure occurring punctually in the exhaust manifold to introduce compressed air into the turbine and thus to increase the flow rate of this turbine and consequently of the compressor . This also allows for more efficient supercharging for low speeds and in particular to manage the transient phases with adapted proportional valve control strategies.
  • valve 23 is controlled in opening to introduce compressed air from the compressor 10 into the turbine 8. Together the valve 24 is controlled to obtain recirculated exhaust gas, if necessary at this point of operation.
  • the compressed air leaving the compressor 10 flows in the conduit 18 to reach the exhaust gas inlet of the turbine 8 by providing a surplus of fluid to the turbine.
  • the turbine is traversed not only by the exhaust gas from the manifold 5, but also by compressed air which is added to these gases.
  • the rotation of the turbine is increased, which causes an increase in the rotation of the compressor and, consequently, an increase in the pressure of the compressed air coming out of this compressor.
  • valve 24 To operate with recirculated flue gases, the valve 24 is open. A portion of the exhaust gas is introduced into the intake duct 4 after passing through the exchanger 22. This operates when the average pressure of the exhaust is greater than the average pressure of the intake.
  • valves 23 and 24 can be replaced by a multi-way valve whose function will be equivalent to control the different cases of flow passages.
  • valve 24 EGR valve
  • the valve 24 can be placed upstream ( Figure 1) or downstream (not shown) of the heat exchanger 22, also the position of the nonreturn valve 25 is not imposed on the conduit 21.
  • FIG. 2 The variant of FIG. 2 is distinguished from FIG. 1 by the introduction of a four-way distribution system 26, for example a rotary plug, which performs the functions of the valves 23 and 24 according to the configuration of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Dispositif et méthode de contrôle de la quantité d'air introduit à l'admission d'un moteur à combustion interne suralimenté comprenant un système de suralimentation comportant un turbocompresseur (7) avec une turbine (8) connectée à au moins une sortie de gaz d'échappement du collecteur d'échappement (5) dudit moteur ainsi qu'un compresseur (10) d'air extérieur, un conduit de transfert partiel (15, 18) de l'air comprimé du compresseur vers une entrée sur le collecteur en communication avec la turbine, et un conduit EGR (21) reliant une sortie de gaz d'échappement à une conduite d'admission d'air comprimé (4). Selon l'invention, l'entrée d'air comprimé et la sortie de gaz d'échappement sont disposées éloignées l'une de l'autre sur le collecteur de gaz d'échappement.

Description

Dispositif et méthode de contrôle de l'introduction conjointe d'air et de gaz d'échappement à l'admission d'un moteur à combustion interne suralimenté La présente invention se rapporte à un dispositif de contrôle d'un dispositif d'introduction de la quantité d'air à l'admission d'un moteur à combustion interne suralimenté, notamment d'un moteur stationnaire ou pour un véhicule automobile ou industriel.
En particulier, la présente invention est adaptée à des moteurs Diesel équipés d'un système de recirculation de gaz d'échappement.
Comme cela est largement connu, la puissance délivrée par un moteur à combustion interne est dépendante de la quantité d'air introduite dans la chambre de combustion de ce moteur, quantité d'air qui est elle-même proportionnelle à la densité de cet air.
Ainsi, il est habituel d'augmenter cette quantité d'air au moyen d'une compression de l'air extérieur avant qu'il ne soit admis dans cette chambre de combustion. Cette opération, appelée suralimentation, peut être réalisée par tous moyens, tel qu'un turbocompresseur ou un compresseur entraîné, qui peut être centrifuge ou volumétrique.
Dans le cas d'une suralimentation par un turbocompresseur, ce dernier comprend une turbine rotative, à simple flux ou à double flux, reliée par un axe à un compresseur rotatif. Les gaz d'échappement issus du moteur traversent la turbine qui est alors entraînée en rotation. Cette rotation est ensuite transmise au compresseur qui, de par sa rotation, comprime l'air extérieur avant qu'il ne soit introduit dans la chambre de combustion.
Comme cela est mieux décrit dans la demande de brevet français N° 2 478 736, il est prévu, pour pouvoir amplifier de manière significative cette quantité d'air comprimé dans la chambre de combustion du moteur, d'augmenter encore plus la compression de l'air extérieur par le compresseur. Cela se réalise plus particulièrement en augmentant la vitesse de rotation de la turbine et donc du compresseur.
Pour cela, il est utilisé un circuit amplificateur de fluide, dit circuit Boost, grâce auquel une partie de l'air comprimé sortant du compresseur est déviée pour être admis directement à l'entrée de la turbine en se mélangeant avec les gaz d'échappement. Cette turbine est alors traversée par une plus grande quantité de fluide (mélange d'air comprimé et de gaz d'échappement), ce qui permet d'augmenter la vitesse de rotation de la turbine et par conséquence du compresseur. Cette augmentation de vitesse du compresseur permet ainsi d'augmenter la pression de l'air extérieur qui sera comprimé dans ce compresseur puis introduit dans la chambre de combustion du moteur.
Par cela, l'air comprimé a une densité plus élevée ce qui permet d'accroître la quantité d'air contenue dans la chambre de combustion.
Ce type de moteur suralimenté, bien que donnant satisfaction, présente néanmoins des inconvénients non négligeables.
En effet, le débit de l'air comprimé qui est admis à l'entrée de la turbine n'est pas correctement contrôlé, ce qui peut entraîner un dysfonctionnent du moteur.
Ainsi, à titre d'exemple, en cas de trop grande quantité d'air comprimé déviée à l'entrée de la turbine, les gaz d'échappement entrant dans la turbine sont refroidis de manière trop importante par cet air et amène une diminution du rendement global de la suralimentation.
De plus, une des principales difficultés avec le présent concept de suralimentation réside dans sa compatibilité avec la recirculation des gaz d'échappement. En effet, la plupart des moteurs Diesel sont équipés d'un circuit de recirculation de gaz d'échappement, dit EGR, pour limiter à la source les émissions de NOx.
La recirculation de gaz d'échappement se fait généralement au moyen d'un circuit haute pression (HP) prélevant le gaz en amont de la turbine pour le renvoyer en aval du compresseur de l'air d'admission. La circulation des gaz brûlés recirculés étant exactement l'inverse de celle de l'air dérivé du circuit Boost, on risque un conflit entre les deux systèmes avec une annulation des effets. Il est donc nécessaire de définir une architecture de boucle d'air spécifique permettant de rendre le circuit Boost et le circuit EGR compatibles, et en particulier en fonctionnement simultané.
On connaît le document EP1 138928 qui décrit un circuit EGR et un circuit Boost distincts en tous points, mais pas optimisés pour un fonctionnement simultané.
Au contraire, la présente invention concerne une architecture optimisée de la boucle d'air et de recirculation de gaz d'échappement du moteur permettant d'utiliser sur un même moteur un circuit EGR et un circuit Boost, et un fonctionnement sensiblement simultané. Ainsi, la présente invention concerne un dispositif de contrôle de la quantité d'air introduit à l'admission d'un moteur à combustion interne suralimenté comprenant un système de suralimentation comportant un turbocompresseur avec une turbine connectée à au moins une sortie de gaz d'échappement du collecteur d'échappement dudit moteur ainsi qu'un compresseur d'air extérieur, un conduit de transfert partiel de l'air comprimé du compresseur vers une entrée sur le collecteur en communication avec la turbine, et un conduit de recirculation de gaz brûlés reliant une sortie de gaz d'échappement à une conduite d'admission d'air comprimé, caractérisé en ce que ladite entrée d'air comprimé et ladite sortie de gaz d'échappement sont disposées éloignées l'une de l'autre sur le collecteur de gaz d'échappement.
La sortie de gaz d'échappement du collecteur vers ladite turbine peut être disposée entre l'entrée de ladite entrée d'air comprimé et ladite sortie de gaz d'échappement.
L'entrée d'air comprimé et la sortie de gaz d'échappement peuvent être disposées à l'opposé l'une de l'autre sur le collecteur d'échappement.
Le dispositif peut comporter un système de vannage commandé sur le circuit de transfert d'air comprimé et sur le circuit de recirculation de gaz brûlés pour contrôler la circulation de gaz d'échappement et pour contrôler le transfert d'air comprimé. Le système de vannage peut comprendre au moins une vanne sur le circuit de gaz d'échappement recirculés et une vanne sur le circuit de transfert partiel.
Le système de vannage peut comporter au moins une vanne quatre voies.
L'invention concerne également une méthode de contrôle de la quantité d'air introduit à l'admission d'un moteur à combustion interne suralimenté comprenant un système de suralimentation comportant un turbocompresseur avec une turbine connectée à au moins une sortie de gaz d'échappement du collecteur d'échappement dudit moteur ainsi qu'un compresseur d'air extérieur, un conduit de transfert partiel de l'air comprimé du compresseur vers une entrée sur le collecteur en communication avec la turbine, et un conduit de gaz d'échappement recirculés reliant une sortie de gaz d'échappement à une conduite d'admission d'air comprimé, caractérisée en ce que l'on dispose éloignées l'une de l'autre sur le collecteur de gaz d'échappement ladite entrée d'air comprimé et ladite sortie de gaz d'échappement.
On peut disposer la sortie de gaz d'échappement du collecteur vers ladite turbine entre l'entrée de ladite entrée d'air comprimé et ladite sortie de gaz d'échappement.
On peut disposer à l'opposé l'une de l'autre sur le collecteur d'échappement : ladite entrée d'air comprimé et ladite sortie de gaz d'échappement.
Les autres caractéristiques et avantages de l'invention vont apparaître à la lecture de la description qui va suivre, donnée à titre uniquement illustratif et non limitatif, et à laquelle sont est annexées :
- la figure 1 qui illustre un moteur à combustion interne avec son dispositif de suralimentation et d'EGR selon l'invention ;
- la figure 2 qui montre une variante du moteur à combustion interne selon l'invention.
Dans le cas d'un fonctionnement du circuit EGR et du circuit Boost, il faut prendre en considération le fait que la pression moyenne à l'admission est généralement supérieure à la pression moyenne à l'échappement. Cependant, on sait que la pression instantanée à l'échappement a des phases où elle est supérieure à la pression instantanée d'admission. Ainsi, il est possible de réaliser une recirculation des gaz d'échappement mais il est nécessaire de disposer de clapets anti-retours dans le circuit EGR.
Pour faire fonctionner le circuit Boost dans ces conditions et simultanément avec le circuit EGR, selon l'invention, les deux circuits sont connectés sur le collecteur d'échappement en deux points suffisamment éloignés l'un de l'autre et la sortie des gaz d'échappement vers l'entrée de la turbine est positionnée entre lesdits deux points.
Ainsi, l'air du circuit Boost se dirigera préférentiellement vers l'entrée de la turbine au lieu de se mélanger sensiblement au gaz d'échappement EGR, et de ne pas perturber la circulation EGR.
Sur la figure 1 , le moteur à combustion interne 1 comprend au moins deux cylindres, ici quatre cylindres référencés 12i à 124 à partir de la gauche de la figure.
De manière préférentielle, ce moteur est un moteur à combustion interne à injection directe, notamment de type Diesel, mais cela n'écarte en aucune manière tout autre type de moteur à combustion interne.
Chaque cylindre comprend des moyens d'admission avec au moins une soupape d'admission contrôlant une tubulure d'admission 2. Les tubulures d'admission aboutissent à un collecteur d'admission 3 alimenté par un conduit d'alimentation 4 en air d'admission, tel que de l'air comprimé.
Chaque cylindre comprend aussi des moyens d'échappement des gaz brûlés avec au moins une soupape d'échappement contrôlant une tubulure d'échappement aboutissant à un collecteur d'échappement 5.
La sortie de gaz d'échappement 6 du collecteur d'échappement aboutit à un turbocompresseur 7 pour la compression de l'air et plus particulièrement à la turbine de détente 8 de ce turbocompresseur.
Comme illustré sur la figure 1 , le turbocompresseur est un turbocompresseur à simple entrée. L'invention ne se limite pas à un turbocompresseur simple entrée, elle est aussi applicable aux turbocompresseurs double entrées dit « Twin scroll ».
L'évacuation de gaz 9 de la turbine 8 est raccordée conventionnellement à la ligne d'échappement du moteur.
Le compresseur 10 du turbocompresseur 7 comporte une admission d'air extérieur 1 1 alimentée par une conduite d'alimentation. La sortie d'air comprimé de ce compresseur est reliée au conduit d'alimentation 4 du collecteur d'admission 3 par une conduite 12. On note 13 le point de jonction entre les conduits 4 et 12.
Avantageusement, il peut être prévu de placer un radiateur de refroidissement de l'air comprimé 14 sur la conduite 12, entre le compresseur 10 et la conduite 4.
Comme mieux visible sur la figure 1 , un conduit de transfert 18 permet de faire circuler une partie de l'air comprimé sortant du compresseur 10 jusqu'à l'entrée de la turbine 8.
Plus précisément, ce conduit de transfert partiel 18 prend naissance sur la conduite 12, à un point de d'intersection 1 6 entre le compresseur et le radiateur de refroidissement 14. La branche 18 aboutit au collecteur d'échappement 5 et à la sortie de gaz d'échappement 6 vers la turbine 8.
Un conduit 21 relie le collecteur d'échappement 5 au conduit d'admission 4. Il passe préférentiellement par un échangeur 22 adapté au refroidissement des gaz d'échappement.
De préférence, ce conduit 21 , dit conduit EGR, est relié à un orifice du collecteur d'échappement situé de façon éloignée de l'entrée de l'air du circuit Boost amené par la conduite de transfert 18. De plus, la conduite de sortie des gaz 6 est située entre les orifices de sortie du circuit EGR et d'entrée du circuit Boost de façon à être compatible avec les circulations de fluides induits par les circuits EGR et Boost.
Des vannes 23 et 24, de préférence proportionnelles, équipent respectivement les conduits 18 et 21 .
La branche référencée 18 comporte également un clapet anti-retour 20 qui interdit la circulation des fluides du collecteur d'échappement vers le compresseur 10 et le conduit EGR 21 comporte également un clapet anti-retour 25. Cette configuration permet ainsi, pendant le fonctionnement du moteur, de profiter des zones de basse pression échappement régnant ponctuellement dans le collecteur d'échappement pour introduire de l'air comprimé dans la turbine et augmenter ainsi le débit de cette turbine et par conséquent du compresseur. Cela permet également d'avoir une suralimentation plus efficace pour les bas régimes et notamment de gérer les phases transitoires avec des stratégies de contrôle des vannes proportionnelles adaptées.
Durant le fonctionnement, en cas de besoin d'air en grande quantité dans les cylindres, la vanne 23 est commandée en ouverture pour introduire de l'air comprimé provenant du compresseur 10 dans la turbine 8. Conjointement la vanne 24 est commandée pour obtenir des gaz d'échappement recirculés, si cela est nécessaire à ce point de fonctionnement.
L'air comprimé sortant du compresseur 10 circule dans le conduit 18 pour aboutir à l'entrée de gaz d'échappement de la turbine 8 en y apportant un surplus de fluide à cette turbine.
Ainsi, la turbine est parcourue non seulement par les gaz d'échappement venant du collecteur 5, mais également par de l'air comprimé qui vient s'ajouter à ces gaz. De ce fait, la rotation de la turbine est augmentée, ce qui entraine une augmentation de rotation du compresseur et, en conséquence, une augmentation de la pression de l'air comprimée qui sort de ce compresseur.
Dans cette configuration, l'air du circuit Boost ne passe pas par l'échangeur 14.
Pour fonctionner avec des gaz brûlés recirculés, la vanne 24 est ouverte. Une portion des gaz d'échappement est introduite dans le conduit d'admission 4 après son passage dans l'échangeur 22. Cela fonctionne quand la pression moyenne de l'échappement est supérieure à la pression moyenne de l'admission.
Il faut noter que les vannes 23 et 24 peuvent être remplacées par une vanne multi voies dont la fonction sera équivalente pour contrôler les différents cas de passages de flux. De plus, il est clair que la vanne 24 (vanne EGR) peut être placée en amont (figure 1 ) ou en aval (non représenté) de l'échangeur thermique 22, également la position du clapet anti-retour 25 n'est pas imposée sur le conduit 21 .
Ainsi, dans la présente invention, les positions respectives : -du piquage de la conduite EGR, -du conduit 6 communiquant avec l'entrée de la turbine 8 et -de l'entrée de la conduite de transfert d'air du circuit Boost 18, permettent le fonctionnement simultané optimisé du circuit EGR et du circuit Boost.
La variante de la figure 2 se distingue de la figure 1 par la mise en place d'un système de distribution quatre voies 26, par exemple à boisseau rotatif, qui effectue les fonctions des vannes 23 et 24 selon la configuration de la figure 1 .
Pour cela, les quatre voies sont :
- (a) entrée du conduit EGR ;
- (b) sortie du conduit EGR vers l'admission 3 ;
- (c) entrée de la portion d'air du circuit Boost ;
- (d) sortie de l'air du circuit Boost » vers la turbine 8.
Selon la position du boisseau, on peut réaliser les configurations suivantes :
- EGR et Boost en mettant en communication (a) et (b), et (c) avec (d) ;
- EGR seul en mettant en communication (a) et (b), et (c) fermé ;
- Boost seul en mettant en communication (c) et (d), et (b) fermé ;
- Pas d'EGR ni de Boost en obturant toutes les voies.

Claims

REVENDICATIONS
1 . Dispositif de contrôle de la quantité d'air introduit à l'admission d'un moteur à combustion interne suralimenté comprenant un système de suralimentation comportant un turbocompresseur (7) avec une turbine (8) connectée à au moins une sortie de gaz d'échappement du collecteur d'échappement (5) dudit moteur ainsi qu'un compresseur (10) d'air extérieur, un conduit de transfert partiel (15, 18) de l'air comprimé du compresseur vers une entrée sur le collecteur en communication avec la turbine, et un conduit de recirculation de gaz brûlés (21 ) reliant une sortie de gaz d'échappement à une conduite d'admission d'air comprimé (4), caractérisé en ce que ladite entrée d'air comprimé et ladite sortie de gaz d'échappement sont disposées éloignées l'une de l'autre sur le collecteur de gaz d'échappement.
2. Dispositif selon la revendication 1 , dans lequel la sortie de gaz d'échappement du collecteur vers ladite turbine est disposée entre l'entrée de ladite entrée d'air comprimé et ladite sortie de gaz d'échappement.
3. Dispositif selon l'une des revendications 1 ou 2, dans lequel ladite entrée d'air comprimé et ladite sortie de gaz d'échappement sont disposées à l'opposé l'une de l'autre sur le collecteur d'échappement.
4. Dispositif selon l'une des revendications précédentes, qui comporte un système de vannage (23, 24, 26) commandé sur le circuit de transfert d'air comprimé et sur le circuit de recirculation de gaz brûlés EGR pour contrôler la circulation de gaz d'échappement et pour contrôler le transfert d'air comprimé.
5. Dispositif selon la revendication 4, dans lequel le système de vannage comprend au moins une vanne sur le circuit de gaz d'échappement recirculés (24) et une vanne sur le circuit de transfert partiel (23).
6. Dispositif selon l'une des revendications 4 à 5, dans lequel le système de vannage comporte au moins une vanne quatre voies (26).
7. Méthode de contrôle de la quantité d'air introduit à l'admission d'un moteur à combustion interne suralimenté comprenant un système de suralimentation comportant un turbocompresseur (7) avec une turbine (8) connectée à au moins une sortie de gaz d'échappement du collecteur d'échappement (5) dudit moteur ainsi qu'un compresseur (10) d'air extérieur, un conduit de transfert partiel (15, 18) de l'air comprimé du compresseur vers une entrée sur le collecteur en communication avec la turbine, et un conduit de gaz d'échappement recirculés (21 ) reliant une sortie de gaz d'échappement à une conduite d'admission d'air comprimé (4), caractérisée en ce que l'on dispose éloignées l'une de l'autre sur le collecteur de gaz d'échappement : ladite entrée d'air comprimé et ladite sortie de gaz d'échappement.
8. Méthode selon la revendication 7, dans lequel on dispose la sortie de gaz d'échappement du collecteur vers ladite turbine entre l'entrée de ladite entrée d'air comprimé et ladite sortie de gaz d'échappement.
9. Méthode selon l'une des revendications 7 ou 8, dans lequel on dispose à l'opposé l'une de l'autre sur le collecteur d'échappement : ladite entrée d'air comprimé et ladite sortie de gaz d'échappement.
10. Application du dispositif selon l'une des revendications 1 à 6 et de la méthode selon l'une des revendications 7 à 9 à un moteur Diesel.
EP17742206.0A 2016-07-29 2017-07-10 Dispositif et méthode de contrôle de l'introduction conjointe d'air et de gaz d'échappement à l'admission d'un moteur à combustion interne suralimenté Withdrawn EP3491225A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1657402A FR3054602A1 (fr) 2016-07-29 2016-07-29 Dispositif et methode de controle de l'introduction conjointe d'air et de gaz d'echappement a l'admission d'un moteur a combustion interne suralimente.
PCT/EP2017/067302 WO2018019558A1 (fr) 2016-07-29 2017-07-10 Dispositif et méthode de contrôle de l'introduction conjointe d'air et de gaz d'échappement à l'admission d'un moteur à combustion interne suralimenté

Publications (1)

Publication Number Publication Date
EP3491225A1 true EP3491225A1 (fr) 2019-06-05

Family

ID=57348854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17742206.0A Withdrawn EP3491225A1 (fr) 2016-07-29 2017-07-10 Dispositif et méthode de contrôle de l'introduction conjointe d'air et de gaz d'échappement à l'admission d'un moteur à combustion interne suralimenté

Country Status (5)

Country Link
US (1) US20190178173A1 (fr)
EP (1) EP3491225A1 (fr)
CN (1) CN109563766A (fr)
FR (1) FR3054602A1 (fr)
WO (1) WO2018019558A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555924A (zh) * 2019-10-23 2022-05-27 沃尔沃卡车集团 能够在至少两种运行模式下运行的内燃机系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648066B (zh) * 2020-12-14 2021-12-21 潍柴动力股份有限公司 调节系统、车辆及调节系统的旁通阀开度的控制方法
US11846257B2 (en) 2021-05-03 2023-12-19 Deere & Company Engine system with reversible exhaust gas recirculation pump for controlling bypass flow
US11591992B2 (en) 2021-05-05 2023-02-28 Deere & Company Engine system with air pump for enhanced turbocharger air exchange
US11572824B2 (en) 2021-05-13 2023-02-07 Deere & Company Electrified engine boost components for mitigating engine stalling in a work vehicle
US11536213B2 (en) 2021-05-19 2022-12-27 Deere & Company Engine system with electrified air system components for managing emissions of nitrogen oxides in a work vehicle
US11572673B2 (en) 2021-06-25 2023-02-07 Deere & Company Work vehicle power system with decoupled engine air system components
US11939929B2 (en) 2021-08-19 2024-03-26 Deere &Company Engine electrified air system including electric turbocharger and exhaust gas recirculation pump
CN114352401B (zh) * 2022-01-24 2023-02-28 一汽解放汽车有限公司 一种涡轮增压发动机性能调节系统及调节方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2478736A1 (fr) * 1980-03-21 1981-09-25 Semt Procede et systeme de generation de puissance par moteur a combustion interne suralimente
FR2512496A1 (fr) * 1981-09-10 1983-03-11 Semt Procede d'amenagement des conditions de fonctionnement d'un moteur a combustion interne et moteur ainsi amenage
US6003315A (en) * 1997-03-31 1999-12-21 Caterpillar Inc. Exhaust gas recirculation system for an internal combustion engine
US6470864B2 (en) 2000-03-27 2002-10-29 Mack Trucks, Inc. Turbocharged engine with exhaust gas recirculation
US7610757B2 (en) * 2004-07-30 2009-11-03 Komatsu Ltd. Intake controller of internal combustion engine
DE112006000567T5 (de) * 2005-03-09 2008-01-24 Komatsu Ltd. Aufgeladene Brennkraftmaschine mit EGR-Vorrichtung
WO2009105463A2 (fr) * 2008-02-22 2009-08-27 Borgwarner Inc. Commande d'un écoulement de gaz d'échappement divisé entre une turbocompression et une remise en circulation de gaz d'échappement
EP2914835B1 (fr) * 2012-10-30 2018-03-07 Borgwarner Inc. Régulation du flux de gaz d'échappement acheminé dans le système rge par le biais d'une soupape de récupération
WO2015004497A1 (fr) * 2013-07-10 2015-01-15 Renault Trucks Agencement de moteur turbocompressé ayant des installations de recirculation des gaz d'échappement et soupape de commande d'écoulement rotative
US9080506B2 (en) * 2013-08-13 2015-07-14 Ford Global Technologies, Llc Methods and systems for boost control
CN106103963B (zh) * 2014-03-20 2019-11-05 日产自动车株式会社 柴油发动机的控制装置以及控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114555924A (zh) * 2019-10-23 2022-05-27 沃尔沃卡车集团 能够在至少两种运行模式下运行的内燃机系统

Also Published As

Publication number Publication date
US20190178173A1 (en) 2019-06-13
FR3054602A1 (fr) 2018-02-02
WO2018019558A1 (fr) 2018-02-01
CN109563766A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
EP3491225A1 (fr) Dispositif et méthode de contrôle de l'introduction conjointe d'air et de gaz d'échappement à l'admission d'un moteur à combustion interne suralimenté
EP3303796B1 (fr) Dispositif pour le contrôle d'une quantité d'air introduit à l'admission d'un moteur à combustion interne suralimenté et le refroidissement à l'échappement - procédé utilisant un tel dispositif
EP3283742B1 (fr) Dispositif intégré à une culasse pour le contrôle d'une quantité d'air introduit à l'admission d'un moteur à combustion interne suralimenté et procédé utilisant un tel dispositif
EP3286417B1 (fr) Dispositif amélioré de contrôle de la quantité d'air introduit à l'admission d'un moteur à combustion interne suralimenté et procédé utilisant un tel dispositif
EP3172420B1 (fr) Dispositif de contrôle de la quantité d'air introduit à l'admission d'un moteur à combustion interne suralimenté et procédé utilisant un tel dispositif
WO2018002037A1 (fr) Dispositif et methode de controle de l'introduction d'air et de gaz d'echappement a l'admission d'un moteur a combustion interne suralimente
FR3037616A1 (fr) Dispositif pour le controle d'une quantite d'air introduit a l'admission d'un moteur a combustion interne a au moins double etage de suralimentation et procede utilisant un tel dispositif.
KR20110014122A (ko) Egr을 위한 보충 콤프레서를 이용하는 시스템
CN111757976A (zh) 具有涡轮机旁路的低压egr系统
FR2744491A1 (fr) Systeme de recyclage de gaz d'echappement pour un moteur a combustion interne
CN105008705A (zh) 用于内燃机的排气装置
EP3366902B1 (fr) Dispositif de contrôle de l'introduction de la quantité de fluide à l'admission d'un moteur à combustion interne suralimenté équipé d'un circuit de recirculation de gaz d'échappement et méthode utilisant un tel dispositif
EP3555442B1 (fr) Methode de controle de la quantite d'air comprime introduit a l'admission d'un moteur a combustion interne suralimente
FR2945076A3 (fr) Dispositif de suralimentation
FR2914952A1 (fr) Dispositif et procede pour adapter un taux de gaz brules de recirculation dans un moteur
US9638098B2 (en) Bypass mechanism for an exhaust system
EP3494298B1 (fr) Refroidisseur d'air de suralimentation pour moteur à combustion interne et circuit de suralimentation associé
FR2945579A1 (fr) Procede et dispositif de controle de la quantite de gaz d'echappement recircules a l'admission d'un moteur a combustion interne suralimente
FR3087851A1 (fr) Circuit d'admission pour moteur a combustion interne comportant un compresseur de suralimentation
EP2024630A1 (fr) Moteur a combustion interne ayant un circuit de recirculation des gaz d'echappement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210202