EP3486627B1 - Compensation d'erreurs pour capteurs gainés - Google Patents

Compensation d'erreurs pour capteurs gainés Download PDF

Info

Publication number
EP3486627B1
EP3486627B1 EP17201975.4A EP17201975A EP3486627B1 EP 3486627 B1 EP3486627 B1 EP 3486627B1 EP 17201975 A EP17201975 A EP 17201975A EP 3486627 B1 EP3486627 B1 EP 3486627B1
Authority
EP
European Patent Office
Prior art keywords
sensor
circuit
state
measurement
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17201975.4A
Other languages
German (de)
English (en)
Other versions
EP3486627A1 (fr
Inventor
Viktor Kassovski
Kostadin Bobchev
Ivan Lesichkov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Melexis Technologies NV
Original Assignee
Melexis Technologies NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Melexis Technologies NV filed Critical Melexis Technologies NV
Priority to EP17201975.4A priority Critical patent/EP3486627B1/fr
Priority to JP2018208830A priority patent/JP7034889B2/ja
Priority to US16/190,384 priority patent/US11193835B2/en
Priority to CN201811353215.6A priority patent/CN109781308B/zh
Publication of EP3486627A1 publication Critical patent/EP3486627A1/fr
Application granted granted Critical
Publication of EP3486627B1 publication Critical patent/EP3486627B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/10Arrangements for compensating for auxiliary variables, e.g. length of lead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/021Particular circuit arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2829Testing of circuits in sensor or actuator systems

Definitions

  • the invention relates to the field of sensors embedded in a protective sheath. More specifically it relates to a circuit and method for determining of and/or compensating for a measurement error of a sheathed sensor due to a property of a sheath of the sheathed sensor.
  • thermocouples and resistive temperature detectors (RTD) elements are sensitive to their external environment.
  • RTD resistive temperature detectors
  • sensors require electrical isolation, for example by embedding the sensor in a sheath and filling the space between the sensor and the sheath with an electrically insulating material.
  • the resistance between the sensor and its sheath is generally referred to as isolation resistance (RISO).
  • RISO isolation resistance
  • isolation resistance can change over time, for example due to various factors such as heating and vibrations.
  • the sensor sheath can be at an electric potential that differs from the ground reference voltage GND, e.g. by a difference ⁇ V GND . Therefore, when the isolation resistance is too low, a leakage through the isolation resistance can occur. This leakage can influence the sensor measurement, e.g. can lead to a measurement error.
  • RISO insulation resistance
  • the present invention relates to a circuit for determining and/or compensating for a measurement error of a sheathed sensor due to a property of a sheath of the sheathed sensor.
  • the circuit comprises a first terminal and a second terminal for connecting to a pair of sensor signal leads of a sensor element in a sheathed sensor.
  • the circuit comprises a voltage measurement circuit for measuring a voltage difference between the first terminal and the second terminal and for generating a measurement signal indicative of the measured voltage difference.
  • the circuit comprises a switching unit for controllably switching an electrical connection between a first state and a second state in which the first terminal is electrically connected to respectively a first reference voltage and a second reference voltage.
  • the circuit comprises a correction measurement circuit for measuring a current running from the first terminal through the switching unit and for generating a correction signal indicative of the current.
  • the circuit comprises a controller for receiving both the measurement signal and the correction signal in both the first state and the second state by controlling the switching of the switching unit.
  • the controller is adapted for calculating an error value indicative of the measurement error and/or a sensor readout value that is corrected for the measurement error, by taking the measurement signal and the correction signal into account as generated in both the first state and the second state.
  • the switching unit may comprise an internal voltage source for generating the second reference voltage, and the first reference voltage may be an electric ground potential.
  • the switching unit may comprise a first internal voltage source for generating the first reference voltage and a second internal voltage source for generating the second reference voltage.
  • the controller may be adapted for calculating a loop resistance between an electric ground of the circuit and a remote ground of the sheathed sensor by dividing a difference of the second reference voltage and the first reference voltage by a difference of the correction signal obtained in the first state of the switching unit and the correction signal obtained in the second state of the switching unit.
  • the difference of the second reference voltage and the first reference voltage may be the second reference voltage in embodiments where the first reference voltage is the electric ground potential.
  • the controller may be adapted for calculating the error value indicative of the measurement error and/or the sensor readout value corrected for the measurement error.
  • the measurement error may represent a deviation between the voltage difference and an electromotive force and/or the sensor readout value may be indicative of the electromotive force.
  • the electromotive force may be an electromotive force generated over a thermocouple when the circuit is connected to the sheathed sensor in which the sensor element comprises the thermocouple.
  • the controller may be adapted for calculating a first difference of the measurement signal obtained in the first state of the switching unit and the measurement signal obtained in the second state of the switching unit and a second difference of the correction signal obtained in the first state of the switching unit and the correction signal obtained in the second state of the switching unit.
  • Calculating the error value and/or the sensor readout value may comprise multiplying the correction signal obtained in the first state of the switching unit by a ratio of the first difference and the second difference.
  • the controller may be adapted for calculating the error value indicative of the measurement error and/or the sensor readout value corrected for the measurement error, in which the sensor readout value is indicative of a resistance of a resistive temperature detector and/or the error value represents an error of the resistance due to a leakage current and/or a parasitic resistance, e.g. when the circuit is operably connected to the sheathed sensor in which the sensor element comprises the resistive temperature detector.
  • the measurement error may represent an insulation resistance of a sheath of the sheathed sensor, a loop resistance between an electric ground of the circuit and a remote ground of the sheath and/or a leakage current through the sheath.
  • a circuit in accordance with embodiments of the present invention may comprise a current source for injecting a further electric current via the first terminal or the second terminal into the sensor element when the circuit is connected to the sheathed sensor.
  • the controller may be adapted for calculating the error value and/or the sensor readout value, in which said calculation comprises calculating a subtraction of a minuend comprising Vd 1 . I 0 Isens . I 1 and a subtrahend comprising Vd 1 I 1 , in which Vd 0 and Vd 1 represent the measurement signal in respectively the first state and the second state, I 0 and I 1 represent the correction signal in respectively the first state and the second state and Isens represent the further electric current.
  • the correction measurement circuit may comprise a reference resistor having a predetermined resistance and a further voltage measurement circuit for measuring a voltage over the resistor, such that the correction measurement circuit is adapted for generating the correction signal as indicative of the current in the form of the voltage over the reference resistor.
  • the switching unit may comprise a first switch for controllably electrically connecting and disconnecting the first terminal to the first reference voltage and a second switch for controllably electrically connecting and disconnecting the first terminal to the second reference voltage.
  • the present invention relates to a sensor system comprising a circuit in accordance with embodiments of the first aspect of the present invention and a sheathed sensor comprising a sensor element having complementary terminals connected to respectively a first lead and a second lead of a pair of sensor signal leads, in which the sensor element is positioned within a sheath for electrically insulating the sensor element and the pair of sensor signal leads to reduce and/or prevent external electromagnetic disturbances of the sheathed sensor.
  • the pair of sensor signal leads extend from the sheath to connect to the first and second terminal of the circuit.
  • the sensor element may comprise a thermocouple.
  • the sensor element may comprise a resistive temperature detector.
  • the present invention relates to a method for determining and/or compensating for a measurement error of a sheathed sensor due to a property of a sheath of the sheathed sensor.
  • the method comprises providing a sheathed sensor comprising a sensor element positioned within a sheath for electrically insulating the sensor element to reduce and/or prevent external electromagnetic disturbances of the sheathed sensor.
  • the method comprises connecting a first terminal of the sensor element to a first reference voltage, measuring a first voltage difference over the sensor element and measuring a first current flowing through the sensor element.
  • the method comprises connecting the first terminal of the sensor element to a second reference voltage, measuring a second voltage difference over the sensor element and measuring a second current flowing through the sensor element.
  • the method comprises calculating an error value indicative of the measurement error and/or a sensor readout value that is corrected for the measurement error by taking the first voltage difference, the second voltage difference, the first current and the second current into account.
  • the present invention relates to a circuit for determining and/or compensating for a measurement error of a sheathed sensor due to a property of a sheath of the sheathed sensor.
  • the circuit comprises a first terminal and a second terminal for connecting to a pair of sensor signal leads of a sensor element in a sheathed sensor.
  • the circuit also comprises a voltage measurement circuit for measuring a voltage difference between the first terminal and the second terminal and generating a measurement signal indicative of the measured voltage difference.
  • the circuit comprises a switching unit for controllably switching an electrical connection between a first state in which the first terminal is electrically connected to a first reference voltage and a second state in which the first terminal is electrically connected to a second reference voltage, e.g.
  • the circuit comprises a correction measurement circuit for measuring a current running from the first terminal through the switching unit and for generating a correction signal indicative of said current.
  • the circuit comprises a controller, e.g. a processing unit, for receiving both the measurement signal and the correction signal in respectively the first state and the second state by controlling the switching of the switching unit.
  • the controller is also adapted for calculating a sensor readout value of the sheathed sensor that is corrected for the measurement error, and/or an error value indicative of the measurement error by taking the measurement signal and the correction signal into account as generated in both the first state and the second state.
  • electric property values such as of the first reference voltage, the second reference voltage, the resistor R11 as referred to further hereinbelow, and/or the current Isens as referred to further hereinbelow, can be measured during calibration or when the circuit is in use, e.g. to be taken into account by the controller.
  • FIG 1 a circuit 1 for determining, and/or compensating for, a measurement error of a sheathed sensor 10 in accordance with embodiments of the present invention is shown.
  • the circuit comprises a first terminal 2 and a second terminal 3 for connecting to a pair of sensor signal leads 12, 13 of a sensor element 11 in the sheathed sensor 10.
  • the sheathed sensor 10 may comprise the sensor element 11 having complementary terminals connected to respectively a first lead 12 and a second lead 13 of the pair sensor leads.
  • the sensor element 11 may be positioned within a sheath 15 for electrically insulating the sensor element 11, e.g. for electrically insulating the sensor element 11 and the pair of sensor signal leads 12, 13, for example to reduce or prevent external electromagnetic disturbances of the sensor element 11 and the pair of sensor leads 12, 13.
  • the pair of sensor signal leads 12, 13 may extend from the sheath to connect to the first and second terminal 2, 3.
  • the pair of signal leads 12, 13 may be directly connectable to the terminals 2, 3, or the pair of signal leads may be connected to an intermediate carrier 19, e.g. a printed circuit board (PCB) 19, as illustrated in FIG 2 , which electrically connects each of the pair of signal leads 12, 13 to a corresponding terminal 2, 3 of the circuit 1.
  • PCB printed circuit board
  • the circuit 1 comprises a voltage measurement circuit 4 for measuring a voltage difference between the first terminal 2 and the second terminal 3 and for generating a measurement signal Vd indicative of the measured voltage difference.
  • the circuit comprises a switching unit 5 for controllably switching an electrical connection between a first state S1 in which the first terminal 2 is electrically connected to a first reference voltage V1 and a second state S2 in which the first terminal 2 is electrically connected to a second reference voltage V2, e.g. the first reference voltage V1 and the second reference voltage V2 being different voltages.
  • the circuit may be adapted for generating or receiving the first reference voltage V1 and the second reference voltage V2 as predetermined and/or known reference voltages, in operation of the device.
  • the reference voltages V1, V2 may be generates as sufficiently stable, e.g. substantially stable, voltages.
  • the value of the first reference voltage V1 and/or the second reference voltage V2 may be measured and stored, e.g. as a constant, in a data storage memory, e.g. a non-volatile memory, accessible for use by the controller, e.g. to take into account when calculating the sensor readout value or error value.
  • the value of the first reference voltage V1 relative to the electric ground, the second reference voltage V2 relative to the electric ground and/or the second reference voltage V2 relative to the first reference voltage V1 may be measured and stored.
  • the circuit comprises a correction measurement circuit 6 for measuring a current I running from the first terminal 2 through the switching unit 5 and for generating a correction signal indicative of said current.
  • the circuit comprises a controller 7, e.g. a processing unit, for receiving the measurement signal Vd 0 and the correction signal I 0 in the first state S1 and for receiving the measurement signal Vd 1 and the correction signal I 1 in the second state S2 by controlling the switching of the switching unit 5.
  • the controller 7 may generate at least one control signal S for controlling the switching unit 5 to switch between the first and second state S1, S2.
  • the controller 7 is also adapted for calculating a sensor readout value that is corrected for the measurement error and/or an error value indicative of a measurement error of the measurement signal by taking the measurement signal Vd 0 , Vd 1 as generated in both the first state S1 and the second state S2 and the correction signal I 0 , I 1 as generated in both the first state S1 and the second state S2 into account.
  • the controller 7 may furthermore be adapted for storing and/or outputting the sensor readout value that is corrected for the measurement error and/or the error value.
  • FIG 2 shows a schematic electrical diagram of a circuit in accordance with embodiments of the present invention.
  • the circuit may be adapted for determining and/or compensating for the measurement error of the sheathed sensor 10 due to an insulation resistance R iso of the sheath, e.g. due to a leakage current Iriso, and/or an electric potential difference between the sheath and the electric ground ⁇ V GND .
  • the sensor element 11 in the sheathed sensor 10 may comprise a thermometer element.
  • the circuit 1 may be thermometer readout circuit or thermometer readout correction circuit.
  • thermometer element may comprise a thermocouple.
  • the thermometer element may comprise a resistive temperature detector (RTD).
  • RTD resistive temperature detector
  • the circuit 1 comprises at least one first terminal 2 and at least one second terminal 3 for respectively connecting to a pair of sensor signal leads 12, 13 of a sensor element 11 in the sheathed sensor 10.
  • the circuit 1 comprises a voltage measurement circuit 4 for measuring a voltage difference between the first terminal 2 and the second terminal 3 and for generating a measurement signal Vd indicative of the measured voltage difference.
  • the voltage measurement circuit 4 may comprise a circuit as known in the art for generating a signal, e.g. a digital signal, indicative of the voltage difference.
  • the voltage measurement circuit 4 may comprise a component and/or a circuit as known in the art for reading out a sensor, e.g. a temperature sensor, such as a thermocouple and/or RTD, by voltage measurement.
  • the circuit 1 may also comprise a current source 8 for injecting an electric current via the first terminal 2 or the second terminal 3 into the sensor element 11, e.g. for reading out an RTD.
  • a current source 8 for injecting an electric current via the first terminal 2 or the second terminal 3 into the sensor element 11, e.g. for reading out an RTD.
  • an RTD may be read out by applying a known current Isens via the current source 8, measuring a voltage difference over the RTD sensor and determining the a priori unknown resistance of the RTD based on this current and this voltage difference, e.g. further taking into account a correction as provided by embodiments in accordance with the present invention.
  • the current source 8 may be adapted for injecting a predetermined and/or known further current Isens via the second terminal 3, e.g. such that a current runs through the sensor element 11, e.g.
  • the further current may be injected via the first terminal 2 such that a current runs over the sensor element and back to the second terminal 3.
  • the current source 8 may generate a sufficiently stable, e.g. substantially stable, current as the predetermined further current Isens.
  • the value of the further current Isens may be measured and stored, e.g. as a constant, in a data storage memory, e.g. a non-volatile memory, accessible for use by the controller, e.g. to take into account when calculating the sensor readout value or error value.
  • the switching unit 5 may comprise, for example, a first switch SW1, for controllably electrically connecting and disconnecting the first terminal 2 to a first reference voltage V1.
  • the first reference voltage V1 may be an electric ground potential as shown in Fig. 2 , but embodiments of the present invention are not limited thereto, e.g. the circuit 1 may comprise an internal voltage source for generating the first reference voltage V1, e.g. substantially as described hereinbelow for generating the second reference voltage V2.
  • the switching unit 5 may comprise, for example, a second switch SW2, for controllably electrically connecting and disconnecting the first terminal 2 to a second reference voltage V2.
  • the circuit 1 may comprise an internal voltage source 9 for generating the second reference voltage V2, e.g. a substantially predetermined voltage V2 that is substantially different from the first reference voltage V1, e.g. from ground.
  • the correction measurement circuit 6 may comprise a resistor R11 having a predetermined resistance and a further voltage measurement circuit 16 for measuring a voltage Vr11 over the resistor R11.
  • the resistor R11 may be connected in series between the first terminal 2 and the switching unit 5.
  • the correction measurement circuit 6 may be adapted for measuring a current running from the first terminal 2 through the switching unit 5 and for generating a correction signal as indicative of that current in the form of a voltage over the resistor R11 through which that current flows.
  • the resistance of the internal resistance R11 may be measured and stored, e.g. as a constant, in a data storage memory, e.g. a non-volatile memory, of the controller to be taken in to account.
  • the controller 7 may comprise a processing unit, e.g. a processor, and/or a data storage memory.
  • the controller may be adapted for receiving the measurement signal Vd 0 and the correction signal I 0 , e.g. Vr11 0 , in the first state S1 and for receiving the measurement signal Vd 1 and the correction signal I 1 , e.g. Vr11 1 , in the second state S2.
  • This can be achieved by controlling the switching of the switching unit 5, e.g. of the switches SW1 and SW2 between a first state S1 in which SW1 is ON, i.e. connects the first terminal to the first reference voltage V1, and SW2 is OFF, i.e. disconnects the first terminal from the second reference voltage V2, and a second state S2 in which SW1 is OFF and SW2 is ON.
  • the controller 7 is also adapted for calculating a readout value that is corrected for the measurement error and/or an error value indicative of the measurement error.
  • This calculating may comprise calculating a first difference of the measurement signal obtained in the first state S1 of the switching unit 5 and the measurement signal obtained in the second state S2 of the switching unit and a second difference of the correction signal obtained in the first state S1 of the switching unit 5 and the correction signal obtained in the second state S2 of the switching unit.
  • Calculating the error value and/or the sensor readout value may comprise multiplying the correction signal obtained in the first state S1 of the switching unit 5 by a ratio of the first difference and the second difference.
  • the sensor readout value may correspond to a difference of the measurement signal Vd 0 , e.g. where the first reference voltage is the ground voltage, and the error value Vtc_err.
  • Vd 1 Vtc + Iriso 1 ⁇ RtcB
  • Vr 11 1 Iriso 1 ⁇ R 11
  • Iriso 1 the leakage current Iriso in state S2
  • Vd 1 the measurement signal Vd in state S2
  • Vr11 1 the correction signal in state S2.
  • Vrtd _ err Iriso 0 ⁇ R t c B
  • Vrtd Isens ⁇ RtcA + RtcB
  • Vd 0 Vrtd + Vrtd _ err
  • Vr 11 0 Iriso 0 + Isens ⁇ R 11
  • Irisoo refers to the leakage current Iriso in state S1
  • Vd 0 refers to the measurement signal Vd in state S1
  • Vr11 0 refers to the correction signal in state S1.
  • Vd 1 Iriso 1 ⁇ RtcB
  • Vr 11 1 Iriso 1 ⁇ R 11
  • Iriso 1 the leakage current Iriso in state S2
  • Vd 1 the measurement signal Vd in state S2
  • Vr11 1 the correction signal in state S2.
  • the controller 7 may be adapted for calculating the error value and/or the sensor readout value, in which this calculation comprises calculating a subtraction of a minuend (or subtrahend) comprising Vd 1 . I 0 Isens . I 1 and a subtrahend (or respectively minuend) comprising Vd 1 I 1 .
  • the controller may be adapted for calculating an isolation resistance of a sheathed sensor, e.g. a loop resistance Rloop between the electric ground of the circuit and a remote ground of the sheathed sensor, e.g. at a voltage ⁇ V GND with respect to the electric ground of the circuit, over the sensor element.
  • an isolation resistance of a sheathed sensor e.g. a loop resistance Rloop between the electric ground of the circuit and a remote ground of the sheathed sensor, e.g. at a voltage ⁇ V GND with respect to the electric ground of the circuit, over the sensor element.
  • Iriso 0 ⁇ Rloop ⁇ V GND ⁇ V 1
  • Vr 11 0 Iriso 0 ⁇ R 11
  • Irisoo refers to the leakage current Iriso in state S1
  • Vr11 0 refers to the correction signal in state S1.
  • the controller 7 may be adapted for calculating the loop resistance Rloop between the electric ground of the circuit and a remote ground of the sheathed sensor by dividing the further signal indicative of the voltage V2 over the internal voltage source 9 by a difference of the correction signal I 0 obtained in the first state S1 of the switching unit 5 and the correction signal I 1 obtained in the second state S2 of the switching unit.
  • the present invention also relates to a sensor system comprising a circuit 1 in accordance with embodiments of the first aspect of the present invention and a sheathed sensor 10 comprising a sensor element 11 having complementary terminals connected to respectively a first lead 12 and a second lead 13 of a pair of sensor signal leads, in which the sensor element 11 is positioned within a sheath 15 for electrically insulating the sensor element 11 and the pair of sensor signal leads 12, 13 to reduce and/or prevent external electromagnetic disturbances of the sheathed sensor.
  • the pair of sensor signal leads 12, 13 extend from the sheath 15 to connect, e.g. to be connected, to the first and second terminal 2, 3 of the circuit 1.
  • the sensor element may comprise a thermometer, e.g. a temperature sensor, such as a thermocouple and/or a resistive temperature detector.
  • the present invention relates to a method for determining and/or compensating for a measurement error of a sheathed sensor due to a property of a sheath of the sheathed sensor.
  • the method 200 comprises providing 201 a sheathed sensor 10 comprising a sensor element 11 positioned within a sheath 15 for electrically insulating the sensor element 11 to reduce and/or prevent external electromagnetic disturbances of the sheathed sensor.
  • the method 200 may comprise operating a circuit in accordance with embodiments of the first aspect of the present invention.
  • the method comprises connecting 202 a first terminal of the sensor element to a first reference voltage V1, e.g. ground, measuring a first voltage difference Vd 0 over the sensor element 11 and measuring a first current I 0 flowing through the sensor element 11.
  • V1 e.g. ground
  • the method comprises connecting 203 the first terminal of the sensor element to a second reference voltage V2, measuring a second voltage difference Vd 1 over the sensor element 11 and measuring a second current I 1 flowing through the sensor element 11.
  • the method may comprise switching an electrical connection between the first terminal and respectively the first reference voltage and the second reference voltage, e.g. using a switching unit.
  • the method may comprise injecting a further electric current Isens into the sensor element 11, e.g. while the steps of connecting and measuring 202,203 are performed.
  • the method comprises calculating 204 an error value indicative of the measurement error and/or a sensor readout value that is corrected for the measurement error by taking the first voltage difference Vd 0 , the second voltage difference Vd 1 , the first current I 0 and the second current I 1 into account.
  • Calculating 204 the error value may comprise calculating a loop resistance Rloop between an electric ground of the circuit and a remote ground of the sheathed sensor by dividing a difference of the second reference voltage V2 and the first reference voltage V1 by a difference of the currents I 0 and I 1 .
  • Calculating 204 the error value and/or sensor readout value may comprise calculating a first difference of the voltages Vd 0 and Vd 1 and a second difference of the currents I 0 and I 1 . Calculating 204 the error value and/or sensor readout value may comprise multiplying the current I 0 by a ratio of the first difference over the second difference.
  • Calculating 204 the error value and/or sensor readout value may comprise calculating a subtraction of a minuend comprising Vd 1 . I 0 Isens . I 1 and a subtrahend comprising Vd 1 I 1 .
  • the method may comprise measuring voltages Vr11 0 and Vr11 1 over a reference resistor R11 having a predetermined resistance to measure the currents I 0 and I 1 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Claims (15)

  1. Un circuit (1) pour déterminer et/ou compenser une erreur de mesure d'un capteur gainé due à une propriété d'une gaine dudit capteur gainé, le circuit comprenant :
    - une première borne (2) et une seconde borne (3) pour une connexion à une paire de conducteurs de signal de capteur (12, 13) d'un élément capteur (11) dans un capteur gainé (10) ;
    - un circuit de mesure de tension (4) pour mesurer une différence de tension (Vd) entre ladite première borne (2) et ladite seconde borne (3) et générer un signal de mesure indiquant ladite différence de tension mesurée ; et
    - une unité de commutation (5) pour commuter de façon commandée une connexion électrique ;
    caractérisé en ce que :
    l'unité de commutation (5) est adaptée pour commuter de façon commandée une connexion électrique entre un premier état (S1) et un second état (S2) dans lequel la première borne (2) est connectée électriquement respectivement à une première tension de référence (V1) et à une seconde tension de référence (V2) ;
    et en ce que le circuit comprend en outre :
    - un circuit de mesure de correction (6) adapté pour mesurer un courant (I) circulant à partir de la première borne (2) à travers l'unité de commutation (5) et pour générer un signal de correction indiquant ledit courant ; et
    - un dispositif de commande (7) adapté pour recevoir ledit signal de mesure et ledit signal de correction dans ledit premier état et ledit second état en commandant ladite commutation de ladite unité de commutation (5), le dispositif de commande étant adapté en outre pour calculer une valeur d'erreur indiquant ladite erreur de mesure et/ou une valeur de lecture de capteur qui est corrigée pour ladite erreur de mesure en prenant en compte ledit signal de mesure et ledit signal de correction tels que générés à la fois dans ledit premier état et dans ledit second état.
  2. Le circuit selon la revendication 1, dans lequel ladite unité de commutation (5) comprend une source de tension interne (9) adaptée pour générer ladite seconde tension de référence (V2),
    et dans lequel ladite première tension de référence (V1) est un potentiel électrique de masse.
  3. Le circuit selon la revendication 2, dans lequel ledit dispositif de commande est adapté pour calculer une résistance de boucle (Rloop) entre une masse électrique du circuit et une masse distante dudit capteur gainé en divisant une différence de la seconde tension de référence (V2) et de la première tension de référence tension (V1) par une différence dudit signal de correction (I0) obtenu dans le premier état (S1) de l'unité de commutation (5) et du signal de correction (I1) obtenu dans le second état (S2) de l'unité de commutation.
  4. Le circuit selon l'une quelconque des revendications précédentes, dans lequel ledit dispositif de commande (7) est adapté pour calculer ladite valeur d'erreur indiquant ladite erreur de mesure et/ou ladite valeur de lecture de capteur corrigée pour ladite erreur de mesure, dans lequel ladite erreur de mesure représente un écart entre ladite différence de tension et une force électromotrice et/ou dans lequel ladite valeur de lecture de capteur indique ladite force électromotrice, dans lequel ladite force électromotrice est une force électromotrice générée sur un thermocouple lorsque ledit circuit (1) est connecté audit capteur gainé (10) dans lequel ledit élément capteur (11) comprend ledit thermocouple.
  5. Le circuit selon la revendication 4, dans lequel ledit dispositif de commande (7) est adapté pour calculer une première différence du signal de mesure obtenu dans le premier état (S1) de l'unité de commutation (5) et du signal de mesure obtenu dans le second état (S2) de l'unité de commutation et une seconde différence du signal de correction obtenu dans le premier état (S1) de l'unité de commutation (5) et du signal de correction obtenu dans le second état (S2) de l'unité de commutation, et dans lequel le calcul de ladite valeur d'erreur et/ou de ladite valeur de lecture de capteur comprend la multiplication du signal de correction obtenu dans le premier état (S1) de l'unité de commutation (5) par un rapport de ladite première différence et de ladite seconde différence.
  6. Le circuit selon l'une quelconque des revendications précédentes, dans lequel ledit dispositif de commande (7) est adapté pour calculer ladite valeur d'erreur indiquant ladite erreur de mesure et/ou ladite valeur de lecture de capteur corrigée pour ladite erreur de mesure, dans lequel ladite valeur de lecture de capteur indique une résistance d'un détecteur résistif de température et/ou ladite valeur d'erreur représente une erreur de ladite résistance due à un courant de fuite et/ou une résistance parasite, lorsque ledit circuit (1) est connecté audit capteur gainé (10) dans lequel ledit élément capteur (11) comprend ledit détecteur résistif de température.
  7. Le circuit selon la revendication 6, dans lequel ladite erreur de mesure représente une résistance d'isolement d'une gaine du capteur gainé, une résistance de boucle entre une masse électrique du circuit et une masse distante de la gaine et/ou un courant de fuite à travers la gaine.
  8. Le circuit selon la revendication 6 ou 7, comprenant une source de courant (8) adaptée pour injecter un courant électrique (Isens) supplémentaire via la première borne (2) ou la seconde borne (3) dans l'élément capteur (11) lorsque ledit circuit (1) est connecté audit capteur gainé (10).
  9. Le circuit selon la revendication 8, dans lequel ledit dispositif de commande (7) est adapté pour calculer ladite valeur d'erreur et/ou ladite valeur de lecture de capteur, dans lequel ledit calcul comprend le calcul d'une soustraction d'un diminuende Vd 1 . I 0 Isens . I 1
    Figure imgb0033
    et d'un diminuteur comprenant Vd 1 I 1
    Figure imgb0034
    ,, dans lequel Vd0 et Vd1 représentent le signal de mesure respectivement dans le premier état (S1) et dans le second état (S2), I0 et I1 représentent le signal de correction respectivement dans le premier état (S1) et dans le second état (S2) et Isens représente le courant électrique supplémentaire.
  10. Le circuit selon l'une quelconque des revendications précédentes, dans lequel ledit circuit de mesure de correction (6) comprend une résistance de référence (R11) présentant une résistance prédéterminée et un circuit de mesure de tension (16) supplémentaire adapté pour mesurer une tension (Vr11) sur la résistance (R11), de sorte que ledit circuit de mesure de correction (6) est adapté pour générer le signal de correction en tant qu'indication dudit courant sous la forme de ladite tension (Vr11) sur ladite résistance de référence (R11).
  11. Le circuit selon l'une quelconque des revendications précédentes, dans lequel ladite unité de commutation (5) comprend un premier commutateur (SW1) adapté pour connecter et déconnecter électriquement de façon commandée la première borne (2) par rapport à ladite première tension de référence (V1) et un second commutateur (S13) adapté pour connecter et déconnecter électriquement de façon commandée la première borne (2) par rapport à ladite seconde tension de référence (V2).
  12. Un système de capteur comprenant un circuit (1) selon l'une quelconque des revendications précédentes et un capteur gainé (10) comprenant un élément capteur (11) présentant des bornes complémentaires connectées respectivement à un premier conducteur (12) et à un second conducteur (13) d'une paire de conducteurs de signal de capteur, dans lequel ledit élément capteur (11) est positionné à l'intérieur d'une gaine (15) adaptée pour isoler électriquement l'élément capteur (11) et la paire de conducteurs de signal de capteur (12, 13) afin de réduire et/ou d'empêcher des perturbations électromagnétiques externes du capteur gainé, dans lequel ladite paire de conducteurs de signal de capteur (12, 13) s'étend à partir de la gaine (15) pour se connecter auxdites première et seconde bornes (2, 3) dudit circuit (1).
  13. Le système de capteur selon la revendication 12, dans lequel ledit élément capteur comprend un thermocouple.
  14. Le système de capteur selon la revendication 12, dans lequel ledit élément capteur comprend un détecteur résistif de température.
  15. Un procédé (200) pour déterminer et/ou compenser une erreur de mesure d'un capteur gainé due à une propriété d'une gaine du capteur gainé, le procédé comprenant les étapes consistant à :
    - fournir (201) un capteur gainé (10) comprenant un élément capteur (11) positionné à l'intérieur d'une gaine (15) pour isoler électriquement l'élément capteur (11) afin de réduire et/ou d'empêcher des perturbations électromagnétiques externes du capteur gainé ;
    - connecter (202) une première borne de l'élément capteur à une première tension de référence (V1), mesurer une première différence de tension (Vd0) sur l'élément capteur (11) et mesurer un premier courant (I0) circulant à travers l'élément capteur (11) ;
    - connecter (203) la première borne de l'élément capteur à une seconde tension de référence (V2), mesurer une seconde différence de tension (Vd1) sur l'élément capteur (11) et mesurer un second courant (I1) circulant à travers l'élément capteur (11) ; et
    - calculer (204) une valeur d'erreur indiquant l'erreur de mesure et/ou une valeur de lecture de capteur qui est corrigée pour l'erreur de mesure en prenant en compte la première différence de tension (Vd0) , la seconde différence de tension (Vd1), le premier courant (I0) et le second courant (I1).
EP17201975.4A 2017-11-15 2017-11-15 Compensation d'erreurs pour capteurs gainés Active EP3486627B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17201975.4A EP3486627B1 (fr) 2017-11-15 2017-11-15 Compensation d'erreurs pour capteurs gainés
JP2018208830A JP7034889B2 (ja) 2017-11-15 2018-11-06 シースセンサの誤差補償
US16/190,384 US11193835B2 (en) 2017-11-15 2018-11-14 Error compensation for sheathed sensors
CN201811353215.6A CN109781308B (zh) 2017-11-15 2018-11-14 护套传感器的误差补偿

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17201975.4A EP3486627B1 (fr) 2017-11-15 2017-11-15 Compensation d'erreurs pour capteurs gainés

Publications (2)

Publication Number Publication Date
EP3486627A1 EP3486627A1 (fr) 2019-05-22
EP3486627B1 true EP3486627B1 (fr) 2022-07-27

Family

ID=60413062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17201975.4A Active EP3486627B1 (fr) 2017-11-15 2017-11-15 Compensation d'erreurs pour capteurs gainés

Country Status (4)

Country Link
US (1) US11193835B2 (fr)
EP (1) EP3486627B1 (fr)
JP (1) JP7034889B2 (fr)
CN (1) CN109781308B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557997B (zh) * 2019-09-26 2023-11-03 深圳电蚂蚁数据技术有限公司 一种便于校验误差的网状电能传感器系统和误差校验方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170857A (ja) * 1986-01-23 1987-07-27 Asahi Eng Kk ケ−ブルあるいは電気機器の絶縁抵抗測定方法およびその装置
US5228780A (en) * 1992-10-30 1993-07-20 Martin Marietta Energy Systems, Inc. Dual-mode self-validating resistance/Johnson noise thermometer system
US5700090A (en) * 1996-01-03 1997-12-23 Rosemount Inc. Temperature sensor transmitter with sensor sheath lead
US6519546B1 (en) * 1996-11-07 2003-02-11 Rosemount Inc. Auto correcting temperature transmitter with resistance based sensor
US5828567A (en) * 1996-11-07 1998-10-27 Rosemount Inc. Diagnostics for resistance based transmitter
KR100916092B1 (ko) * 2002-12-13 2009-09-08 주식회사 포스코 절연저항 저하에 따른 온도검출기의 검출온도 보상 장치
US7367712B2 (en) * 2006-02-06 2008-05-06 National Instruments Corporation RTD measurement unit including detection mechanism for automatic selection of 3-wire or 4-wire RTD measurement mode
US8408787B2 (en) * 2009-01-09 2013-04-02 Rosemount Inc. Process temperature transmitter with improved temperature calculation
FR2973873B1 (fr) * 2011-04-05 2013-05-10 Sagem Defense Securite Procede de correction de la mesure d'une tension aux bornes d'un capteur
US9207129B2 (en) * 2012-09-27 2015-12-08 Rosemount Inc. Process variable transmitter with EMF detection and correction
GB2507093A (en) * 2012-10-18 2014-04-23 Melexis Technologies Nv Method and circuit for measuring the electrical resistance of a thermocouple
US20150276498A1 (en) * 2014-03-27 2015-10-01 Rockwell Automation Technologies, Inc. Thermocouple module with wire resistance compensation
CN104155024B (zh) * 2014-08-14 2016-10-26 厦门市计量检定测试院 超低功耗高精度标准数字温度计稳定电路及误差校正方法
EP3070446B1 (fr) * 2015-03-18 2019-02-13 ENDRESS + HAUSER WETZER GmbH + Co. KG Circuit et méthode de test de câbles thermique
US10330767B2 (en) * 2015-11-25 2019-06-25 Texas Instruments Incorporated Calibrated measurement system and method
CN106483381B (zh) * 2016-10-10 2019-03-19 东南大学 超高绝缘电阻测量仪用附加误差电流非对称补偿装置及方法

Also Published As

Publication number Publication date
CN109781308B (zh) 2022-11-04
JP7034889B2 (ja) 2022-03-14
JP2019090799A (ja) 2019-06-13
US11193835B2 (en) 2021-12-07
US20190145836A1 (en) 2019-05-16
EP3486627A1 (fr) 2019-05-22
CN109781308A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
US5481199A (en) System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages
US20160077135A1 (en) Shunt current measurement with temperature compensation
US20220413526A1 (en) High voltage measurement system and calibration method
WO2010089646A2 (fr) Procédés et systèmes de mesures de température à température corrigée
JP2001194394A (ja) 導体を流れる電流を測定するための装置
EP3486627B1 (fr) Compensation d'erreurs pour capteurs gainés
JPH02136754A (ja) 微小電気信号を測定する方法と装置
EP3179257B1 (fr) Mesure de courant précise pour technique de hachage pour circuit d'attaque de puissance élevée
US4448078A (en) Three-wire static strain gage apparatus
KR102111557B1 (ko) 전류 측정 장치 및 그 동작 방법
US11143560B2 (en) Electronic circuit for driving a thermocouple element, temperature sensing device, and method for observing a leakage resistance of the thermocouple element
WO2020172245A1 (fr) Appareil et procédé de compensation de sortie de capteur magnétique sur la base de la température ambiante
Kochan et al. Ad-hoc temperature measurements using a thermistor
JP3216171B2 (ja) Ic試験装置の較正方法
EP3644080B1 (fr) Circuit de capteur à compensation de décalage
US9470580B2 (en) Infrared sensor
US4431306A (en) Method and apparatus for precision control of radiometer
Tadros et al. Improved system for the automatic calibration of standard resistors in the meg-ohm range
CN108195481A (zh) 一种带自诊断功能的菌种发酵温度测量装置及方法
JP2019090799A5 (fr)
EP4019984B1 (fr) Circuit de compensation de température dans une mesure de tension
US10024728B2 (en) Circuit and arrangement for 3-wire measurements with input protection
WO2024008353A1 (fr) Capteur électronique invariant à la dérive et procédé correspondant
Lewandowska et al. Digitally Controlled Thermoelectric Ammeter
SU679884A1 (ru) Устройство дл измерени физических величин

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191122

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017059834

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1507353

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221128

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221027

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1507353

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017059834

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20230502

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221115

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231020

Year of fee payment: 7

Ref country code: DE

Payment date: 20231019

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727