EP3483391B1 - Turbine blade of a turbine blade crown - Google Patents

Turbine blade of a turbine blade crown Download PDF

Info

Publication number
EP3483391B1
EP3483391B1 EP18204562.5A EP18204562A EP3483391B1 EP 3483391 B1 EP3483391 B1 EP 3483391B1 EP 18204562 A EP18204562 A EP 18204562A EP 3483391 B1 EP3483391 B1 EP 3483391B1
Authority
EP
European Patent Office
Prior art keywords
cooling air
cross
turbine blade
sectional area
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18204562.5A
Other languages
German (de)
French (fr)
Other versions
EP3483391A1 (en
Inventor
Jerrit Daehnert
Josu Guridi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP3483391A1 publication Critical patent/EP3483391A1/en
Application granted granted Critical
Publication of EP3483391B1 publication Critical patent/EP3483391B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/145Means for influencing boundary layers or secondary circulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction

Definitions

  • the invention relates to a turbine blade of a turbine rotor blade ring according to the preamble of patent claim 1.
  • the EP 1 688 587 A2 describes a generic turbine blade in which a cooling air channel is formed in the blade root, which transports cooling air into the turbine blade.
  • a turbine blade is known in which a cooling air channel for cooling air is formed in the blade root, which is symmetrical towards the pressure side and the suction side and thereby expands to a maximum.
  • the cooling medium is deflected on both sides.
  • the US 2010/290920 A1 describes a turbine blade that forms a cooling air duct in the area of the blade root.
  • the cooling air duct has a first, widening section and a second, narrowing section, the cooling medium in the second section being accelerated with a directional component in the direction of the suction side of the turbine blade.
  • the first section of the cooling air duct is symmetrical.
  • the object of the present invention is to provide a turbine blade in which a cooling medium enables improved cooling.
  • a cooling air duct of a turbine blade has a course in at least one section such that its cross-sectional area increases in the flow direction of the cooling medium in a first, widening section to a maximum, then decreases again in a second, narrowing section behind the maximum, and the cooling medium in the second, narrowing section with a directional component in the direction of the suction side the turbine blade is accelerated. It is provided that the cooling air duct forms a bulge in the direction of the pressure side in the region of the maximum, the cooling medium being deflected in the direction of the pressure side in the first section and in the direction of the suction side in the second section.
  • the present invention is based on the idea of first decelerating the cooling medium in the first, widening section and then accelerating it in the second, narrowing section, thereby shaping the cooling air duct in such a way that the cooling medium during acceleration, which is in itself experiences narrowing second section, is deflected towards the suction side of the turbine disc.
  • the effect of the Coriolis force which accelerates the cooling medium during the rotation of the turbine blade in the direction of the pressure side, is at least partially compensated.
  • the cooling medium can flow in an improved manner in the cooling air duct, although the heat transfer over all walls of the cooling air duct is evened out. The result is a more homogeneous temperature distribution and improved cooling of the turbine blade.
  • the more homogeneous temperature distribution also reduces thermally induced stresses in the material of the turbine disk.
  • the cooling air duct is shaped such that it forms a bulge in the direction of the pressure side in the area of the maximum, i.e. bulges only in the direction of the pressure side or more in the direction of the pressure side than in the direction of the suction side.
  • This shape of the first section has the effect that the cooling medium can be guided in the direction of the pressure side in the first section and can thereby be accelerated or deflected effectively in the direction of the suction side in the second section.
  • the invention leads to a bulge of the cooling air duct, which is caused by the widening and narrowing sections.
  • the present invention is described with reference to a cylindrical coordinate system which has the coordinates x, r and ⁇ .
  • X indicates the axial direction, r the radial direction and ⁇ the angle in the circumferential direction.
  • the axial direction is generally identical to the machine axis of a gas turbine or a turbofan engine in which the invention is implemented. Starting from the x-axis, the radial direction points radially outwards.
  • Terms such as “in front”, “behind”, “front” and “rear” refer to the axial direction or the flow direction in the gas turbine or the cooling air duct described here. The designation “before” thus means “upstream” and the designation “behind” means “downstream”. Terms such as “outer” or “inner” refer to the radial direction.
  • the geometric course of a cooling air duct is expediently described here via its center line, which represents the connecting line of all geometric centers (centroids) of the cross-sectional areas of the cooling air duct.
  • a cross-sectional area of the cooling air duct that is representative of the flow is defined such that the center line of the cooling air duct always penetrates the plane of the cross-sectional area perpendicularly.
  • the normal vector of such a cross-sectional area corresponds to the tangent vector to the center line in the geometric center (center of area) of the respective cross-sectional area.
  • the cooling air duct has a first cross-sectional area A1 at the beginning of the widening partial section, a second cross-sectional area A2 at the end of the narrowing partial section and a third cross-sectional area A3 at the maximum.
  • the relationship between the first cross-sectional area A1 and the third cross-sectional area A3 is: 1 ⁇ A3 / A1 5. 5.
  • the ratio of the maximum cross-sectional area to the cross-sectional area at the beginning of the first section should therefore be less than or equal to 5.
  • the cross-sectional area should increase in the first partial area by a maximum of a factor of 5 in order to avoid an excessive delay in the flow of the cooling air medium.
  • a further embodiment of the invention provides that the following applies to the ratio of first cross-sectional area A1, second cross-sectional area A2 and third cross-sectional area A3: A1 ⁇ A2 ⁇ A3. Mathematically this can also be expressed by the relationship: A3 / A1> A3 / A2.
  • the (second) cross-sectional area at the end of the second, tapering partial area is therefore larger than the (first) cross-sectional area at the beginning of the first, widening partial area. Both of these cross sections are smaller than that maximum cross-section at the transition from the first section to the second section. It should be noted that the cooling medium in the second section also experiences an acceleration and direction component in the direction of the suction side of the turbine blade.
  • a further embodiment of the invention provides that the cooling air duct does not exceed a maximum degree of divergence over the first, widening partial section. Similar to an opening angle definition for diffusers, the increase in the cross-sectional area of the cooling air duct in the first section is expediently related to the length of the flow path in the same, so that this ratio describes the degree of divergence in the first section. For the purposes of the present invention, this ratio is defined as A 3rd - A 1 2nd s ⁇ 6 .
  • size s describes the length of the cooling air duct along its center line in the first section and sizes A1 and A3 already mentioned the cross-sectional areas of the cooling air duct at the beginning and at the end of the first section.
  • the ratio thus defined which indicates the degree of divergence in the widening subsection, is thus a maximum of 6.
  • the ratio mentioned is in the range between 1.25 and 6 and in particular in the range between 1.25 and 2: 1.25 ⁇ A 3rd - A 1 2nd s ⁇ 2nd .
  • the design of the cooling air duct can be rotationally symmetrical or rotationally asymmetrical with respect to its center line.
  • cooling air duct has a rotational asymmetry with respect to its center line in the region of the first section, that is to say the duct widening has a preferred direction.
  • the expansion of the cooling air duct takes place solely or more strongly in the direction of the pressure side of the blading.
  • the divergence in the first section in the direction of the pressure side of the blade is greater than the divergence in the direction of the suction side.
  • the cooling air duct bulges out in the direction of the pressure side.
  • the cooling medium in the second section can be accelerated more effectively in the direction of the suction side.
  • a divergence in the first section which is greater in the direction of the pressure side of the blade than in the direction of the suction side, is associated with the fact that the center line of the cooling air duct in the first section has a directional component in the direction of the pressure side of the turbine blade or is inclined in the direction of the pressure side.
  • a further embodiment of the invention provides that the cooling air duct in the narrowing section has a deflection angle ⁇ that is smaller than 175 ° and is, for example, in the range between 110 ° and 170 °, in particular in the range between 140 ° and 170 °.
  • the deflection angle indicates the degree of deflection of the cooling air duct in the second section. More precisely, ⁇ is defined as the angle that lies between the two vectors A 3 A 1 and A 3 A 2 spans. Both vectors describe the direct connection line between the geometric centers (centroids) of the cross-sectional areas A3 and A2 or A3 and A1. This definition thus indicates the mean deflection angle of the cooling air duct over both sections, in the direction of the suction side.
  • the invention further provides that to accelerate the cooling medium in the second, narrowing section with a directional component in the direction of the suction side of the turbine blade, the cooling air duct is shaped such that the center line of the cooling air duct in the narrowing section is a directional component in the direction of the suction side of the Has turbine blade.
  • the first, widening section according to the invention is shaped such that the center line of the cooling air duct in the first section has a directional component in the direction of the pressure side of the turbine blade.
  • a beginning of a first, widening partial section is to exist if the cooling air duct upstream of such a beginning has a constant cross-sectional area profile, a convergent profile or a divergent profile that is so slight that the cross-sectional area along the The center line of the cooling air duct upstream of the considered beginning of the first section was only slightly enlarged.
  • the degree of divergence of the cooling air duct ⁇ A 2nd s is less than 1.25, so 1.25 > ⁇ A 2nd s applies.
  • the cooling air duct under consideration can basically have an embodiment according to the invention at any point in the turbine blade for accelerating the cooling medium in the direction of the suction side.
  • Such an embodiment is particularly effectively provided in a section of the cooling air duct in which the cooling medium primarily moves in the radial direction and before the cooling air duct branches into a plurality of smaller cooling ducts.
  • an embodiment of the invention provides that the turbine blade has a blade root which is provided and suitable for being arranged in a blade root receptacle of a turbine disk, the first widening section and the second narrowing section being formed in a section of the cooling air duct , which is arranged in the blade root.
  • a further embodiment of the invention provides that the cross-sectional area of the second, narrowing subsection decreases successively behind the maximum and without a jump.
  • a method for transporting a cooling medium in a turbine blade of a turbine blade ring provides that the cooling medium is decelerated in a first section of the cooling air duct and then accelerated in a subsequent second section with a directional component in the direction of the suction side of the turbine blade.
  • the cooling medium is guided such that it first experiences a directional component in the direction of the pressure side in the first section and a directional component in the direction of the suction side in the second section and is thus diverted in the direction of the suction side.
  • the Figure 1 schematically shows a turbofan engine 100, which has a fan stage with a fan 10 as a low-pressure compressor, a medium-pressure compressor 20, a high-pressure compressor 30, a combustion chamber 40, a high-pressure turbine 50, a medium-pressure turbine 60 and a low-pressure turbine 70.
  • the medium pressure compressor 20 and the high pressure compressor 30 each have a plurality of compressor stages, each comprising a rotor stage and a stator stage.
  • the turbofan engine 100 of the Figure 1 furthermore has three separate shafts, a low-pressure shaft 81, which connects the low-pressure turbine 70 to the fan 10, a medium-pressure shaft 82, which connects the medium-pressure turbine 60 to the medium-pressure compressor 20, and a high-pressure shaft 83, which connects the high-pressure turbine 50 to the high-pressure compressor 30.
  • this is only to be understood as an example.
  • the turbofan engine has no medium pressure compressor and no medium pressure turbine, only a low pressure shaft and a high pressure shaft are present.
  • the turbofan engine 100 has an engine nacelle 1, which comprises an inlet lip 14 and forms an engine inlet 11 on the inside, which supplies inflowing air to the fan 10.
  • the fan 10 has a plurality of fan blades 101, which are connected to a fan disk 102.
  • the annulus of the fan disk 102 forms the radially inner boundary of the flow path through the fan 10. Radially outside, the flow path is delimited by a fan housing 2.
  • a nose cone 103 is arranged upstream of the fan disk 102.
  • the turbofan engine 100 forms a secondary flow channel 4 and a primary flow channel 5.
  • the primary flow duct 5 leads through the core engine (gas turbine), which comprises the medium-pressure compressor 20, the high-pressure compressor 30, the combustion chamber 40, the high-pressure turbine 50, the medium-pressure turbine 60 and the low-pressure turbine 70.
  • the medium-pressure compressor 20 and the high-pressure compressor 30 are surrounded by a circumferential housing 29 that forms an annular space on the inside that delimits the primary flow channel 5 radially on the outside. Radially on the inside, the primary flow duct 5 is delimited by corresponding ring surfaces of the rotors and stators of the respective compressor stages or by the hub or elements of the corresponding drive shaft connected to the hub.
  • a primary flow flows through the primary flow duct 5, which is also referred to as the main flow duct.
  • the secondary flow duct 4 also referred to as a bypass duct or bypass duct, directs air sucked in by the fan 10 past the core engine during operation of the turbofan engine 100.
  • the components described have a common axis of rotation or machine 90.
  • the axis of rotation 90 defines an axial direction of the turbofan engine.
  • a radial direction of the turbofan engine is perpendicular to the axial direction.
  • the configuration of the turbine blades, in particular the turbine blades of the high-pressure turbine 50, is important in the context of the present invention. However, the principles of the present invention are also applicable to turbine blades of other turbine stages.
  • the turbine blades considered in the context of the invention are part of a rotor blade arrangement which comprises a turbine disk and a turbine rotor blade ring with turbine rotor blades.
  • the turbine blades are referred to as turbine blades in the context of this description.
  • the turbine disk For fastening the turbine blades at an equidistant distance on the circumference of the turbine disk, the turbine disk has a plurality of blade root receptacles on its periphery, each of which serves to receive a blade root of a moving blade. It can be provided that the blade feet are designed as so-called "fir tree feet".
  • the blade root receptacles are designed in a corresponding manner.
  • the Turbine disk has channels which serve to provide cooling air for cooling the turbine blades.
  • the Figure 2 shows an exemplary embodiment of a negative model of a turbine blade.
  • the hollows of the turbine blade are shown in the negative model.
  • These form a system 15 of cooling air channels, which serve to cool the turbine blade.
  • the system 15 of cooling air ducts comprises two inlet cooling air ducts 16, 17, both of which extend in the blade root of the turbine blade.
  • the input cooling air channels 16, 17 form a bulge 7 in which the cross-sectional area of the input cooling air channels 16, 17 has a maximum.
  • the one input channel 16 extends as a cooling air channel 161 adjacent to the front edge of the turbine blade.
  • the other input duct 17 forms a cooling air duct with three serpentine-like sections 171, 172, 173 in the direction of flow behind the bulge 7, which run essentially in the radial direction and are connected to one another by curved regions.
  • the Figure 2 is only to be understood as an example.
  • the exact shape and number of cooling air channels and the type of cooling are not important for the present invention.
  • film cooling and / or cooling by convection can take place.
  • Only the bulge 7 formed in the inlet cooling air channels 16, 17 is of importance for the present invention.
  • the cooling air channels basically have any cross-sectional shape, for example circular, elliptical or rectangular.
  • the Figures 3 and 4th show a turbine blade 200 that includes a system 15 of cooling air ducts corresponding to FIG Figure 2 having. This is in the Figures 3 and 4th indicated by a transparent representation of the turbine blade.
  • the turbine blade 200 is in the Figure 3 in a view from the front, ie in a view in the axial direction shown on the front edge of the blade.
  • the turbine blade 200 is in the Figure 4 shown in a side view of the print page.
  • the turbine blade 200 comprises a blade root 21 and an airfoil 22.
  • the blade root 21 is provided to be arranged in a blade root receptacle of a turbine blade. For example, it has a fir tree profile 23.
  • the airfoil 22 includes a suction side 24, a pressure side 25, a front edge 26, a rear edge 27, a blade tip 28.
  • the airfoil 22 projects into the primary flow channel of the turbofan engine.
  • the circumferential direction ⁇ is perpendicular to x and r.
  • the axial direction x can be identical to the machine axis of a gas turbine in which the invention is implemented, but can also deviate therefrom (for example if the rotor blades are inserted into the blade root receptacles at an angle to the machine axis).
  • the input cooling air channels 16, 17 and the cooling air channels 161, 171, 172, 173 extend essentially in the radial direction.
  • the in the Figure 2 shown and in the Figure 3 Recognizable bulge 7 extends in the direction of the pressure side 25 of the turbine blade 200.
  • the Figure 5 shows an enlarged view in a perspective view obliquely from the front of the blade root 21, in which the inlet cooling air channels 16, 17 are formed.
  • the illustration ends at a sectional area A, which forms a cross-sectional area of the blade root 21 perpendicular to the radial direction r.
  • the shape of the one input cooling air duct 16 is schematically ( Figure 6 ) and on the other hand using an exemplary embodiment ( Figures 7-10 ) explained by way of example.
  • the statements apply in a corresponding manner to the further input cooling air duct 17 in FIG Figures 3-5 , It is not imperative that both inlet cooling air ducts 16, 17 have a shape according to the invention.
  • the turbine blade 200 does not necessarily have to have a plurality of inlet cooling air ducts 16, 17. In alternative configurations of the invention, only one input cooling air duct is provided, which is then designed as described below.
  • the Figure 6 is a three-dimensional representation of an input cooling air duct 16 (hereinafter referred to as cooling air duct 16).
  • the cooling air duct 16 comprises a first, widening section 3, in which the cross-sectional area of the cooling air channel 16 increases in the flow direction of the cooling medium from a cross-sectional area A1 at the beginning of the widening section 3 to a maximum A3.
  • the first, widening section 3 is followed by a second, narrowing section 6, in which the cross-sectional area is reduced from the maximum cross-sectional area A3 to a cross-sectional area A2 at the end of the narrowing section 6.
  • the wall of this subsection is formed towards the pressure side 25 by a wall contour 31 and towards the suction side 24 through a wall contour 32.
  • the wall of this subsection is formed towards the pressure side 25 by a wall contour 61 and towards the suction side 24 through a wall contour 62.
  • the changing cross sections of the cooling air duct 16 lead to a delay in the flow rate of the cooling medium in the widening section 3 and to an acceleration of the flow rate of the cooling medium in the tapering section 6.
  • the cooling air duct 16 is further shaped in the sections 3, 6 under consideration such that the cooling medium in the second, narrowing subsection 6 is accelerated with a directional component in the direction of the suction side of the turbine blade. This acceleration of the cooling medium counteracts an acceleration of the cooling medium due to the Coriolis force. In this way, in a cross-sectional plane under consideration, the heat transfer is homogenized on all wall areas of the cooling air duct.
  • the cooling air channel 16 forms the bulge 7 on the pressure side, the cooling medium being deflected in the first partial area 3 in the direction of the pressure side and in the second partial area 6 in the direction of the suction side.
  • the exact shape is as follows.
  • the cross-sectional area A1 is the cross-sectional area at the beginning of the first subarea 3. Starting from this, the cross-sectional area of the cooling air duct increases rotationally asymmetrically with respect to its center line in the direction of the pressure side.
  • the geometric course of the cooling air duct 16 is described over its center line, which is the connecting line of all represents geometric centers (ie centroids) of the cross-sectional areas of the cooling air duct.
  • a cross-sectional area of the cooling air duct 16 that is representative of the cooling air flow is defined such that the center line of the cooling air duct 16 always penetrates the plane of the cross-sectional area perpendicularly. In other words, the normal vector of such a cross-sectional area corresponds to the tangent vector to the center line in the geometric center (center of area) of the respective cross-sectional area.
  • the cross-sectional expansion can be rotationally symmetrical or alternatively rotationally asymmetrical with respect to the center line of the cooling air duct.
  • the rotationally asymmetrical channel widening which is initially accompanied by a routing of the cooling air channel 16 in the direction of the pressure side, leads to an increase in the structurally feasible deflection angle ⁇ in the second partial area 6.
  • the degree of divergence of the expanding cooling air duct 16 should not exceed a maximum degree of divergence. Similar to an opening angle definition for diffusers, the maximum increase in the cross-sectional area of the cooling air duct 16 in the first subsection 3 is expediently related to the length of the flow path in the same, so that this ratio describes the degree of divergence in the first subsection 3. For the purposes of the present invention, this maximum ratio is defined as A 3rd - A 1 2nd s ⁇ 6 .
  • the size s describes the length of the cooling air duct along its center line in the first subsection 3 and the sizes A1 and A3 already mentioned the cross-sectional areas of the cooling air duct 16 at the beginning and respectively at the end of the first subsection 3.
  • the ratio is between 1.25 and 2.
  • the cross-sectional area ratio A3 / A1 is in the range between 1 and 5, for example between 2 and 4.
  • the cross-sectional area A3 at the transition between the first partial area 3 and the second partial area 6 represents the maximum cross-sectional area. Starting from this maximum, the cooling air duct 16 tapers in the second partial area 6.
  • the convergence of the cooling air duct in the second partial area 6 is defined by the ratio A3 / A2. It is provided that this ratio is less than the ratio A3 / A1, in other words A1 is less than A2 and A2 is less than A3: A 1 ⁇ A 2nd ⁇ A 3rd .
  • the shape of the convergence in the second partial region 6 is determined, inter alia, by the convergence or deflection angle ⁇ .
  • This is the angle ⁇ is defined as the angle that lies between the two vectors A 3 A 1 and A 3 A 2 spans. Both vectors describe the direct connection line between the geometric centers (centroids) 310, 210 and 110 of the cross-sectional areas A3 and A2 or A3 and A1.
  • the definition thus specifies the mean deflection angle of the cooling air duct over both subsections 3, 6, in the direction of the suction side.
  • the deflection angle ⁇ is a maximum of 175 °. It is, for example, in the range between 110 ° and 170 °, in particular in the range between 140 ° and 170 °.
  • cross-sectional area mentioned here is defined by a normal vector which corresponds to the tangent vector to the center line in the geometric center (center of area) of the cross-sectional area.
  • the first, widening section 3 is shaped such that the vector A 1 A 3 or the center line of the cooling air duct in the first subsection 3, which is at least approximately the vector A 1 A 3 corresponds to, due to the bulge 7, which extends in the direction of the pressure side 25, has a directional component towards the cross-sectional area A3 in the direction of the pressure side 25 and does not run exactly radially.
  • the Figure 7 shows an example of an embodiment of a cooling air duct 16, which corresponds to the Figure 6 shaped and formed in the blade root 21 of a turbine blade 200.
  • the Figures 8, 9 and 10 show cross sections perpendicular to the radial direction of the blade root 21 at the height of the cross section A2 ( Figure 8 ), of cross section A3 ( Figure 9 ) and cross section A1 ( Figure 10 ).
  • the Figure 7 shows the first diverging section 3 with the wall contours 31, 32, the second converging wall section 6 with the wall contours 61, 62 and the three cross-sectional areas A1, A3, and A2.
  • the bulge 7 extends in the direction of the pressure side 25.
  • the cooling air duct 16 is approximately circular in the area of the cross-sectional area A1 (rotationally symmetrical with respect to the center line). Wall areas that extend in the direction of the pressure side or suction side are not provided. According to the Figure 9 the cooling air duct 16 is no longer circular in the area of the cross-sectional area A3 (but rotationally asymmetrical with respect to the center line). Rather, the wall areas 31, 32 designed as described lead according to FIG Figure 7 to a greater extent in the circumferential direction (between the pressure side and the suction side) than in the axial direction. The same applies according to the Figure 8 for the cooling air duct 16 in the area of the cross-sectional area A2, wherein the inclined wall area 62 can be seen in the top view shown from above.

Description

Die Erfindung betrifft eine Turbinenschaufel eines Turbinen-Laufschaufelkranzes gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a turbine blade of a turbine rotor blade ring according to the preamble of patent claim 1.

Es ist bekannt, die Turbinenschaufeln einer Gasturbine zu kühlen. Zur Kühlung der Turbinenschaufeln weisen diese interne Kühlluftkanäle auf, die mit Luft beaufschlagt werden. Dabei wirkt im Betrieb der Gasturbine auf das Kühlmedium die Corioliskraft. Da eine Turbinenschaufel eine Drehrichtung in Richtung der Saugseite aufweist, wird das Kühlmedium durch die Corioliskraft in Richtung der Druckseite abgelenkt. Dies führt dazu, dass das Kühlmedium unterschiedliche Wandbereiche des Kühlluftkanals in unterschiedlichem Maße kühlt. Die damit einhergehende Inhomogenität der Kühlung reduziert deren Effektivität und kann thermische Spannungen im Material induzieren.It is known to cool the turbine blades of a gas turbine. In order to cool the turbine blades, they have internal cooling air channels which are acted upon by air. The Coriolis force acts on the cooling medium during operation of the gas turbine. Since a turbine blade has a direction of rotation in the direction of the suction side, the cooling medium is deflected by the Coriolis force in the direction of the pressure side. This means that the cooling medium cools different wall areas of the cooling air duct to different degrees. The associated inhomogeneity of the cooling reduces its effectiveness and can induce thermal stresses in the material.

Die EP 1 688 587 A2 beschreibt eine gattungsgemäße Turbinenschaufel, bei der im Schaufelfuß ein Kühlluftkanal ausgebildet ist, der Kühlluft in die Turbinenschaufel transportiert.The EP 1 688 587 A2 describes a generic turbine blade in which a cooling air channel is formed in the blade root, which transports cooling air into the turbine blade.

Aus der US 2007/020100 A1 ist eine Turbinenschaufel bekannt, bei der im Schaufelfuß ein Kühlluftkanal für Kühlluft ausgebildet ist, der zur Druckseite und zur Saugseite hin symmetrisch ausgebildet ist und sich dabei zu einem Maximum erweitert. Das Kühlmedium wird zu beiden Seiten abgelenkt.From the US 2007/020100 A1 A turbine blade is known in which a cooling air channel for cooling air is formed in the blade root, which is symmetrical towards the pressure side and the suction side and thereby expands to a maximum. The cooling medium is deflected on both sides.

Die US 2010/290920 A1 beschreibt eine Turbinenschaufel, die im Bereich des Schaufelfußes einen Kühlluftkanal ausbildet. Der Kühlluftkanal weist einen ersten, sich erweiternden Teilabschnitt und einen zweiten, sich verengenden Teilabschnitt auf, wobei das Kühlmedium in dem zweiten Teilabschnitt mit einer Richtungskomponente in Richtung der Saugseite der Turbinenschaufel beschleunigt wird. Der erste Teilabschnitt des Kühlluftkanals ist dabei symmetrisch ausgebildet.The US 2010/290920 A1 describes a turbine blade that forms a cooling air duct in the area of the blade root. The cooling air duct has a first, widening section and a second, narrowing section, the cooling medium in the second section being accelerated with a directional component in the direction of the suction side of the turbine blade. The first section of the cooling air duct is symmetrical.

Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, eine Turbinenschaufel bereitzustellen, in der ein Kühlmedium eine verbesserte Kühlung ermöglicht.The object of the present invention is to provide a turbine blade in which a cooling medium enables improved cooling.

Diese Aufgabe wird erfindungsgemäß durch eine Turbinenschaufel mit den Merkmalen des Anspruchs 1 gelöst. Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved according to the invention by a turbine blade with the features of claim 1. Embodiments of the invention are specified in the dependent claims.

Danach sieht die Erfindung vor, dass ein Kühlluftkanal einer Turbinenschaufel in mindestens einem Abschnitt einen Verlauf derart aufweist, dass seine Querschnittsfläche sich in Strömungsrichtung des Kühlmediums in einem ersten, sich erweiternden Teilabschnitt bis zu einem Maximum vergrößert, sich anschließend in einem zweiten, sich verengenden Teilabschnitt hinter dem Maximum wieder reduziert und dabei das Kühlmedium in dem zweiten, sich verengenden Teilabschnitt mit einer Richtungskomponente in Richtung der Saugseite der Turbinenschaufel beschleunigt wird. Dabei ist vorgesehen, dass der Kühlluftkanal im Bereich des Maximums eine Ausbuchtung in Richtung der Druckseite bildet, wobei das Kühlmedium in dem ersten Teilabschnitt in Richtung der Druckseite und in dem zweiten Teilabschnitt in Richtung der Saugseite abgelenkt wird.According to the invention, a cooling air duct of a turbine blade has a course in at least one section such that its cross-sectional area increases in the flow direction of the cooling medium in a first, widening section to a maximum, then decreases again in a second, narrowing section behind the maximum, and the cooling medium in the second, narrowing section with a directional component in the direction of the suction side the turbine blade is accelerated. It is provided that the cooling air duct forms a bulge in the direction of the pressure side in the region of the maximum, the cooling medium being deflected in the direction of the pressure side in the first section and in the direction of the suction side in the second section.

Die vorliegende Erfindung beruht auf dem Gedanken, das Kühlmedium in dem ersten, sich erweiternden Teilabschnitt erst zu verzögern und anschließend in dem zweiten, sich verengenden Teilabschnitt zu beschleunigen und dabei den Kühlluftkanal derart zu formen, dass das Kühlmedium bei der Beschleunigung, die es im sich verengenden zweiten Teilabschnitt erfährt, in Richtung der Saugseite der Turbinenscheibe abgelenkt wird. Hierdurch wird die Wirkung der Corioliskraft, die das Kühlmedium während der Rotation der Turbinenschaufel in Richtung der Druckseite beschleunigt, zumindest teilweise kompensiert. Das Kühlmedium kann dadurch verbessert im Kühlluftkanal strömen, wobei gleichwohl der Wärmeübergang über alle Wände des Kühlluftkanals vergleichmäßigt wird. Als Ergebnis liegt eine homogenere Temperaturverteilung und verbesserte Kühlung der Turbinenschaufel vor.The present invention is based on the idea of first decelerating the cooling medium in the first, widening section and then accelerating it in the second, narrowing section, thereby shaping the cooling air duct in such a way that the cooling medium during acceleration, which is in itself experiences narrowing second section, is deflected towards the suction side of the turbine disc. As a result, the effect of the Coriolis force, which accelerates the cooling medium during the rotation of the turbine blade in the direction of the pressure side, is at least partially compensated. As a result, the cooling medium can flow in an improved manner in the cooling air duct, although the heat transfer over all walls of the cooling air duct is evened out. The result is a more homogeneous temperature distribution and improved cooling of the turbine blade.

Durch die homogenere Temperaturverteilung werden darüber hinaus thermisch induzierte Spannungen im Material der Turbinenscheibe reduziert.The more homogeneous temperature distribution also reduces thermally induced stresses in the material of the turbine disk.

Zur Beschleunigung des Kühlmediums in dem zweiten, sich verengenden Teilabschnitt mit einer Richtungskomponente in Richtung der Saugseite der Turbinenschaufel ist der Kühlluftkanal dabei derart geformt, dass er im Bereich des Maximums eine Ausbuchtung in Richtung der Druckseite bildet, d.h. nur in Richtung der Druckseite oder stärker in Richtung der Druckseite als in Richtung der Saugseite ausgebuchtet ist. Diese Formgebung des ersten Teilabschnitts bewirkt, dass das Kühlmedium im ersten Teilabschnitt in Richtung der Druckseite geführt und dadurch im zweiten Teilabschnitt effektiv in Richtung der Saugseite beschleunigt bzw. abgelenkt werden kann.To accelerate the cooling medium in the second, narrowing section with a directional component in the direction of the suction side of the turbine blade, the cooling air duct is shaped such that it forms a bulge in the direction of the pressure side in the area of the maximum, i.e. bulges only in the direction of the pressure side or more in the direction of the pressure side than in the direction of the suction side. This shape of the first section has the effect that the cooling medium can be guided in the direction of the pressure side in the first section and can thereby be accelerated or deflected effectively in the direction of the suction side in the second section.

Die Erfindung führt zu einer Ausbuchtung des Kühlluftkanals, welche durch die sich erweiternden und verengenden Teilabschnitte entsteht.The invention leads to a bulge of the cooling air duct, which is caused by the widening and narrowing sections.

Die vorliegende Erfindung wird bezogen auf ein zylindrisches Koordinatensystem beschrieben, das die Koordinaten x, r und ϕ aufweist. Dabei gibt x die axiale Richtung, r die radiale Richtung und ϕ den Winkel in Umfangsrichtung an. Die axiale Richtung ist in der Regel identisch mit der Maschinenachse einer Gasturbine bzw. eines TurbofanTriebwerks, in der die Erfindung realisiert ist. Von der x-Achse ausgehend zeigt die radiale Richtung radial nach außen. Begriffe wie "vor", "hinter", "vordere" und "hintere" beziehen sich auf die axiale Richtung bzw. die Strömungsrichtung in der Gasturbine oder des hier beschriebenen Kühlluftkanals. Die Bezeichnung "vor" bedeutet somit "stromaufwärts" und die Bezeichnung "hinter" bedeutet "stromabwärts". Begriffe wie "äußere" oder "innere" beziehen sich auf die radiale Richtung.The present invention is described with reference to a cylindrical coordinate system which has the coordinates x, r and ϕ. X indicates the axial direction, r the radial direction and ϕ the angle in the circumferential direction. The axial direction is generally identical to the machine axis of a gas turbine or a turbofan engine in which the invention is implemented. Starting from the x-axis, the radial direction points radially outwards. Terms such as "in front", "behind", "front" and "rear" refer to the axial direction or the flow direction in the gas turbine or the cooling air duct described here. The designation "before" thus means "upstream" and the designation "behind" means "downstream". Terms such as "outer" or "inner" refer to the radial direction.

Der geometrische Verlauf eines Kühlluftkanals wird hierin zweckmäßigerweise über seine Mittellinie beschrieben, welche die Verbindungslinie aller geometrischen Mittelpunkte (Flächenschwerpunkte) der Querschnittsflächen des Kühlluftkanals darstellt. Eine für die Strömung repräsentative Querschnittsfläche des Kühlluftkanals ist dabei so definiert, dass die Mittellinie des Kühlluftkanals die Ebene der Querschnittsfläche stets senkrecht durchstößt. Mit anderen Worten entspricht also der Normalvektor einer solchen Querschnittsfläche dem Tangentenvektor an die Mittellinie im geometrischen Mittelpunkt (Flächenschwerpunkt) der jeweiligen Querschnittsfläche.The geometric course of a cooling air duct is expediently described here via its center line, which represents the connecting line of all geometric centers (centroids) of the cross-sectional areas of the cooling air duct. A cross-sectional area of the cooling air duct that is representative of the flow is defined such that the center line of the cooling air duct always penetrates the plane of the cross-sectional area perpendicularly. In other words, the normal vector of such a cross-sectional area corresponds to the tangent vector to the center line in the geometric center (center of area) of the respective cross-sectional area.

Der Kühlluftkanal weist am Anfang des sich erweiternden Teilabschnitts eine erste Querschnittsfläche A1, am Ende des sich verengenden Teilabschnitts eine zweite Querschnittsfläche A2 und am Maximum eine dritte Querschnittsfläche A3 auf.The cooling air duct has a first cross-sectional area A1 at the beginning of the widening partial section, a second cross-sectional area A2 at the end of the narrowing partial section and a third cross-sectional area A3 at the maximum.

Für das Verhältnis von erster Querschnittsfläche A1 und dritter Querschnittsfläche A3 gilt gemäß einer Ausgestaltung der Erfindung: 1 < A3/A1 ≤ 5. Das Verhältnis von maximaler Querschnittsfläche zur Querschnittsfläche am Anfang des ersten Teilabschnitts soll gemäß dieser Ausgestaltung der Erfindung somit kleinergleich 5 sein. Die Querschnittsfläche soll sich im ersten Teilbereich um maximal den Faktor 5 vergrößern, um eine zu starke Verzögerung der Strömung des Kühlluftmediums zu vermeiden.According to one embodiment of the invention, the relationship between the first cross-sectional area A1 and the third cross-sectional area A3 is: 1 <A3 / A1 5. 5. According to this embodiment of the invention, the ratio of the maximum cross-sectional area to the cross-sectional area at the beginning of the first section should therefore be less than or equal to 5. The cross-sectional area should increase in the first partial area by a maximum of a factor of 5 in order to avoid an excessive delay in the flow of the cooling air medium.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass für das Verhältnis von erster Querschnittsfläche A1, zweiter Querschnittsfläche A2 und dritter Querschnittsfläche A3 gilt: A1 < A2 < A3. Mathematisch kann dies auch durch die Beziehung ausgedrückt werden: A3/A1 > A3/A2. Die (zweite) Querschnittsfläche am Ende des zweiten, sich verjüngenden Teilbereichs ist also größer als die (erste) Querschnittsfläche am Anfang des ersten, sich erweiternden Teilbereichs. Beide diese Querschnitte sind kleiner als der maximale Querschnitt am Übergang vom ersten Teilbereich zum zweiten Teilbereich. Dabei ist zu beachten, dass das Kühlmedium im zweiten Teilabschnitt zusätzlich eine Beschleunigungs- und Richtungskomponente in Richtung der Saugseite der Turbinenschaufel erfährt.A further embodiment of the invention provides that the following applies to the ratio of first cross-sectional area A1, second cross-sectional area A2 and third cross-sectional area A3: A1 <A2 <A3. Mathematically this can also be expressed by the relationship: A3 / A1> A3 / A2. The (second) cross-sectional area at the end of the second, tapering partial area is therefore larger than the (first) cross-sectional area at the beginning of the first, widening partial area. Both of these cross sections are smaller than that maximum cross-section at the transition from the first section to the second section. It should be noted that the cooling medium in the second section also experiences an acceleration and direction component in the direction of the suction side of the turbine blade.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Kühlluftkanal über den ersten, sich erweiternden Teilabschnitt einen maximalen Grad an Divergenz nicht überschreitet. Ähnlich einer Öffnungswinkeldefinition für Diffusoren wird hier zweckmäßigerweise der Zuwachs der Querschnittsfläche des Kühlluftkanals im ersten Teilabschnitt auf die Länge des Strömungsweges in Selbigen bezogen, so dass dieses Verhältnis den Grad an Divergenz im ersten Teilabschnitt beschreibt. Dabei ist im Sinne der vorliegenden Erfindung dieses Verhältnis definiert als A 3 A 1 2 s 6 .

Figure imgb0001
A further embodiment of the invention provides that the cooling air duct does not exceed a maximum degree of divergence over the first, widening partial section. Similar to an opening angle definition for diffusers, the increase in the cross-sectional area of the cooling air duct in the first section is expediently related to the length of the flow path in the same, so that this ratio describes the degree of divergence in the first section. For the purposes of the present invention, this ratio is defined as A 3rd - A 1 2nd s 6 .
Figure imgb0001

Hierin beschreibt die Größe s die Länge des Kühlluftkanals entlang seiner Mittellinie im ersten Teilabschnitt und die bereits zuvor genannten Größen A1 und A3 die Querschnittsflächen des Kühlluftkanals zu Beginn und respektive zum Ende des ersten Teilabschnitts.Here, size s describes the length of the cooling air duct along its center line in the first section and sizes A1 and A3 already mentioned the cross-sectional areas of the cooling air duct at the beginning and at the end of the first section.

Das so definierte Verhältnis, das den Grad an Divergenz im sich erweiternden Teilabschnitt angibt, liegt somit bei maximal 6. Gemäß einer Ausgestaltung der Erfindung liegt das genannte Verhältnis im Bereich zwischen 1,25 und 6 und insbesondere im Bereich zwischen 1,25 und 2: 1,25 A 3 A 1 2 s 2 .

Figure imgb0002
The ratio thus defined, which indicates the degree of divergence in the widening subsection, is thus a maximum of 6. According to one embodiment of the invention, the ratio mentioned is in the range between 1.25 and 6 and in particular in the range between 1.25 and 2: 1.25 A 3rd - A 1 2nd s 2nd .
Figure imgb0002

Die Ausgestaltung des Kühlluftkanals kann rotationssymmetrisch oder rotations-asymmetrisch bezüglich seiner Mittellinie sein.The design of the cooling air duct can be rotationally symmetrical or rotationally asymmetrical with respect to its center line.

Eine Ausgestaltung der Erfindung sieht vor, dass der Kühlluftkanal im Bereich des ersten Teilabschnittes eine Rotations-Asymmetrie bezüglich seiner Mittellinie aufweist, die Kanalaufweitung also eine Vorzugsrichtung hat.One embodiment of the invention provides that the cooling air duct has a rotational asymmetry with respect to its center line in the region of the first section, that is to say the duct widening has a preferred direction.

Weiter kann vorgesehen sein, dass die Aufweitung des Kühlluftkanals alleinig oder stärker in Richtung der Druckseite der Beschaufelung erfolgt. Somit ist bei dieser Erfindungsvariante die Divergenz im ersten Teilabschnitt in Richtung der Druckseite der Schaufel größer als die Divergenz in Richtung der Saugseite. Die erfindungsgemäße Ausbuchtung des Kühlluftkanals erfolgt mit anderen Worten in Richtung der Druckseite. Hierdurch kann das Kühlmedium in zweiten Teilabschnitt effektiver in Richtung der Saugseite beschleunigt werden. Eine Divergenz im ersten Teilabschnitt, die in Richtung der Druckseite der Schaufel größer als in Richtung der Saugseite, geht damit einher, dass die Mittellinie des Kühlluftkanals im ersten Teilabschnitt eine Richtungskomponente in Richtung der Druckseite der Turbinenschaufel aufweist bzw. in Richtung der Druckseite geneigt ist.It can further be provided that the expansion of the cooling air duct takes place solely or more strongly in the direction of the pressure side of the blading. Thus, in this variant of the invention, the divergence in the first section in the direction of the pressure side of the blade is greater than the divergence in the direction of the suction side. The invention In other words, the cooling air duct bulges out in the direction of the pressure side. As a result, the cooling medium in the second section can be accelerated more effectively in the direction of the suction side. A divergence in the first section, which is greater in the direction of the pressure side of the blade than in the direction of the suction side, is associated with the fact that the center line of the cooling air duct in the first section has a directional component in the direction of the pressure side of the turbine blade or is inclined in the direction of the pressure side.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Kühlluftkanal im sich verengenden Teilabschnitt einen Umlenkwinkel δ aufweist, der kleiner als 175° ist und beispielsweise im Bereich zwischen 110° und 170°, insbesondere im Bereich zwischen 140° und 170° liegt. Der Umlenkwinkel gibt dabei den Grad an Umlenkung des Kühlluftkanals im zweiten Teilabschnitt an. Genauer ist δ als jener Winkel definiert, der sich zwischen den beiden Vektoren A3A1 und A3A2 aufspannt. Beide Vektoren beschreiben jeweils die direkt Verbindungslinie zwischen den geometrischen Mittelpunkten (Flächenschwerpunkten) der Querschnittsflächen A3 und A2 bzw. A3 und A1. Diese Definition gibt somit den mittleren Umlenkwinkel des Kühlluftkanals über beide Teilabschnitte, in Richtung der Saugseite an.A further embodiment of the invention provides that the cooling air duct in the narrowing section has a deflection angle δ that is smaller than 175 ° and is, for example, in the range between 110 ° and 170 °, in particular in the range between 140 ° and 170 °. The deflection angle indicates the degree of deflection of the cooling air duct in the second section. More precisely, δ is defined as the angle that lies between the two vectors A 3 A 1 and A 3 A 2 spans. Both vectors describe the direct connection line between the geometric centers (centroids) of the cross-sectional areas A3 and A2 or A3 and A1. This definition thus indicates the mean deflection angle of the cooling air duct over both sections, in the direction of the suction side.

Die Erfindung sieht ferner vor, dass zur Beschleunigung des Kühlmediums in dem zweiten, sich verengenden Teilabschnitt mit einer Richtungskomponente in Richtung der Saugseite der Turbinenschaufel der Kühlluftkanal derart geformt ist, dass die Mittellinie des Kühlluftkanals in dem sich verengenden Teilabschnitt eine Richtungskomponente in Richtung der Saugseite der Turbinenschaufel aufweist.The invention further provides that to accelerate the cooling medium in the second, narrowing section with a directional component in the direction of the suction side of the turbine blade, the cooling air duct is shaped such that the center line of the cooling air duct in the narrowing section is a directional component in the direction of the suction side of the Has turbine blade.

Dagegen ist der erste, sich erweiternde Teilabschnitt gemäß der Erfindung derart geformt, dass die Mittellinie des Kühlluftkanals im ersten Teilabschnitt eine Richtungskomponente in Richtung der Druckseite der Turbinenschaufel aufweist.In contrast, the first, widening section according to the invention is shaped such that the center line of the cooling air duct in the first section has a directional component in the direction of the pressure side of the turbine blade.

Ein Anfang eines ersten, sich erweiternden Teilabschnitts soll im Sinne der vorliegenden Erfindung dann vorliegen, wenn der Kühlluftkanal stromaufwärts eines solchen Anfangs einen konstanten Querschnittsflächenverlauf aufweist, einen konvergenten Verlauf aufweist oder einen divergenten Verlauf aufweist, der so geringfügig ist, dass sich die Querschnittsfläche entlang der Mittellinie des Kühlluftkanals stromaufwärts des betrachteten Anfangs des ersten Teilabschnitts nur geringfügig vergrößert. Eine nur geringfügige Vergrößerung im Sinne der vorliegenden Erfindung liegt dabei dann vor, wenn der Grad der Divergenz des Kühlluftkanals Δ A 2 s

Figure imgb0003
kleiner als 1.25 ist, also 1.25 > Δ A 2 s
Figure imgb0004
gilt. Mit anderen Worten, liegt eine geringfügige Vergrößerung dann vor, wenn in einem beliebig kleinen Längsabschnitt der Länge s die Querschnittsfläche um einen Betrag ΔA < (1.25 · s)2 zunimmt.According to the present invention, a beginning of a first, widening partial section is to exist if the cooling air duct upstream of such a beginning has a constant cross-sectional area profile, a convergent profile or a divergent profile that is so slight that the cross-sectional area along the The center line of the cooling air duct upstream of the considered beginning of the first section was only slightly enlarged. There is only a slight increase in the sense of the present invention if the degree of divergence of the cooling air duct Δ A 2nd s
Figure imgb0003
is less than 1.25, so 1.25 > Δ A 2nd s
Figure imgb0004
applies. In other words, there is a slight increase when the cross-sectional area increases by an amount Δ A <(1.25 · s ) 2 in an arbitrarily small longitudinal section of length s .

Der betrachtete Kühlluftkanal kann grundsätzlich an beliebiger Stelle in der Turbinenschaufel eine erfindungsgemäße Ausgestaltung zur Beschleunigung des Kühlmediums in Richtung der Saugseite aufweisen. In besonders effektiver Weise ist eine solche Ausgestaltung in einem Abschnitt des Kühlluftkanals vorgesehen, in dem das Kühlmedium sich primär in radialer Richtung bewegt und bevor sich der Kühlluftkanal in eine Vielzahl kleinerer Kühlkanäle verzweigt. Dementsprechend sieht eine Ausgestaltung der Erfindung vor, dass die Turbinenschaufel einen Schaufelfuß aufweist, der dazu vorgesehen und geeignet ist, in einer Schaufelfußaufnahme einer Turbinenscheibe angeordnet zu sein, wobei der erste sich erweiternde Teilabschnitt und der zweite sich verengenden Teilabschnitt in einem Abschnitt des Kühlluftkanals ausgebildet sind, der im Schaufelfuß angeordnet ist.The cooling air duct under consideration can basically have an embodiment according to the invention at any point in the turbine blade for accelerating the cooling medium in the direction of the suction side. Such an embodiment is particularly effectively provided in a section of the cooling air duct in which the cooling medium primarily moves in the radial direction and before the cooling air duct branches into a plurality of smaller cooling ducts. Accordingly, an embodiment of the invention provides that the turbine blade has a blade root which is provided and suitable for being arranged in a blade root receptacle of a turbine disk, the first widening section and the second narrowing section being formed in a section of the cooling air duct , which is arranged in the blade root.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Querschnittsfläche des zweiten, sich verengenden Teilabschnitts hinter dem Maximum sukzessive und ohne einen Sprung abnimmt.A further embodiment of the invention provides that the cross-sectional area of the second, narrowing subsection decreases successively behind the maximum and without a jump.

Ein Verfahren zum Transportieren eines Kühlmediums in einer Turbinenschaufel eines Turbinen-Laufschaufelkranzes sieht vor, dass das Kühlmedium in einem ersten Teilabschnitt des Kühlluftkanals verzögert und anschließend in einem sich daran anschließenden zweiten Teilabschnitt mit einer Richtungskomponente in Richtung der Saugseite der Turbinenschaufel beschleunigt wird.A method for transporting a cooling medium in a turbine blade of a turbine blade ring provides that the cooling medium is decelerated in a first section of the cooling air duct and then accelerated in a subsequent second section with a directional component in the direction of the suction side of the turbine blade.

Dabei wird das Kühlmedium derart geführt, dass es in dem ersten Teilabschnitt zunächst eine Richtungskomponente in Richtung der Druckseite und im zweiten Teilabschnitt eine Richtungskomponente in Richtung der Saugseite erfährt und somit in Richtung der Saugseite umgeleitet wird. Durch das Führen des Kühlmediums zunächst in Richtung der Druckseite wird eine Umleitung in Richtung der Saugseite im zweiten Teilbereich erleichtert.The cooling medium is guided such that it first experiences a directional component in the direction of the pressure side in the first section and a directional component in the direction of the suction side in the second section and is thus diverted in the direction of the suction side. By guiding the cooling medium initially in the direction of the pressure side, a diversion in the direction of the suction side in the second partial area is facilitated.

Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren der Zeichnung anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen:

Figur 1
eine vereinfachte schematische Schnittdarstellung eines Turbofantriebwerks, in dem die vorliegende Erfindung realisierbar ist;
Figur 2
ein Negativmodell einer Turbinenschaufel unter Darstellung der in der Turbinenschaufel realisierten Kühlluftkanäle;
Figur 3
die Außenkonturen einer Turbinenschaufel in einer Ansicht von vorne unter zusätzlicher Darstellung der Kühlluftkanäle gemäß der Figur 2;
Figur 4
die Turbinenschaufel der Figur 3 in einer Seitenansicht auf die Druckseite;
Figur 5
den Schaufelfuß der Turbinenschaufel der Figuren 3 und 4 in einer Ansicht schräg von vorne;
Figur 6
schematisch den Verlauf eines im Schaufelfuß ausgebildeten Kühlluftkanals, dessen Querschnittsfläche sich in Strömungsrichtung des Kühlmediums in einem ersten Teilabschnitt vergrößert und anschließend in einem zweiten Teilabschnitt reduziert, wobei das Kühlmedium in Richtung der Saugseite der Turbinenschaufel beschleunigt wird;
Figur 7
eine Querschnittsansicht eines Schaufelfußes gemäß der Figur 5 in einer Ebene senkrecht zur axialen Richtung, wobei der Schaufelfuß einen Kühlluftkanals ausbildet, dessen Querschnittsfläche sich entsprechend der Figur 6 in Strömungsrichtung des Kühlmediums in einem ersten Teilabschnitt vergrößert und in einem zweiten Teilabschnitt reduziert;
Figur 8
eine Querschnittsansicht des Schaufelfußes der Figur 7 in einer Ebene senkrecht zur radialen Richtung in einer radialen Höhe, die dem Ende des zweiten Teilabschnitts entspricht;
Figur 9
eine Querschnittsansicht des Schaufelfußes der Figur 7 in einer Ebene senkrecht zur radialen Richtung in einer radialen Höhe, die dem Ende des ersten Teilabschnitts entspricht; und
Figur 10
eine Querschnittsansicht des Schaufelfußes der Figur 7 in einer Ebene senkrecht zur radialen Richtung in einer radialen Höhe, die dem Anfang des ersten Teilabschnitts entspricht.
The invention is explained in more detail below with reference to the figures of the drawing using several exemplary embodiments. Show it:
Figure 1
a simplified schematic sectional view of a turbofan engine in which the present invention can be implemented;
Figure 2
a negative model of a turbine blade showing the cooling air channels realized in the turbine blade;
Figure 3
the outer contours of a turbine blade in a view from the front with additional representation of the cooling air channels according to the Figure 2 ;
Figure 4
the turbine blade of the Figure 3 in a side view of the print page;
Figure 5
the blade root of the turbine blade of the Figures 3 and 4th in an oblique view from the front;
Figure 6
schematically the course of a cooling air duct formed in the blade root, the cross-sectional area of which increases in the flow direction of the cooling medium in a first partial section and then reduces in a second partial section, the cooling medium being accelerated in the direction of the suction side of the turbine blade;
Figure 7
a cross-sectional view of a blade root according to the Figure 5 in a plane perpendicular to the axial direction, the blade root forming a cooling air duct, the cross-sectional area of which corresponds to the Figure 6 enlarged in the flow direction of the cooling medium in a first section and reduced in a second section;
Figure 8
a cross-sectional view of the blade root of the Figure 7 in a plane perpendicular to the radial direction at a radial height corresponding to the end of the second section;
Figure 9
a cross-sectional view of the blade root of the Figure 7 in a plane perpendicular to the radial direction at a radial height corresponding to the end of the first section; and
Figure 10
a cross-sectional view of the blade root of the Figure 7 in a plane perpendicular to the radial direction at a radial height which corresponds to the beginning of the first section.

Die Figur 1 zeigt schematisch ein Turbofantriebwerk 100, das eine Fanstufe mit einem Fan 10 als Niederdruckverdichter, einen Mitteldruckverdichter 20, einen Hochdruckverdichter 30, eine Brennkammer 40, eine Hochdruckturbine 50, eine Mitteldruckturbine 60 und eine Niederdruckturbine 70 aufweist.The Figure 1 schematically shows a turbofan engine 100, which has a fan stage with a fan 10 as a low-pressure compressor, a medium-pressure compressor 20, a high-pressure compressor 30, a combustion chamber 40, a high-pressure turbine 50, a medium-pressure turbine 60 and a low-pressure turbine 70.

Der Mitteldruckverdichter 20 und der Hochdruckverdichter 30 weisen jeweils eine Mehrzahl von Verdichterstufen auf, die jeweils eine Rotorstufe und eine Statorstufe umfassen. Das Turbofantriebwerk 100 der Figur 1 weist des Weiteren drei separate Wellen auf, eine Niederdruckwelle 81, die die Niederdruckturbine 70 mit dem Fan 10 verbindet, eine Mitteldruckwelle 82, die die Mitteldruckturbine 60 mit dem Mitteldruckverdichter 20 verbindet und eine Hochdruckwelle 83, die die Hochdruckturbine 50 mit dem Hochdruckverdichter 30 verbindet. Dies ist jedoch lediglich beispielhaft zu verstehen. Wenn das Turbofantriebwerk beispielsweise keinen Mitteldruckverdichter und keine Mitteldruckturbine besitzt, sind nur eine Niederdruckwelle und eine Hochdruckwelle vorhanden.The medium pressure compressor 20 and the high pressure compressor 30 each have a plurality of compressor stages, each comprising a rotor stage and a stator stage. The turbofan engine 100 of the Figure 1 furthermore has three separate shafts, a low-pressure shaft 81, which connects the low-pressure turbine 70 to the fan 10, a medium-pressure shaft 82, which connects the medium-pressure turbine 60 to the medium-pressure compressor 20, and a high-pressure shaft 83, which connects the high-pressure turbine 50 to the high-pressure compressor 30. However, this is only to be understood as an example. For example, if the turbofan engine has no medium pressure compressor and no medium pressure turbine, only a low pressure shaft and a high pressure shaft are present.

Das Turbofantriebwerk 100 weist eine Triebwerksgondel 1 auf, die eine Einlauflippe 14 umfasst und innenseitig einen Triebwerkseinlauf 11 ausbildet, der einströmende Luft dem Fan 10 zuführt. Der Fan 10 weist eine Mehrzahl von Fan-Schaufeln 101 auf, die mit einer Fan-Scheibe 102 verbunden sind. Der Annulus der Fan-Scheibe 102 bildet dabei die radial innere Begrenzung des Strömungspfads durch den Fan 10. Radial außen wird der Strömungspfad durch ein Fangehäuse 2 begrenzt. Stromaufwärts der Fan-Scheibe 102 ist ein Nasenkonus 103 angeordnet.The turbofan engine 100 has an engine nacelle 1, which comprises an inlet lip 14 and forms an engine inlet 11 on the inside, which supplies inflowing air to the fan 10. The fan 10 has a plurality of fan blades 101, which are connected to a fan disk 102. The annulus of the fan disk 102 forms the radially inner boundary of the flow path through the fan 10. Radially outside, the flow path is delimited by a fan housing 2. A nose cone 103 is arranged upstream of the fan disk 102.

Hinter dem Fan 10 bildet das Turbofantriebwerk 100 einen Sekundärstromkanal 4 und einen Primärstromkanal 5 aus. Der Primärstromkanal 5 führt durch das Kerntriebwerk (Gasturbine), das den Mitteldruckverdichter 20, den Hochdruckverdichter 30, die Brennkammer 40, die Hochdruckturbine 50, die Mitteldruckturbine 60 und die Niederdruckturbine 70 umfasst. Dabei sind der Mitteldruckverdichter 20 und der Hochdruckverdichter 30 von einem Umfangsgehäuse 29 umgeben, dass innenseitig eine Ringraumfläche bildet, die den Primärstromkanal 5 radial außen begrenzt. Radial innen ist der Primärstromkanal 5 durch entsprechende Kranzoberflächen der Rotoren und Statoren der jeweiligen Verdichterstufen bzw. durch die Nabe oder mit der Nabe verbundene Elemente der entsprechenden Antriebswelle begrenzt.Behind the fan 10, the turbofan engine 100 forms a secondary flow channel 4 and a primary flow channel 5. The primary flow duct 5 leads through the core engine (gas turbine), which comprises the medium-pressure compressor 20, the high-pressure compressor 30, the combustion chamber 40, the high-pressure turbine 50, the medium-pressure turbine 60 and the low-pressure turbine 70. The medium-pressure compressor 20 and the high-pressure compressor 30 are surrounded by a circumferential housing 29 that forms an annular space on the inside that delimits the primary flow channel 5 radially on the outside. Radially on the inside, the primary flow duct 5 is delimited by corresponding ring surfaces of the rotors and stators of the respective compressor stages or by the hub or elements of the corresponding drive shaft connected to the hub.

Im Betrieb des Turbofantriebwerks 100 durchströmt ein Primärstrom den Primärstromkanal 5, der auch als Hauptströmungskanal bezeichnet wird. Der Sekundärstromkanal 4, auch als Nebenstromkanal oder Bypass-Kanal bezeichnet leitet im Betrieb des Turbofantriebwerks 100 vom Fan 10 angesaugte Luft am Kerntriebwerk vorbei.During operation of the turbofan engine 100, a primary flow flows through the primary flow duct 5, which is also referred to as the main flow duct. The secondary flow duct 4, also referred to as a bypass duct or bypass duct, directs air sucked in by the fan 10 past the core engine during operation of the turbofan engine 100.

Die beschriebenen Komponenten besitzen eine gemeinsame Rotations- bzw. Maschinenachse 90. Die Rotationsachse 90 definiert eine axiale Richtung des Turbofantriebwerks. Eine radiale Richtung des Turbofantriebwerks verläuft senkrecht zur axialen Richtung.The components described have a common axis of rotation or machine 90. The axis of rotation 90 defines an axial direction of the turbofan engine. A radial direction of the turbofan engine is perpendicular to the axial direction.

Im Kontext der vorliegenden Erfindung ist die Ausgestaltung der Turbinenschaufeln, insbesondere der Turbinenschaufeln der Hochdruckturbine 50 von Bedeutung. Die Prinzipien der vorliegenden Erfindung sind jedoch ebenso auf Turbinenschaufeln anderer Turbinenstufen anwendbar.The configuration of the turbine blades, in particular the turbine blades of the high-pressure turbine 50, is important in the context of the present invention. However, the principles of the present invention are also applicable to turbine blades of other turbine stages.

Die im Rahmen der Erfindung betrachteten Turbinenschaufeln sind Bestandteil einer Laufschaufelanordnung, die eine Turbinenscheibe und einen Turbinen-Laufschaufelkranz mit Turbinen-Laufschaufeln umfasst. Die Turbinen-Laufschaufeln werden im Rahmen dieser Beschreibung als Turbinenschaufeln bezeichnet. Zur Befestigung der Turbinenschaufeln in äquidistantem Abstand am Umfang der Turbinenscheibe weist die Turbinenscheibe an ihrem Umfang eine Mehrzahl von Schaufelfußaufnahmen auf, die jeweils dazu dienen, einen Schaufelfuß einer Laufschaufel aufzunehmen. Dabei kann vorgesehen sein, dass die Schaufelfüße als sogenannte "Tannenbaumfüße" ausgebildet sind. Die Schaufelfußaufnahmen sind in entsprechender Weise ausgebildet. Die Turbinenscheibe weist Kanäle auf, die dazu dienen, Kühlluft zur Kühlung der Turbinenschaufeln bereitzustellen.The turbine blades considered in the context of the invention are part of a rotor blade arrangement which comprises a turbine disk and a turbine rotor blade ring with turbine rotor blades. The turbine blades are referred to as turbine blades in the context of this description. For fastening the turbine blades at an equidistant distance on the circumference of the turbine disk, the turbine disk has a plurality of blade root receptacles on its periphery, each of which serves to receive a blade root of a moving blade. It can be provided that the blade feet are designed as so-called "fir tree feet". The blade root receptacles are designed in a corresponding manner. The Turbine disk has channels which serve to provide cooling air for cooling the turbine blades.

Die Figur 2 zeigt anhand eines Ausführungsbeispiels ein Negativmodell einer Turbinenschaufel. Im Negativmodell sind die Aushöhlungen der Turbinenschaufel dargestellt. Diese bilden ein System 15 von Kühlluftkanälen, die der Kühlung der Turbinenschaufel dienen. Im dargestellten Ausführungsbeispiel umfasst das System 15 von Kühlluftkanälen zwei Eingangs-Kühlluftkanäle 16, 17, die sich beide im Schaufelfuß der Turbinenschaufel erstrecken. Wie noch im Einzelnen erläutert wird, bilden die Eingangs-Kühlluftkanäle 16, 17 eine Ausbuchtung 7 aus, in der die Querschnittsfläche der Eingangs-Kühlluftkanäle 16, 17 ein Maximum aufweist.The Figure 2 shows an exemplary embodiment of a negative model of a turbine blade. The hollows of the turbine blade are shown in the negative model. These form a system 15 of cooling air channels, which serve to cool the turbine blade. In the exemplary embodiment shown, the system 15 of cooling air ducts comprises two inlet cooling air ducts 16, 17, both of which extend in the blade root of the turbine blade. As will be explained in more detail, the input cooling air channels 16, 17 form a bulge 7 in which the cross-sectional area of the input cooling air channels 16, 17 has a maximum.

In Strömungsrichtung hinter der Ausbuchtung 7 erstreckt sich der eine Eingangskanal 16 als Kühlluftkanal 161 benachbart der Vorderkante der Turbinenschaufel. Der andere Eingangskanal 17 bildet in Strömungsrichtung hinter der Ausbuchtung 7 einen Kühlluftkanal mit drei serpentinenartigen Abschnitten 171, 172, 173 aus, die im Wesentlichen in radialer Richtung verlaufen und durch gekrümmte Bereiche miteinander verbunden sind. Von den Kühlluftkanälen gehen jeweils Kühlluftbohrungen 165, 175 aus, die der Kühlung der Turbinenschaufel dienen.In the flow direction behind the bulge 7, the one input channel 16 extends as a cooling air channel 161 adjacent to the front edge of the turbine blade. The other input duct 17 forms a cooling air duct with three serpentine-like sections 171, 172, 173 in the direction of flow behind the bulge 7, which run essentially in the radial direction and are connected to one another by curved regions. Cooling air bores 165, 175, which serve to cool the turbine blade, each extend from the cooling air channels.

Weiter ist in der Figur 2 ein in der zugehörigen Turbinenscheibe ausgebildeter Kanal 18 zu erkennen, über den Kühlluft zugeführt wird. Zwischen der Turbinenscheibe und der Turbinenschaufel entweicht Kühlluft in einem sich in axialer Richtung erstreckenden Spalt 19.Next is in the Figure 2 to recognize a channel 18 formed in the associated turbine disk, via which cooling air is supplied. Cooling air escapes between the turbine disk and the turbine blade in a gap 19 extending in the axial direction.

Die Figur 2 ist lediglich beispielhaft zu verstehen. Die genaue Form und Anzahl der Kühlluftkanäle und die Art der Kühlung sind für die vorliegende Erfindung nicht von Bedeutung. Es kann beispielsweise eine Filmkühlung und/oder eine Kühlung über Konvektion erfolgen. Von Bedeutung für die vorliegende Erfindung ist lediglich die in den Eingangs-Kühlluftkanälen 16, 17 ausgebildete Ausbuchtung 7. Auch wird darauf hingewiesen, dass die Kühlluftkanäle grundsätzlich eine beliebige Querschnittform aufweisen, beispielsweise kreisförmig, elliptisch oder rechteckig ausgeführt sein können.The Figure 2 is only to be understood as an example. The exact shape and number of cooling air channels and the type of cooling are not important for the present invention. For example, film cooling and / or cooling by convection can take place. Only the bulge 7 formed in the inlet cooling air channels 16, 17 is of importance for the present invention. It is also pointed out that the cooling air channels basically have any cross-sectional shape, for example circular, elliptical or rectangular.

Die Figuren 3 und 4 zeigen eine Turbinenschaufel 200, die ein System 15 von Kühlluftkanälen entsprechend der Figur 2 aufweist. Dies ist in den Figuren 3 und 4 durch eine transparente Darstellung der Turbinenschaufel angedeutet. Die Turbinenschaufel 200 ist in der Figur 3 in einer Ansicht von vorne, d. h. in einer Ansicht in axialer Richtung auf die Schaufelvorderkante dargestellt. Die Turbinenschaufel 200 ist in der Figur 4 in einer Seitenansicht auf die Druckseite dargestellt. Die Turbinenschaufel 200 umfasst einen Schaufelfuß 21 und ein Schaufelblatt 22. Der Schaufelfuß 21 ist dafür vorgesehen, in einer Schaufelfußaufnahme einer Turbinenschaufel angeordnet zu sein. Er weist beispielsweise ein Tannenbaumprofil 23 auf. Das Schaufelblatt 22 umfasst eine Saugseite 24, eine Druckseite 25, eine Vorderkante 26, eine Hinterkante 27, eine Blattspitze 28. Das Schaufelblatt 22 ragt in den Primärstromkanal des Turbofantriebwerks.The Figures 3 and 4th show a turbine blade 200 that includes a system 15 of cooling air ducts corresponding to FIG Figure 2 having. This is in the Figures 3 and 4th indicated by a transparent representation of the turbine blade. The turbine blade 200 is in the Figure 3 in a view from the front, ie in a view in the axial direction shown on the front edge of the blade. The turbine blade 200 is in the Figure 4 shown in a side view of the print page. The turbine blade 200 comprises a blade root 21 and an airfoil 22. The blade root 21 is provided to be arranged in a blade root receptacle of a turbine blade. For example, it has a fir tree profile 23. The airfoil 22 includes a suction side 24, a pressure side 25, a front edge 26, a rear edge 27, a blade tip 28. The airfoil 22 projects into the primary flow channel of the turbofan engine.

In den Figuren 3 und 4 geben x die axiale Richtung und r die radiale Richtung an. In einem zylindrisches Koordinatensystem verläuft die Umfangsrichtung ϕ senkrecht zu x und r. Die axiale Richtung x kann identisch mit der Maschinenachse einer Gasturbine, in der die Erfindung realisiert ist, sein, kann hiervon jedoch auch abweichen (beispielsweise wenn die Laufschaufeln unter einem Winkel zur Maschinenachse in die Schaufelfußaufnahmen gesteckt sind).In the Figures 3 and 4th give x the axial direction and r the radial direction. In a cylindrical coordinate system, the circumferential direction ϕ is perpendicular to x and r. The axial direction x can be identical to the machine axis of a gas turbine in which the invention is implemented, but can also deviate therefrom (for example if the rotor blades are inserted into the blade root receptacles at an angle to the machine axis).

Die Eingangs-Kühlluftkanäle 16, 17 sowie die Kühlluftkanäle 161, 171, 172, 173 erstrecken sich im Wesentlichen in radialer Richtung. Die in der Figur 2 dargestellte und in der Figur 3 erkennbare Ausbuchtung 7 erstreckt sich in Richtung der Druckseite 25 der Turbinenschaufel 200.The input cooling air channels 16, 17 and the cooling air channels 161, 171, 172, 173 extend essentially in the radial direction. The in the Figure 2 shown and in the Figure 3 Recognizable bulge 7 extends in the direction of the pressure side 25 of the turbine blade 200.

Die Figur 5 zeigt in vergrößerter Darstellung in einer perspektivischen Ansicht schräg von vorne den Schaufelfuß 21, in dem die Eingangs-Kühlluftkanäle 16, 17 ausgebildet sind. Die Darstellung endet an einer Schnittfläche A, die eine Querschnittsfläche des Schaufelfußes 21 senkrecht zur radialen Richtung r bildet.The Figure 5 shows an enlarged view in a perspective view obliquely from the front of the blade root 21, in which the inlet cooling air channels 16, 17 are formed. The illustration ends at a sectional area A, which forms a cross-sectional area of the blade root 21 perpendicular to the radial direction r.

In den Figuren 6-10 wird die Formgebung des einen Eingangs-Kühlluftkanals 16 zum einen schematisch (Figur 6) und zum anderen anhand eines Ausführungsbeispiels (Figuren 7-10) beispielhaft erläutert. Die Ausführungen gelten in entsprechender Weise für den weiteren Eingangs-Kühlluftkanal 17 der Figuren 3-5, wobei es nicht zwingend ist, dass beide Eingangs-Kühlluftkanäle 16, 17 eine erfindungsgemäße Formgebung aufweisen. Auch wird darauf hingewiesen, dass die Turbinenschaufel 200 nicht notwendigerweise mehrere Eingangs-Kühlluftkanäle 16, 17 aufweisen muss. In alternativen Ausgestaltungen der Erfindung ist lediglich ein Eingangs-Kühlluftkanal vorgesehen, der dann wie nachfolgend beschrieben ausgebildet ist.In the Figures 6-10 the shape of the one input cooling air duct 16 is schematically ( Figure 6 ) and on the other hand using an exemplary embodiment ( Figures 7-10 ) explained by way of example. The statements apply in a corresponding manner to the further input cooling air duct 17 in FIG Figures 3-5 , It is not imperative that both inlet cooling air ducts 16, 17 have a shape according to the invention. It is also pointed out that the turbine blade 200 does not necessarily have to have a plurality of inlet cooling air ducts 16, 17. In alternative configurations of the invention, only one input cooling air duct is provided, which is then designed as described below.

Die Figur 6 ist eine dreidimesionale Darstellung eines Eingangs-Kühlluftkanals 16 (nachfolgend als Kühlluftkanal 16 bezeichnet). Der Kühlluftkanal 16 umfasst einen ersten, sich erweiternden Teilabschnitt 3, in dem sich die Querschnittsfläche des Kühlluftkanal 16 in Strömungsrichtung des Kühlmediums ausgehend von einer Querschnittsfläche A1 am Anfang des sich erweiternden Teilabschnitts 3 bis zu einem Maximum A3 vergrößert. An den ersten, sich erweiternden Teilabschnitt 3 schließt sich ein zweiter, sich verengender Teilabschnitt 6 an, in dem die Querschnittsfläche sich von der maximalen Querschnittsfläche A3 zu einer Querschnittsfläche A2 am Ende des sich verengenden Teilabschnitts 6 reduziert. Im ersten Teilabschnitt 3 wird die Wand dieses Teilabschnitts zur Druckseite 25 hin durch eine Wandkontur 31 und zur Saugseite 24 hin durch eine Wandkontur 32 gebildet. Im zweiten Teilabschnitt 6 wird die Wand dieses Teilabschnitts zur Druckseite 25 hin durch eine Wandkontur 61 und zur Saugseite 24 hin durch eine Wandkontur 62 gebildet.The Figure 6 is a three-dimensional representation of an input cooling air duct 16 (hereinafter referred to as cooling air duct 16). The cooling air duct 16 comprises a first, widening section 3, in which the cross-sectional area of the cooling air channel 16 increases in the flow direction of the cooling medium from a cross-sectional area A1 at the beginning of the widening section 3 to a maximum A3. The first, widening section 3 is followed by a second, narrowing section 6, in which the cross-sectional area is reduced from the maximum cross-sectional area A3 to a cross-sectional area A2 at the end of the narrowing section 6. In the first subsection 3, the wall of this subsection is formed towards the pressure side 25 by a wall contour 31 and towards the suction side 24 through a wall contour 32. In the second subsection 6, the wall of this subsection is formed towards the pressure side 25 by a wall contour 61 and towards the suction side 24 through a wall contour 62.

Die sich verändernden Querschnitte des Kühlluftkanals 16 führen zu einer Verzögerung der Strömungsgeschwindigkeit des Kühlmediums im sich erweiternden Teilabschnitt 3 und zu einer Beschleunigung der Strömungsgeschwindigkeit des Kühlmediums im sich verjüngenden Teilabschnitt 6.The changing cross sections of the cooling air duct 16 lead to a delay in the flow rate of the cooling medium in the widening section 3 and to an acceleration of the flow rate of the cooling medium in the tapering section 6.

Der Kühlluftkanal 16 ist in den betrachteten Abschnitten 3, 6 des Weiteren derart geformt, dass das Kühlmedium in dem zweiten, sich verengenden Teilabschnitt 6 mit einer Richtungskomponente in Richtung der Saugseite der Turbinenschaufel beschleunigt wird. Durch diese Beschleunigung des Kühlmediums wird einer Beschleunigung des Kühlmediums aufgrund der Corioliskraft entgegengewirkt. Auf diese Weise erfolgt in einer betrachteten Querschnittsebene an allen Wandbereichen des Kühlluftkanals eine Homogenisierung des Wärmeübergangs.The cooling air duct 16 is further shaped in the sections 3, 6 under consideration such that the cooling medium in the second, narrowing subsection 6 is accelerated with a directional component in the direction of the suction side of the turbine blade. This acceleration of the cooling medium counteracts an acceleration of the cooling medium due to the Coriolis force. In this way, in a cross-sectional plane under consideration, the heat transfer is homogenized on all wall areas of the cooling air duct.

Für eine Beschleunigung des Kühlmediums in Richtung der Saugseite bildet der Kühlluftkanal 16 zur Druckseite hin die Ausbuchtung 7 aus, wobei das Kühlmediums in dem ersten Teilbereich 3 in Richtung der Druckseite und in dem zweiten Teilbereich 6 in Richtung der Saugseite abgelenkt wird.For an acceleration of the cooling medium in the direction of the suction side, the cooling air channel 16 forms the bulge 7 on the pressure side, the cooling medium being deflected in the first partial area 3 in the direction of the pressure side and in the second partial area 6 in the direction of the suction side.

Die genaue Formgebung ist wie folgt. Die Querschnittsfläche A1 ist die Querschnittsfläche am Anfang des ersten Teilbereichs 3. Hiervon ausgehend vergrößert sich die Querschnittsfläche des Kühlluftkanals rotation-asymmetrisch bezüglich seiner Mittellinie in Richtung der Druckseite. Der geometrische Verlauf des Kühlluftkanals 16 wird dabei über seine Mittellinie beschrieben, welche die Verbindungslinie aller geometrischen Mittelpunkte (d.h. Flächenschwerpunkte) der Querschnittsflächen des Kühlluftkanals darstellt. Eine für die Kühlluftströmung repräsentative Querschnittsfläche des Kühlluftkanals 16 ist dabei so definiert, dass die Mittellinie des Kühlluftkanals 16 die Ebene der Querschnittsfläche stets senkrecht durchstößt. Mit anderen Worten entspricht also der Normalvektor einer solchen Querschnittsfläche dem Tangentenvektor an die Mittellinie im geometrischen Mittelpunkt (Flächenschwerpunkt) der jeweiligen Querschnittsfläche.The exact shape is as follows. The cross-sectional area A1 is the cross-sectional area at the beginning of the first subarea 3. Starting from this, the cross-sectional area of the cooling air duct increases rotationally asymmetrically with respect to its center line in the direction of the pressure side. The geometric course of the cooling air duct 16 is described over its center line, which is the connecting line of all represents geometric centers (ie centroids) of the cross-sectional areas of the cooling air duct. A cross-sectional area of the cooling air duct 16 that is representative of the cooling air flow is defined such that the center line of the cooling air duct 16 always penetrates the plane of the cross-sectional area perpendicularly. In other words, the normal vector of such a cross-sectional area corresponds to the tangent vector to the center line in the geometric center (center of area) of the respective cross-sectional area.

Dabei ist zu beachten, dass die Querschnittserweiterung rotations-symmetrisch oder alternativ rotations-asymmetrisch bezüglich der Mittellinie des Kühlluftkanals erfolgen kann. Im vorliegenden Beispiel führt die rotations-asymmetrische Kanalaufweitung, die mit einer Führung des Kühlluftkanals 16 zunächst in Richtung der Druckseite einhergeht, zu einer Vergrößerung des baulich realisierbaren Umlenkwinkels δ im zweiten Teilbereich 6.It should be noted that the cross-sectional expansion can be rotationally symmetrical or alternatively rotationally asymmetrical with respect to the center line of the cooling air duct. In the present example, the rotationally asymmetrical channel widening, which is initially accompanied by a routing of the cooling air channel 16 in the direction of the pressure side, leads to an increase in the structurally feasible deflection angle δ in the second partial area 6.

Der Grad der Divergenz des sich erweiternden Kühlluftkanals 16 sollte einen maximalen Grad an Divergenz nicht überschreitet. Ähnlich einer Öffnungswinkeldefinition für Diffusoren wird hier zweckmäßigerweise der maximale Zuwachs der Querschnittsfläche des Kühlluftkanals 16 im ersten Teilabschnitt 3 auf die Länge des Strömungsweges in Selbigen bezogen, so dass dieses Verhältnis den Grad an Divergenz im ersten Teilabschnitt 3 beschreibt. Dabei ist im Sinne der vorliegenden Erfindung diese maximale Verhältnis definiert als A 3 A 1 2 s 6 .

Figure imgb0005
The degree of divergence of the expanding cooling air duct 16 should not exceed a maximum degree of divergence. Similar to an opening angle definition for diffusers, the maximum increase in the cross-sectional area of the cooling air duct 16 in the first subsection 3 is expediently related to the length of the flow path in the same, so that this ratio describes the degree of divergence in the first subsection 3. For the purposes of the present invention, this maximum ratio is defined as A 3rd - A 1 2nd s 6 .
Figure imgb0005

Hierin beschreibt die Größe s die Länge des Kühlluftkanals entlang seiner Mittellinie im ersten Teilabschnitt 3 und die bereits zuvor genannten Größen A1 und A3 die Querschnittsflächen des Kühlluftkanals 16 zu Beginn und respektive zum Ende des ersten Teilabschnitts 3. Das genannte Verhältnis liegt gemäß einer Ausgestaltung der Erfindung zwischen 1,25 und 2.Here, the size s describes the length of the cooling air duct along its center line in the first subsection 3 and the sizes A1 and A3 already mentioned the cross-sectional areas of the cooling air duct 16 at the beginning and respectively at the end of the first subsection 3. According to an embodiment of the invention, the ratio is between 1.25 and 2.

Das Querschnittsflächenverhältnis A3/A1 liegt gemäß einer Ausgestaltung der Erfindung im Bereich zwischen 1 und 5, beispielsweise zwischen 2 und 4.According to one embodiment of the invention, the cross-sectional area ratio A3 / A1 is in the range between 1 and 5, for example between 2 and 4.

Die Querschnittsfläche A3 am Übergang zwischen dem ersten Teilbereich 3 und dem zweiten Teilbereich 6 stellt die maximale Querschnittsfläche dar. Ausgehend von diesem Maximum verjüngt sich der Kühlluftkanal 16 in dem zweiten Teilbereich 6.The cross-sectional area A3 at the transition between the first partial area 3 and the second partial area 6 represents the maximum cross-sectional area. Starting from this maximum, the cooling air duct 16 tapers in the second partial area 6.

Die Konvergenz des Kühlluftkanals im zweiten Teilbereich 6 wird durch das Verhältnis A3/A2 definiert. Dabei ist vorgesehen, dass dieses Verhältnis kleiner ist als das Verhältnis A3/A1, mit anderen Worten A1 kleiner als A2 und A2 kleiner als A3 ist: A 1 < A 2 < A 3 .

Figure imgb0006
The convergence of the cooling air duct in the second partial area 6 is defined by the ratio A3 / A2. It is provided that this ratio is less than the ratio A3 / A1, in other words A1 is less than A2 and A2 is less than A3: A 1 < A 2nd < A 3rd .
Figure imgb0006

Die Form der Konvergenz im zweiten Teilbereich 6 wird unter anderem durch den Konvergenz- oder Umlenkwinkel δ bestimmt. Dieser ist Winkel δ ist definiert als jener Winkel, der sich zwischen den beiden Vektoren A3A1 und A3A2 aufspannt. Beide Vektoren beschreiben jeweils die direkt Verbindungslinie zwischen den geometrischen Mittelpunkten (Flächenschwerpunkten) 310, 210 und 110 der Querschnittsflächen A3 und A2 bzw. A3 und A1. Die Definition gibt somit den mittleren Umlenkwinkel des Kühlluftkanals über beide Teilabschnitte 3, 6, in Richtung der Saugseite an.The shape of the convergence in the second partial region 6 is determined, inter alia, by the convergence or deflection angle δ. This is the angle δ is defined as the angle that lies between the two vectors A 3 A 1 and A 3 A 2 spans. Both vectors describe the direct connection line between the geometric centers (centroids) 310, 210 and 110 of the cross-sectional areas A3 and A2 or A3 and A1. The definition thus specifies the mean deflection angle of the cooling air duct over both subsections 3, 6, in the direction of the suction side.

Der Umlenkwinkel δ liegt bei maximal 175°. Er liegt beispielsweise im Bereich zwischen 110° und 170°, insbesondere im Bereich zwischen 140° und 170°.The deflection angle δ is a maximum of 175 °. It is, for example, in the range between 110 ° and 170 °, in particular in the range between 140 ° and 170 °.

Es wird darauf hingewiesen, dass die hier genannte Querschnittsfläche durch einen Normalenvektor definiert wird, der dem Tangentenvektor an die Mittellinie im geometrischen Mittelpunkt (Flächenschwerpunkt) der Querschnittsfläche entspricht.It is pointed out that the cross-sectional area mentioned here is defined by a normal vector which corresponds to the tangent vector to the center line in the geometric center (center of area) of the cross-sectional area.

Es wird weiter darauf hingewiesen, dass der erste, sich erweiternde Teilabschnitt 3 derart geformt ist, dass der Vektor A1A3 bzw. die Mittellinie des Kühlluftkanals im ersten Teilabschnitt 3, die zumindest näherungsweise dem Vektor A1A3 entspricht, aufgrund der Ausbuchtung 7, die sich in Richtung der Druckseite 25 erstreckt, zur Querschnittsfläche A3 hin eine Richtungskomponente in Richtung der Druckseite 25 aufweist und nicht exakt radial verläuft.It is further pointed out that the first, widening section 3 is shaped such that the vector A 1 A 3 or the center line of the cooling air duct in the first subsection 3, which is at least approximately the vector A 1 A 3 corresponds to, due to the bulge 7, which extends in the direction of the pressure side 25, has a directional component towards the cross-sectional area A3 in the direction of the pressure side 25 and does not run exactly radially.

Die Figur 7 zeigt beispielhaft ein Ausführungsbeispiel eines Kühlluftkanals 16, der entsprechend der Figur 6 geformt und im Schaufelfuß 21 einer Turbinenschaufel 200 ausgebildet ist. Die Figuren 8, 9 und 10 zeigen Querschnitte senkrecht zur radialen Richtung des Schaufelfußes 21 in der Höhe des Querschnitts A2 (Figur 8), des Querschnitts A3 (Figur 9) und des Querschnitts A1 (Figur 10). Die Figur 7 zeigt den ersten divergierenden Teilabschnitt 3 mit den Wandkonturen 31, 32, den zweiten konvergierenden Wandabschnitt 6 mit den Wandkonturen 61, 62 sowie die drei Querschnittsflächen A1, A3, und A2. Die Ausbuchtung 7 erstreckt sich in Richtung der Druckseite 25.The Figure 7 shows an example of an embodiment of a cooling air duct 16, which corresponds to the Figure 6 shaped and formed in the blade root 21 of a turbine blade 200. The Figures 8, 9 and 10 show cross sections perpendicular to the radial direction of the blade root 21 at the height of the cross section A2 ( Figure 8 ), of cross section A3 ( Figure 9 ) and cross section A1 ( Figure 10 ). The Figure 7 shows the first diverging section 3 with the wall contours 31, 32, the second converging wall section 6 with the wall contours 61, 62 and the three cross-sectional areas A1, A3, and A2. The bulge 7 extends in the direction of the pressure side 25.

Gemäß der Figur 10 ist der Kühlluftkanal 16 im Bereich der Querschnittsfläche A1 näherungsweise kreisförmig (rotations-symmetrisch bezüglich der Mittellinie) ausgebildet. Wandbereiche, die sich in Richtung der Druckseite oder Saugseite erstrecken, sind nicht vorgesehen. Gemäß der Figur 9 ist der Kühlluftkanal 16 im Bereich der Querschnittsfläche A3 nicht mehr kreisförmig (sondern rotations-asymmetrisch bezüglich der Mittellinie) ausgebildet. Vielmehr führen die wie beschrieben ausgeführten Wandbereiche 31, 32 gemäß der Figur 7 zu einer größeren Erstreckung in Umfangsrichtung (zwischen Druckseite und Saugseite) als in axialer Richtung. Gleiches gilt gemäß der Figur 8 für den Kühlluftkanal 16 im Bereich der Querschnittsfläche A2, wobei in der dargestellten Draufsicht von oben der schräg verlaufende Wandbereich 62 zu erkennen ist.According to the Figure 10 The cooling air duct 16 is approximately circular in the area of the cross-sectional area A1 (rotationally symmetrical with respect to the center line). Wall areas that extend in the direction of the pressure side or suction side are not provided. According to the Figure 9 the cooling air duct 16 is no longer circular in the area of the cross-sectional area A3 (but rotationally asymmetrical with respect to the center line). Rather, the wall areas 31, 32 designed as described lead according to FIG Figure 7 to a greater extent in the circumferential direction (between the pressure side and the suction side) than in the axial direction. The same applies according to the Figure 8 for the cooling air duct 16 in the area of the cross-sectional area A2, wherein the inclined wall area 62 can be seen in the top view shown from above.

Die vorliegende Erfindung beschränkt sich in ihrer Ausgestaltung nicht auf die vorstehend beschriebenen Ausführungsbeispiele. Vielmehr wird die Erfindung durch die angehängten Patentansprüche definiert.The design of the present invention is not limited to the exemplary embodiments described above. Rather, the invention is defined by the appended claims.

Des Weiteren wird darauf hingewiesen, dass die Merkmale der einzelnen beschriebenen Ausführungsbeispiele der Erfindung in verschiedenen Kombinationen miteinander kombiniert werden können. Sofern Bereiche definiert sind, so umfassen diese sämtliche Werte innerhalb dieser Bereiche sowie sämtliche Teilbereiche, die in einen Bereich fallen.Furthermore, it is pointed out that the features of the individual described exemplary embodiments of the invention can be combined with one another in various combinations. If areas are defined, they include all values within these areas as well as all sub-areas that fall within one area.

Claims (12)

  1. Turbine blade (200) of a turbine rotor blade ring, which turbine blade has:
    - a suction side (24),
    - a pressure side (25), and
    - a cooling air channel (16) through which a cooling medium for cooling the turbine blade (200) can be transported,
    - wherein the cooling air channel (16) has, in at least one portion, a course such that
    - its cross-sectional area increases in a flow direction of the cooling medium, in a first, widening sub-portion (3), up to a maximum,
    - its cross-sectional area decreases in a second, narrowing sub-portion (6) downstream of the maximum, and
    - the cooling medium is, in the second, narrowing sub-portion (6), accelerated with a directional component in the direction of the suction side (24) of the turbine blade (200),
    characterized
    - in that the cooling air channel (16) forms, in the region of the maximum, a bulge (7) in the direction of the pressure side (25), wherein the cooling medium is diverted in the direction of the pressure side (25) in the first sub-portion (3) and is diverted in the direction of the suction side (24) in the second sub-portion (6), wherein
    - the centreline of the cooling air channel (16) has, in the first sub-portion (3), a directional component in the direction of the pressure side (25) of the turbine blade, and,
    - for the acceleration of the cooling medium in the second, narrowing sub-portion (6) in the direction of the suction side (24) of the turbine blade (100), the centreline of the cooling air channel (16) has, in the second, narrowing sub-portion (6), a directional component in the direction of the suction side (24) .
  2. Turbine blade according to Claim 1, characterized in that the cooling air channel (16) has a first cross-sectional area A1 at the start of the widening sub-portion (3), has a second cross-sectional area A2 at the end of the narrowing sub-portion (6), and has a third cross-sectional area A3 at the maximum of the cross-sectional area.
  3. Turbine blade according to Claim 2, characterized in that, for the ratio of first cross-sectional area A1 and third cross-sectional area A3, the following applies: 1 < A 3 / A 1 5 .
    Figure imgb0011
  4. Turbine blade according to Claim 2 or 3, characterized in that, for the ratio of first cross-sectional area A1, second cross-sectional area A2 and third cross-sectional area A3, the following applies: A 1 < A 2 < A 3 .
    Figure imgb0012
  5. Turbine blade according to any of the preceding claims, characterized in that the cooling air channel (16) does not exceed a maximum degree of divergence in the widening sub-portion (3), wherein the degree of divergence is defined by the square root of the growth of the cross-sectional area (A3 - A1) in relation to the length (s) of the cooling air channel along its centreline, and the degree of divergence thus defined is less than or equal to 6, that is to say the following applies: A 3 A 1 2 s 6 .
    Figure imgb0013
  6. Turbine blade according to Claim 5, characterized in that the degree of divergence in the widening sub-portion (3) of the cooling air channel (16) lies between 1.25 and 2, that is to say the following applies: 1.25 < A 3 A 1 2 s 2 .
    Figure imgb0014
  7. Turbine blade according to any of the preceding claims, characterized in that the cross-sectional widening of the cooling air channel (16) is rotationally asymmetrical with respect to the centreline of said cooling air channel.
  8. Turbine blade according to any of the preceding claims where referred back to Claim 2, characterized in that the cooling air channel (16) has, in the narrowing sub-portion (6), a deflection angle (δ) which is less than 175°, wherein δ is defined as the angle spanned between the two vectors A2A1 and A3A2, wherein the two vectors describe in each case the direct connecting line between the geometrical central points (310, 210, 110) of the cross-sectional areas A3 and A2, and A3 and A1, respectively.
  9. Turbine blade according to Claim 8, characterized in that the deflection angle (δ) lies between 140° and 170°.
  10. Turbine blade according to any of the preceding claims, characterized in that the turbine blade (200) has a blade root (21), wherein the first, widening sub-portion (3) and the second, narrowing sub-portion (6) are formed in a portion of the cooling air channel (16) which is arranged in the blade root (21).
  11. Turbine blade according to any of the preceding claims, characterized in that the cross-sectional area of the second, narrowing sub-portion (6) decreases in gradual fashion, and without a step, downstream of the maximum.
  12. Turbine blade according to any of the preceding claims, characterized in that the divergence in the first sub-portion (3) in the direction of the pressure side (25) of the blade is greater than the divergence in the direction of the suction side (24) of the blade.
EP18204562.5A 2017-11-08 2018-11-06 Turbine blade of a turbine blade crown Active EP3483391B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017126105.2A DE102017126105A1 (en) 2017-11-08 2017-11-08 Turbine Blade of a Turbine Blade wreath

Publications (2)

Publication Number Publication Date
EP3483391A1 EP3483391A1 (en) 2019-05-15
EP3483391B1 true EP3483391B1 (en) 2020-06-03

Family

ID=64267497

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18204562.5A Active EP3483391B1 (en) 2017-11-08 2018-11-06 Turbine blade of a turbine blade crown

Country Status (3)

Country Link
US (1) US11008871B2 (en)
EP (1) EP3483391B1 (en)
DE (1) DE102017126105A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767492B2 (en) 2018-12-18 2020-09-08 General Electric Company Turbine engine airfoil

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220103B2 (en) * 2004-10-18 2007-05-22 United Technologies Corporation Impingement cooling of large fillet of an airfoil
US7249933B2 (en) 2005-01-10 2007-07-31 General Electric Company Funnel fillet turbine stage
US7467922B2 (en) * 2005-07-25 2008-12-23 Siemens Aktiengesellschaft Cooled turbine blade or vane for a gas turbine, and use of a turbine blade or vane of this type
FR2943092B1 (en) * 2009-03-13 2011-04-15 Snecma TURBINE DAWN WITH DUST-BASED CLEANING HOLE
US8157505B2 (en) * 2009-05-12 2012-04-17 Siemens Energy, Inc. Turbine blade with single tip rail with a mid-positioned deflector portion
EP3241988A1 (en) * 2016-05-04 2017-11-08 Siemens Aktiengesellschaft Cooling arrangement of a gas turbine blade

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US11008871B2 (en) 2021-05-18
EP3483391A1 (en) 2019-05-15
DE102017126105A1 (en) 2019-05-09
US20190153874A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
DE3530769C2 (en) Blade for a gas turbine engine
DE112016003244T5 (en) Cover for axial fan assembly
EP3940200B1 (en) Bucket wheel of a turbomachine
DE102011052236A1 (en) Profiled axial-radial outlet diffuser
CH707459A2 (en) Internal cooling structure of a turbine blade.
DE102015219556A1 (en) Diffuser for radial compressor, centrifugal compressor and turbo machine with centrifugal compressor
EP2226511A2 (en) Flow working machine with fluid supply
CH710476B1 (en) Compressor with an axial compressor end wall device for controlling the leakage flow in this.
DE102014114916A1 (en) Turbine blade with tip rounding
EP2538024A1 (en) Blade of a turbomaschine
EP3428393B1 (en) Rotor of a turbomachine
EP3336313A1 (en) Turbine rotor blade arrangement for a gas turbine and method for the provision of sealing air in a turbine rotor blade arrangement
CH701927B1 (en) Stator, compressor and gas turbine engine.
EP3078804A1 (en) Shroud assembly of a row of stator or rotor blades and corresponding turbine
EP2913481B1 (en) Tandem blades of a turbo-machine
EP3032032B1 (en) Outlet guide vanes and turbofan with outlet guide vanes
CH710576A2 (en) Turbine blade having a plurality of cooling channels.
EP3483391B1 (en) Turbine blade of a turbine blade crown
EP3495639B1 (en) Compressor module for a turbomachine reducing the boundary layer in an intermediate compressor case
EP3431707B1 (en) Blade, blade ring, blade ring segment and turbomachine
EP3719258B1 (en) Rotor blade of a turbomachine
EP3327258A1 (en) Inlet guide vane for a turbo engine
DE102013109844A1 (en) A method of circumferentially aligning a turbine by reshaping the downstream airfoils of the turbine
DE102018108940A1 (en) Turbofan engine for an aircraft
DE102018130298A1 (en) Assembly with an output stator for a turbofan engine and turbofan engine with such an assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191112

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/18 20060101ALI20191129BHEP

Ipc: F01D 5/14 20060101AFI20191129BHEP

Ipc: F01D 5/08 20060101ALI20191129BHEP

INTG Intention to grant announced

Effective date: 20200103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1277210

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018001596

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200904

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200903

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201006

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201003

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018001596

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

26N No opposition filed

Effective date: 20210304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200603

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 6

Ref country code: DE

Payment date: 20231127

Year of fee payment: 6