EP3719258B1 - Rotor blade of a turbomachine - Google Patents
Rotor blade of a turbomachine Download PDFInfo
- Publication number
- EP3719258B1 EP3719258B1 EP20161689.3A EP20161689A EP3719258B1 EP 3719258 B1 EP3719258 B1 EP 3719258B1 EP 20161689 A EP20161689 A EP 20161689A EP 3719258 B1 EP3719258 B1 EP 3719258B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- channel portion
- radially
- inlet
- inlet channel
- blade root
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 claims description 68
- 239000000463 material Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 19
- 238000011144 upstream manufacturing Methods 0.000 claims description 17
- 239000002826 coolant Substances 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 3
- 230000004323 axial length Effects 0.000 claims description 2
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 241000191291 Abies alba Species 0.000 description 2
- 101100493820 Caenorhabditis elegans best-1 gene Proteins 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/04—Blade-carrying members, e.g. rotors for radial-flow machines or engines
- F01D5/043—Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
- F01D5/046—Heating, heat insulation or cooling means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/081—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/30—Fixing blades to rotors; Blade roots ; Blade spacers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/30—Fixing blades to rotors; Blade roots ; Blade spacers
- F01D5/3007—Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/94—Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
- F05D2260/941—Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction
Definitions
- the invention relates to a moving blade of a turbomachine.
- Flow machines such as turbines or compressors, have assemblies on the stator and assemblies on the rotor.
- the rotor-side assemblies of a turbomachine include the so-called turbomachine rotor, which has a hub body and moving blades that extend radially outwards, starting from the hub body.
- a rotor blade of a turbomachine has a flow-guiding blade leaf and a blade root, via which the rotor blade can be fastened in the hub body of the turbomachine.
- the airfoil of the turbomachine has a flow inlet edge, a flow outlet edge and flow guide surfaces for a process medium extending between the flow inlet edge and the flow outlet edge, which are also referred to as suction side and pressure side.
- the blade root via which the moving blade can be fastened in the hub body of the turbomachine, is typically designed in the manner of a Christmas tree with at least two projections spaced apart from one another, as seen in the radial direction of the moving blade.
- a moving blade also has what is known as an inner shroud, which is arranged between the blade leaf and the blade root, viewed in the radial direction of the moving blade. If necessary, an outer shroud can adjoin radially on the outside of the airfoil.
- rotor blades are used, in which a cooling channel is integrated. In this case, the cooling channel extends both over the blade root and over the blade airfoil.
- An inlet of the cooling channel is formed radially on the inside at the blade root.
- An outlet of the cooling channel can be formed radially on the outside of the airfoil or on the radially outer outer shroud or at another point.
- the present invention is based on the object of creating a novel moving blade of a turbomachine which, despite the cooling duct, has a high level of strength.
- the inlet of the cooling channel is formed from a first inlet channel section and a second inlet channel section, which is arranged behind the first inlet channel section as seen in the axial direction of the blade root and between which a material web extends.
- the first inlet channel section of the cooling channel and the second inlet channel section of the cooling channel merge into a combination channel section of the cooling channel, which is arranged radially on the outside or radially above the uppermost or radially outermost projection of the blade root and radially on the inside or radially below the inner shroud, viewed in the radial direction. This is used for effective cooling of the moving blade while at the same time maintaining high strength of the moving blade.
- the first inlet channel section and the second inlet channel section preferably initially run in a straight line in the radial direction from radially inside to radially outside.
- An axial thickness of the material web is constant in that region of the blade root in which the first inlet channel section and the second inlet channel section run in a straight line in the radial direction. This is used for effective cooling of the moving blade while at the same time maintaining high strength of the moving blade.
- the first inlet channel section and the second inlet channel section then extend in a bent or curved manner in the direction of the combination channel section, namely in the direction of an upstream or axially front end of the blade root in relation to the process medium flow.
- an axial thickness of the material web preferably decreases in the direction of the combining channel section. This also serves to effectively cool the moving blade while at the same time maintaining high strength of the moving blade.
- the first inlet channel section is curved with a first radius of curvature in the direction of the upstream or axially front end of the blade root.
- the second entry duct section curves toward the upstream or axially forward end of the blade root at a second radius of curvature.
- the first radius of curvature is at least as large, preferably larger, than the second radius of curvature.
- the cooling channel initially extends radially outwards in the direction of a radially outer deflection channel section following the combining channel section. Following the radially outer deflection channel section, the cooling channel extends radially inward in the direction of a radially inner deflection channel section. Following the radially inner deflection channel section, the cooling channel extends radially outward in the direction of a cooling channel outlet.
- the radially inner deflection channel section is arranged in the radial direction above or radially on the outside of the topmost or radially outermost projection of the blade root and below or radially on the inside of the inner shroud. This also serves for the effective cooling of the moving blade with the same high strength.
- the first inlet channel section and the second inlet channel section have the same flow cross sections. This ensures effective cooling of the moving blade.
- FIG. 1 shows views of a rotor blade 10, the rotor blade 10 comprising a flow-guiding airfoil 11 and a blade root 12.
- the flow-guiding blade leaf 11 serves to guide the flow of a process medium, in particular process gas, which flows through the turbomachine, with the blade leaf 11 having a flow inlet edge 13 for the process medium, a flow outlet edge 14 for the process medium and flow guide surfaces 15 extending between the flow inlet edge 13 and the flow outlet edge 14 , 16 for the process medium.
- the flow guide surfaces 15, 16 form a suction side and a pressure side.
- the blade root 12 is used to fasten the moving blade 10 in a hub body (not shown) of the turbomachine.
- the blade root 12 is designed like a Christmas tree with at least two projections 17 spaced apart from one another as viewed in the radial direction of the moving blade 10 . In the exemplary embodiment shown, three such projections 17 are spaced apart from one another in the radial direction of the moving blade 10 .
- the fir-tree profile of the blade root 12 tapers between adjacent projections 17. Each projection 17 and the tapering section of the fir-tree profile arranged directly above the respective projection 17 each define a so-called tooth of the fir-tree profile.
- the rotor blade 10 also has an inner shroud 18 which, viewed in the radial direction of the rotor blade 10 , is arranged between the blade leaf 11 and the blade root 12 of the rotor blade 10 .
- the inner shroud 18 delimits a flow guide channel for the process medium radially on the inside.
- the rotor blade 10 also has an outer shroud 19.
- the outer shroud 19 delimits the flow guide channel for the process medium radially on the outside.
- a cooling channel 20 for cooling medium, in particular cooling air, is integrated into the moving blade 10 .
- contours of the cooling channel 20 are shown in dashed lines. Also in 3 contours of the cooling channel 20 are shown in broken lines in sections. Figures 4, 5 , 6 and 7 only show the contours of the cooling channel 20 without the actual moving blade 10.
- the cooling channel 20 has an inlet or cooling channel inlet 21 which is formed radially on the inside of the blade root 12 . Furthermore, the cooling duct 20 has an outlet or cooling duct exit 31 which is formed in particular radially on the outside on the airfoil 11 or on the outer shroud 19 . The cooling channel outlet 31 can also be positioned at a different point.
- 3 , 5 , 6 and 7 show details of the entry or cooling channel entry 21 of the cooling channel 20.
- the inlet or cooling duct entrance 21 of the cooling duct 20 comprises a first entry duct section 22 and a second entry duct section 23.
- the first inlet channel section 22 is positioned at the front as seen in the axial direction with respect to the flow of the process medium, i.e. positioned closer to an upstream or axially front end of the blade root 12 with respect to the process medium flow than the second inlet channel section 23.
- the second inlet channel section 23 is arranged behind the first inlet channel section 22 as viewed in the axial direction of the blade root 12 .
- the blade root 12 is not used to guide the process medium but only to fasten or assemble the rotor blade 10 on the hub body. Nevertheless, the blade root 12 has two opposite axial ends, namely an upstream or axially forward end in relation to the process medium flow and a downstream or axially rearward end in relation to the process medium flow.
- the first inlet channel section 22 is arranged between the upstream or axially forward end of the blade root 12 and the second inlet channel section 23 .
- the second inlet channel section 23 is arranged between the first inlet channel section 22 and the downstream or axially rearward end of the blade root 12 .
- a material web 24 extends between the two inlet channel sections 22 and 23, which are spaced apart from one another in the axial direction of the blade root 12. This material web 24 stiffens the rotor blade 10 in the region of its blade root 12.
- this connecting channel section 25 is arranged or formed above or radially outside the uppermost or radially outermost projection 17 and below or radially inside the inner shroud 18 .
- the material web 24 extends radially from the inside to the radial outside into a section of the blade root 12 that is arranged above or radially outside of the radially outermost and thus uppermost projection 17 of the blade root 12, as a result of which the strength of the rotor blade 10 is increased in the Area of the blade root 12 can be adjusted particularly advantageously.
- the web of material 24 preferably extends into the region of the narrowest cross section of the radially outermost and thus uppermost tooth of the fir-tree profile of the blade root 12 .
- the first inlet channel section 22 defines a first flow inlet opening radially inside at the blade root 12 and the second inlet channel section 23 defines a second flow inlet opening radially inside at the blade root 12 .
- the inlet channel sections 22 , 23 themselves, these are positioned one behind the other as seen in the axial direction of the blade root 12 and are spaced apart from one another by the material web 24 .
- the first flow inlet opening and thus the first inlet channel section 22 has a defined axial distance ⁇ x from the upstream or axially front end of the blade root 12 in relation to the process medium flow.
- the defined axial distance ⁇ x between the first inlet channel section 22 and thus the first flow inlet opening and the upstream or axially front end of the blade root 12 is preferably between 10% and 30%, in particular between 15% and 25%, of the axial length L of the blade root 12.
- the material web 24 has a constant thickness in the axial direction.
- the axial distance ⁇ x defined above between the first inlet channel section 22 and the upstream end of the blade root 12 relates to the area of the first inlet channel section 22 that extends radially outwards in a straight line in the radial direction run in a straight line, the two inlet channel sections 22, 23 run bent or curved in the direction of the connecting channel section 25. In the area of this curvature, the distance ⁇ x defined above changes.
- the curvature of the inlet channel sections 22, 23 between the regions thereof running in a straight line in the radial direction and the connecting channel section 25 is directed in the direction of the upstream or axially front end of the blade root 12 or in the direction of the flow inlet edge 13 of the moving blade 11.
- the axial thickness of the material web 24 preferably decreases in the direction of the combining channel section 25 .
- the web of material 24 tapers in this area.
- the axial thickness of the web of material 24 can also be constant in this area.
- the cooling channel 20 in the exemplary embodiment shown initially extends radially outwards with a further section 26 in the direction of a radially outer deflection channel section 27, then at the radially outer deflection channel section 27 with a further section 28 radially inwards in the direction of a inner deflection duct section 29 and then to this radially inner deflection duct section 29 with a further section 30 radially outwards in the direction of the cooling duct outlet 31.
- the sections 26, 28 and 30 of the cooling duct 20 extend within the blade leaf 11. There are also other courses of the Cooling channel 20 downstream of the connecting channel section 25 possible.
- the radially inner deflection channel section 29 is arranged above or radially outside the topmost or radially outermost projection 17 of the blade root 12 and below or radially inside the inner shroud 18, specifically in the axial direction opposite the inlet channel sections 22, 23, axially to the rear in the direction of the offset downstream or axially aft end of the blade root 12.
- the upper or radially outer deflection channel section 27 can extend into the area of the outer shroud 19 .
- cooling medium flows into the cooling duct 20 via the flow inlet openings of the inlet duct sections 22, 23, with this coolant flowing through the two inlet duct sections 22, 23 being combined in the region of the combining duct section 25. This takes place in the area of the blade root 12 .
- the cooling medium is then conducted via the channel sections 26 , 27 , 28 , 29 and 30 in the direction of the cooling channel outlet 31 .
- Figures 6 and 7 show geometric parameters of the flow channel 20 in the area of the cooling channel inlet 21. So 6 it can be seen that the first inlet duct section 22 is curved with a first radius of curvature R1 and the second inlet duct section 23 with a second radius of curvature R2 towards the upstream axial end of the blade root 12 .
- the first radius of curvature R1 is at least as large as the second radius of curvature R2, preferably R1 is larger than R2.
- cooling medium can enter the cooling channel 20 directly in the radial direction in the area of the inlet channel sections 22, 23, as a result of which an effective entry of the cooling medium into the cooling channel 20 is possible.
- the inlet channel sections 22 , 23 spaced apart from one another in the axial direction have a defined axial distance from the upstream end of the blade root 12 .
- the inlet channel sections 22, 23 are spaced apart from one another in the axial direction by the material web 24. This serves to provide a high strength of the rotor blade 10 in the area of the blade root 12.
- the web 24 extends, seen in the radial direction, to above or radially outside of the uppermost or radially outermost projection 17 of the fir-tree-like blade root 12. This ensures optimum strength in the area of the blade root 12.
- the radially inner deflection channel section 29 is also arranged at an axial distance from the combining channel section 25 .
- This radially inner deflection channel section 29 extends into the blade root 12, but ends at a distance from the radially outermost projection 17 of the fir-tree-like blade root 12, radially on the outside or radially above the web 24.
- the rotor blade 10 according to the invention allows optimal cooling with high strength. It is used in particular in gas turbines.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
Die Erfindung betrifft eine Laufschaufel einer Strömungsmaschine.The invention relates to a moving blade of a turbomachine.
Strömungsmaschinen, wie Turbinen oder Verdichter, verfügen über statorseitige Baugruppen sowie rotorseitige Baugruppen. Zu den rotorseitigen Baugruppen einer Strömungsmaschine gehört der sogenannte Strömungsmaschinenrotor, der einen Nabenkörper und sich ausgehend vom Nabenkörper nach radial außen erstreckende Laufschaufeln aufweist. Eine Laufschaufel einer Strömungsmaschine verfügt über ein strömungsführendes Schaufelblatt sowie über einen Schaufelfuß, über welche die Laufschaufel im Nabenkörper der Strömungsmaschine befestigt werden kann. Das Schaufelblatt der Strömungsmaschine verfügt über eine Strömungseintrittskante, eine Strömungsaustrittskante sowie über sich zwischen der Strömungseintrittskante und der Strömungsaustrittskante erstreckende Strömungsführungsflächen für ein Prozessmedium, die auch als Saugseite und Druckseite bezeichnet werden. Der Schaufelfuß, über welchen die Laufschaufel im Nabenkörper der Strömungsmaschine befestigt werden kann, ist typischerweise tannenbaumartig mit mindestens zwei in Radialrichtung der Laufschaufel gesehen, voneinander beabstandeten Vorsprüngen ausgebildet. Eine Laufschaufel verfügt auch über ein sogenanntes Innendeckband, welches in Radialrichtung der Laufschaufel gesehen zwischen dem Schaufelblatt und dem Schaufelfuß angeordnet ist. Radial außen an das Schaufelblatt kann sich gegebenenfalls ein Außendeckband anschließen. Insbesondere im Bereich von Turbinen, in welchen ein heißes Prozessmedium über die Strömungsmaschine strömt, kommen Laufschaufeln zum Einsatz, in welche ein Kühlkanal integriert ist. Der Kühlkanal erstreckt sich dabei sowohl über den Schaufelfuß als auch über das Schaufelblatt. Ein Eintritt des Kühlkanals ist radial innen am Schaufelfuß ausgebildet. Ein Austritt des Kühlkanals kann radial außen am Schaufelblatt oder an dem radial äußeren Außendeckband oder auch an einer anderen Stelle ausgebildet ist.Flow machines, such as turbines or compressors, have assemblies on the stator and assemblies on the rotor. The rotor-side assemblies of a turbomachine include the so-called turbomachine rotor, which has a hub body and moving blades that extend radially outwards, starting from the hub body. A rotor blade of a turbomachine has a flow-guiding blade leaf and a blade root, via which the rotor blade can be fastened in the hub body of the turbomachine. The airfoil of the turbomachine has a flow inlet edge, a flow outlet edge and flow guide surfaces for a process medium extending between the flow inlet edge and the flow outlet edge, which are also referred to as suction side and pressure side. The blade root, via which the moving blade can be fastened in the hub body of the turbomachine, is typically designed in the manner of a Christmas tree with at least two projections spaced apart from one another, as seen in the radial direction of the moving blade. A moving blade also has what is known as an inner shroud, which is arranged between the blade leaf and the blade root, viewed in the radial direction of the moving blade. If necessary, an outer shroud can adjoin radially on the outside of the airfoil. In particular in the area of turbines, in which a hot process medium flows over the turbomachine, rotor blades are used, in which a cooling channel is integrated. In this case, the cooling channel extends both over the blade root and over the blade airfoil. An inlet of the cooling channel is formed radially on the inside at the blade root. An outlet of the cooling channel can be formed radially on the outside of the airfoil or on the radially outer outer shroud or at another point.
Obwohl bereits gekühlte Laufschaufeln mit einem Kühlkanal, der in die Laufschaufel integriert ist, grundsätzlich bekannt sind, besteht Bedarf daran, die Kühlung einer Laufschaufel weiter zu verbessern, und zwar bei gleichzeitig hoher Festigkeit der Laufschaufel.Although already cooled moving blades with a cooling channel that is integrated into the moving blade are known in principle, there is a need to further improve the cooling of a moving blade, specifically with high strength of the moving blade at the same time.
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine neuartige Laufschaufel einer Strömungsmaschine zu schaffen, die trotz Kühlkanal eine hohe Festigkeit aufweist.Proceeding from this, the present invention is based on the object of creating a novel moving blade of a turbomachine which, despite the cooling duct, has a high level of strength.
Diese Aufgabe wird durch eine Laufschaufel nach Anspruch 1 gelöst.This object is achieved by a rotor blade according to claim 1.
Erfindungsgemäß ist der Eintritt des Kühlkanals aus einem ersten Eintrittskanalabschnitt und einem in Axialrichtung des Schaufelfußes gesehen hinter dem ersten Eintrittskanalabschnitt angeordneten, zweiten Eintrittskanalabschnitt ausgebildet, zwischen welchen sich ein Materialsteg erstreckt. Der erste Eintrittskanalabschnitt des Kühlkanals und der zweite Eintrittskanalabschnitt des Kühlkanals gehen in einen Vereinigungskanalabschnitt des Kühlkanals über, der in Radialrichtung gesehen radial außen oder radial oberhalb des obersten oder radial äußersten Vorsprungs des Schaufelfußes und radial innen oder radial unterhalb des Innendeckbands angeordnet ist. Dies dient der effektiven Kühlung der Laufschaufel bei gleichzeitig hoher Festigkeit der Laufschaufel.According to the invention, the inlet of the cooling channel is formed from a first inlet channel section and a second inlet channel section, which is arranged behind the first inlet channel section as seen in the axial direction of the blade root and between which a material web extends. The first inlet channel section of the cooling channel and the second inlet channel section of the cooling channel merge into a combination channel section of the cooling channel, which is arranged radially on the outside or radially above the uppermost or radially outermost projection of the blade root and radially on the inside or radially below the inner shroud, viewed in the radial direction. This is used for effective cooling of the moving blade while at the same time maintaining high strength of the moving blade.
Vorzugsweise verlaufen der erste Eintrittskanalabschnitt und der zweite Eintrittskanalabschnitt von radial innen nach radial außen zunächst geradlinig in Radialrichtung. In demjenigen Bereich des Schaufelfußes, in welchem der erste Eintrittskanalabschnitt und der zweite Eintrittskanalabschnitt geradlinig in Radialrichtung verlaufen, ist eine axiale Dicke des Materialstegs konstant. Dies dient der effektiven Kühlung der Laufschaufel bei gleichzeitig hoher Festigkeit der Laufschaufel.The first inlet channel section and the second inlet channel section preferably initially run in a straight line in the radial direction from radially inside to radially outside. An axial thickness of the material web is constant in that region of the blade root in which the first inlet channel section and the second inlet channel section run in a straight line in the radial direction. This is used for effective cooling of the moving blade while at the same time maintaining high strength of the moving blade.
Der erste Eintrittskanalabschnitt und der zweite Eintrittskanalabschnitt verlaufen anschließend hieran in Richtung auf den Vereinigungskanalabschnitt jeweils gebogen oder gekrümmt, und zwar in Richtung auf ein bezogen auf die Prozessmediumströmung stromaufwärtiges oder axial vorderes Ende des Schaufelfußes. In demjenigen Bereich des Schaufelfußes, in welchem der erste Eintrittskanalabschnitt und der zweite Eintrittskanalabschnitt jeweils gebogen oder gekrümmt verlaufen, nimmt eine axiale Dicke des Materialstegs in Richtung auf den Vereinigungskanalabschnitt vorzugsweise ab. Auch dies dient der effektiven Kühlung der Laufschaufel bei gleichzeitig hoher Festigkeit der Laufschaufel.The first inlet channel section and the second inlet channel section then extend in a bent or curved manner in the direction of the combination channel section, namely in the direction of an upstream or axially front end of the blade root in relation to the process medium flow. In that region of the blade root in which the first inlet channel section and the second inlet channel section each extend in a bent or curved manner, an axial thickness of the material web preferably decreases in the direction of the combining channel section. This also serves to effectively cool the moving blade while at the same time maintaining high strength of the moving blade.
Nach einer vorteilhaften Weiterbildung ist der erste Eintrittskanalabschnitt in Richtung auf das stromaufwärtige oder axial vordere Ende des Schaufelfußes mit einem ersten Krümmungsradius gekrümmt. Der zweite Eintrittskanalabschnitt ist in Richtung auf das stromaufwärtige oder axial vordere Ende des Schaufelfußes mit einem zweiten Krümmungsradius gekrümmt. Der erste Krümmungsradius ist zumindest so groß, vorzugsweise größer, als der zweite Krümmungsradius. Auch diese Merkmale dienen der Gewährleistung einer effektiven Kühlung bei gleichzeitig hoher Festigkeit der Laufschaufel.According to an advantageous development, the first inlet channel section is curved with a first radius of curvature in the direction of the upstream or axially front end of the blade root. The second entry duct section curves toward the upstream or axially forward end of the blade root at a second radius of curvature. The first radius of curvature is at least as large, preferably larger, than the second radius of curvature. These features also serve to ensure effective cooling combined with high blade strength.
Nach einer vorteilhaften Weiterbildung erstreckt sich anschließend an den Vereinigungskanalabschnitt der Kühlkanal zunächst nach radial außen in Richtung auf einen radial äußeren Umlenkkanalabschnitt. Anschließend an den radial äußeren Umlenkkanalabschnitt erstreckt sich der Kühlkanal nach radial innen in Richtung auf einen radial inneren Umlenkkanalabschnitt. Anschließend an den radial inneren Umlenkkanalabschnitt erstreckt sich der Kühlkanal nach radial außen in Richtung auf einen Kühlkanalaustritt. Der radial innere Umlenkkanalabschnitt ist in Radialrichtung oberhalb oder radial außen des obersten oder radial äußersten Vorsprungs des Schaufelfußes und unterhalb oder radial innen des Innendeckbands angeordnet. Auch dies dient der effektiven Kühlung der Laufschaufel bei hoher Festigkeit derselben.According to an advantageous further development, the cooling channel initially extends radially outwards in the direction of a radially outer deflection channel section following the combining channel section. Following the radially outer deflection channel section, the cooling channel extends radially inward in the direction of a radially inner deflection channel section. Following the radially inner deflection channel section, the cooling channel extends radially outward in the direction of a cooling channel outlet. The radially inner deflection channel section is arranged in the radial direction above or radially on the outside of the topmost or radially outermost projection of the blade root and below or radially on the inside of the inner shroud. This also serves for the effective cooling of the moving blade with the same high strength.
Nach einer vorteilhaften Weiterbildung weisen der erste Eintrittskanalabschnitt und der zweite Eintrittskanalabschnitt gleiche Strömungsquerschnitte auf. Dies sorgt für eine effektive Kühlung der Laufschaufel.According to an advantageous development, the first inlet channel section and the second inlet channel section have the same flow cross sections. This ensures effective cooling of the moving blade.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:
- Fig. 1
- eine Seitenansicht einer erfindungsgemäßen Laufschaufel einer Strömungsmaschine;
- Fig. 2
- eine perspektivische Vorderansicht der erfindungsgemäßen Laufschaufel;
- Fig. 3
- ein Detail der erfindungsgemäßen Laufschaufel im Bereich eines Schaufelfußes;
- Fig. 4
- Konturen eines Kühlkanals der erfindungsgemäßen Laufschaufel;
- Fig. 5
- den Ausschnitt V der
Fig. 4 ; - Fig. 6
- den Ausschnitt V der
Fig. 4 mit geometrischen Größen; - Fig. 7
- den Ausschnitt V der
Fig. 4 mit weiteren geometrischen Größen.
- 1
- a side view of a blade according to the invention of a turbomachine;
- 2
- a perspective front view of the blade according to the invention;
- 3
- a detail of the moving blade according to the invention in the region of a blade root;
- 4
- Contours of a cooling channel of the rotor blade according to the invention;
- figure 5
- the section V of the
4 ; - 6
- the section V of the
4 with geometric sizes; - 7
- the section V of the
4 with other geometric sizes.
Der Schaufelfuß 12 dient der Befestigung der Laufschaufel 10 in einem nicht gezeigten Nabenkörper der Strömungsmaschine. Der Schaufelfuß 12 ist dabei tannenbaumartig mit mindestens zwei in Radialrichtung der Laufschaufel 10 gesehen voneinander beabstandeten Vorsprüngen 17 ausgebildet. Im gezeigten Ausführungsbeispiel sind drei derartige Vorsprünge 17 in Radialrichtung der Laufschaufel 10 voneinander beabstandet. Zwischen benachbarten Vorsprüngen 17 verjüngt sich jeweils das Tannenbaumprofil des Schaufelfußes 12. Jeweils ein Vorsprung 17 und der unmittelbar oberhalb des jeweiligen Vorsprungs 17 angeordnete, sich verjüngende Abschnitt des Tannenbaumprofils definieren jeweils einen sogenannten Zahn des Tannenbaumprofils.The
Die Laufschaufel 10 verfügt weiterhin über ein Innendeckband 18, welches in Radialrichtung der Laufschaufel 10 gesehen zwischen dem Schaufelblatt 11 und dem Schaufelfuß 12 der Laufschaufel 10 angeordnet ist. Das Innendeckband 18 begrenzt radial innen einen Strömungsführungskanal für das Prozessmedium. Im gezeigten Ausführungsbeispiel verfügt die Laufschaufel 10 weiterhin über ein Außendeckband 19. Das Außendeckband 19 begrenzt radial außen den Strömungsführungskanal für das Prozessmedium.The
In die Laufschaufel 10 ist ein Kühlkanal 20 für Kühlmedium, insbesondere Kühlluft, integriert. In
Der Kühlkanal 20 verfügt über einen Eintritt oder Kühlkanaleintritt 21, der radial innen am Schaufelfuß 12 ausgebildet ist. Ferner verfügt der Kühlkanal 20 über einen Austritt oder Kühlkanalaustritt 31, der insbesondere radial außen am Schaufelblatt 11 oder am Außendeckband 19 ausgebildet ist. Der Kühlkanalaustritt 31 kann auch an einer anderen Stelle positioniert sein.The cooling
Der Eintritt oder Kühlkanaleintritt 21 des Kühlkanals 20 umfasst einen ersten Eintrittskanalabschnitt 22 und einen zweiten Eintrittskanalabschnitt 23. Wie am besten
Der zweite Eintrittskanalabschnitt 23 ist in Axialrichtung des Schaufelfußes 12 gesehen hinter dem ersten Eintrittskanalabschnitt 22 angeordnet.The second
Wie bereits ausgeführt, dient der Schaufelfuß 12 nicht der Prozessmediumführung sondern lediglich der Befestigung bzw. Montage der Laufschaufel 10 am Nabenkörper. Nichtsdestotrotz weist der Schaufelfuß 12 jedoch zwei sich gegenüberliegende axiale Enden auf, und zwar ein bezogen auf die Prozessmediumströmung stromaufwärtiges oder axial vorderes Ende und ein bezogen auf die Prozessmediumströmung stromabwärtiges oder axial hinteres Ende.As already explained, the
Der erste Eintrittskanalabschnitt 22 ist zwischen dem stromaufwärtigen oder axial vorderen Ende des Schaufelfußes 12 und dem zweiten Eintrittskanalabschnitt 23 angeordnet.The first
Der zweite Eintrittskanalabschnitt 23 ist zwischen dem ersten Eintrittskanalabschnitt 22 und dem stromabwärtigen oder axial hinteren Ende des Schaufelfußes 12 angeordnet.The second
Zwischen den beiden Eintrittskanalabschnitten 22 und 23, die in Axialrichtung des Schaufelfußes 12 voneinander beabstandet sind, erstreckt sich ein Materialsteg 24. Dieser Materialsteg 24 versteift die Laufschaufel 10 im Bereich ihres Schaufelfußes 12.A
Der erste Eintrittskanalabschnitt 22 und der zweite Eintrittskanalabschnitt 23 des Kühlkanals 20 gehen in einen Verbindungskanalabschnitt 25 über.The first
Dieser Verbindungskanalabschnitt 25 ist dabei in Radialrichtung der Laufschaufel 10 gesehen oberhalb oder radial außen des obersten oder radial äußersten Vorsprungs 17 und unterhalb oder radial innen des Innendeckbands 18 angeordnet bzw. ausgebildet.Viewed in the radial direction of the moving
Daraus folgt, dass sich der Materialsteg 24 von radial innen nach radial außen bis in einen Abschnitt des Schaufelfußes 12 hinein erstreckt, der oberhalb oder radial außen des radial äußersten und damit obersten Vorsprungs 17 des Schaufelfußes 12 angeordnet ist, wodurch die Festigkeit der Laufschaufel 10 im Bereich des Schaufelfußes 12 besonders vorteilhaft eingestellt werden kann. Der Materialsteg 24 erstreckt sich bevorzugt bis in den Bereich des engsten Querschnitts des radial äußersten und damit obersten Zahns des Tannenbaumprofils des Schaufelfußes 12 hinein.It follows from this that the
Der erste Eintrittskanalabschnitt 22 definiert radial innen am Schaufelfuß 12 eine erste Strömungseintrittsöffnung und der zweite Eintrittskanalabschnitt 23 definiert radial innen am Schaufelfuß 12 eine zweite Strömungseintrittsöffnung. Diese sind, ebenso wie die Eintrittskanalabschnitte 22, 23 selbst, in Axialrichtung des Schaufelfußes 12 gesehen hintereinander positioniert und über den Materialsteg 24 voneinander beabstandet.The first
Die erste Strömungseintrittsöffnung und damit der erste Eintrittskanalabschnitt 22 weist einen definierten axialen Abstand Δx von dem bezogen auf die Prozessmediumströmung stromaufwärtigen oder axial vorderen Ende des Schaufelfußes 12 auf. Bevorzugt beträgt der definierte axiale Abstand Δx zwischen dem ersten Eintrittskanalabschnitt 22 und damit der ersten Strömungseintrittsöffnung und dem stromaufwärtigen oder axial vorderen Ende des Schaufelfußes 12 zwischen 10% und 30%, insbesondere zwischen 15% und 25%, der axialen Länge L des Schaufelfußes 12.The first flow inlet opening and thus the first
Wie am besten
Anschließend an den Verbindungskanalabschnitt 25 erstreckt sich der Kühlkanal 20 im gezeigten Ausführungsbeispiel mit einem weiteren Abschnitt 26 zunächst nach radial außen in Richtung auf einen radial äußeren Umlenkkanalabschnitt 27, anschließend an den radial äußeren Umlenkkanalabschnitt 27 mit einem weiteren Abschnitt 28 nach radial innen in Richtung auf einen inneren Umlenkkanalabschnitt 29 und anschließend an diesen radial inneren Umlenkkanalabschnitt 29 mit einem weiteren Abschnitt 30 nach radial außen in Richtung auf den Kühlkanalaustritt 31. Die Abschnitt 26, 28 und 30 des Kühlkanals 20 erstrecken sich dabei innerhalb des Schaufelblatts 11. Es sind auch andere Verläufe des Kühlkanals 20 stromabwärts des Verbindungskanalabschnitts 25 möglich.Following the connecting
Der radial innere Umlenkkanalabschnitt 29 ist in Radialrichtung gesehen oberhalb oder radial außen des obersten oder radial äußersten Vorsprungs 17 des Schaufelfußes 12 und unterhalb oder radial innen des Innendeckbands 18 angeordnet, und zwar in Axialrichtung gegenüber den Eintrittskanalabschnitten 22, 23 nach axial hinten in Richtung auf das stromabwärtige oder axial hintere Ende des Schaufelfußes 12 versetzt.Viewed in the radial direction, the radially inner
Der obere oder radial äußere Umlenkkanalabschnitt 27 kann sich in den Bereich des Außendeckbands 19 hinein erstrecken.The upper or radially outer
Bei der erfindungsgemäßen Laufschaufel 10 strömt demnach Kühlmedium über die Strömungseintrittsöffnungen der Eintrittskanalabschnitte 22, 23 in den Kühlkanal 20 ein, wobei dieses über die beiden Eintrittskanalabschnitte 22, 23 strömende Kühlmittel im Bereich des Vereinigungskanalabschnitts 25 vereinigt wird. Dies erfolgt im Bereich des Schaufelfußes 12. Anschließend hieran wird das Kühlmedium über die Kanalabschnitte 26, 27, 28, 29 und 30 in Richtung auf den Kühlkanalaustritt 31 geführt.In the
Die sich in Radialrichtung erstreckenden Kanalabschnitte 26, 28 und 30 erstrecken sich dabei über die Radialerstreckung des Schaufelblatts 11. Zwischen den Kanalabschnitten 26, 28 sowie zwischen den Kanalabschnitten 28 und 30 erfolgt eine Strömungsumlenkung über die Umlenkkanalabschnitte 27 und 29.The
Bei der erfindungsgemäßen Laufschaufel 10 kann Kühlmedium im Bereich der Eintrittskanalabschnitte 22, 23 in Radialrichtung direkt in den Kühlkanal 20 eintreten, wodurch ein effektiver Eintritt des Kühlmediums in den Kühlkanal 20 möglich ist. In Axialrichtung gesehen weisen dabei die in Axialrichtung voneinander beabstandeten Eintrittskanalabschnitte 22, 23 einen definierten axialen Abstand von dem stromaufwärtigen Ende des Schaufelfußes 12 auf. Ferner sind die Eintrittskanalabschnitte 22, 23 in Axialrichtung durch den Materialsteg 24 voneinander beabstandet. Dies dient der Bereitstellung einer hohen Festigkeit der Laufschaufel 10 im Bereich des Schaufelfußes 12. Der Steg 24 erstreckt sich dabei in Radialrichtung gesehen bis oberhalb oder radial außen des obersten oder radial äußersten Vorsprungs 17 des tannenbaumartigen Schaufelfußes 12. Dies sorgt für eine optimale Festigkeit im Bereich des Schaufelfußes 12.In the
In dem radialen Bereich des Schaufelfußes 12, in welchem die beiden Eintrittskanalabschnitte 22 und 23 in den Vereinigungskanalabschnitt 25 übergehen, ist axial beabstandet zum Vereinigungskanalabschnitt 25 auch der radial innere Umlenckanalabschnitt 29 angeordnet. Dieser radial innere Umlenkkanalabschnitt 29 erstreckt sich in den Schaufelfuß 12 hinein, endet jedoch mit Abstand vom radial äußersten Vorsprung 17 des tannenbaumartigen Schaufelfußes 12 radial außen bzw. radial oberhalb des Stegs 24. Die erfindungsgemäße Laufschaufel 10 erlaubt eine optimale Kühlung bei hoher Festigkeit. Sie findet insbesondere in Gasturbinen Einsatz.In the radial region of the
- 1010
- Laufschaufelblade
- 1111
- Schaufelblattshovel blade
- 1212
- Schaufelfußblade root
- 1313
- Strömungseintrittskanteflow leading edge
- 1414
- Strömungsaustrittskantetrailing edge
- 1515
- Strömungsführungsflächeflow guide surface
- 1616
- Strömungsführungsflächeflow guide surface
- 1717
- Vorsprunghead Start
- 1818
- Innendeckbandinner shroud
- 1919
- Außendeckbandouter shroud
- 2020
- Kühlkanalcooling channel
- 2121
- Kühlkanaleintrittcooling channel entry
- 2222
- erster Eintrittskanalabschnittfirst entry channel section
- 2323
- zweiter Eintrittskanalabschnittsecond entry channel section
- 2424
- Materialstegmaterial web
- 2525
- VereinigungskanalabschnittUnion Channel Section
- 2626
- Kanalabschnittcanal section
- 2727
- Umlenkkanalabschnittdeflection channel section
- 2828
- Kanalabschnittcanal section
- 2929
- Umlenkkanalabschnittdeflection channel section
- 3030
- Kanalabschnittcanal section
- 3131
- Kühlkanalaustrittcooling channel outlet
Claims (11)
- A moving blade (10) of a turbomachine,having a blade leaf (11), which comprises a flow leading edge (13), a flow trailing edge (14) and flow guiding surfaces (15, 16) extending between the flow leading edge (13) and the flow trailing edge (14) for a process medium,having a blade root (12) for mounting the moving blade to a hub body of the turbomachine, wherein the blade root (12) is formed in the manner of a fir tree with at least two projections (17) spaced apart from one another seen in the radial direction,having an inner shroud (18), which seen in the radial direction, is arranged between the blade leaf (11) and the blade root (12),having a cooling channel (20) integrated in the blade leaf (11) and the blade root (12) for a cooling medium, wherein the inlet (21) of the cooling channel (20) is formed radially inside on the blade root (12),the inlet of the cooling channel (20) is formed out of a first inlet channel portion (22) and a second inlet channel portion (23) arranged, seen in the axial direction of the blade root (12), behind the first inlet channel portion (22), between which a material web (24) extends,the first inlet channel portion (22) of the cooling channel (20) and the second inlet channel portion (23) of the cooling channel (20) merge into a unified channel portion (25) of the cooling channel (20) which, seen in the radial direction, is arranged radially outside or radially above the uppermost or radially outermost projection (17) of the blade root (12) and radially inside or radially below the inner shroud (18),the first inlet channel portion (22) of the cooling channel (20) and the second inlet channel portion (23) of the cooling channel (20) run from radially inside to radially outside initially linearly in the radial direction,characterised in thatthe first inlet channel portion (22) and the second inlet channel portion (23) following thereon, each run in the direction of the unified channel portion (25) of the cooling channel (20) bent or curved, namely in the direction of, with respect to the process medium flow, an upstream or axial front end of the blade root (12),the first inlet channel portion (22), in the direction of the upstream or axial front end of the blade root (12), is curved with a first curvature radius (R1),the second inlet channel portion (23) is curved in the direction of the upstream or axial front end of the blade root (12) with a second curvature radius (R2),the first curvature radius (R1) is at least as large, preferentially larger than the second curvature radius (R2) .
- The moving blade according to Claim 1, characterised in that the first inlet channel portion (22) of the cooling channel (20) defines a first flow inlet opening and the second inlet channel portion (23) of the cooling channel (20) a second flow inlet opening which, seen in the axial direction of the blade root (12), is positioned behind the first flow inlet opening.
- The moving blade according to Claim 2, characterised in that first inlet channel portion (22) and thus the first flow inlet opening have a defined axial distance (Δx) at an, based on the process medium flow, upstream or axial front end of the blade root (12).
- The moving blade according to Claim 3, characterised in that the defined axial distance (Δx) between the first inlet channel portion (22) and thus the first flow inlet opening and the upstream or axial front end of the blade root (12) amounts to between 10% and 30% of the axial length (L) of the blade root (12).
- The moving blade according to Claim 4, characterised in that in that region, in which the first inlet channel portion (22) and the second inlet channel portion (23) run linearly in the radial direction, an axial thickness of the material web (24) is constant.
- The moving blade according to Claim 4 or 5, characterised in that in that region, in which the first inlet channel portion (22) and the second inlet channel portion (23) run each bent or curved, an axial thickness of the material web (24) decreases in the direction of the unified channel portion (25).
- The moving blade according to Claim 4 or 5, characterised in that in that region, in which the first inlet channel portion (22) and the second inlet channel portion (23) each run bent or curved, an axial thickness of the material web (24) is constant.
- The moving blade according to any one of the Claims 1 to 7, characterised in that following the unified channel portion (25) the cooling channel (20) extends radially to the outside.
- The moving blade according to any one of the Claims 1 to 8, characterised in thatfollowing the unified channel portion (25), the cooling channel (20) initially extends radially to the outside in the direction of a radially outer deflection channel portion (27),following thereon, the cooling channel (20) extends radially to the inside in the direction of a radially inner deflection channel portion (29),following thereon, the cooling channel extends radially to the outside in the direction of a cooling channel outlet (31).
- The moving blade according to Claim 9, characterised in that the radially inner deflection channel portion (27) is arranged in the radial direction radially outside or radially above the uppermost or radially outermost projection (17) of the blade root (12) and radially inside or radially below the inner shroud (18) .
- The moving blade according to any one of the Claims 1 to 10, characterised in that the first inlet channel portion (22) of the cooling channel (20) and the second inlet channel portion (23) of the cooling channel (20) have same flow cross-sections (A).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RS20230575A RS64375B1 (en) | 2019-04-04 | 2020-03-09 | Rotor blade of a turbomachine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102019108811.9A DE102019108811B4 (en) | 2019-04-04 | 2019-04-04 | Rotor blade of a turbomachine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3719258A1 EP3719258A1 (en) | 2020-10-07 |
EP3719258B1 true EP3719258B1 (en) | 2023-05-03 |
Family
ID=69784091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20161689.3A Active EP3719258B1 (en) | 2019-04-04 | 2020-03-09 | Rotor blade of a turbomachine |
Country Status (9)
Country | Link |
---|---|
US (1) | US11408289B2 (en) |
EP (1) | EP3719258B1 (en) |
JP (1) | JP7424893B2 (en) |
KR (1) | KR20200117866A (en) |
CN (1) | CN111794805A (en) |
DE (1) | DE102019108811B4 (en) |
ES (1) | ES2950136T3 (en) |
IL (1) | IL272567B2 (en) |
RS (1) | RS64375B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019125779B4 (en) * | 2019-09-25 | 2024-03-21 | Man Energy Solutions Se | Blade of a turbomachine |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6966756B2 (en) * | 2004-01-09 | 2005-11-22 | General Electric Company | Turbine bucket cooling passages and internal core for producing the passages |
US7467922B2 (en) | 2005-07-25 | 2008-12-23 | Siemens Aktiengesellschaft | Cooled turbine blade or vane for a gas turbine, and use of a turbine blade or vane of this type |
EP1895096A1 (en) * | 2006-09-04 | 2008-03-05 | Siemens Aktiengesellschaft | Cooled turbine rotor blade |
DE102011121634B4 (en) * | 2010-12-27 | 2019-08-14 | Ansaldo Energia Ip Uk Limited | turbine blade |
US8628300B2 (en) | 2010-12-30 | 2014-01-14 | General Electric Company | Apparatus and methods for cooling platform regions of turbine rotor blades |
GB201102719D0 (en) * | 2011-02-17 | 2011-03-30 | Rolls Royce Plc | Cooled component for the turbine of a gas turbine engine |
US20120269649A1 (en) * | 2011-04-22 | 2012-10-25 | Christopher Rawlings | Turbine blade with improved trailing edge cooling |
WO2012144244A1 (en) | 2011-04-22 | 2012-10-26 | 三菱重工業株式会社 | Vane member and rotary machine |
EP2535515A1 (en) * | 2011-06-16 | 2012-12-19 | Siemens Aktiengesellschaft | Rotor blade root section with cooling passage and method for supplying cooling fluid to a rotor blade |
US10180067B2 (en) * | 2012-05-31 | 2019-01-15 | United Technologies Corporation | Mate face cooling holes for gas turbine engine component |
US20140093386A1 (en) * | 2012-09-28 | 2014-04-03 | Solar Turbines Incorporated | Cooled turbine blade with inner spar |
US20140096538A1 (en) * | 2012-10-05 | 2014-04-10 | General Electric Company | Platform cooling of a turbine blade assembly |
US20150308449A1 (en) | 2014-03-11 | 2015-10-29 | United Technologies Corporation | Gas turbine engine component with brazed cover |
FR3020402B1 (en) * | 2014-04-24 | 2019-06-14 | Safran Aircraft Engines | DRAWER FOR TURBOMACHINE TURBINE COMPRISING AN IMPROVED HOMOGENEITY COOLING CIRCUIT |
US10174622B2 (en) * | 2016-04-12 | 2019-01-08 | Solar Turbines Incorporated | Wrapped serpentine passages for turbine blade cooling |
EP3232001A1 (en) | 2016-04-15 | 2017-10-18 | Siemens Aktiengesellschaft | Rotor blade for a turbine |
EP3241990A1 (en) * | 2016-05-04 | 2017-11-08 | Siemens Aktiengesellschaft | A turbomachine blade or vane having a vortex generating element |
EP3421721A1 (en) | 2017-06-28 | 2019-01-02 | Siemens Aktiengesellschaft | A turbomachine component and method of manufacturing a turbomachine component |
US11008873B2 (en) * | 2019-02-05 | 2021-05-18 | Raytheon Technologies Corporation | Turbine blade tip wall cooling |
-
2019
- 2019-04-04 DE DE102019108811.9A patent/DE102019108811B4/en active Active
-
2020
- 2020-02-09 IL IL272567A patent/IL272567B2/en unknown
- 2020-03-09 EP EP20161689.3A patent/EP3719258B1/en active Active
- 2020-03-09 RS RS20230575A patent/RS64375B1/en unknown
- 2020-03-09 ES ES20161689T patent/ES2950136T3/en active Active
- 2020-03-17 US US16/821,322 patent/US11408289B2/en active Active
- 2020-03-25 KR KR1020200035977A patent/KR20200117866A/en not_active Application Discontinuation
- 2020-04-03 JP JP2020067546A patent/JP7424893B2/en active Active
- 2020-04-03 CN CN202010259131.7A patent/CN111794805A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP7424893B2 (en) | 2024-01-30 |
JP2020169644A (en) | 2020-10-15 |
DE102019108811A1 (en) | 2020-10-08 |
DE102019108811B4 (en) | 2024-02-29 |
RS64375B1 (en) | 2023-08-31 |
KR20200117866A (en) | 2020-10-14 |
IL272567B1 (en) | 2023-06-01 |
IL272567B2 (en) | 2023-10-01 |
US20200318485A1 (en) | 2020-10-08 |
ES2950136T3 (en) | 2023-10-05 |
US11408289B2 (en) | 2022-08-09 |
CN111794805A (en) | 2020-10-20 |
EP3719258A1 (en) | 2020-10-07 |
IL272567A (en) | 2020-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69504071T2 (en) | TURBO MACHINE | |
DE69105837T2 (en) | Cooled turbine blade. | |
DE69921320T2 (en) | TURBINENSTATORSCHAUFEL | |
EP1004748B1 (en) | Runner for a turbomachine | |
EP3176370B1 (en) | Blade cluster for a flow machine | |
EP1898054B1 (en) | Gas turbine | |
EP2478186B1 (en) | Rotor of a turbomachine | |
WO2005106207A1 (en) | Compressor blade and compressor | |
DE10054244C2 (en) | Turbine blade arrangement and turbine blade for an axial turbine | |
EP1766192A1 (en) | Vane wheel of a turbine comprising a vane and at least one cooling channel | |
EP2558685B1 (en) | Guide vane | |
EP3078804A1 (en) | Shroud assembly of a row of stator or rotor blades and corresponding turbine | |
EP2140111B1 (en) | Turbomachine | |
DE102014115475A1 (en) | Trailing edge rounding of a gas turbine guide vane | |
DE102007050916A1 (en) | Stator arrangement for compressor of fluid conveying arrangement in gas turbine engine, has radial passage conduit formed in part of stator ring segment, where radial passage conduit is arranged adjacent to stator blade passage conduit | |
EP3473808B1 (en) | Blade for an internally cooled turbine blade and method for producing same | |
EP2696042B1 (en) | Fluid flow engine with at least one guide blade assembly | |
DE60019965T2 (en) | AXIAL TURBINE FOR GASES | |
EP3798416B1 (en) | Blade of a turbomachine | |
EP2410131B1 (en) | Rotor of a turbomachine | |
EP3561228B1 (en) | Turbomachine and blade, blade segment and assembly for a turbomachine | |
EP3719258B1 (en) | Rotor blade of a turbomachine | |
EP3401504A1 (en) | Blade grid | |
DE102013213416B4 (en) | Shovel for a gas turbine machine | |
DE102004038639A1 (en) | Francis turbine for the generation of hydro-electricity has blade profile ratio minimizing trailing edge vortices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210318 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01D 5/30 20060101ALI20221219BHEP Ipc: F01D 5/18 20060101AFI20221219BHEP |
|
INTG | Intention to grant announced |
Effective date: 20230110 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020003132 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1564749 Country of ref document: AT Kind code of ref document: T Effective date: 20230515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230503 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2950136 Country of ref document: ES Kind code of ref document: T3 Effective date: 20231005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230904 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230803 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230903 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020003132 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240206 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 5 Ref country code: CZ Payment date: 20240229 Year of fee payment: 5 Ref country code: GB Payment date: 20240321 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240301 Year of fee payment: 5 Ref country code: SE Payment date: 20240320 Year of fee payment: 5 Ref country code: RS Payment date: 20240229 Year of fee payment: 5 Ref country code: IT Payment date: 20240329 Year of fee payment: 5 Ref country code: FR Payment date: 20240328 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240401 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240429 Year of fee payment: 5 |