EP3719258B1 - Rotor blade of a turbomachine - Google Patents

Rotor blade of a turbomachine Download PDF

Info

Publication number
EP3719258B1
EP3719258B1 EP20161689.3A EP20161689A EP3719258B1 EP 3719258 B1 EP3719258 B1 EP 3719258B1 EP 20161689 A EP20161689 A EP 20161689A EP 3719258 B1 EP3719258 B1 EP 3719258B1
Authority
EP
European Patent Office
Prior art keywords
channel portion
radially
inlet
inlet channel
blade root
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20161689.3A
Other languages
German (de)
French (fr)
Other versions
EP3719258A1 (en
Inventor
Thorsten Pöhler
Dirk Frank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Energy Solutions SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Energy Solutions SE filed Critical MAN Energy Solutions SE
Priority to RS20230575A priority Critical patent/RS64375B1/en
Publication of EP3719258A1 publication Critical patent/EP3719258A1/en
Application granted granted Critical
Publication of EP3719258B1 publication Critical patent/EP3719258B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/046Heating, heat insulation or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • F05D2260/941Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF] particularly aimed at mechanical or thermal stress reduction

Definitions

  • the invention relates to a moving blade of a turbomachine.
  • Flow machines such as turbines or compressors, have assemblies on the stator and assemblies on the rotor.
  • the rotor-side assemblies of a turbomachine include the so-called turbomachine rotor, which has a hub body and moving blades that extend radially outwards, starting from the hub body.
  • a rotor blade of a turbomachine has a flow-guiding blade leaf and a blade root, via which the rotor blade can be fastened in the hub body of the turbomachine.
  • the airfoil of the turbomachine has a flow inlet edge, a flow outlet edge and flow guide surfaces for a process medium extending between the flow inlet edge and the flow outlet edge, which are also referred to as suction side and pressure side.
  • the blade root via which the moving blade can be fastened in the hub body of the turbomachine, is typically designed in the manner of a Christmas tree with at least two projections spaced apart from one another, as seen in the radial direction of the moving blade.
  • a moving blade also has what is known as an inner shroud, which is arranged between the blade leaf and the blade root, viewed in the radial direction of the moving blade. If necessary, an outer shroud can adjoin radially on the outside of the airfoil.
  • rotor blades are used, in which a cooling channel is integrated. In this case, the cooling channel extends both over the blade root and over the blade airfoil.
  • An inlet of the cooling channel is formed radially on the inside at the blade root.
  • An outlet of the cooling channel can be formed radially on the outside of the airfoil or on the radially outer outer shroud or at another point.
  • the present invention is based on the object of creating a novel moving blade of a turbomachine which, despite the cooling duct, has a high level of strength.
  • the inlet of the cooling channel is formed from a first inlet channel section and a second inlet channel section, which is arranged behind the first inlet channel section as seen in the axial direction of the blade root and between which a material web extends.
  • the first inlet channel section of the cooling channel and the second inlet channel section of the cooling channel merge into a combination channel section of the cooling channel, which is arranged radially on the outside or radially above the uppermost or radially outermost projection of the blade root and radially on the inside or radially below the inner shroud, viewed in the radial direction. This is used for effective cooling of the moving blade while at the same time maintaining high strength of the moving blade.
  • the first inlet channel section and the second inlet channel section preferably initially run in a straight line in the radial direction from radially inside to radially outside.
  • An axial thickness of the material web is constant in that region of the blade root in which the first inlet channel section and the second inlet channel section run in a straight line in the radial direction. This is used for effective cooling of the moving blade while at the same time maintaining high strength of the moving blade.
  • the first inlet channel section and the second inlet channel section then extend in a bent or curved manner in the direction of the combination channel section, namely in the direction of an upstream or axially front end of the blade root in relation to the process medium flow.
  • an axial thickness of the material web preferably decreases in the direction of the combining channel section. This also serves to effectively cool the moving blade while at the same time maintaining high strength of the moving blade.
  • the first inlet channel section is curved with a first radius of curvature in the direction of the upstream or axially front end of the blade root.
  • the second entry duct section curves toward the upstream or axially forward end of the blade root at a second radius of curvature.
  • the first radius of curvature is at least as large, preferably larger, than the second radius of curvature.
  • the cooling channel initially extends radially outwards in the direction of a radially outer deflection channel section following the combining channel section. Following the radially outer deflection channel section, the cooling channel extends radially inward in the direction of a radially inner deflection channel section. Following the radially inner deflection channel section, the cooling channel extends radially outward in the direction of a cooling channel outlet.
  • the radially inner deflection channel section is arranged in the radial direction above or radially on the outside of the topmost or radially outermost projection of the blade root and below or radially on the inside of the inner shroud. This also serves for the effective cooling of the moving blade with the same high strength.
  • the first inlet channel section and the second inlet channel section have the same flow cross sections. This ensures effective cooling of the moving blade.
  • FIG. 1 shows views of a rotor blade 10, the rotor blade 10 comprising a flow-guiding airfoil 11 and a blade root 12.
  • the flow-guiding blade leaf 11 serves to guide the flow of a process medium, in particular process gas, which flows through the turbomachine, with the blade leaf 11 having a flow inlet edge 13 for the process medium, a flow outlet edge 14 for the process medium and flow guide surfaces 15 extending between the flow inlet edge 13 and the flow outlet edge 14 , 16 for the process medium.
  • the flow guide surfaces 15, 16 form a suction side and a pressure side.
  • the blade root 12 is used to fasten the moving blade 10 in a hub body (not shown) of the turbomachine.
  • the blade root 12 is designed like a Christmas tree with at least two projections 17 spaced apart from one another as viewed in the radial direction of the moving blade 10 . In the exemplary embodiment shown, three such projections 17 are spaced apart from one another in the radial direction of the moving blade 10 .
  • the fir-tree profile of the blade root 12 tapers between adjacent projections 17. Each projection 17 and the tapering section of the fir-tree profile arranged directly above the respective projection 17 each define a so-called tooth of the fir-tree profile.
  • the rotor blade 10 also has an inner shroud 18 which, viewed in the radial direction of the rotor blade 10 , is arranged between the blade leaf 11 and the blade root 12 of the rotor blade 10 .
  • the inner shroud 18 delimits a flow guide channel for the process medium radially on the inside.
  • the rotor blade 10 also has an outer shroud 19.
  • the outer shroud 19 delimits the flow guide channel for the process medium radially on the outside.
  • a cooling channel 20 for cooling medium, in particular cooling air, is integrated into the moving blade 10 .
  • contours of the cooling channel 20 are shown in dashed lines. Also in 3 contours of the cooling channel 20 are shown in broken lines in sections. Figures 4, 5 , 6 and 7 only show the contours of the cooling channel 20 without the actual moving blade 10.
  • the cooling channel 20 has an inlet or cooling channel inlet 21 which is formed radially on the inside of the blade root 12 . Furthermore, the cooling duct 20 has an outlet or cooling duct exit 31 which is formed in particular radially on the outside on the airfoil 11 or on the outer shroud 19 . The cooling channel outlet 31 can also be positioned at a different point.
  • 3 , 5 , 6 and 7 show details of the entry or cooling channel entry 21 of the cooling channel 20.
  • the inlet or cooling duct entrance 21 of the cooling duct 20 comprises a first entry duct section 22 and a second entry duct section 23.
  • the first inlet channel section 22 is positioned at the front as seen in the axial direction with respect to the flow of the process medium, i.e. positioned closer to an upstream or axially front end of the blade root 12 with respect to the process medium flow than the second inlet channel section 23.
  • the second inlet channel section 23 is arranged behind the first inlet channel section 22 as viewed in the axial direction of the blade root 12 .
  • the blade root 12 is not used to guide the process medium but only to fasten or assemble the rotor blade 10 on the hub body. Nevertheless, the blade root 12 has two opposite axial ends, namely an upstream or axially forward end in relation to the process medium flow and a downstream or axially rearward end in relation to the process medium flow.
  • the first inlet channel section 22 is arranged between the upstream or axially forward end of the blade root 12 and the second inlet channel section 23 .
  • the second inlet channel section 23 is arranged between the first inlet channel section 22 and the downstream or axially rearward end of the blade root 12 .
  • a material web 24 extends between the two inlet channel sections 22 and 23, which are spaced apart from one another in the axial direction of the blade root 12. This material web 24 stiffens the rotor blade 10 in the region of its blade root 12.
  • this connecting channel section 25 is arranged or formed above or radially outside the uppermost or radially outermost projection 17 and below or radially inside the inner shroud 18 .
  • the material web 24 extends radially from the inside to the radial outside into a section of the blade root 12 that is arranged above or radially outside of the radially outermost and thus uppermost projection 17 of the blade root 12, as a result of which the strength of the rotor blade 10 is increased in the Area of the blade root 12 can be adjusted particularly advantageously.
  • the web of material 24 preferably extends into the region of the narrowest cross section of the radially outermost and thus uppermost tooth of the fir-tree profile of the blade root 12 .
  • the first inlet channel section 22 defines a first flow inlet opening radially inside at the blade root 12 and the second inlet channel section 23 defines a second flow inlet opening radially inside at the blade root 12 .
  • the inlet channel sections 22 , 23 themselves, these are positioned one behind the other as seen in the axial direction of the blade root 12 and are spaced apart from one another by the material web 24 .
  • the first flow inlet opening and thus the first inlet channel section 22 has a defined axial distance ⁇ x from the upstream or axially front end of the blade root 12 in relation to the process medium flow.
  • the defined axial distance ⁇ x between the first inlet channel section 22 and thus the first flow inlet opening and the upstream or axially front end of the blade root 12 is preferably between 10% and 30%, in particular between 15% and 25%, of the axial length L of the blade root 12.
  • the material web 24 has a constant thickness in the axial direction.
  • the axial distance ⁇ x defined above between the first inlet channel section 22 and the upstream end of the blade root 12 relates to the area of the first inlet channel section 22 that extends radially outwards in a straight line in the radial direction run in a straight line, the two inlet channel sections 22, 23 run bent or curved in the direction of the connecting channel section 25. In the area of this curvature, the distance ⁇ x defined above changes.
  • the curvature of the inlet channel sections 22, 23 between the regions thereof running in a straight line in the radial direction and the connecting channel section 25 is directed in the direction of the upstream or axially front end of the blade root 12 or in the direction of the flow inlet edge 13 of the moving blade 11.
  • the axial thickness of the material web 24 preferably decreases in the direction of the combining channel section 25 .
  • the web of material 24 tapers in this area.
  • the axial thickness of the web of material 24 can also be constant in this area.
  • the cooling channel 20 in the exemplary embodiment shown initially extends radially outwards with a further section 26 in the direction of a radially outer deflection channel section 27, then at the radially outer deflection channel section 27 with a further section 28 radially inwards in the direction of a inner deflection duct section 29 and then to this radially inner deflection duct section 29 with a further section 30 radially outwards in the direction of the cooling duct outlet 31.
  • the sections 26, 28 and 30 of the cooling duct 20 extend within the blade leaf 11. There are also other courses of the Cooling channel 20 downstream of the connecting channel section 25 possible.
  • the radially inner deflection channel section 29 is arranged above or radially outside the topmost or radially outermost projection 17 of the blade root 12 and below or radially inside the inner shroud 18, specifically in the axial direction opposite the inlet channel sections 22, 23, axially to the rear in the direction of the offset downstream or axially aft end of the blade root 12.
  • the upper or radially outer deflection channel section 27 can extend into the area of the outer shroud 19 .
  • cooling medium flows into the cooling duct 20 via the flow inlet openings of the inlet duct sections 22, 23, with this coolant flowing through the two inlet duct sections 22, 23 being combined in the region of the combining duct section 25. This takes place in the area of the blade root 12 .
  • the cooling medium is then conducted via the channel sections 26 , 27 , 28 , 29 and 30 in the direction of the cooling channel outlet 31 .
  • Figures 6 and 7 show geometric parameters of the flow channel 20 in the area of the cooling channel inlet 21. So 6 it can be seen that the first inlet duct section 22 is curved with a first radius of curvature R1 and the second inlet duct section 23 with a second radius of curvature R2 towards the upstream axial end of the blade root 12 .
  • the first radius of curvature R1 is at least as large as the second radius of curvature R2, preferably R1 is larger than R2.
  • cooling medium can enter the cooling channel 20 directly in the radial direction in the area of the inlet channel sections 22, 23, as a result of which an effective entry of the cooling medium into the cooling channel 20 is possible.
  • the inlet channel sections 22 , 23 spaced apart from one another in the axial direction have a defined axial distance from the upstream end of the blade root 12 .
  • the inlet channel sections 22, 23 are spaced apart from one another in the axial direction by the material web 24. This serves to provide a high strength of the rotor blade 10 in the area of the blade root 12.
  • the web 24 extends, seen in the radial direction, to above or radially outside of the uppermost or radially outermost projection 17 of the fir-tree-like blade root 12. This ensures optimum strength in the area of the blade root 12.
  • the radially inner deflection channel section 29 is also arranged at an axial distance from the combining channel section 25 .
  • This radially inner deflection channel section 29 extends into the blade root 12, but ends at a distance from the radially outermost projection 17 of the fir-tree-like blade root 12, radially on the outside or radially above the web 24.
  • the rotor blade 10 according to the invention allows optimal cooling with high strength. It is used in particular in gas turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft eine Laufschaufel einer Strömungsmaschine.The invention relates to a moving blade of a turbomachine.

Strömungsmaschinen, wie Turbinen oder Verdichter, verfügen über statorseitige Baugruppen sowie rotorseitige Baugruppen. Zu den rotorseitigen Baugruppen einer Strömungsmaschine gehört der sogenannte Strömungsmaschinenrotor, der einen Nabenkörper und sich ausgehend vom Nabenkörper nach radial außen erstreckende Laufschaufeln aufweist. Eine Laufschaufel einer Strömungsmaschine verfügt über ein strömungsführendes Schaufelblatt sowie über einen Schaufelfuß, über welche die Laufschaufel im Nabenkörper der Strömungsmaschine befestigt werden kann. Das Schaufelblatt der Strömungsmaschine verfügt über eine Strömungseintrittskante, eine Strömungsaustrittskante sowie über sich zwischen der Strömungseintrittskante und der Strömungsaustrittskante erstreckende Strömungsführungsflächen für ein Prozessmedium, die auch als Saugseite und Druckseite bezeichnet werden. Der Schaufelfuß, über welchen die Laufschaufel im Nabenkörper der Strömungsmaschine befestigt werden kann, ist typischerweise tannenbaumartig mit mindestens zwei in Radialrichtung der Laufschaufel gesehen, voneinander beabstandeten Vorsprüngen ausgebildet. Eine Laufschaufel verfügt auch über ein sogenanntes Innendeckband, welches in Radialrichtung der Laufschaufel gesehen zwischen dem Schaufelblatt und dem Schaufelfuß angeordnet ist. Radial außen an das Schaufelblatt kann sich gegebenenfalls ein Außendeckband anschließen. Insbesondere im Bereich von Turbinen, in welchen ein heißes Prozessmedium über die Strömungsmaschine strömt, kommen Laufschaufeln zum Einsatz, in welche ein Kühlkanal integriert ist. Der Kühlkanal erstreckt sich dabei sowohl über den Schaufelfuß als auch über das Schaufelblatt. Ein Eintritt des Kühlkanals ist radial innen am Schaufelfuß ausgebildet. Ein Austritt des Kühlkanals kann radial außen am Schaufelblatt oder an dem radial äußeren Außendeckband oder auch an einer anderen Stelle ausgebildet ist.Flow machines, such as turbines or compressors, have assemblies on the stator and assemblies on the rotor. The rotor-side assemblies of a turbomachine include the so-called turbomachine rotor, which has a hub body and moving blades that extend radially outwards, starting from the hub body. A rotor blade of a turbomachine has a flow-guiding blade leaf and a blade root, via which the rotor blade can be fastened in the hub body of the turbomachine. The airfoil of the turbomachine has a flow inlet edge, a flow outlet edge and flow guide surfaces for a process medium extending between the flow inlet edge and the flow outlet edge, which are also referred to as suction side and pressure side. The blade root, via which the moving blade can be fastened in the hub body of the turbomachine, is typically designed in the manner of a Christmas tree with at least two projections spaced apart from one another, as seen in the radial direction of the moving blade. A moving blade also has what is known as an inner shroud, which is arranged between the blade leaf and the blade root, viewed in the radial direction of the moving blade. If necessary, an outer shroud can adjoin radially on the outside of the airfoil. In particular in the area of turbines, in which a hot process medium flows over the turbomachine, rotor blades are used, in which a cooling channel is integrated. In this case, the cooling channel extends both over the blade root and over the blade airfoil. An inlet of the cooling channel is formed radially on the inside at the blade root. An outlet of the cooling channel can be formed radially on the outside of the airfoil or on the radially outer outer shroud or at another point.

US2014/321961 A1 , US2012/171046 A1 , US2014/096538 A1 , US2012/0163995 A1 , EP2489838 A2 und EP2489838 A2 beschreiben Turbinenschaufeln einer Gasturbine mit einem Kühlkanal. US2014/321961 A1 , US2012/171046 A1 , US2014/096538 A1 , US2012/0163995 A1 , EP2489838 A2 and EP2489838 A2 describe turbine blades of a gas turbine with a cooling channel.

Obwohl bereits gekühlte Laufschaufeln mit einem Kühlkanal, der in die Laufschaufel integriert ist, grundsätzlich bekannt sind, besteht Bedarf daran, die Kühlung einer Laufschaufel weiter zu verbessern, und zwar bei gleichzeitig hoher Festigkeit der Laufschaufel.Although already cooled moving blades with a cooling channel that is integrated into the moving blade are known in principle, there is a need to further improve the cooling of a moving blade, specifically with high strength of the moving blade at the same time.

Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine neuartige Laufschaufel einer Strömungsmaschine zu schaffen, die trotz Kühlkanal eine hohe Festigkeit aufweist.Proceeding from this, the present invention is based on the object of creating a novel moving blade of a turbomachine which, despite the cooling duct, has a high level of strength.

Diese Aufgabe wird durch eine Laufschaufel nach Anspruch 1 gelöst.This object is achieved by a rotor blade according to claim 1.

Erfindungsgemäß ist der Eintritt des Kühlkanals aus einem ersten Eintrittskanalabschnitt und einem in Axialrichtung des Schaufelfußes gesehen hinter dem ersten Eintrittskanalabschnitt angeordneten, zweiten Eintrittskanalabschnitt ausgebildet, zwischen welchen sich ein Materialsteg erstreckt. Der erste Eintrittskanalabschnitt des Kühlkanals und der zweite Eintrittskanalabschnitt des Kühlkanals gehen in einen Vereinigungskanalabschnitt des Kühlkanals über, der in Radialrichtung gesehen radial außen oder radial oberhalb des obersten oder radial äußersten Vorsprungs des Schaufelfußes und radial innen oder radial unterhalb des Innendeckbands angeordnet ist. Dies dient der effektiven Kühlung der Laufschaufel bei gleichzeitig hoher Festigkeit der Laufschaufel.According to the invention, the inlet of the cooling channel is formed from a first inlet channel section and a second inlet channel section, which is arranged behind the first inlet channel section as seen in the axial direction of the blade root and between which a material web extends. The first inlet channel section of the cooling channel and the second inlet channel section of the cooling channel merge into a combination channel section of the cooling channel, which is arranged radially on the outside or radially above the uppermost or radially outermost projection of the blade root and radially on the inside or radially below the inner shroud, viewed in the radial direction. This is used for effective cooling of the moving blade while at the same time maintaining high strength of the moving blade.

Vorzugsweise verlaufen der erste Eintrittskanalabschnitt und der zweite Eintrittskanalabschnitt von radial innen nach radial außen zunächst geradlinig in Radialrichtung. In demjenigen Bereich des Schaufelfußes, in welchem der erste Eintrittskanalabschnitt und der zweite Eintrittskanalabschnitt geradlinig in Radialrichtung verlaufen, ist eine axiale Dicke des Materialstegs konstant. Dies dient der effektiven Kühlung der Laufschaufel bei gleichzeitig hoher Festigkeit der Laufschaufel.The first inlet channel section and the second inlet channel section preferably initially run in a straight line in the radial direction from radially inside to radially outside. An axial thickness of the material web is constant in that region of the blade root in which the first inlet channel section and the second inlet channel section run in a straight line in the radial direction. This is used for effective cooling of the moving blade while at the same time maintaining high strength of the moving blade.

Der erste Eintrittskanalabschnitt und der zweite Eintrittskanalabschnitt verlaufen anschließend hieran in Richtung auf den Vereinigungskanalabschnitt jeweils gebogen oder gekrümmt, und zwar in Richtung auf ein bezogen auf die Prozessmediumströmung stromaufwärtiges oder axial vorderes Ende des Schaufelfußes. In demjenigen Bereich des Schaufelfußes, in welchem der erste Eintrittskanalabschnitt und der zweite Eintrittskanalabschnitt jeweils gebogen oder gekrümmt verlaufen, nimmt eine axiale Dicke des Materialstegs in Richtung auf den Vereinigungskanalabschnitt vorzugsweise ab. Auch dies dient der effektiven Kühlung der Laufschaufel bei gleichzeitig hoher Festigkeit der Laufschaufel.The first inlet channel section and the second inlet channel section then extend in a bent or curved manner in the direction of the combination channel section, namely in the direction of an upstream or axially front end of the blade root in relation to the process medium flow. In that region of the blade root in which the first inlet channel section and the second inlet channel section each extend in a bent or curved manner, an axial thickness of the material web preferably decreases in the direction of the combining channel section. This also serves to effectively cool the moving blade while at the same time maintaining high strength of the moving blade.

Nach einer vorteilhaften Weiterbildung ist der erste Eintrittskanalabschnitt in Richtung auf das stromaufwärtige oder axial vordere Ende des Schaufelfußes mit einem ersten Krümmungsradius gekrümmt. Der zweite Eintrittskanalabschnitt ist in Richtung auf das stromaufwärtige oder axial vordere Ende des Schaufelfußes mit einem zweiten Krümmungsradius gekrümmt. Der erste Krümmungsradius ist zumindest so groß, vorzugsweise größer, als der zweite Krümmungsradius. Auch diese Merkmale dienen der Gewährleistung einer effektiven Kühlung bei gleichzeitig hoher Festigkeit der Laufschaufel.According to an advantageous development, the first inlet channel section is curved with a first radius of curvature in the direction of the upstream or axially front end of the blade root. The second entry duct section curves toward the upstream or axially forward end of the blade root at a second radius of curvature. The first radius of curvature is at least as large, preferably larger, than the second radius of curvature. These features also serve to ensure effective cooling combined with high blade strength.

Nach einer vorteilhaften Weiterbildung erstreckt sich anschließend an den Vereinigungskanalabschnitt der Kühlkanal zunächst nach radial außen in Richtung auf einen radial äußeren Umlenkkanalabschnitt. Anschließend an den radial äußeren Umlenkkanalabschnitt erstreckt sich der Kühlkanal nach radial innen in Richtung auf einen radial inneren Umlenkkanalabschnitt. Anschließend an den radial inneren Umlenkkanalabschnitt erstreckt sich der Kühlkanal nach radial außen in Richtung auf einen Kühlkanalaustritt. Der radial innere Umlenkkanalabschnitt ist in Radialrichtung oberhalb oder radial außen des obersten oder radial äußersten Vorsprungs des Schaufelfußes und unterhalb oder radial innen des Innendeckbands angeordnet. Auch dies dient der effektiven Kühlung der Laufschaufel bei hoher Festigkeit derselben.According to an advantageous further development, the cooling channel initially extends radially outwards in the direction of a radially outer deflection channel section following the combining channel section. Following the radially outer deflection channel section, the cooling channel extends radially inward in the direction of a radially inner deflection channel section. Following the radially inner deflection channel section, the cooling channel extends radially outward in the direction of a cooling channel outlet. The radially inner deflection channel section is arranged in the radial direction above or radially on the outside of the topmost or radially outermost projection of the blade root and below or radially on the inside of the inner shroud. This also serves for the effective cooling of the moving blade with the same high strength.

Nach einer vorteilhaften Weiterbildung weisen der erste Eintrittskanalabschnitt und der zweite Eintrittskanalabschnitt gleiche Strömungsquerschnitte auf. Dies sorgt für eine effektive Kühlung der Laufschaufel.According to an advantageous development, the first inlet channel section and the second inlet channel section have the same flow cross sections. This ensures effective cooling of the moving blade.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:

Fig. 1
eine Seitenansicht einer erfindungsgemäßen Laufschaufel einer Strömungsmaschine;
Fig. 2
eine perspektivische Vorderansicht der erfindungsgemäßen Laufschaufel;
Fig. 3
ein Detail der erfindungsgemäßen Laufschaufel im Bereich eines Schaufelfußes;
Fig. 4
Konturen eines Kühlkanals der erfindungsgemäßen Laufschaufel;
Fig. 5
den Ausschnitt V der Fig. 4;
Fig. 6
den Ausschnitt V der Fig. 4 mit geometrischen Größen;
Fig. 7
den Ausschnitt V der Fig. 4 mit weiteren geometrischen Größen.
Preferred developments of the invention result from the dependent claims and the following description. Exemplary embodiments of the invention are explained in more detail with reference to the drawing, without being limited thereto. It shows:
1
a side view of a blade according to the invention of a turbomachine;
2
a perspective front view of the blade according to the invention;
3
a detail of the moving blade according to the invention in the region of a blade root;
4
Contours of a cooling channel of the rotor blade according to the invention;
figure 5
the section V of the 4 ;
6
the section V of the 4 with geometric sizes;
7
the section V of the 4 with other geometric sizes.

Fig. 1 und 2 zeigen Ansichten einer Laufschaufel 10, wobei die Laufschaufel 10 ein strömungsführendes Schaufelblatt 11 und einen Schaufelfuß 12 umfasst. Das strömungsführende Schaufelblatt 11 dient der Strömungsführung eines Prozessmediums, insbesondere von Prozessgas, welches durch die Strömungsmaschine strömt, wobei das Schaufelblatt 11 eine Strömungseintrittskante 13 für das Prozessmedium, eine Strömungsaustrittskante 14 für das Prozessmedium und sich zwischen der Strömungseintrittskante 13 und der Strömungsaustrittskante 14 erstreckende Strömungsführungsflächen 15, 16 für das Prozessmedium aufweist. Die Strömungsführungsflächen 15, 16 bilden eine Saugseite und eine Druckseite. Figures 1 and 2 FIG. 1 shows views of a rotor blade 10, the rotor blade 10 comprising a flow-guiding airfoil 11 and a blade root 12. The flow-guiding blade leaf 11 serves to guide the flow of a process medium, in particular process gas, which flows through the turbomachine, with the blade leaf 11 having a flow inlet edge 13 for the process medium, a flow outlet edge 14 for the process medium and flow guide surfaces 15 extending between the flow inlet edge 13 and the flow outlet edge 14 , 16 for the process medium. The flow guide surfaces 15, 16 form a suction side and a pressure side.

Der Schaufelfuß 12 dient der Befestigung der Laufschaufel 10 in einem nicht gezeigten Nabenkörper der Strömungsmaschine. Der Schaufelfuß 12 ist dabei tannenbaumartig mit mindestens zwei in Radialrichtung der Laufschaufel 10 gesehen voneinander beabstandeten Vorsprüngen 17 ausgebildet. Im gezeigten Ausführungsbeispiel sind drei derartige Vorsprünge 17 in Radialrichtung der Laufschaufel 10 voneinander beabstandet. Zwischen benachbarten Vorsprüngen 17 verjüngt sich jeweils das Tannenbaumprofil des Schaufelfußes 12. Jeweils ein Vorsprung 17 und der unmittelbar oberhalb des jeweiligen Vorsprungs 17 angeordnete, sich verjüngende Abschnitt des Tannenbaumprofils definieren jeweils einen sogenannten Zahn des Tannenbaumprofils.The blade root 12 is used to fasten the moving blade 10 in a hub body (not shown) of the turbomachine. The blade root 12 is designed like a Christmas tree with at least two projections 17 spaced apart from one another as viewed in the radial direction of the moving blade 10 . In the exemplary embodiment shown, three such projections 17 are spaced apart from one another in the radial direction of the moving blade 10 . The fir-tree profile of the blade root 12 tapers between adjacent projections 17. Each projection 17 and the tapering section of the fir-tree profile arranged directly above the respective projection 17 each define a so-called tooth of the fir-tree profile.

Die Laufschaufel 10 verfügt weiterhin über ein Innendeckband 18, welches in Radialrichtung der Laufschaufel 10 gesehen zwischen dem Schaufelblatt 11 und dem Schaufelfuß 12 der Laufschaufel 10 angeordnet ist. Das Innendeckband 18 begrenzt radial innen einen Strömungsführungskanal für das Prozessmedium. Im gezeigten Ausführungsbeispiel verfügt die Laufschaufel 10 weiterhin über ein Außendeckband 19. Das Außendeckband 19 begrenzt radial außen den Strömungsführungskanal für das Prozessmedium.The rotor blade 10 also has an inner shroud 18 which, viewed in the radial direction of the rotor blade 10 , is arranged between the blade leaf 11 and the blade root 12 of the rotor blade 10 . The inner shroud 18 delimits a flow guide channel for the process medium radially on the inside. In the exemplary embodiment shown, the rotor blade 10 also has an outer shroud 19. The outer shroud 19 delimits the flow guide channel for the process medium radially on the outside.

In die Laufschaufel 10 ist ein Kühlkanal 20 für Kühlmedium, insbesondere Kühlluft, integriert. In Fig. 1 sind Konturen des Kühlkanals 20 gestrichelt gezeigt. Auch in Fig. 3 sind Konturen des Kühlkanals 20 abschnittsweise gestrichelt gezeigt. Fig. 4, 5, 6 und 7 zeigen lediglich die Konturen des Kühlkanals 20 ohne die eigentliche Laufschaufel 10.A cooling channel 20 for cooling medium, in particular cooling air, is integrated into the moving blade 10 . In 1 contours of the cooling channel 20 are shown in dashed lines. Also in 3 contours of the cooling channel 20 are shown in broken lines in sections. Figures 4, 5 , 6 and 7 only show the contours of the cooling channel 20 without the actual moving blade 10.

Der Kühlkanal 20 verfügt über einen Eintritt oder Kühlkanaleintritt 21, der radial innen am Schaufelfuß 12 ausgebildet ist. Ferner verfügt der Kühlkanal 20 über einen Austritt oder Kühlkanalaustritt 31, der insbesondere radial außen am Schaufelblatt 11 oder am Außendeckband 19 ausgebildet ist. Der Kühlkanalaustritt 31 kann auch an einer anderen Stelle positioniert sein.The cooling channel 20 has an inlet or cooling channel inlet 21 which is formed radially on the inside of the blade root 12 . Furthermore, the cooling duct 20 has an outlet or cooling duct exit 31 which is formed in particular radially on the outside on the airfoil 11 or on the outer shroud 19 . The cooling channel outlet 31 can also be positioned at a different point.

Fig. 3, 5, 6 und 7 zeigen Details des Eintritts oder Kühlkanaleintritts 21 des Kühlkanals 20. 3 , 5 , 6 and 7 show details of the entry or cooling channel entry 21 of the cooling channel 20.

Der Eintritt oder Kühlkanaleintritt 21 des Kühlkanals 20 umfasst einen ersten Eintrittskanalabschnitt 22 und einen zweiten Eintrittskanalabschnitt 23. Wie am besten Fig. 1 entnommen werden kann, ist der erste Eintrittskanalabschnitt 22 in Axialrichtung gesehen bezogen auf die Strömung des Prozessmediums vorne positioniert, also näher an einem bezogen die Prozessmediumströmung stromaufwärtigen oder axial vorderen Ende des Schaufelfußes 12 positioniert als der zweite Eintrittskanalabschnitt 23.The inlet or cooling duct entrance 21 of the cooling duct 20 comprises a first entry duct section 22 and a second entry duct section 23. As best 1 can be seen, the first inlet channel section 22 is positioned at the front as seen in the axial direction with respect to the flow of the process medium, i.e. positioned closer to an upstream or axially front end of the blade root 12 with respect to the process medium flow than the second inlet channel section 23.

Der zweite Eintrittskanalabschnitt 23 ist in Axialrichtung des Schaufelfußes 12 gesehen hinter dem ersten Eintrittskanalabschnitt 22 angeordnet.The second inlet channel section 23 is arranged behind the first inlet channel section 22 as viewed in the axial direction of the blade root 12 .

Wie bereits ausgeführt, dient der Schaufelfuß 12 nicht der Prozessmediumführung sondern lediglich der Befestigung bzw. Montage der Laufschaufel 10 am Nabenkörper. Nichtsdestotrotz weist der Schaufelfuß 12 jedoch zwei sich gegenüberliegende axiale Enden auf, und zwar ein bezogen auf die Prozessmediumströmung stromaufwärtiges oder axial vorderes Ende und ein bezogen auf die Prozessmediumströmung stromabwärtiges oder axial hinteres Ende.As already explained, the blade root 12 is not used to guide the process medium but only to fasten or assemble the rotor blade 10 on the hub body. Nevertheless, the blade root 12 has two opposite axial ends, namely an upstream or axially forward end in relation to the process medium flow and a downstream or axially rearward end in relation to the process medium flow.

Der erste Eintrittskanalabschnitt 22 ist zwischen dem stromaufwärtigen oder axial vorderen Ende des Schaufelfußes 12 und dem zweiten Eintrittskanalabschnitt 23 angeordnet.The first inlet channel section 22 is arranged between the upstream or axially forward end of the blade root 12 and the second inlet channel section 23 .

Der zweite Eintrittskanalabschnitt 23 ist zwischen dem ersten Eintrittskanalabschnitt 22 und dem stromabwärtigen oder axial hinteren Ende des Schaufelfußes 12 angeordnet.The second inlet channel section 23 is arranged between the first inlet channel section 22 and the downstream or axially rearward end of the blade root 12 .

Zwischen den beiden Eintrittskanalabschnitten 22 und 23, die in Axialrichtung des Schaufelfußes 12 voneinander beabstandet sind, erstreckt sich ein Materialsteg 24. Dieser Materialsteg 24 versteift die Laufschaufel 10 im Bereich ihres Schaufelfußes 12.A material web 24 extends between the two inlet channel sections 22 and 23, which are spaced apart from one another in the axial direction of the blade root 12. This material web 24 stiffens the rotor blade 10 in the region of its blade root 12.

Der erste Eintrittskanalabschnitt 22 und der zweite Eintrittskanalabschnitt 23 des Kühlkanals 20 gehen in einen Verbindungskanalabschnitt 25 über.The first inlet channel section 22 and the second inlet channel section 23 of the cooling channel 20 merge into a connecting channel section 25 .

Dieser Verbindungskanalabschnitt 25 ist dabei in Radialrichtung der Laufschaufel 10 gesehen oberhalb oder radial außen des obersten oder radial äußersten Vorsprungs 17 und unterhalb oder radial innen des Innendeckbands 18 angeordnet bzw. ausgebildet.Viewed in the radial direction of the moving blade 10 , this connecting channel section 25 is arranged or formed above or radially outside the uppermost or radially outermost projection 17 and below or radially inside the inner shroud 18 .

Daraus folgt, dass sich der Materialsteg 24 von radial innen nach radial außen bis in einen Abschnitt des Schaufelfußes 12 hinein erstreckt, der oberhalb oder radial außen des radial äußersten und damit obersten Vorsprungs 17 des Schaufelfußes 12 angeordnet ist, wodurch die Festigkeit der Laufschaufel 10 im Bereich des Schaufelfußes 12 besonders vorteilhaft eingestellt werden kann. Der Materialsteg 24 erstreckt sich bevorzugt bis in den Bereich des engsten Querschnitts des radial äußersten und damit obersten Zahns des Tannenbaumprofils des Schaufelfußes 12 hinein.It follows from this that the material web 24 extends radially from the inside to the radial outside into a section of the blade root 12 that is arranged above or radially outside of the radially outermost and thus uppermost projection 17 of the blade root 12, as a result of which the strength of the rotor blade 10 is increased in the Area of the blade root 12 can be adjusted particularly advantageously. The web of material 24 preferably extends into the region of the narrowest cross section of the radially outermost and thus uppermost tooth of the fir-tree profile of the blade root 12 .

Der erste Eintrittskanalabschnitt 22 definiert radial innen am Schaufelfuß 12 eine erste Strömungseintrittsöffnung und der zweite Eintrittskanalabschnitt 23 definiert radial innen am Schaufelfuß 12 eine zweite Strömungseintrittsöffnung. Diese sind, ebenso wie die Eintrittskanalabschnitte 22, 23 selbst, in Axialrichtung des Schaufelfußes 12 gesehen hintereinander positioniert und über den Materialsteg 24 voneinander beabstandet.The first inlet channel section 22 defines a first flow inlet opening radially inside at the blade root 12 and the second inlet channel section 23 defines a second flow inlet opening radially inside at the blade root 12 . Like the inlet channel sections 22 , 23 themselves, these are positioned one behind the other as seen in the axial direction of the blade root 12 and are spaced apart from one another by the material web 24 .

Die erste Strömungseintrittsöffnung und damit der erste Eintrittskanalabschnitt 22 weist einen definierten axialen Abstand Δx von dem bezogen auf die Prozessmediumströmung stromaufwärtigen oder axial vorderen Ende des Schaufelfußes 12 auf. Bevorzugt beträgt der definierte axiale Abstand Δx zwischen dem ersten Eintrittskanalabschnitt 22 und damit der ersten Strömungseintrittsöffnung und dem stromaufwärtigen oder axial vorderen Ende des Schaufelfußes 12 zwischen 10% und 30%, insbesondere zwischen 15% und 25%, der axialen Länge L des Schaufelfußes 12.The first flow inlet opening and thus the first inlet channel section 22 has a defined axial distance Δx from the upstream or axially front end of the blade root 12 in relation to the process medium flow. The defined axial distance Δx between the first inlet channel section 22 and thus the first flow inlet opening and the upstream or axially front end of the blade root 12 is preferably between 10% and 30%, in particular between 15% and 25%, of the axial length L of the blade root 12.

Wie am besten Fig. 4, 5, 6 und 7 entnommen werden kann, verlaufen der erste Eintrittskanalabschnitt 22 und der zweite Eintrittskanalabschnitt 23 ausgehend von ihrer jeweiligen Strömungseintrittsöffnung, also ausgehend von radial innen, zunächst geradlinig in Radialrichtung nach radial außen. In diesem Bereich, in welchem die beiden Eintrittskanalabschnitte 22, 23 geradlinig in Radialrichtung verlaufen, weist der Materialsteg 24 eine konstante Dicke in Axialrichtung auf. Der oben definierte axiale Abstand Δx zwischen dem ersten Eintrittskanalabschnitt 22 und dem stromaufwärtigen Ende des Schaufelfußes 12 bezieht sich auf den geradlinig in Radialrichtung nach radial außen verlaufenden Bereich des ersten Eintrittskanalabschnitts 22. Anschließend an denjenigen Bereich, in welchem die beiden Eintrittskanalabschnitte 22, 23 in Radialrichtung geradlinig verlaufen, verlaufen die beiden Eintrittskanalabschnitte 22, 23 in Richtung auf den Verbindungskanalabschnitt 25 gebogen oder gekrümmt. Im Bereich dieser Krümmung ändert sich der oben definierte Abstand Δx. Die Krümmung der Eintrittskanalabschnitte 22, 23 zwischen den geradlinig in Radialrichtung verlaufenden Bereichen derselben und dem Verbindungskanalabschnitt 25 ist dabei in Richtung auf das stromaufwärtige oder axial vordere Ende des Schaufelfußes 12 bzw. in Richtung auf die Strömungseintrittskante 13 der Laufschaufel 11 gerichtet. In diesem Bereich, in welchem die beiden über den Materialsteg 24 voneinander getrennte Eintrittskanalabschnitte 22, 23 gebogen oder gekrümmt verlaufen, nimmt die axiale Dicke des Materialstegs 24 in Richtung auf den Vereinigungskanalabschnitt 25 vorzugsweise ab. In diesem Bereich verjüngt sich der Materialsteg 24. Alternativ kann in diesem Bereich die axiale Dicke des Materialstegs 24 auch konstant sein.How best Figures 4, 5 , 6 and 7 can be seen, the first inlet channel section 22 and the second inlet channel section 23, starting from their respective flow inlet opening, ie starting from radially inwards, initially run in a straight line in the radial direction radially outwards. In this area, in which the two inlet channel sections 22, 23 run in a straight line in the radial direction, the material web 24 has a constant thickness in the axial direction. The axial distance Δx defined above between the first inlet channel section 22 and the upstream end of the blade root 12 relates to the area of the first inlet channel section 22 that extends radially outwards in a straight line in the radial direction run in a straight line, the two inlet channel sections 22, 23 run bent or curved in the direction of the connecting channel section 25. In the area of this curvature, the distance Δx defined above changes. The curvature of the inlet channel sections 22, 23 between the regions thereof running in a straight line in the radial direction and the connecting channel section 25 is directed in the direction of the upstream or axially front end of the blade root 12 or in the direction of the flow inlet edge 13 of the moving blade 11. In this area, in which the two inlet channel sections 22 , 23 separated from one another by the material web 24 are bent or curved, the axial thickness of the material web 24 preferably decreases in the direction of the combining channel section 25 . The web of material 24 tapers in this area. Alternatively, the axial thickness of the web of material 24 can also be constant in this area.

Anschließend an den Verbindungskanalabschnitt 25 erstreckt sich der Kühlkanal 20 im gezeigten Ausführungsbeispiel mit einem weiteren Abschnitt 26 zunächst nach radial außen in Richtung auf einen radial äußeren Umlenkkanalabschnitt 27, anschließend an den radial äußeren Umlenkkanalabschnitt 27 mit einem weiteren Abschnitt 28 nach radial innen in Richtung auf einen inneren Umlenkkanalabschnitt 29 und anschließend an diesen radial inneren Umlenkkanalabschnitt 29 mit einem weiteren Abschnitt 30 nach radial außen in Richtung auf den Kühlkanalaustritt 31. Die Abschnitt 26, 28 und 30 des Kühlkanals 20 erstrecken sich dabei innerhalb des Schaufelblatts 11. Es sind auch andere Verläufe des Kühlkanals 20 stromabwärts des Verbindungskanalabschnitts 25 möglich.Following the connecting channel section 25, the cooling channel 20 in the exemplary embodiment shown initially extends radially outwards with a further section 26 in the direction of a radially outer deflection channel section 27, then at the radially outer deflection channel section 27 with a further section 28 radially inwards in the direction of a inner deflection duct section 29 and then to this radially inner deflection duct section 29 with a further section 30 radially outwards in the direction of the cooling duct outlet 31. The sections 26, 28 and 30 of the cooling duct 20 extend within the blade leaf 11. There are also other courses of the Cooling channel 20 downstream of the connecting channel section 25 possible.

Der radial innere Umlenkkanalabschnitt 29 ist in Radialrichtung gesehen oberhalb oder radial außen des obersten oder radial äußersten Vorsprungs 17 des Schaufelfußes 12 und unterhalb oder radial innen des Innendeckbands 18 angeordnet, und zwar in Axialrichtung gegenüber den Eintrittskanalabschnitten 22, 23 nach axial hinten in Richtung auf das stromabwärtige oder axial hintere Ende des Schaufelfußes 12 versetzt.Viewed in the radial direction, the radially inner deflection channel section 29 is arranged above or radially outside the topmost or radially outermost projection 17 of the blade root 12 and below or radially inside the inner shroud 18, specifically in the axial direction opposite the inlet channel sections 22, 23, axially to the rear in the direction of the offset downstream or axially aft end of the blade root 12.

Der obere oder radial äußere Umlenkkanalabschnitt 27 kann sich in den Bereich des Außendeckbands 19 hinein erstrecken.The upper or radially outer deflection channel section 27 can extend into the area of the outer shroud 19 .

Bei der erfindungsgemäßen Laufschaufel 10 strömt demnach Kühlmedium über die Strömungseintrittsöffnungen der Eintrittskanalabschnitte 22, 23 in den Kühlkanal 20 ein, wobei dieses über die beiden Eintrittskanalabschnitte 22, 23 strömende Kühlmittel im Bereich des Vereinigungskanalabschnitts 25 vereinigt wird. Dies erfolgt im Bereich des Schaufelfußes 12. Anschließend hieran wird das Kühlmedium über die Kanalabschnitte 26, 27, 28, 29 und 30 in Richtung auf den Kühlkanalaustritt 31 geführt.In the rotor blade 10 according to the invention, cooling medium flows into the cooling duct 20 via the flow inlet openings of the inlet duct sections 22, 23, with this coolant flowing through the two inlet duct sections 22, 23 being combined in the region of the combining duct section 25. This takes place in the area of the blade root 12 . The cooling medium is then conducted via the channel sections 26 , 27 , 28 , 29 and 30 in the direction of the cooling channel outlet 31 .

Die sich in Radialrichtung erstreckenden Kanalabschnitte 26, 28 und 30 erstrecken sich dabei über die Radialerstreckung des Schaufelblatts 11. Zwischen den Kanalabschnitten 26, 28 sowie zwischen den Kanalabschnitten 28 und 30 erfolgt eine Strömungsumlenkung über die Umlenkkanalabschnitte 27 und 29.The channel sections 26, 28 and 30, which extend in the radial direction, extend over the radial extent of the blade leaf 11. Between the channel sections 26, 28 and between the channel sections 28 and 30, the flow is deflected via the deflection channel sections 27 and 29.

Fig. 6 und 7 zeigen geometrische Kenngrößen des Strömungskanals 20 im Bereich des Kühlkanaleintritts 21. So kann Fig. 6 entnommen werden, dass der erste Eintrittskanalabschnitt 22 mit einem ersten Krümmungsradius R1 und der zweite Eintrittskanalabschnitt 23 mit einem zweiten Krümmungsradius R2 in Richtung auf das stromaufwärtige axiale Ende des Schaufelfußes 12 gekrümmt ist. Der erste Krümmungsradius R1 ist dabei zumindest so groß wie der zweite Krümmungsradius R2, vorzugsweise ist R1 größer als R2. Figures 6 and 7 show geometric parameters of the flow channel 20 in the area of the cooling channel inlet 21. So 6 it can be seen that the first inlet duct section 22 is curved with a first radius of curvature R1 and the second inlet duct section 23 with a second radius of curvature R2 towards the upstream axial end of the blade root 12 . The first radius of curvature R1 is at least as large as the second radius of curvature R2, preferably R1 is larger than R2.

Fig. 7 visualisieren die Strömungsquerschnitte der Eintrittskanalabschnitte 22 und 23. Fig. 7 kann entnommen werden, dass die beiden Eintrittskanalabschnitte 22 und 23 gleiche Strömungsquerschnitte A aufweisen, und zwar über ihre gesamte radiale Erstreckung bis zum Vereinigungskanalabschnitt 25 hin. 7 visualize the flow cross sections of the inlet channel sections 22 and 23. 7 It can be seen from FIG.

Bei der erfindungsgemäßen Laufschaufel 10 kann Kühlmedium im Bereich der Eintrittskanalabschnitte 22, 23 in Radialrichtung direkt in den Kühlkanal 20 eintreten, wodurch ein effektiver Eintritt des Kühlmediums in den Kühlkanal 20 möglich ist. In Axialrichtung gesehen weisen dabei die in Axialrichtung voneinander beabstandeten Eintrittskanalabschnitte 22, 23 einen definierten axialen Abstand von dem stromaufwärtigen Ende des Schaufelfußes 12 auf. Ferner sind die Eintrittskanalabschnitte 22, 23 in Axialrichtung durch den Materialsteg 24 voneinander beabstandet. Dies dient der Bereitstellung einer hohen Festigkeit der Laufschaufel 10 im Bereich des Schaufelfußes 12. Der Steg 24 erstreckt sich dabei in Radialrichtung gesehen bis oberhalb oder radial außen des obersten oder radial äußersten Vorsprungs 17 des tannenbaumartigen Schaufelfußes 12. Dies sorgt für eine optimale Festigkeit im Bereich des Schaufelfußes 12.In the rotor blade 10 according to the invention, cooling medium can enter the cooling channel 20 directly in the radial direction in the area of the inlet channel sections 22, 23, as a result of which an effective entry of the cooling medium into the cooling channel 20 is possible. Viewed in the axial direction, the inlet channel sections 22 , 23 spaced apart from one another in the axial direction have a defined axial distance from the upstream end of the blade root 12 . Furthermore, the inlet channel sections 22, 23 are spaced apart from one another in the axial direction by the material web 24. This serves to provide a high strength of the rotor blade 10 in the area of the blade root 12. The web 24 extends, seen in the radial direction, to above or radially outside of the uppermost or radially outermost projection 17 of the fir-tree-like blade root 12. This ensures optimum strength in the area of the blade root 12.

In dem radialen Bereich des Schaufelfußes 12, in welchem die beiden Eintrittskanalabschnitte 22 und 23 in den Vereinigungskanalabschnitt 25 übergehen, ist axial beabstandet zum Vereinigungskanalabschnitt 25 auch der radial innere Umlenckanalabschnitt 29 angeordnet. Dieser radial innere Umlenkkanalabschnitt 29 erstreckt sich in den Schaufelfuß 12 hinein, endet jedoch mit Abstand vom radial äußersten Vorsprung 17 des tannenbaumartigen Schaufelfußes 12 radial außen bzw. radial oberhalb des Stegs 24. Die erfindungsgemäße Laufschaufel 10 erlaubt eine optimale Kühlung bei hoher Festigkeit. Sie findet insbesondere in Gasturbinen Einsatz.In the radial region of the blade root 12 in which the two inlet channel sections 22 and 23 merge into the combining channel section 25 , the radially inner deflection channel section 29 is also arranged at an axial distance from the combining channel section 25 . This radially inner deflection channel section 29 extends into the blade root 12, but ends at a distance from the radially outermost projection 17 of the fir-tree-like blade root 12, radially on the outside or radially above the web 24. The rotor blade 10 according to the invention allows optimal cooling with high strength. It is used in particular in gas turbines.

BezugszeichenlisteReference List

1010
Laufschaufelblade
1111
Schaufelblattshovel blade
1212
Schaufelfußblade root
1313
Strömungseintrittskanteflow leading edge
1414
Strömungsaustrittskantetrailing edge
1515
Strömungsführungsflächeflow guide surface
1616
Strömungsführungsflächeflow guide surface
1717
Vorsprunghead Start
1818
Innendeckbandinner shroud
1919
Außendeckbandouter shroud
2020
Kühlkanalcooling channel
2121
Kühlkanaleintrittcooling channel entry
2222
erster Eintrittskanalabschnittfirst entry channel section
2323
zweiter Eintrittskanalabschnittsecond entry channel section
2424
Materialstegmaterial web
2525
VereinigungskanalabschnittUnion Channel Section
2626
Kanalabschnittcanal section
2727
Umlenkkanalabschnittdeflection channel section
2828
Kanalabschnittcanal section
2929
Umlenkkanalabschnittdeflection channel section
3030
Kanalabschnittcanal section
3131
Kühlkanalaustrittcooling channel outlet

Claims (11)

  1. A moving blade (10) of a turbomachine,
    having a blade leaf (11), which comprises a flow leading edge (13), a flow trailing edge (14) and flow guiding surfaces (15, 16) extending between the flow leading edge (13) and the flow trailing edge (14) for a process medium,
    having a blade root (12) for mounting the moving blade to a hub body of the turbomachine, wherein the blade root (12) is formed in the manner of a fir tree with at least two projections (17) spaced apart from one another seen in the radial direction,
    having an inner shroud (18), which seen in the radial direction, is arranged between the blade leaf (11) and the blade root (12),
    having a cooling channel (20) integrated in the blade leaf (11) and the blade root (12) for a cooling medium, wherein the inlet (21) of the cooling channel (20) is formed radially inside on the blade root (12),
    the inlet of the cooling channel (20) is formed out of a first inlet channel portion (22) and a second inlet channel portion (23) arranged, seen in the axial direction of the blade root (12), behind the first inlet channel portion (22), between which a material web (24) extends,
    the first inlet channel portion (22) of the cooling channel (20) and the second inlet channel portion (23) of the cooling channel (20) merge into a unified channel portion (25) of the cooling channel (20) which, seen in the radial direction, is arranged radially outside or radially above the uppermost or radially outermost projection (17) of the blade root (12) and radially inside or radially below the inner shroud (18),
    the first inlet channel portion (22) of the cooling channel (20) and the second inlet channel portion (23) of the cooling channel (20) run from radially inside to radially outside initially linearly in the radial direction,
    characterised in that
    the first inlet channel portion (22) and the second inlet channel portion (23) following thereon, each run in the direction of the unified channel portion (25) of the cooling channel (20) bent or curved, namely in the direction of, with respect to the process medium flow, an upstream or axial front end of the blade root (12),
    the first inlet channel portion (22), in the direction of the upstream or axial front end of the blade root (12), is curved with a first curvature radius (R1),
    the second inlet channel portion (23) is curved in the direction of the upstream or axial front end of the blade root (12) with a second curvature radius (R2),
    the first curvature radius (R1) is at least as large, preferentially larger than the second curvature radius (R2) .
  2. The moving blade according to Claim 1, characterised in that the first inlet channel portion (22) of the cooling channel (20) defines a first flow inlet opening and the second inlet channel portion (23) of the cooling channel (20) a second flow inlet opening which, seen in the axial direction of the blade root (12), is positioned behind the first flow inlet opening.
  3. The moving blade according to Claim 2, characterised in that first inlet channel portion (22) and thus the first flow inlet opening have a defined axial distance (Δx) at an, based on the process medium flow, upstream or axial front end of the blade root (12).
  4. The moving blade according to Claim 3, characterised in that the defined axial distance (Δx) between the first inlet channel portion (22) and thus the first flow inlet opening and the upstream or axial front end of the blade root (12) amounts to between 10% and 30% of the axial length (L) of the blade root (12).
  5. The moving blade according to Claim 4, characterised in that in that region, in which the first inlet channel portion (22) and the second inlet channel portion (23) run linearly in the radial direction, an axial thickness of the material web (24) is constant.
  6. The moving blade according to Claim 4 or 5, characterised in that in that region, in which the first inlet channel portion (22) and the second inlet channel portion (23) run each bent or curved, an axial thickness of the material web (24) decreases in the direction of the unified channel portion (25).
  7. The moving blade according to Claim 4 or 5, characterised in that in that region, in which the first inlet channel portion (22) and the second inlet channel portion (23) each run bent or curved, an axial thickness of the material web (24) is constant.
  8. The moving blade according to any one of the Claims 1 to 7, characterised in that following the unified channel portion (25) the cooling channel (20) extends radially to the outside.
  9. The moving blade according to any one of the Claims 1 to 8, characterised in that
    following the unified channel portion (25), the cooling channel (20) initially extends radially to the outside in the direction of a radially outer deflection channel portion (27),
    following thereon, the cooling channel (20) extends radially to the inside in the direction of a radially inner deflection channel portion (29),
    following thereon, the cooling channel extends radially to the outside in the direction of a cooling channel outlet (31).
  10. The moving blade according to Claim 9, characterised in that the radially inner deflection channel portion (27) is arranged in the radial direction radially outside or radially above the uppermost or radially outermost projection (17) of the blade root (12) and radially inside or radially below the inner shroud (18) .
  11. The moving blade according to any one of the Claims 1 to 10, characterised in that the first inlet channel portion (22) of the cooling channel (20) and the second inlet channel portion (23) of the cooling channel (20) have same flow cross-sections (A).
EP20161689.3A 2019-04-04 2020-03-09 Rotor blade of a turbomachine Active EP3719258B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RS20230575A RS64375B1 (en) 2019-04-04 2020-03-09 Rotor blade of a turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019108811.9A DE102019108811B4 (en) 2019-04-04 2019-04-04 Rotor blade of a turbomachine

Publications (2)

Publication Number Publication Date
EP3719258A1 EP3719258A1 (en) 2020-10-07
EP3719258B1 true EP3719258B1 (en) 2023-05-03

Family

ID=69784091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20161689.3A Active EP3719258B1 (en) 2019-04-04 2020-03-09 Rotor blade of a turbomachine

Country Status (9)

Country Link
US (1) US11408289B2 (en)
EP (1) EP3719258B1 (en)
JP (1) JP7424893B2 (en)
KR (1) KR20200117866A (en)
CN (1) CN111794805A (en)
DE (1) DE102019108811B4 (en)
ES (1) ES2950136T3 (en)
IL (1) IL272567B2 (en)
RS (1) RS64375B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019125779B4 (en) * 2019-09-25 2024-03-21 Man Energy Solutions Se Blade of a turbomachine

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966756B2 (en) * 2004-01-09 2005-11-22 General Electric Company Turbine bucket cooling passages and internal core for producing the passages
US7467922B2 (en) 2005-07-25 2008-12-23 Siemens Aktiengesellschaft Cooled turbine blade or vane for a gas turbine, and use of a turbine blade or vane of this type
EP1895096A1 (en) * 2006-09-04 2008-03-05 Siemens Aktiengesellschaft Cooled turbine rotor blade
DE102011121634B4 (en) * 2010-12-27 2019-08-14 Ansaldo Energia Ip Uk Limited turbine blade
US8628300B2 (en) 2010-12-30 2014-01-14 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
GB201102719D0 (en) * 2011-02-17 2011-03-30 Rolls Royce Plc Cooled component for the turbine of a gas turbine engine
US20120269649A1 (en) * 2011-04-22 2012-10-25 Christopher Rawlings Turbine blade with improved trailing edge cooling
WO2012144244A1 (en) 2011-04-22 2012-10-26 三菱重工業株式会社 Vane member and rotary machine
EP2535515A1 (en) * 2011-06-16 2012-12-19 Siemens Aktiengesellschaft Rotor blade root section with cooling passage and method for supplying cooling fluid to a rotor blade
US10180067B2 (en) * 2012-05-31 2019-01-15 United Technologies Corporation Mate face cooling holes for gas turbine engine component
US20140093386A1 (en) * 2012-09-28 2014-04-03 Solar Turbines Incorporated Cooled turbine blade with inner spar
US20140096538A1 (en) * 2012-10-05 2014-04-10 General Electric Company Platform cooling of a turbine blade assembly
US20150308449A1 (en) 2014-03-11 2015-10-29 United Technologies Corporation Gas turbine engine component with brazed cover
FR3020402B1 (en) * 2014-04-24 2019-06-14 Safran Aircraft Engines DRAWER FOR TURBOMACHINE TURBINE COMPRISING AN IMPROVED HOMOGENEITY COOLING CIRCUIT
US10174622B2 (en) * 2016-04-12 2019-01-08 Solar Turbines Incorporated Wrapped serpentine passages for turbine blade cooling
EP3232001A1 (en) 2016-04-15 2017-10-18 Siemens Aktiengesellschaft Rotor blade for a turbine
EP3241990A1 (en) * 2016-05-04 2017-11-08 Siemens Aktiengesellschaft A turbomachine blade or vane having a vortex generating element
EP3421721A1 (en) 2017-06-28 2019-01-02 Siemens Aktiengesellschaft A turbomachine component and method of manufacturing a turbomachine component
US11008873B2 (en) * 2019-02-05 2021-05-18 Raytheon Technologies Corporation Turbine blade tip wall cooling

Also Published As

Publication number Publication date
JP7424893B2 (en) 2024-01-30
JP2020169644A (en) 2020-10-15
DE102019108811A1 (en) 2020-10-08
DE102019108811B4 (en) 2024-02-29
RS64375B1 (en) 2023-08-31
KR20200117866A (en) 2020-10-14
IL272567B1 (en) 2023-06-01
IL272567B2 (en) 2023-10-01
US20200318485A1 (en) 2020-10-08
ES2950136T3 (en) 2023-10-05
US11408289B2 (en) 2022-08-09
CN111794805A (en) 2020-10-20
EP3719258A1 (en) 2020-10-07
IL272567A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
DE69504071T2 (en) TURBO MACHINE
DE69105837T2 (en) Cooled turbine blade.
DE69921320T2 (en) TURBINENSTATORSCHAUFEL
EP1004748B1 (en) Runner for a turbomachine
EP3176370B1 (en) Blade cluster for a flow machine
EP1898054B1 (en) Gas turbine
EP2478186B1 (en) Rotor of a turbomachine
WO2005106207A1 (en) Compressor blade and compressor
DE10054244C2 (en) Turbine blade arrangement and turbine blade for an axial turbine
EP1766192A1 (en) Vane wheel of a turbine comprising a vane and at least one cooling channel
EP2558685B1 (en) Guide vane
EP3078804A1 (en) Shroud assembly of a row of stator or rotor blades and corresponding turbine
EP2140111B1 (en) Turbomachine
DE102014115475A1 (en) Trailing edge rounding of a gas turbine guide vane
DE102007050916A1 (en) Stator arrangement for compressor of fluid conveying arrangement in gas turbine engine, has radial passage conduit formed in part of stator ring segment, where radial passage conduit is arranged adjacent to stator blade passage conduit
EP3473808B1 (en) Blade for an internally cooled turbine blade and method for producing same
EP2696042B1 (en) Fluid flow engine with at least one guide blade assembly
DE60019965T2 (en) AXIAL TURBINE FOR GASES
EP3798416B1 (en) Blade of a turbomachine
EP2410131B1 (en) Rotor of a turbomachine
EP3561228B1 (en) Turbomachine and blade, blade segment and assembly for a turbomachine
EP3719258B1 (en) Rotor blade of a turbomachine
EP3401504A1 (en) Blade grid
DE102013213416B4 (en) Shovel for a gas turbine machine
DE102004038639A1 (en) Francis turbine for the generation of hydro-electricity has blade profile ratio minimizing trailing edge vortices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210318

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/30 20060101ALI20221219BHEP

Ipc: F01D 5/18 20060101AFI20221219BHEP

INTG Intention to grant announced

Effective date: 20230110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003132

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1564749

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230503

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2950136

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230903

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003132

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 5

Ref country code: CZ

Payment date: 20240229

Year of fee payment: 5

Ref country code: GB

Payment date: 20240321

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240301

Year of fee payment: 5

Ref country code: SE

Payment date: 20240320

Year of fee payment: 5

Ref country code: RS

Payment date: 20240229

Year of fee payment: 5

Ref country code: IT

Payment date: 20240329

Year of fee payment: 5

Ref country code: FR

Payment date: 20240328

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240429

Year of fee payment: 5