EP3475638B1 - Procede et installation de recuperation d'energie calorifique sur un four a longerons tubulaires et de conversion de celle-ci en electricite au moyen d'une turbine produisant de l'electricite par la mise en oeuvre d'un cycle de rankine - Google Patents

Procede et installation de recuperation d'energie calorifique sur un four a longerons tubulaires et de conversion de celle-ci en electricite au moyen d'une turbine produisant de l'electricite par la mise en oeuvre d'un cycle de rankine Download PDF

Info

Publication number
EP3475638B1
EP3475638B1 EP17731598.3A EP17731598A EP3475638B1 EP 3475638 B1 EP3475638 B1 EP 3475638B1 EP 17731598 A EP17731598 A EP 17731598A EP 3475638 B1 EP3475638 B1 EP 3475638B1
Authority
EP
European Patent Office
Prior art keywords
fluid
heat transfer
organic
installation
organic fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17731598.3A
Other languages
German (de)
English (en)
Other versions
EP3475638A1 (fr
Inventor
Patrick Giraud
Aurélie GONZALEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fives Stein SA
Original Assignee
Fives Stein SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fives Stein SA filed Critical Fives Stein SA
Publication of EP3475638A1 publication Critical patent/EP3475638A1/fr
Application granted granted Critical
Publication of EP3475638B1 publication Critical patent/EP3475638B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/10Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated heated by hot air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • F27D2017/006Systems for reclaiming waste heat using a boiler

Definitions

  • the invention relates to the field of the recovery of heat energy from furnaces with tubular spars and its conversion into electricity by means of an expansion cycle turbine using a fluid other than water vapor.
  • the invention relates in particular to steel reheating furnaces intended to reheat products, in particular slabs, blooms, blanks or billets, operating at a temperature suitable for their hot rolling, and more particularly furnaces with mobile beams.
  • a reheating furnace makes it possible to bring the products to high temperatures, for example to a temperature of about 1200 ° C. for a carbon steel.
  • the heating of the furnace is commonly carried out by burners supplied with preheated air and fuel and operating with a slight excess of air.
  • EP0971192 describes an example of a longitudinal beam furnace equipped with fixed beams and mobile beams.
  • the products are placed on the beams and are heated by burners placed above and below the products.
  • the spars are made of andirons and cooled keels.
  • the movable side members allow the transport of the products in the oven by following a cycle comprising a first phase of ascent by the movable side members, from an initial position, which allows the products to be lifted.
  • the first phase is followed by a second phase of horizontal transport by the mobile spars, then a third phase of depositing the products on the fixed spars.
  • the products are thus moved by one step on the fixed side members before the fourth phase of moving the moving side members back to their initial position.
  • the andirons of the fixed side members are carried by pins integral with the oven floor.
  • the andirons of the mobile side members are carried by pins passing through the floor of the oven and fixed, under the oven, on a translation frame.
  • the translation frame is based on a mechanism which ensures a rectangular cycle by the horizontal and vertical displacement of the frame assembly, keels and andirons of the mobile side members.
  • the structure of the side members is produced by tubes or hollow sections which are cooled by a circulating heat transfer fluid, which is traditionally water at low temperature and low pressure, for example 30 to 55 ° C. and 5 bars.
  • the quantity of energy evacuated per unit of time by the heat transfer fluid is important in order to limit the temperature and to have sufficient mechanical strength of the structure of the side members.
  • the evacuated power is for example 10 MW th for a furnace with a capacity of 450 t / h.
  • the hot water recovered at the outlet of the longitudinal members can then be used in the plant, for example for sanitary use, for heating buildings, or for processes for which relatively low temperatures are necessary.
  • the water at low temperature and low pressure cooling the spars can be replaced by superheated high pressure water, which is partially transformed into saturated steam in the andirons.
  • the resulting steam can be used in the plant for different needs.
  • the cooling of the structure of the side members by a mixture of water and saturated steam is advantageous, in particular because it makes it possible to ensure the operation of the structure of the side members at a stable temperature. Indeed, the change of state from the liquid phase to the vapor phase taking place at a substantially constant temperature, the outlet temperature of the cooling fluid from the spars is constant, whatever the operating speed of the furnace, only the quantity of water passing in evolving vapor phase.
  • the outlet temperature of the cooling fluid is, for example, 215 ° C. for a fluid pressure of 21 bars absolute.
  • a heat recuperator is traditionally placed in a flue of combustion fumes from the furnace. It enables energy recovery from these fumes by preheating the combustion air from the burners and sometimes the fuel. Downstream of this recuperator, the temperature of the flue gases is still relatively high, for example 300 ° C. It is known to add other heat exchangers, or a recovery boiler, in flues to further exhaust the fumes. In the case where the cooling of the structure of the side members is carried out by superheated water with production of steam, it may for example be a superheated water saver or a steam superheater.
  • the steel reheating furnaces operate continuously and have large production capacities, for example 450 t / h. Their operating regime frequently varies, in particular according to the nature and temperature of the products placed in the oven and the timing of the oven. As a result, the volume of the combustion fumes also varies frequently, the latter being substantially proportional to the hourly tonnage of the products heated in the oven. The changes in the flow of fumes are also accompanied by a variation in the temperature of said fumes. These fluctuations in the temperature of the flue gases lead to a significant variation in the performance of the exchangers placed in flues or in recovery boilers. At reduced tonnage, the flue gas temperature no longer allows the residual energy of the flue gases to be used in steam.
  • the products to be heated in the oven must always be heated to the rolling temperature, and this being relatively constant, the temperature of the oven walls vary little. As the heat losses through the side members fluctuate little, the generation of steam by a cooling system for the side members structure is less dependent on the hourly tonnage of the furnace.
  • the thermal energies contained in the flue gases and the cooling fluid of the spars each represent approximately 10 MW th on a 450 t / h furnace with temperatures respectively of the order of 300 ° C and 200 ° C.
  • the use of a water-steam cycle for the production of electricity from these energies is difficult to implement and is not economically profitable with these levels of temperature and thermal power, as well as these amplitudes of power variations.
  • KR20140036363 describes an energy recovery solution on a steel reheating furnace making it possible to recover the energy losses of the furnace contained in the fumes and in the cooling system of the spars, by using them in a common electricity production installation, while overcoming the problems of variability thereof. It implements an installation for generating electricity by a thermodynamic Rankine cycle using an organic fluid as working fluid.
  • An organic Rankine cycle machine called "ORC” for the acronym of the English terms Organic Rankine Cycle, converts medium or low temperature heat into electricity, thanks to the use of an organic working fluid of density greater than that of water.
  • ORC machine the working fluid in the liquid state is compressed and then vaporized.
  • the organic fluid vapor is then expanded before being condensed.
  • the machine comprises in particular an evaporator, an expansion turbine, a condenser and a booster pump.
  • the expansion turbine is for example of the radial or axial type, with one or two stages, the rotation of which drives an alternator which produces electricity.
  • the organic fluid has a low boiling point, for example less than 50 ° C at atmospheric pressure, and is of the wetting type, that is to say that it is not necessary to superheat the vapor of this. fluid after evaporation to avoid creating droplets in the turbine during expansion.
  • This type of fluid can thus allow, despite a low temperature of the hot source, to extract a maximum of work in the turbine and thus to have a better efficiency than a water vapor cycle at low temperatures, for example below 350 ° C.
  • thermodynamic machine efficiency that is to say the ratio between available thermal energy and net electricity produced.
  • the calories necessary for the vaporization of the organic fluid of the ORC machine are provided by the energy recovered from the reheating furnace, partly from the cooling fluid of the side members and partly from the combustion fumes.
  • the coolant for andirons and keels is a mixture of molten salts.
  • This mixture is for example composed, by mass, of 52% of KNO 3 , 18% of NaNO 3 and 30% of LiNO 3 .
  • the installation comprises a recirculation loop 40 with additional equipment, which makes the installation more expensive and relatively complex to operate compared to a solution in which the cooling fluid is water or a water / steam mixture. Calories from the molten salts are transmitted to the organic fluid of the ORC by means of an exchanger 21.
  • the molten salts may come into contact with the organic fluid of the ORC, which represents a risk. for installation.
  • this solution does not make it possible to modulate the calorific input of the molten salts to the organic fluid of the ORC. If the ORC is stopped, the continuous supply of calories by the molten salts can lead to a very significant rise in the temperature of the organic fluid, hence a risk for the installation.
  • KR20140036363 describes a solution in which part of the fumes directly exchange calories with the organic fluid of the ORC by means of an exchanger 51. In the event of deterioration of this exchanger, there is a risk of fire if the organic fluid of the ORC comes into contact with the fumes.
  • the state of the art therefore does not allow a double recovery of energy from the fumes from the reheating furnace and from the cooling fluid of the andirons and keels under conditions allowing optimal energy performance, flexibility in regulating the operation of the 'ORC and safe operating conditions.
  • heating system comprising a cooling circuit for said side members, in which water circulates, the latter being in the liquid state at the inlet of the side members and in the liquid / vapor mixture state at the outlet of the side members, said mixture being separated downstream of the side members into liquid water on one side and steam on the other, the steam directly or indirectly yielding calories to a first intermediate recirculation loop, and furthermore a recovery system energy making it possible to absorb part of the calories from the fume circuit evacuated by the oven, said calories being transferred to a second intermediate recirculation loop, said first and second intermediate recirculation loops directly or indirectly transferring calories to an organic fluid loop arranged so as to supply a turbine producing electricity by the implementation of a cycle of organic Rankine.
  • the calories coming from the steam and those coming from the flue gas circuit are transferred indirectly to the organic fluid of the ORC, via a first intermediate recirculation loop arranged between a circuit comprising the steam and the organic fluid, respectively via a second intermediate recirculation loop arranged between the flue gas circuit and the organic fluid.
  • the vapor circuit is isolated from the organic fluid by at least two pieces of equipment, for example two exchangers.
  • the flue gas circuit is isolated from the organic fluid by at least two pieces of equipment, for example two exchangers.
  • the calories coming from the steam are first transferred to a first intermediate recirculation loop before being transferred to the organic fluid used in the Rankine cycle.
  • the steam has a very high pressure compared to that of the organic fluid, there is no significant risk of explosion if the exchanger is pierced, even if the organic fluid of the ORC is very often a hydrocarbon or flammable refrigerant, since the vapor cannot come into contact with said organic fluid.
  • the calories from the fumes are first transferred to a second intermediate recirculation loop before being transferred to the organic fluid used in the Rankine cycle. Also, there is no possible exchange between the organic fluid used in the Rankine cycle and the fumes, which avoids a risk of fire which is present in the prior art.
  • the method according to the invention therefore has more security than that according to the prior art.
  • the combination of the two energy sources from the flue gases and the cooling system can stabilize the energy input supplied to the ORC machine.
  • the combination of the two energy sources from the flue gases and the cooling system can allow the ORC machine to operate more often in its optimum operating range.
  • a reheating furnace is dimensioned for a nominal production capacity corresponding to the heating of a number of tonnes per hour of a reference product from an initial temperature to a discharge temperature. From experience, in operation, the furnace operates on average at about 70% of its nominal capacity.
  • an ORC machine works well over a wide range of variations in the heat source, with the incoming thermal power typically varying between 30% and 100%.
  • the maximum efficiency of the ORC machine is obtained for the maximum design power and it decreases with the incoming thermal power.
  • An ORC machine must be stopped when the calorie supply to the organic fluid of the ORC machine is less than a minimum threshold generally between 20 and 30% of the maximum capacity allowed by the ORC machine.
  • the invention makes it possible, thanks to the stability and the capacity of the heat source coming from the side member cooling system, never to be less than 30% of the thermal load.
  • the ORC machine is always in operation, except in the event of shutdown of the installation, and does not require complex regulation.
  • an energy recovery installation capable of being connected to at least one beam reheating furnace equipped with burners, said reheating furnace comprising a circuit for cooling said stringers, in which circulates water, this being in the liquid state at the entry of the side members and in the liquid / vapor mixture state at the outlet of the side members, said mixture being separated downstream of the side members into liquid water on one side and steam on the other, said installation comprising a turbine designed to produce electricity by implementing a Rankine cycle on an organic fluid, said installation further comprising at least exchangers functionally arranged heat so as to transfer to said organic fluid, at least part of the calories contained in combustion fumes from the burners, via a heat transfer fluid, and at least part of the calories contained in the steam, via a heat transfer fluid.
  • At least one reheating furnace may include a heat exchanger which is arranged in a combustion fume discharge flue from said at least one reheating furnace in order to collect calories from said combustion fumes and transmit them to the heat transfer fluid circulating in said heat exchanger.
  • the exchanger placed in the flue for evacuation of the fumes according to the invention may optionally be placed downstream in the direction of flow of the fumes from other equipment for recovering energy from the fumes.
  • the other energy recovery equipment can be, for example, a recuperator for preheating the combustion air of the burners.
  • the installation comprises a first heat exchanger functionally arranged so as to directly or indirectly transfer energy from the steam to an intermediate heat transfer fluid, and a second heat exchanger arranged in so as to transfer thermal energy from said intermediate heat transfer fluid to the organic fluid of the ORC machine.
  • the heat transfer intermediate fluid can be an organic fluid in the liquid state, under the conditions of its use, for example a thermal oil.
  • the heat transfer intermediate fluid is non-flammable at the temperature at which it is used, its ignition temperature being substantially higher than that of the organic fluid of the ORC.
  • This configuration makes it possible to improve the robustness of the equipment by limiting the sudden variations in temperature of exchange with the organic fluid of the ORC in the event of shutdown of the furnace thanks to the mass energy storage capacity. of intermediate fluid. It also makes it possible to improve the safety of the exchange system with the heat exchanger coming from the steam by locally controlling the behavior of this exchange without disturbing the loop supplying the ORC exchanger.
  • the steam being at a pressure appreciably higher than that of the intermediate fluid (approximately 20 bars on the vapor side for approximately 4 to 7 bars on the intermediate fluid side), if the exchanger is pierced, the fluid will flow from the vapor circuit. towards the intermediate fluid circuit thus preventing the intermediate fluid from spilling into the andirons and keels.
  • This solution also allows the use of a robust technology exchanger for the exchange between the intermediate fluid and the organic fluid of the ORC, the two fluids having similar properties. It thus makes it possible to strengthen the operating safety of the ORC machine in the event of a problem with the steam circuit for cooling the side members.
  • an additional intermediate loop can be added between the steam and the intermediate fluid described above.
  • regulation of the supply of calories to the ORC machine can be carried out on the flue gas circuit, by means of a partial bypass of the combustion fume exhaustion exchanger placed in the flue or dilution of the fumes with cold air to lower the temperature. Due to the sizing of the ORC for operation of the furnace at 70% of its nominal capacity, if the heat input to the ORC machine becomes too great, some of the fumes bypass the exchanger of the fume exhaustion circuit. combustion or the fumes will be diluted without this interfering with the operation of the furnace.
  • the heat transfer fluid used to collect calories from combustion fumes and that used indirectly to collect calories from andirons and keels can be of the same nature, but this method also makes it possible to use heat transfer fluids with different properties. This can make it possible to optimize energy recovery with fluids used at different temperature levels and to reinforce the safety of the installation by choosing fluids that minimize the risk of fire or explosion in the event of contact between them. fumes or steam and these fluids.
  • the addition of energy storage on the intermediate circuits makes it possible to improve the efficiency of the assembly without disturbing the main exchange circuit to the ORC.
  • the operation of the longitudinal members cooling circuit may not be modified by the presence of the ORC machine.
  • the control of the installation can thus be simplified.
  • the calorific power transmitted to a thermal fluid used in the flue gas exhaustion circuit can be directly determined by the temperature rise of said fluid in an exchanger of the combustion fume exhaustion circuit.
  • a bypass of the fumes placed on the fume circuit can prevent the thermal fluid used in the fume exhaust system from heating up.
  • Another method consists in using a heat transfer fluid operating at a higher temperature on the intermediate loop and / or in reducing the temperature of the flue gases by diluting them, for example with an air inlet upstream of the recuperator placed on the flue gas pipe. Air coolers can also be placed on the superheated water / steam circuit so as to evacuate the calories coming from the side members.
  • the ORC machine is dimensioned according to the average operating speed of the reheating furnace and not according to the nominal capacity of the furnace. This has a double advantage: the ORC machine being smaller, the amount of the investment can be reduced, and the ORC machine can operate a maximum of the time on an optimal point (maximum efficiency) thus producing a maximum of electricity for a faster return on investment.
  • the installation according to the invention can furthermore comprise another heat exchanger functionally arranged so as to transfer thermal energy from at least one other source to the organic fluid.
  • a beam reheating furnace equipped with burners characterized in that it is equipped with an energy recovery installation according to the invention, said energy installation being connected to said oven.
  • FIG. 1 one can see schematically represented an installation according to a first exemplary embodiment of the invention. To simplify the description, only the equipment items necessary for understanding the invention are shown in this figure. Equipment essential for the operation of the installation, such as pumps, valves, food tank, expansion vessel, etc., are not shown in this figure and the following, nor described in this description, the person skilled in the art knowing define them, size them and locate them as best as possible on the installation.
  • Equipment essential for the operation of the installation such as pumps, valves, food tank, expansion vessel, etc.
  • Products 1 are continuously heated in a reheating furnace 2 with tubular spars. The movement and maintenance of the products in the oven are ensured by fixed beams and mobile beams.
  • the spars comprise andirons 3a and keels 3b in which a cooling fluid circulates.
  • Burners 5 heat the furnace 2 and the products 1. Combustion fumes from the burners 5 are evacuated from the furnace via a flue gas 6.
  • the cooling fluid is, for example, water superheated at a temperature of 215 ° C. and at a pressure of 21 bars absolute. During its flow in the side members, the superheated water is partially transformed into saturated steam 4. On leaving the side members, the cooling fluid is composed of a mixture of superheated water and saturated steam 4. A tank 7 allows separation of liquid water and saturated steam 4.
  • the installation comprises an ORC machine implementing a Rankine cycle on an organic fluid 21 circulating in a circuit 13.
  • the installation comprises an intermediate recirculation loop 16 arranged between the steam circuit and the circuit 13 of the ORC machine.
  • An intermediate fluid coolant 17 circulates in the intermediate recirculation loop 16, preferably organic, maintained in the liquid state.
  • the intermediate recirculation loop 16 comprises in particular two heat exchangers 8 and 18 and a circulation pump, not shown.
  • the saturated steam 4 transfers calories to the intermediate heat transfer fluid 17 by means of the exchanger 18 in which it condenses, then the intermediate heat transfer fluid 17 in turn transfers calories to the organic fluid 21 of the ORC machine by means of the 'exchanger 8.
  • the addition of the intermediate recirculation loop 16 can make it possible to reinforce the safety of the installation and to use thermal fluids of different properties.
  • the intermediate heat transfer fluid 17 may have greater compatibility with the vapor than the organic fluid 21 of the ORC, thus limiting the risk of fire or explosion.
  • a heat exchanger 9 can be placed in the flue gas 6, possibly downstream, in the direction of flow of the fumes, relative to other equipment for recovering energy from the fumes, for example a preheating recuperator combustion air from the burners.
  • the heat exchanger 9 can be supplied with a heat transfer fluid 10, preferably organic in the liquid state, circulating in a recirculation loop 11.
  • the heat transfer fluid 10 can be of the same type as the intermediate heat transfer fluid 17, on the vapor side. , but it can also be of a different nature.
  • the fumes yield part of their calories to the heat transfer fluid 10 in the heat exchanger 9.
  • a second heat exchanger 12 is placed on the recirculation loop 11. The second exchanger 12 allows the transfer of the calories captured by the heat transfer fluid 10. to the organic fluid 21 of the ORC machine.
  • the organic fluid 21 circulates in the ORC machine in the recirculation loop 13 comprising in particular, preferably successively in the direction of the flow of the fluid, the heat exchangers 8 and 12, an expansion turbine 14, a condensation exchanger 15 organic fluid 21 of the ORC machine and a booster pump 24.
  • the thermal energy transferred to the organic fluid 21 of the ORC machine in the heat exchangers 8 and 12 makes it possible to bring it to the vapor phase.
  • the expansion of the steam drives the expansion turbine 14 in rotation which is coupled to an alternator which produces electricity.
  • the exchanger 15 allows the organic fluid 21 to be condensed, before it is returned to the heat exchangers 8 and 12 to undergo a new Rankine cycle.
  • the organic fluid 21 transfers calories in the exchanger 15 to a heat transfer fluid circulating in a circuit 22.
  • a set of registers 23 allows the heat exchanger 9 to be bypassed by all or part of the combustion fumes.
  • a heat exchanger 25 makes it possible to capture calories from a fluid 26 available on the site and to transmit them to the organic fluid 21 of the ORC machine.
  • the installation according to the invention thus also makes it possible to upgrade one or more other heat sources for increased overall performance of the industrial site on which it is installed.
  • the Figure 2 shows schematically an alternative embodiment of the invention in which the calories of the fumes are supplied to the intermediate fluid 17 and not directly to the fluid 21 of the ORC. Likewise, the additional supply of calories from the fluid 26 is made to the intermediate fluid 17 and not directly to the fluid 21 of the ORC.
  • This configuration allows simplified control of the ORC, and reinforces its safety, with a single exchanger in which all the heat inputs to the fluid 21 and its vaporization are made.
  • the Figure 3 schematically represents another variant embodiment of the invention in which an intermediate loop 30 is added on the steam side in which a heat transfer fluid 31 circulates.
  • the steam 4 transfers calories to the heat transfer fluid 31 by condensing in the exchanger 18, then the heat transfer fluid.
  • heat transfer fluid 31 in turn transfers these calories to the heat transfer fluid 17 by means of a heat exchanger 32.
  • This configuration makes it possible to strengthen the safety of the installation, and the flexibility of its regulation, the technology of exchangers 8, 18, 31 and the nature of the heat transfer fluids 31, 17, 21 being chosen so as to have proven technologies on the exchangers and to limit the risks of fire or explosion in the event of contact between the fluids following the drilling of the exchangers.
  • the Figure 4 schematically shows another variant embodiment of the invention in which a mixture is produced between a part of the heat transfer fluid 10 circulating in the recirculation loop 11 and a part of the intermediate heat transfer fluid 17, preferably organic, circulating in the recirculation loop 16, the fluids 10 and 17 being of the same nature.
  • This mixture for example produced by means of three-way valves 20, is then led to a heat exchanger 19 in which it transfers calories to the organic fluid 21 of the ORC machine.
  • the fluid mixture is again distributed between the two recirculation loops 11 and 16, for example by means of three-way valves.
  • the quantity of energy available on the flue gases and the cooling fluid of the side members is generally of the same order of magnitude, for example 10 MW th on the flue gases and on the side members for a furnace with a capacity of 450 t / h.
  • the temperature of the saturated steam 4 being substantially constant, for example 215 ° C for a pressure of 21 bars absolute, the heat exchange with the intermediate coolant 17 of the recirculation loop 16 is always optimum.
  • the temperature of the flue gases can vary, for example from 300 ° C., for a maximum capacity of the furnace, to 280 ° C. for 70% of its capacity.
  • the heat exchange with the coolant 10 of the recirculation loop 11 is variable and the operating conditions of the common fluid of the loop 20 entering the ORC machine can vary, in the case of a thermal oil, from 225 ° C to 215 ° C in temperature and from 70 kg / s to 50 kg / s in flow rate respectively according to the two operating cases described above.
  • the most suitable organic fluid 21 of the ORC machine is pentane, the latter being brought upstream of the expansion turbine 14 to a temperature for example between 135 ° C and 160 ° C respectively depending on the requirements.
  • pentane two operating cases, so that the net power delivered by the ORC machine is maximum, respectively 1.2 MW e and 0.9 MW e .
  • the energy recovery installation makes it possible to collect calories from at least two furnaces.
  • a heat exchanger 9 can be placed in the flue gas pipe of each oven or of a single oven.
  • calories can be recovered from the steam coming from the longitudinal members of the two furnaces or of only one.
  • the invention allows efficient energy recovery from the thermal losses of the furnace by the combustion fumes and the longitudinal members, thanks to a dimensioning of the ORC machine well adapted to the operating speed of the furnace and a stability of operation thereof resulting from the combination of two heat sources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

  • L'invention concerne le domaine de la récupération d'énergie calorifique provenant de fours à longerons tubulaires et sa conversion en électricité au moyen d'une turbine à cycle de détente utilisant un autre fluide que la vapeur d'eau.
  • L'invention concerne notamment les fours de réchauffage sidérurgiques destinés à réchauffer des produits, notamment des brames, des blooms, des ébauches ou des billettes, fonctionnant à une température adéquate pour leur laminage à chaud, et tout particulièrement les fours à longerons mobiles. Un four de réchauffage permet de porter les produits à des températures élevées, par exemple à une température d'environ 1200 °C pour un acier au carbone. Le chauffage du four est communément réalisé par des brûleurs alimentés en air préchauffé et en combustible et fonctionnant en léger excès d'air.
  • EP0971192 décrit un exemple de four à longerons équipé de longerons fixes, et de longerons mobiles. Les produits sont déposés sur des longerons et sont chauffés par des brûleurs disposés au-dessus et en dessous des produits. Les longerons sont constitués de chenets et quilles refroidis. Les longerons mobiles permettent le transport des produits dans le four en suivant un cycle comportant une première phase de montée par les longerons mobiles, depuis une position initiale, qui permet de soulever les produits. La première phase est suivie d'une deuxième phase de transport horizontal par les longerons mobiles puis d'une troisième phase de dépose des produits sur les longerons fixes. Les produits sont ainsi déplacés d'un pas sur les longerons fixes avant la quatrième phase de retour en arrière des longerons mobiles dans leur position initiale. Les chenets des longerons fixes sont portés par des quilles solidaires de la sole du four. Les chenets des longerons mobiles sont portés par des quilles traversant la sole du four et fixés, sous le four, sur un châssis de translation. Le châssis de translation repose sur une mécanique qui assure un cycle rectangulaire par le déplacement horizontal et vertical de l'ensemble châssis, quilles et chenets des longerons mobiles.
  • La structure des longerons est réalisée par des tubes ou des profilés creux qui sont refroidis par un fluide caloporteur en circulation, qui est traditionnellement de l'eau à basse température et basse pression, par exemple 30 à 55 °C et 5 bars. La quantité d'énergie évacuée par unité de temps par le fluide caloporteur est importante afin de limiter la température et d'avoir une résistance mécanique suffisante de la structure des longerons. La puissance évacuée est par exemple de 10 MWth pour un four d'une capacité de 450 t/h. L'eau chaude récupérée en sortie des longerons peut alors être utilisée dans l'usine, par exemple pour un usage sanitaire, le chauffage de bâtiments, ou des procédés pour lesquels des températures relativement basses sont nécessaires. Il est connu que l'on peut remplacer l'eau à basse température et basse pression refroidissant les longerons par de l'eau surchauffée à haute pression, laquelle se transforme partiellement en vapeur saturée dans les chenets. La vapeur obtenue peut être utilisée dans l'usine pour différents besoins. Le refroidissement de la structure des longerons par un mélange eau et vapeur saturée est avantageux, notamment car il permet d'assurer le fonctionnement de la structure des longerons à une température stable. En effet, le changement d'état de la phase liquide à la phase vapeur se faisant à une température sensiblement constante, la température de sortie du fluide de refroidissement des longerons est constante, quel que soit le régime de fonctionnement du four, seule la quantité d'eau passant en phase vapeur évoluant. La température de sortie du fluide de refroidissement est, par exemple, de 215 °C pour une pression du fluide de 21 bars absolus.
  • Un récupérateur de chaleur est traditionnellement disposé dans un carneau de fumées de combustion du four. Il permet une récupération d'énergie sur ces fumées par le préchauffage de l'air de combustion des brûleurs et parfois du combustible. En aval de ce récupérateur, la température des fumées est encore relativement élevée, par exemple de 300 °C. Il est connu d'ajouter d'autres échangeurs de chaleur, ou une chaudière de récupération, dans des carneaux pour épuiser davantage les fumées. Dans le cas où le refroidissement de la structure des longerons est réalisé par de l'eau surchauffée avec production de vapeur, il peut par exemple s'agir d'un économiseur d'eau surchauffée ou d'un surchauffeur de vapeur.
  • Les fours de réchauffage sidérurgiques fonctionnent en continu et ont des capacités de production importantes, par exemple de 450 t/h. Leur régime de fonctionnement varie fréquemment, notamment selon la nature et la température des produits enfournés et le cadencement du four. Il en résulte que le volume des fumées de combustion varie également fréquemment, celui-ci étant sensiblement proportionnel au tonnage horaire des produits réchauffés dans le four. Les changements du débit de fumées s'accompagnent également d'une variation de température desdites fumées. Ces fluctuations sur la température des fumées conduisent à une variation importante des performances des échangeurs disposés dans des carneaux ou des chaudières de récupération. A tonnage réduit, la température des fumées ne permet plus de valoriser l'énergie résiduelle des fumées en vapeur.
  • Les produits à réchauffer dans le four devant toujours être chauffés à la température de laminage, et celle-ci étant relativement constante, la température des parois du four varie peu. Les pertes thermiques par les longerons fluctuant peu, la génération de vapeur par un système de refroidissement de la structure des longerons est moins dépendante du tonnage horaire du four.
  • Les énergies thermiques contenues dans les fumées et le fluide de refroidissement des longerons représentent chacune environ 10 MWth sur un four de 450 t/h avec des températures respectivement de l'ordre de 300 °C et 200° C. L'utilisation d'un cycle eau-vapeur pour la production d'électricité à partir de ces énergies est difficile à mettre en oeuvre et n'est pas économiquement rentable avec ces niveaux de températures et de puissance thermique, ainsi que ces amplitudes de variations de puissance.
  • KR20140036363 décrit une solution de récupération d'énergie sur un four de réchauffage sidérurgique permettant de valoriser les pertes énergétiques du four contenues dans les fumées et dans le système de refroidissement des longerons, en exploitant celles-ci dans une installation commune de production d'électricité, tout en s'affranchissant des problématiques de variabilités de celles-ci. Elle met en oeuvre une installation de génération d'électricité par un cycle thermodynamique de Rankine utilisant un fluide organique comme fluide de travail. Une machine à cycle organique de Rankine, dites « ORC » pour l'acronyme des termes anglais Organic Rankine Cycle, permet de convertir de la chaleur de moyenne ou basse température en électricité, grâce à l'utilisation d'un fluide de travail organique de densité supérieure à celle de l'eau. Dans la machine ORC, le fluide de travail à l'état liquide est comprimé puis vaporisé. La vapeur de fluide organique est ensuite détendue avant d'être condensée. La machine comprend notamment un évaporateur, une turbine de détente, un condenseur et une pompe de surpression. La turbine de détente est par exemple de type radial ou axial, avec un ou deux étages, dont la rotation entraîne un alternateur qui produit l'électricité.
  • Le fluide organique a une faible température d'ébullition, par exemple inférieure à 50 °C à la pression atmosphérique, et est de type mouillant, c'est-à-dire qu'il n'est pas nécessaire de surchauffer la vapeur de ce fluide après évaporation pour éviter de créer des gouttelettes dans la turbine lors de la détente. Ce type de fluide peut ainsi permettre, malgré une faible température de la source chaude, d'extraire un maximum de travail dans la turbine et ainsi d'avoir un meilleur rendement qu'un cycle à vapeur d'eau à des températures faible, par exemple inférieures à 350 °C.
  • Ainsi le choix de la technologie ORC, parmi les différents cycles thermodynamiques permettant de produire de l'électricité, permet d'obtenir un meilleur rendement de machine thermodynamique, c'est-à-dire le rapport entre énergie thermique disponible et électricité nette produite.
  • Les calories nécessaires à la vaporisation du fluide organique de la machine ORC sont apportées par l'énergie récupérée sur le four de réchauffage, en partie sur le fluide de refroidissement des longerons et en partie sur les fumées de combustion.
  • Dans la solution divulguée par KR20140036363 , le fluide de refroidissement des chenets et quilles est un mélange de sels fondus. Ce mélange est par exemple composé, en masse, de 52 % de KNO3, 18 % de NaNO3 et 30 % de LiNO3. Pour maintenir ces sels fondus dans la plage de températures requises pour un bon fonctionnement du four, et notamment pour leur maintien en phase liquide, l'installation comprend une boucle de recirculation 40 avec des équipements complémentaires ce qui rend l'installation plus couteuse et relativement complexe à exploiter par rapport à une solution dans laquelle le fluide de refroidissement est de l'eau ou un mélange eau/vapeur. Des calories des sels fondus sont transmises au fluide organique de l'ORC au moyen d'un échangeur 21. En cas de détérioration de cet échangeur, les sels fondus peuvent venir en contact avec le fluide organique de l'ORC ce qui représente un risque pour l'installation. De plus, cette solution ne permet pas de moduler l'apport calorifique des sels fondus vers le fluide organique de l'ORC. En cas d'arrêt de l'ORC, l'apport continu de calories par les sels fondus peut conduire à une élévation très importante de la température du fluide organique d'où un risque pour l'installation.
  • Par ailleurs, KR20140036363 décrit une solution dans laquelle une partie des fumées échange directement des calories avec le fluide organique de l'ORC au moyen d'un échangeur 51. En cas de détérioration de cet échangeur, il y a un risque d'incendie si le fluide organique de l'ORC vient en contact avec les fumées.
  • L'état de la technique ne permet donc pas une double récupération d'énergie sur les fumées du four de réchauffage et sur le fluide de refroidissement des chenets et quilles dans des conditions permettant une performance énergétique optimale, une souplesse de régulation du fonctionnement de l'ORC et des conditions d'exploitation sûres.
  • Cet objectif est atteint avec, selon un premier aspect de l'invention, un procédé de récupération d'énergie par une installation de récupération d'énergie, apte à être reliée à au moins un four de réchauffage à longerons équipé de brûleurs, ledit four de réchauffage comprenant un circuit de refroidissement desdits longerons, dans lequel circule de l'eau, celle-ci étant à l'état liquide à l'entrée des longerons et à l'état mélange liquide/vapeur à la sortie des longerons, ledit mélange étant séparé en aval des longerons en de l'eau liquide d'un côté et de la vapeur de l'autre, la vapeur cédant directement ou indirectement des calories à une première boucle de recirculation intermédiaire, et en outre un système de récupération d'énergie permettant d'absorber une partie des calories du circuit de fumées évacuées par le four, lesdites calories étant cédées à une seconde boucle de recirculation intermédiaire, lesdites première et seconde boucles de recirculation intermédiaire cédant directement ou indirectement des calories à une boucle de fluide organique disposée de manière à alimenter une turbine produisant de l'électricité par la mise en oeuvre d'un cycle de Rankine organique.
  • Dans une configuration dans laquelle le refroidissement des chenets et quilles est réalisé par de l'eau et un mélange eau/vapeur, la condensation des vapeurs dans l'échangeur permet un transfert important de calories entre la vapeur et le fluide organique de l'ORC.
  • Selon l'invention, les calories provenant de la vapeur et celles provenant du circuit de fumées sont cédées de manière indirecte au fluide organique de l'ORC, par l'intermédiaire d'une première boucle de recirculation intermédiaire disposée entre un circuit comportant la vapeur et le fluide organique, respectivement par l'intermédiaire d'une seconde boucle de recirculation intermédiaire disposée entre le circuit des fumées et le fluide organique.
  • Le circuit de vapeur est isolé du fluide organique par au moins deux équipements, par exemple deux échangeurs.
  • Le circuit des fumées est isolé du fluide organique par au moins deux équipements, par exemple deux échangeurs.
  • Ainsi, selon l'invention, les calories provenant de la vapeur sont d'abord cédées à une première boucle de recirculation intermédiaire avant d'être cédées au fluide organique mis en oeuvre dans le cycle de Rankine. Aussi, bien que la vapeur présente une pression très élevée par rapport à celle du fluide organique, il n'y a pas de risque important d'explosion si l'échangeur se perce, même si le fluide organique de l'ORC est très souvent un hydrocarbure ou un fluide frigorigène inflammable, car la vapeur ne peut pas venir en contact avec ledit fluide organique.
  • Par ailleurs, selon l'invention, les calories provenant des fumées sont d'abord cédées à une seconde boucle de recirculation intermédiaire avant d'être cédées au fluide organique mis en oeuvre dans le cycle de Rankine. Aussi, il n'y a pas d'échange possible entre le fluide organique mis en oeuvre dans le cycle de Rankine et les fumées, ce qui évite un risque d'incendie qui est présent dans l'art antérieur.
  • Le procédé selon l'invention présente donc plus de sécurité que celui selon l'art antérieur.
  • La combinaison des deux sources d'énergie provenant des fumées et du système de refroidissement permet d'une part de pouvoir augmenter la production d'électricité globale annuelle et d'autre part de pouvoir limiter l'investissement. En effet, cette combinaison permet d'obtenir une plus grande quantité d'énergie exploitable dans une seule machine ORC de grande capacité (avec un meilleur rendement et moins coûteux), que si les deux sources de chaleur étaient exploitées séparément par deux machines ORC de plus petite capacité (à plus faible rendement et proportionnellement plus cher).
  • En outre, la combinaison des deux sources d'énergie provenant des fumées et du système de refroidissement peut permettre de stabiliser l'apport énergétique fourni à la machine ORC. La combinaison des deux sources d'énergie provenant des fumées et du système de refroidissement peut permettre de faire plus souvent fonctionner la machine ORC dans sa plage de fonctionnement optimale.
  • Le dimensionnement de la machine ORC permet de limiter le montant de l'investissement, et donc le temps nécessaire pour le retour sur investissement, accroissant ainsi l'intérêt économique de sa mise en oeuvre. Lors de sa conception, un four de réchauffage est dimensionné pour une capacité de production nominale correspondant au chauffage d'un nombre de tonnes par heure d'un produit de référence d'une température initiale à une température de défournement. Par expérience, en exploitation, le four fonctionne en moyenne à environ 70 % de sa capacité nominale.
  • Par ailleurs, une machine ORC fonctionne correctement sur une large plage de variations de la source de chaleur, la puissance thermique entrante pouvant généralement varier entre 30 % et 100 %. Le rendement maximum de la machine ORC est obtenu pour la puissance maximale de dimensionnement et il diminue avec la puissance thermique entrante. Une machine ORC doit être arrêtée lorsque l'apport en calories au fluide organique de la machine ORC est inférieur à un seuil minimum généralement compris entre 20 et 30 % de la capacité maximale admise par la machine ORC.
  • En combinant les deux sources d'énergie thermique, l'invention permet, grâce à la stabilité et à la capacité de la source de chaleur provenant du système de refroidissement des longerons, de ne jamais être inférieur à 30 % de la charge thermique. Ainsi la machine ORC est toujours en fonctionnement, sauf en cas d'arrêt de l'installation, et ne nécessite pas de régulation complexe.
  • Selon un autre aspect de l'invention, il est proposé une installation de récupération d'énergie apte à être reliée à au moins un four de réchauffage à longerons équipé de brûleurs, ledit four de réchauffage comprenant un circuit de refroidissement desdits longerons, dans lequel circule de l'eau, celle-ci étant à l'état liquide à l'entrée des longerons et à l'état mélange liquide/vapeur à la sortie des longerons, ledit mélange étant séparé en aval des longerons en de l'eau liquide d'un côté et de la vapeur de l'autre, ladite installation comprenant une turbine agencée pour produire de l'électricité par la mise en oeuvre d'un cycle de Rankine sur un fluide organique, ladite installation comprenant en outre au moins des échangeurs de chaleur fonctionnellement disposés de manière à transférer audit fluide organique, au moins une partie des calories contenues dans des fumées de combustion des brûleurs, via un fluide caloporteur, et au moins une partie des calories contenues dans la vapeur, via un fluide caloporteur.
  • Selon une possibilité de l'installation, au moins un four de réchauffage peut comporter un échangeur de chaleur qui est disposé dans un carneau d'évacuation de fumées de combustion dudit au moins un four de réchauffage pour collecter des calories provenant desdites fumées de combustion et les transmettre au fluide caloporteur circulant dans ledit échangeur de chaleur.
  • L'échangeur placé dans le carneau d'évacuation des fumées selon l'invention peut être éventuellement disposé en aval dans le sens d'écoulement des fumées d'autres équipements de récupération d'énergie sur les fumées. Les autres équipements de récupération d'énergie peuvent être, par exemple, un récupérateur de préchauffage de l'air de combustion des brûleurs.
  • Selon l'un des aspects de l'invention, l'installation comprend un premier échangeur de chaleur fonctionnellement disposé de manière à transférer directement ou indirectement de l'énergie de la vapeur à un fluide intermédiaire caloporteur, et un second échangeur de chaleur disposé de manière à transférer de l'énergie thermique dudit fluide intermédiaire caloporteur au fluide organique de la machine ORC.
  • Selon l'invention, le fluide intermédiaire caloporteur peut être un fluide organique à l'état liquide, dans les conditions de son utilisation, par exemple une huile thermique. Avantageusement, le fluide intermédiaire caloporteur est non inflammable à la température à laquelle il est utilisé, sa température d'inflammation étant sensiblement supérieure à celle du fluide organique de l'ORC.
  • Cette configuration permet d'améliorer la robustesse de l'équipement en limitant les variations brusques de températures d'échange avec le fluide organique de l'ORC en cas d'arrêt du four grâce à la capacité d'accumulateur d'énergie de la masse de fluide intermédiaire. Elle permet en outre d'améliorer la sécurité du système d'échange avec l'échangeur de calories provenant de la vapeur en contrôlant localement les comportements de cet échange sans perturber la boucle alimentant l'échangeur ORC. La vapeur étant à une pression sensiblement plus élevée que celle du fluide intermédiaire (environ 20 bars côté vapeur pour environ 4 à 7 bars côté fluide intermédiaire), en cas de percement de l'échangeur, l'écoulement de fluide se ferait du circuit vapeur vers le circuit de fluide intermédiaire évitant ainsi que le fluide intermédiaire ne se répande dans les chenets et quilles.
  • Par ailleurs, la présence d'un circuit intermédiaire entre le circuit vapeur et le circuit de l'ORC, permet d'éviter que de la vapeur n'entre en contact avec le fluide organique de l'ORC, ledit contact pouvant être source d'explosion.
  • Cette solution permet également l'utilisation d'un échangeur de technologie robuste pour l'échange entre le fluide intermédiaire et le fluide organique de l'ORC, les deux fluides ayant des propriétés similaires. Elle permet ainsi de renforcer la sécurité de fonctionnement de la machine ORC en cas de problème sur le circuit vapeur de refroidissement des longerons.
  • Pour renforcer encore la sécurité de l'installation, une boucle intermédiaire supplémentaire peut être ajoutée entre la vapeur et le fluide intermédiaire décrit précédemment.
  • Une utilisation d'un fluide organique intermédiaire pour récupérer des calories provenant de fumées de combustion qui reste à l'état liquide, quelles que soient les fluctuations de température et de volume des fumées de combustion dans le carneau, a pour avantage de faciliter grandement l'exploitation de l'installation par rapport à la mise en oeuvre d'une chaudière de récupération dans laquelle un changement de phase dans l'échangeur s'opère à plus haute pression.
  • Avantageusement selon l'invention, une régulation de l'apport de calories à la machine ORC peut être réalisée sur le circuit de fumées, au moyen d'un contournement partiel de l'échangeur d'épuisement de fumées de combustion placé dans le carneau ou une dilution des fumées avec de l'air froid pour en baisser la température. Du fait du dimensionnement de l'ORC pour un fonctionnement du four à 70% de sa capacité nominale, si l'apport calorifique à la machine ORC devient trop important, une partie des fumées contourne l'échangeur du circuit d'épuisement de fumées de combustion ou bien les fumées seront diluées sans que cela n'interfère sur le fonctionnement du four.
  • Le fluide caloporteur utilisé pour collecter des calories provenant des fumées de combustion et celui utilisé indirectement pour collecter des calories provenant des chenets et quilles peuvent être de même nature, mais cette méthode permet aussi d'utiliser des fluides caloporteurs de propriétés différentes. Cela peut permettre d'optimiser la récupération d'énergie avec des fluides utilisés à des niveaux de températures différentes et de renforcer la sécurité de l'installation en choisissant des fluides minimisant les risques d'incendie ou d'explosion en cas de contact entre les fumées ou la vapeur et ces fluides.
  • En variante de réalisation, l'ajout d'un stockage d'énergie sur les circuits intermédiaires permet d'améliorer l'efficacité de l'ensemble sans perturber le circuit d'échange principal vers l'ORC.
  • Avantageusement, le fonctionnement du circuit de refroidissement des longerons peut ne pas être modifié par la présence de la machine ORC. Le pilotage de l'installation peut ainsi être simplifié.
  • La puissance calorifique transmise à un fluide thermique utilisé dans le circuit d'épuisement des fumées peut être directement déterminée par l'élévation de température dudit fluide dans un échangeur du circuit d'épuisement de fumées de combustion.
  • En cas d'arrêt de la machine ORC, un contournement des fumées disposé sur le circuit des fumées peut permettre d'éviter l'échauffement du fluide thermique utilisé dans le circuit d'épuisement des fumées. Une autre méthode consiste à utiliser un fluide caloporteur fonctionnant à plus haute température sur la boucle intermédiaire et/ou à diminuer la température des fumées en les diluants, par exemple avec une entrée d'air en amont du récupérateur placé sur le carneau de fumées. Des aéroréfrigérants peuvent par ailleurs être disposé sur le circuit eau surchauffée/vapeur de sorte d'évacuer des calories provenant des longerons.
  • Avantageusement selon l'invention, la machine ORC est dimensionnée selon le régime de fonctionnement moyen du four de réchauffage et non selon la capacité nominale du four. Cela présente un double avantage : la machine ORC étant plus petite, le montant de l'investissement peut être réduit, et la machine ORC peut fonctionner un maximum du temps sur un point optimal (rendement maximum) produisant donc un maximum d'électricité pour un retour sur investissement plus rapide.
  • L'installation selon l'invention peut en outre comprendre un autre échangeur de chaleur fonctionnellement disposé de sorte à transférer de l'énergie thermique d'au moins une autre source au fluide organique.
  • Selon un autre aspect de l'invention, il est proposé un four de réchauffage à longerons équipé de brûleurs, caractérisé en ce qu'il est équipé d'une installation de récupération d'énergie selon l'invention, ladite installation d'énergie étant reliée audit four.
  • D'autres caractéristiques et avantages apparaîtront à la lumière de la description des modes de réalisation préférés de l'invention accompagnée des figures dans lesquelles :
    • la Figure 1 représente schématiquement une installation selon un premier mode de réalisation dans laquelle le fluide organique de la machine ORC est préchauffé en série par la récupération d'énergie sur les deux sources, vapeur et fumées,
    • la Figure 2 représente schématiquement une installation selon un second mode de réalisation similaire à celui de la figure 1, mais dans lequel le fluide organique de la machine ORC est préchauffé en une seule étape, après l'addition en amont des deux sources vapeur et fumées,
    • la Figure 3 représente schématiquement une installation selon un troisième mode de réalisation similaire à celui de la figure 2 dans lequel un circuit intermédiaire supplémentaire est ajouté coté vapeur, et,
    • la Figure 4 représente schématiquement une installation selon un quatrième mode de réalisation dans lequel des fluides organiques collectant les calories provenant des longerons et des fumées de combustion sont mélangés en amont de la machine ORC et l'énergie est récupérée parallèlement.
  • Ces modes de réalisation n'étant nullement limitatifs, on pourra notamment réaliser des variantes de l'invention ne comprenant qu'une sélection de caractéristiques décrites par la suite, telles que décrites ou généralisées, isolées des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique.
  • Sur la Figure 1, on peut voir schématiquement représentée une installation selon un premier exemple de réalisation de l'invention. Pour simplifier la description, ne sont représentés sur cette figure que les équipements nécessaires à la compréhension de l'invention. Des équipements indispensables au fonctionnement de l'installation, tels que pompes, vannes, bâche alimentaire, vase d'expansion, etc., ne sont pas représentés sur cette figure et les suivantes, ni décrits dans cette description, l'homme du métier sachant les définir, les dimensionner et les implanter au mieux sur l'installation.
  • Des produits 1 sont réchauffés en continu dans un four 2 de réchauffage à longerons tubulaires. Le déplacement et le maintien des produits dans le four sont assurés par des longerons fixes et des longerons mobiles. Les longerons comprennent des chenets 3a et des quilles 3b dans lesquels circule un fluide de refroidissement. Des brûleurs 5 assurent le chauffage du four 2 et des produits 1. Des fumées de combustion provenant des brûleurs 5 sont évacuées hors du four par un carneau de fumées 6.
  • A l'entrée des longerons, le fluide de refroidissement est, par exemple, de l'eau surchauffée à une température de 215 °C et à une pression de 21 bars absolus. Lors de son écoulement dans les longerons, l'eau surchauffée se transforme partiellement en vapeur saturée 4. A la sortie des longerons, le fluide de refroidissement est composé d'un mélange d'eau surchauffée et de vapeur saturée 4. Un ballon 7 permet la séparation de l'eau à l'état liquide et de la vapeur saturée 4.
  • L'installation comporte une machine ORC mettant en oeuvre un cycle de Rankine sur un fluide organique 21 en circulation dans un circuit 13.
  • L'installation comprend une boucle de recirculation intermédiaire 16 disposée entre le circuit vapeur et le circuit 13 de la machine ORC. Un fluide intermédiaire caloporteur 17 circule dans la boucle de recirculation intermédiaire 16, de préférence organique, maintenu à l'état liquide.
  • La boucle de recirculation intermédiaire 16 comprend notamment deux échangeurs de chaleur 8 et 18 et une pompe de circulation non représentée. Ainsi la vapeur saturée 4 cède des calories au fluide intermédiaire caloporteur 17 au moyen de l'échangeur 18 dans lequel elle se condense, puis le fluide intermédiaire caloporteur 17 cède à son tour des calories au fluide organique 21 de la machine ORC au moyen de l'échangeur 8.
  • L'ajout de la boucle de recirculation intermédiaire 16 peut permettre de renforcer la sécurité de l'installation et d'utiliser des fluides thermiques de propriétés différentes. Ainsi le fluide intermédiaire caloporteur 17 pourra avoir une compatibilité plus grande avec la vapeur que le fluide organique 21 de l'ORC limitant ainsi le risque d'incendie ou d'explosion.
  • Un échangeur de chaleur 9 peut être disposé dans le carneau de fumées 6, éventuellement en aval, dans le sens d'écoulement des fumées, par rapport à d'autres équipements de récupération d'énergie sur les fumées, par exemple un récupérateur de préchauffage de l'air de combustion des brûleurs.
  • L'échangeur de chaleur 9 peut être alimenté avec un fluide caloporteur 10, de préférence organique à l'état liquide, circulant dans une boucle de recirculation 11. Le fluide caloporteur 10 peut être de même nature que le fluide intermédiaire caloporteur 17, côté vapeur, mais il peut également être de nature différente. Les fumées cèdent une partie de leurs calories au fluide caloporteur 10 dans l'échangeur de chaleur 9. Un deuxième échangeur de chaleur 12 est disposé sur la boucle de recirculation 11. Le deuxième échangeur 12 permet le transfert des calories captées par le fluide caloporteur 10 au fluide organique 21 de la machine ORC.
  • Le fluide organique 21 circule dans la machine ORC dans la boucle de recirculation 13 comprenant notamment, de préférences successivement dans le sens de l'écoulement du fluide, les échangeurs de chaleur 8 et 12, une turbine de détente 14, un échangeur 15 de condensation du fluide organique 21 de la machine ORC et une pompe de surpression 24. L'énergie thermique cédée au fluide organique 21 de la machine ORC dans les échangeurs de chaleur 8 et 12 permet de porter celui-ci en phase vapeur. La détente de la vapeur entraîne en rotation la turbine de détente 14 qui est accouplée à un alternateur qui produit de l'électricité. En sortie de la turbine de détente 14, l'échangeur 15 permet de condenser le fluide organique 21, avant qu'il ne soit retourné vers les échangeurs de chaleur 8 et 12 pour subir un nouveau cycle de Rankine. Le fluide organique 21 cède des calories dans l'échangeur 15 à un fluide caloporteur circulant dans un circuit 22.
  • Un ensemble de registres 23 permet de faire contourner l'échangeur de chaleur 9, par tout ou partie des fumées de combustion.
  • Un échangeur thermique 25 permet de capter des calories d'un fluide 26 disponible sur le site et de les transmettre au fluide organique 21 de la machine ORC. L'installation selon l'invention permet ainsi de valoriser également une ou plusieurs autres sources de chaleur pour une performance globale accrue du site industriel sur lequel elle est installée.
  • La Figure 2 représente schématiquement une variante de réalisation de l'invention dans laquelle les calories des fumées sont apportées au fluide intermédiaire 17 et non directement au fluide 21 de l'ORC. De même, l'apport complémentaire de calories du fluide 26 se fait au fluide intermédiaire 17 et non directement au fluide 21 de l'ORC. Cette configuration permet un contrôle simplifié de l'ORC, et renforce sa sécurité, avec un seul échangeur dans lequel est réalisé l'ensemble des apports calorifiques au fluide 21 et sa vaporisation.
  • La Figure 3 représente schématiquement une autre variante de réalisation de l'invention dans laquelle une boucle intermédiaire 30 est ajoutée côté vapeur dans laquelle circule un fluide caloporteur 31. La vapeur 4 cède des calories au fluide caloporteur 31 en se condensant dans l'échangeur 18, puis le fluide caloporteur 31 cède à son tour ces calories au fluide caloporteur 17 au moyen d'un échangeur de chaleur 32. Cette configuration permet de renforcer la sécurité de l'installation, et la souplesse de sa régulation, la technologie des échangeurs 8, 18, 31 et la nature des fluides caloporteurs 31, 17, 21 étant choisis de sorte de disposer de technologies éprouvées sur les échangeurs et de limiter les risques d'incendie ou d'explosion en cas de contact entre les fluides suite au perçage des échangeurs.
  • La Figure 4 représente schématiquement une autre variante de réalisation de l'invention dans laquelle un mélange est réalisé entre une partie du fluide caloporteur 10 circulant dans la boucle de recirculation 11 et une partie du fluide intermédiaire caloporteur 17, de préférence organique, circulant dans la boucle de recirculation 16, les fluides 10 et 17 étant de même nature. Ce mélange, par exemple réalisé au moyen de vannes trois voies 20, est ensuite conduit à un échangeur de chaleur 19 dans lequel il cède des calories au fluide organique 21 de la machine ORC. En sortie de l'échangeur 19, le mélange de fluide est de nouveau réparti entre les deux boucles de recirculation 11 et 16, par exemple au moyen de vannes trois voies.
  • La quantité d'énergie disponible sur les fumées et le fluide de refroidissement des longerons est généralement du même ordre de grandeur, par exemple de 10 MWth sur les fumées et sur les longerons pour un four d'une capacité de 450 t/h.
  • Sur l'échangeur de chaleur 18, la température de la vapeur saturée 4 étant sensiblement constante, par exemple de 215 °C pour une pression de 21 bars absolus, l'échange thermique avec le fluide intermédiaire caloporteur 17 de la boucle de recirculation 16 est toujours optimum.
  • Sur l'échangeur de chaleur 9, la température des fumées peut varier, par exemple de 300 °C, pour une capacité maximale du four, à 280 °C pour 70 % de sa capacité. Ainsi, l'échange thermique avec le fluide caloporteur 10 de la boucle de recirculation 11 est variable et les conditions de fonctionnement du fluide commun de la boucle 20 entrant dans la machine ORC peuvent varier, dans le cas d'une huile thermique, de 225 °C à 215 °C en température et de 70 kg/s à 50 kg/s en débit respectivement selon les deux cas de fonctionnement décrits plus haut. Pour de telles températures, le fluide organique 21 de la machine ORC le mieux adapté est le pentane, celui-ci étant porté en amont de la turbine de détente 14 à une température par exemple comprise entre 135 °C et 160 °C respectivement selon les deux cas de fonctionnement, afin que la puissance nette délivrée par la machine ORC soit maximale, respectivement de 1,2 MWe et 0,9 MWe.
  • Selon un exemple de réalisation de l'invention, l'installation de récupération d'énergie permet de collecter des calories provenant d'au moins deux fours. Un échangeur de chaleur 9 peut être disposé dans le carneau de fumées de chaque four ou d'un seul four. De même, des calories peuvent être récupérées sur la vapeur provenant des longerons des deux fours ou d'un seul.
  • Comme nous venons de le voir, l'invention permet une récupération d'énergie efficace sur les pertes thermiques du four par les fumées de combustion et les longerons, grâce à un dimensionnement de la machine ORC bien adapté au régime de fonctionnement du four et une stabilité de fonctionnement de celui-ci qui résulte de la combinaison de deux sources de chaleur.

Claims (7)

  1. Procédé de récupération d'énergie par une installation de récupération d'énergie apte à être reliée à au moins un four de réchauffage (2) à longerons équipé de brûleurs (5), ledit four de réchauffage comprenant un circuit de refroidissement desdits longerons, dans lequel circule de l'eau, celle-ci étant à l'état liquide à l'entrée des longerons et à l'état mélange liquide/vapeur à la sortie des longerons, ledit mélange étant séparé en aval des longerons en de l'eau liquide d'un côté et de la vapeur (4) de l'autre, ladite installation comprenant une turbine (14) produisant de l'électricité par la mise en oeuvre d'un cycle de Rankine sur un fluide organique (21), ledit procédé comprenant une étape de transfert direct ou indirect d'énergie thermique provenant de la vapeur (4) à un fluide intermédiaire caloporteur (17), de préférence organique à l'état liquide, au moyen d'un échangeur de chaleur (18), une étape de transfert d'énergie thermique dudit fluide intermédiaire caloporteur au fluide organique (21) au moyen d'un échangeur de chaleur (8, 19), et une étape de transfert d'énergie thermique direct ou indirect d'au moins une partie des fumées de combustion des brûleurs (5) au fluide organique (21) au moyen d'un échangeur de chaleur (12, 19) fonctionnellement disposé de manière à transférer audit fluide organique (21), au moins une partie des calories contenues dans des fumées de combustion des brûleurs (5), via un fluide caloporteur (10) et un échangeur (9).
  2. Procédé selon la revendication 1, dans lequel le fluide caloporteur (10) destiné à transférer au moins une partie des calories contenues dans des fumées de combustion des brûleurs (5) au fluide organique (21) est un fluide organique à l'état liquide, de préférence une huile thermique.
  3. Procédé selon la revendication 1 ou 2, dans lequel le fluide caloporteur (10) destiné à transférer au moins une partie des calories contenues dans des fumées de combustion des brûleurs (5) au fluide organique (21) et le fluide intermédiaire caloporteur (17) destiné à transférer de l'énergie thermique au fluide organique (21) sont de même nature, ces deux fluides caloporteur (10, 17) étant mélangés en amont de l'échangeur (19) dans lequel est réalisé le transfert thermique entre ces fluides et le fluide organique (21).
  4. Installation de récupération d'énergie apte à être reliée à au moins un four de réchauffage (2) à longerons équipé de brûleurs (5), ledit four de réchauffage comprenant un circuit de refroidissement desdits longerons, dans lequel circule de l'eau, celle-ci étant à l'état liquide à l'entrée des longerons et à l'état mélange liquide/vapeur à la sortie des longerons, ledit mélange étant séparé en aval des longerons en de l'eau liquide d'un côté et de la vapeur (4) de l'autre, ladite installation comprenant une turbine (14) agencée pour produire de l'électricité par la mise en oeuvre d'un cycle de Rankine sur un fluide organique (21), ladite installation comprenant un échangeur de chaleur (18) fonctionnellement disposé de manière à transférer directement ou indirectement de l'énergie thermique de la vapeur (4) à un fluide intermédiaire caloporteur (17), de préférence organique à l'état liquide, l'au moins un échangeur de chaleur (8, 19) étant disposé de manière à transférer de l'énergie thermique dudit fluide intermédiaire caloporteur au fluide organique (21), ladite installation comprenant en outre au moins un échangeur de chaleur (12, 19) fonctionnellement disposé de manière à transférer directement ou indirectement audit fluide organique (21), au moins une partie des calories contenues dans des fumées de combustion des brûleurs (5), via un fluide caloporteur (10) et un échangeur (9).
  5. Installation selon la revendication 4, dans laquelle l'au moins un four de réchauffage (2) comporte l'échangeur de chaleur (9) qui est disposé dans un carneau (6) d'évacuation de fumées de combustion dudit au moins un four de réchauffage pour collecter des calories provenant desdites fumées de combustion et les transmettre au fluide caloporteur (10) circulant dans ledit échangeur de chaleur.
  6. Installation selon les revendications 4 ou 5, dans laquelle le fluide caloporteur (10) et le fluide intermédiaire caloporteur (17) sont de même nature.
  7. Installation selon l'une quelconque des revendications 4 à 6, comprenant en outre un autre échangeur de chaleur (25) fonctionnellement disposé de sorte à transférer directement ou indirectement de l'énergie thermique d'au moins une autre source (26) au fluide organique (21).
EP17731598.3A 2016-06-27 2017-06-26 Procede et installation de recuperation d'energie calorifique sur un four a longerons tubulaires et de conversion de celle-ci en electricite au moyen d'une turbine produisant de l'electricite par la mise en oeuvre d'un cycle de rankine Active EP3475638B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1655976A FR3053105B1 (fr) 2016-06-27 2016-06-27 Installation de recuperation d'energie calorifique sur un four a longerons tubulaires et de conversion de celle-ci en electricite au moyen d'une turbine produisant de l'electricite par la mise en oeuvre d'un cycle de rankine
PCT/EP2017/065646 WO2018001931A1 (fr) 2016-06-27 2017-06-26 Procede et installation de recuperation d'energie calorifique sur un four a longerons tubulaires et de conversion de celle-ci en electricite au moyen d'une turbine produisant de l'electricite par la mise en oeuvre d'un cycle de rankine

Publications (2)

Publication Number Publication Date
EP3475638A1 EP3475638A1 (fr) 2019-05-01
EP3475638B1 true EP3475638B1 (fr) 2020-07-29

Family

ID=56943723

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17731598.3A Active EP3475638B1 (fr) 2016-06-27 2017-06-26 Procede et installation de recuperation d'energie calorifique sur un four a longerons tubulaires et de conversion de celle-ci en electricite au moyen d'une turbine produisant de l'electricite par la mise en oeuvre d'un cycle de rankine

Country Status (7)

Country Link
US (1) US11193395B2 (fr)
EP (1) EP3475638B1 (fr)
BR (1) BR112018076182B1 (fr)
ES (1) ES2828057T3 (fr)
FR (1) FR3053105B1 (fr)
MX (1) MX2018016145A (fr)
WO (1) WO2018001931A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6718802B2 (ja) * 2016-12-02 2020-07-08 株式会社神戸製鋼所 熱エネルギー回収装置及びその立ち上げ運転方法
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
CN115485459A (zh) 2019-11-16 2022-12-16 马耳他股份有限公司 泵送热电储存系统
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
CA3188991A1 (fr) 2020-08-12 2022-02-17 Benjamin R. Bollinger Integration de systeme d'accumulation d'energie thermique par pompage dans une centrale thermique
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
CN113606100B (zh) * 2021-03-04 2022-10-28 浙江大学 太阳能微型燃气轮机系统
IT202200010625A1 (it) * 2022-05-23 2023-11-23 Roberto Tamagnini Impianto di essiccazione per la preparazione di impasti ceramici

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665918A (en) * 1979-10-31 1981-06-04 Kawasaki Heavy Ind Ltd Heat recovering device of skid cooling water of ingot heating furnace
FR2779742B1 (fr) 1998-06-11 2000-08-11 Stein Heurtey Perfectionnements apportes aux fours de rechauffage de produits siderurgiques
FR2829232B1 (fr) * 2001-09-06 2004-08-20 Air Liquide Procede pour ameliorer le profil de temperature d'un four
US20120279213A1 (en) * 2008-12-19 2012-11-08 Spx Corporation Cooling tower apparatus and method with waste heat utilization
US20120000201A1 (en) * 2010-06-30 2012-01-05 General Electric Company System and method for generating and storing transient integrated organic rankine cycle energy
CN102644488B (zh) * 2012-04-18 2014-12-03 华北电力大学 一种基于有机朗肯循环的锅炉烟气余热利用系统
KR101594902B1 (ko) * 2012-09-11 2016-02-29 재단법인 포항산업과학연구원 가열로의 열회수장치
FR3006749B1 (fr) * 2013-06-05 2015-07-03 Suez Environnement Procede de production d'energie par combustion de matieres, et installation pour la mise en oeuvre du procede.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3053105A1 (fr) 2017-12-29
ES2828057T3 (es) 2021-05-25
BR112018076182A2 (pt) 2019-03-26
BR112018076182B1 (pt) 2022-10-11
US20190226364A1 (en) 2019-07-25
MX2018016145A (es) 2019-03-28
EP3475638A1 (fr) 2019-05-01
FR3053105B1 (fr) 2018-06-15
WO2018001931A1 (fr) 2018-01-04
US11193395B2 (en) 2021-12-07

Similar Documents

Publication Publication Date Title
EP3475638B1 (fr) Procede et installation de recuperation d'energie calorifique sur un four a longerons tubulaires et de conversion de celle-ci en electricite au moyen d'une turbine produisant de l'electricite par la mise en oeuvre d'un cycle de rankine
CN105422198B (zh) 利用二氧化碳循环工作流体高效发电的系统和方法
RU2595192C2 (ru) Электростанция с встроенным предварительным нагревом топливного газа
KR101660923B1 (ko) 증기 터빈 플랜트
EP0505263A1 (fr) Système à turbine à gaz naturel à vapeur d'eau fonctionnant en cycle semi ouvert
FR2558942A1 (fr) Procede et installation de recuperation des chaleurs perdues d'un four a verre
FR3016025A1 (fr) Combinaison d'une unite de stockage d'energie par air comprime et d'une centrale thermique
FR2576968A1 (fr) Procede et dispositif pour l'exploitation d'une centrale electrique
Sun et al. Design and thermodynamic analysis of a flash power system driven by process heat of continuous casting grade steel billet
WO2015092276A1 (fr) Procédé et appareil de génération d'électricité utilisant une centrale thermique
Eze et al. Advancements in Energy Efficiency Technologies for Thermal Systems: A Comprehensive Review
EP3004571B1 (fr) Procede de production d'energie par combustion de matieres, et installation pour la mise en oeuvre du procede
EP2834476B1 (fr) Centrale thermique solaire et procédé pour faire fonctionner une centrale thermique solaire
EP3844371B1 (fr) Système de génération d'énergie dans un fluide de travail à partir d'hydrogène et d'oxygène et procédé de fonctionnement de ce système
WO2014020277A1 (fr) Dispositif de stockage et de restitution d'énergie électrique et procédé de stockage et de restitution d'énergie électrique par un tel dispositif
EP2873916B1 (fr) Procédé et dispositif pour prévenir l'assèchement dans une chaudière de centrale solaire à concentration de type tour
FR2983901A1 (fr) Installation thermique de production d' electricite
EP1898056A1 (fr) Dispositif d'extraction de chaleur du condensat préchauffé du cycle à vapeur d'un cycle combiné
EP3060846B1 (fr) Procédé et installation de valorisation énergetique de déchets
FR2989508A1 (fr) Systeme de production electrique a cycle combine
FR2982118A1 (fr) Procede de cogeneration d'energie electrique et d'energie thermique
EP3022409B1 (fr) Installation thermique de combustion de biomasse en cogénération, et procédé de transfert thermique
Olegovich et al. GAS TURBINE AND COMBINED CYCLE PLANT
CN116892851A (zh) 用于火电机组深度调峰的储放热装置
CN116717334A (zh) 联合循环机组快速启动系统和方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017020598

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1296289

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017020598

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2828057

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210626

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1296289

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230620

Year of fee payment: 7

Ref country code: IT

Payment date: 20230523

Year of fee payment: 7

Ref country code: FR

Payment date: 20230523

Year of fee payment: 7

Ref country code: DE

Payment date: 20230523

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230526

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230529

Year of fee payment: 7

Ref country code: SE

Payment date: 20230523

Year of fee payment: 7

Ref country code: PL

Payment date: 20230525

Year of fee payment: 7

Ref country code: AT

Payment date: 20230525

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230523

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 7

Ref country code: ES

Payment date: 20230703

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240521

Year of fee payment: 8