EP3470728A1 - Module lumineux pour vehicule automobile - Google Patents
Module lumineux pour vehicule automobile Download PDFInfo
- Publication number
- EP3470728A1 EP3470728A1 EP18198510.2A EP18198510A EP3470728A1 EP 3470728 A1 EP3470728 A1 EP 3470728A1 EP 18198510 A EP18198510 A EP 18198510A EP 3470728 A1 EP3470728 A1 EP 3470728A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- light sources
- imaging device
- object focal
- focal surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 65
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 239000011159 matrix material Substances 0.000 claims abstract description 29
- 230000007547 defect Effects 0.000 claims abstract description 10
- 230000003287 optical effect Effects 0.000 claims description 30
- 230000004913 activation Effects 0.000 claims description 6
- 239000011229 interlayer Substances 0.000 claims 1
- 230000004075 alteration Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 235000021183 entrée Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/255—Lenses with a front view of circular or truncated circular outline
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/151—Light emitting diodes [LED] arranged in one or more lines
- F21S41/153—Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/143—Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/147—Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/19—Attachment of light sources or lamp holders
- F21S41/192—Details of lamp holders, terminals or connectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/20—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
- F21S41/25—Projection lenses
- F21S41/26—Elongated lenses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/321—Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/322—Optical layout thereof the reflector using total internal reflection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/30—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
- F21S41/32—Optical layout thereof
- F21S41/323—Optical layout thereof the reflector having two perpendicular cross sections having regular geometrical curves of a distinct nature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/40—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
- F21S41/43—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/60—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
- F21S41/65—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
- F21S41/663—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V19/00—Fastening of light sources or lamp holders
- F21V19/001—Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2102/00—Exterior vehicle lighting devices for illuminating purposes
- F21W2102/10—Arrangement or contour of the emitted light
- F21W2102/13—Arrangement or contour of the emitted light for high-beam region or low-beam region
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2107/00—Use or application of lighting devices on or in particular types of vehicles
- F21W2107/10—Use or application of lighting devices on or in particular types of vehicles for land vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2107/00—Light sources with three-dimensionally disposed light-generating elements
- F21Y2107/10—Light sources with three-dimensionally disposed light-generating elements on concave supports or substrates, e.g. on the inner side of bowl-shaped supports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2107/00—Light sources with three-dimensionally disposed light-generating elements
- F21Y2107/70—Light sources with three-dimensionally disposed light-generating elements on flexible or deformable supports or substrates, e.g. for changing the light source into a desired form
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the invention relates to the technical field of lighting light modules for a motor vehicle.
- Light modules of this type are already known. They are able to emit longitudinally forwards a segmented light beam.
- the illumination device comprises a matrix of elementary light sources which is projected forward by an imaging device to form the segmented light beam into a matrix of light pixels. Each bright pixel is illuminated by an associated light source.
- the light sources are likely to be activated in a individual and independent. By selectively switching on or off each of the elementary light sources, it is possible to create a light beam that specifically illuminates certain areas of the road in front of the vehicle, while leaving other areas in the dark.
- Such an optical lighting module is used in particular to perform an adaptive lighting function also called "ADB", acronym for the English expression "Adaptive Driving Beam”.
- ADB adaptive lighting function
- Such an ADB function is intended to automatically detect a user of the road likely to be dazzled by a beam of light emitted in high beam mode by a projector, and to change the outline of this beam of light in such a way as to create a shadow zone at the location of the detected user while continuing to illuminate the road with a long-range beam on either side of the user.
- the advantages of the ADB function are multiple: comfort of use, better visibility compared to a lighting in dipped beam mode, risk of dazzling greatly reduced, driving safer ...
- Such an optical module generally comprises a matrix of light sources, generally formed by light-emitting diodes (LEDs), and an imaging device.
- the light-emitting diodes are arranged on the surface of a planar substrate which extends in a plane orthogonal to the main emission direction of the light-emitting diodes.
- Each light source is imaged by the projection optics to form a light pixel.
- Each luminous pixel can be illuminated selectively by activation or deactivation of each light source.
- Such an optical module is, however, likely to be subjected to optical aberrations such as spherical aberration, coma aberration, distortion aberration, astigmatism, field curvature aberration, etc.
- the present invention relates more particularly to the resolution of the problems posed by the field curvature aberration also called "Petzval field curvature".
- the imaging device is assumed to have an object focal surface formed by a plane orthogonal to the optical axis of said optics.
- this object focal surface actually has a concave spherical curvature.
- the light sources of the matrix are arranged in a plane orthogonal to the optical axis of the projection optics, only the secondary elementary light sources located on the curved object focal surface are projected clearly.
- the other light sources situated in front of or behind the curved object focal surface will be projected in a more or less fuzzy manner according to their longitudinal distance with respect to the object focal surface. The further away the light source is from the object focal surface, the brighter the associated light pixel will be.
- the matrix of light sources generally has a horizontal dimension much greater than its vertical direction.
- the light sources arranged at each end of a line are sufficiently far away from the object focal surface so that the curvature defect has visible effects on the corresponding luminous pixels.
- the defect of curvature thus has troublesome effects on the horizontal lines of luminous pixels, while the effects on the vertical columns of luminous pixels are hardly perceptible to the naked eye.
- the primary optical element comprises for example light guides, each of which is associated with a light source.
- the exit faces of the light guides are arranged on a curved surface matching the curvature of the real object focal surface of the projection optics.
- the device imaging then projects an image of the exit faces of the light guides.
- the input faces of the light guides are arranged in the same plane.
- the light guides located transversely at a distance from the optical axis of the projection optics have a length greater than that of the light guides located near the optical axis.
- Such a primary optical element is not easy to manufacture because of the variable lengths of the light guides.
- the length of the light guides at the ends of the primary optical element is such that the choice of material for producing the primary optical element is limited, for example, to silicone. It is particularly very complex and extremely expensive to make light guides polycarbonate or PMMA.
- Such a shape of the substrate makes it possible to arrange each light source of a line at a single distance from the first focussing surface object of the imaging device.
- the luminous pixels obtained by projection of the light sources of the same line have substantially the same light intensity profile regardless of their position along the line.
- a luminous pixel located at the end of the line will have substantially the same distribution of light intensity as a luminous pixel situated in the middle of the line.
- the substrate which carries the matrix of light sources is flexible at least in a horizontal plane to adapt its radius of curvature to the radius of curvature of the first object focal surface.
- the substrate can be bent under stress and it resumes its original shape when the stress is removed.
- the substrate can take a flat shape in its unconstrained state.
- the substrate is also flexible in a vertical plane to form a sphere portion after deformation.
- the imaging device comprises an input face of the light rays, the imaging device being designed so that the first object focal surface has a determined radius of curvature so that, in projection in a horizontal plane, the circle virtually extending said first object focal surface passes through the end edges of the input face of the light rays.
- the light sources are merged with the first focal surface object of the imaging device.
- This variant is particularly interesting when the light sources of the same line are substantially contiguous.
- the light sources are shifted rearwardly with respect to the first focal surface object of a specific offset distance.
- the offset distance is defined so that a cone whose base rests on the circumference of the input face of the imaging device and whose vertex is located on the intercepts focus, in the extension of its summit, a segment whose length is equal to the distance between the center of two consecutive light sources of the same line.
- the imaging device comprises a single object focal surface which is formed by said first object focal surface.
- the vertical distance separating two adjacent light sources of the same column is substantially equal to the horizontal distance separating two adjacent light sources of the same line so that, in the light beam, the Bright lines of bright pixels overlap vertically.
- the vertical distance separating two adjacent light sources of the same column is greater than the horizontal distance separating two adjacent light sources of the same line so that, in the light beam, the lines bright luminous pixels appear distinctly from each other with vertical interposition of darker intervening lines.
- the invention also relates to a segmented light beam projector for a motor vehicle which comprises two light modules each produced according to the invention, the lines of light pixels of a light beam being interposed between the lines of light pixels. from the other light beam to create a homogeneous overall light beam.
- the imaging device comprises a second object focal surface, the first objective focal surface focusing the light rays in a horizontal plane, and the second object focusing surface focusing the light rays in a plane.
- the light module comprising a primary optical element which shapes the light rays emitted by the light sources to obtain vertically adjacent secondary light sources which are arranged in coincidence or near the second object focal surface.
- a local coordinate system linked to the light module having longitudinal orientations, oriented from rear to front and corresponding to the normal direction of movement of the vehicle, vertical, oriented from bottom to top, and transverse, oriented from left to right indicated by the trihedron "L, V, T" of the figures.
- the vertical orientation is used here as a geometric reference for the description of the light module, unrelated to the direction of gravity.
- the vertical and transverse orientations are independent of a reference linked to the vehicle.
- the transverse orientation extends from one wing to the other of the vehicle parallel to the road, while the vertical orientation extends orthogonally to the road, from the wheels to the roof of the vehicle.
- the light module can also be arranged in the vehicle so that the vertical and transverse orientations are rotated about the longitudinal axis relative to the vehicle.
- FIG. 1 a motor vehicle 10 equipped with a projector 12 which produces a light beam 14 segmented into light pixels which performs a specific lighting function. Without limitation, this is a high beam function.
- the light beam 14 is emitted along a substantially longitudinal transmission axis "A" toward the front of the vehicle 10.
- a vertical transverse screen 16 has been arranged at a determined longitudinal distance in front of the vehicle 10.
- the screen 16 is here arranged at 25 m from the vehicle.
- a transverse axis "H” and a vertical axis “V” intersecting at the axis "A” of emission of the light beam 14 have been drawn on the screen 16.
- the axes "H” and “V” are graduated in degree of opening of the light beam.
- the light beam 14 illuminates an area 18 of the screen 16.
- This illuminated area 18 is divided into a matrix of juxtaposed light pixels 20 which are arranged in transverse lines and in vertical columns.
- the bright pixels 20 are individually activatable and independently of each other.
- juxtaposed means that two adjacent bright pixels 20 vertically or transversely overlap each other.
- the light beam 14 substantially homogeneously illuminates the area 18 of the screen 16.
- a light pixel 20 is off, a portion of the space it occupies on the Screen 16 is not lit by neighboring pixels.
- each light pixel 20 has a bell-shaped light intensity profile along a section line.
- the overlap of two luminous pixels 20 is defined by the fact that the light profiles of two successive luminous pixels along a line, for example transverse, intersect.
- the figure 3 gives a non-limiting example of overlapping luminous pixels 20.
- the figure 3 represents the light intensity profiles of three adjacent 20A, 20B, 20C light pixels projected onto the screen 16.
- Each light pixel 20A, 20B, 20C has a bell-shaped light intensity profile, the maximum light intensity Imax being located in the center of the light pixel 20A, 20B, 20C.
- the left light pixel 20A overlaps the central light pixel 20B so that the light intensity curves intersect at a "P1" point having a luminous intensity substantially equal to half of the maximum luminous intensity Imax.
- the right light pixel 20C overlaps the central light pixel 20B so that the light intensity curves intersect at a point "P2" having a light intensity substantially equal to half the maximum light intensity Imax.
- a central band comprising the top of the bell is illuminated only by the central light pixel 20B, and this central band is surrounded by degraded and low intensity light bands, which extend from the central band respectively to the points P1. and P2.
- each luminous pixel has a luminous profile approaching a slot shape in which the top of the bell is spread out to substantially form a plate.
- the crossing between two light intensity profiles of two successive luminous pixels is at a light intensity less than half of the maximum intensity.
- the space occupied by a given light pixel is likely to be fully illuminated by the adjacent luminous pixels.
- the projector 12 comprises at least one light module 22.
- the light module 22 comprises at least one matrix 24 of light sources 26 and at least one imaging device 28 which is designed to project the light sources forming the light beam 14 in which each light source 26 produces a light pixel 20.
- the light sources 26 are here all identical in size.
- the light sources 26 are formed by light-emitting diode-emitting surfaces. They are all arranged on a front face 29 of a common substrate 30.
- the common substrate 30 has a plate shape which extends in a generally vertical transverse plane
- all the light sources 26 are arranged in the same plane parallel to or coincident with the face 29.
- the light emitting diodes protrude from the face 29, they all project from the same distance.
- the light sources 26 are arranged in horizontal lines 32 and in vertical columns 34.
- the matrix 24 here has a greater number of columns 34 than 32 lines. As a result, the matrix has a transverse width much greater than its vertical height.
- two adjacent light sources 26 of the same line 32 are spaced apart by a first transverse distance "D1".
- the transverse distance "D1" is the same for all the light sources 26 of the same line 32.
- two adjacent light sources 26 of the same column 34 are spaced apart by a second vertical distance "D2".
- the vertical distance "D2" is the same for all light sources of the same column 34.
- the light module 22 comprises at least one imaging device 28 which is designed to project an image of each light source 26 substantially to infinity.
- the imaging device 28 is especially designed to project the light sources 26 by forming the light beam 14 in which each light source 26 produces a light pixel 20.
- the imaging device 28 is in the form of a single lens. It will be understood, however, that the imaging device may also comprise at least one reflecting element and / or one or more lenses.
- the imaging device 28 has an input face 36 of the light rays and an output face 38 of the light beam 14.
- the imaging device 28 has at least a first focal length F1 and a first generally transverse vertical object focal surface 40 which is arranged substantially in coincidence with the light sources 26.
- the first object focal surface 40 is arranged in such a way that, when all the light sources 26 of a line 32 are activated, the screen 16 is illuminated homogeneously by a corresponding luminous line of light pixels 20.
- the object focal surface 40 of the imaging device 30 is represented in first approximation by an objective focal surface 40 which is plane and perfectly orthogonal to the optical "A" axis.
- the projection optic 14 has an object focal surface having a concave spherical curvature defect.
- Such a defect is called Petzval field aberration.
- the curvature defect has a radius of curvature of radii of curvature determined.
- the first object focal surface 40 appears as a circular arc.
- the invention proposes that the substrate 30 of the matrix 24 has, in a horizontal plane, a curved shape at least partly parallel to the first focal surface object 40 of the imaging device 28.
- the portion of the substrate 30 comprising the light sources 26 may have, in a horizontal plane, a curved shape parallel to the first object focal surface 40 of the imaging device 28 while the ends of the substrate 30 located on either side of the portion of the substrate 30 comprising the light sources 26 may have, in this same horizontal plane, a shape parallel or not to the first object focal surface 40 of the imaging device 28.
- the entire substrate 30 of the matrix 24 has, in a horizontal plane, a curved shape parallel to the first object focal length 40 of the imaging device.
- the substrate 30 is thus curved so that its front face 29 has a cylindrical sector shape of vertical generatrices and direction in a horizontal arc.
- the radius of curvature of the substrate 30 is determined so that each line 32 of light sources 26 is parallel to the object focal surface 40 taken along a horizontal sectional plane passing through said line 32.
- all the light sources 26 of a same line 32 are arranged at the same distance from the first object focal surface 40.
- the substrate 30 carrying the matrix 24 of light sources 26 is flexible at least in a horizontal plane to precisely adapt its radius of curvature to the radius of curvature of the first object focal surface 40.
- the substrate 30 is for example elastically flexible, the front face 29 of the substrate 30 having a planar shape in its unstressed state, as shown in broken lines at the figure 6 . This makes it possible to precisely adjust the radius of curvature of the substrate 30 to the defect of curvature of the associated imaging device 30.
- the die 24 is mounted on a frame which makes it possible to adjust its radius of curvature.
- the frame comprises for example two clamping jaws 35 which are each arranged against a vertical edge of the substrate 30 and transversely clamping the substrate 30 to constrain it to the desired curved position.
- the frame has a curved bearing surface against which a rear face of the substrate 30 is fixed, for example by gluing or elastic interlocking or by any other suitable fastening means.
- the transverse distance "D1" between two adjacent light sources 26 of the same line 32 is not zero.
- the transverse distance "D1" is between 10% and 50% of the width of a light source 26.
- the surface focal length object 40 is shifted longitudinally forward a longitudinal distance "D3" with respect to the nearest light sources 26, as shown in FIG. figure 6 .
- This allows the light source 26 to be imaged by a slightly blurred and more transversely spreading light pixel 20 which overlaps the adjacent pixels 20, thereby removing the dark spaces between two transversely adjacent light sources 26.
- the radius of curvature of the substrate 30 is equal to the sum of the radius of curvature of the first object focal surface 40 and the longitudinal distance "D3" of offset.
- the offset distance "D3" is defined so that a cone 43 whose base is supported on the circumference of the input face 36 of the imaging device 28 and whose apex is located on the focus of the device In the extension of its apex, the imaging circuit 28 intercepts a segment whose length is equal to the distance between the center of two consecutive light sources 26 of the same line 32. It will be noted that the opening angle " ⁇ of the cone 43 corresponds to the opening angle of the imaging device 28.
- a virtual "C” circle is defined which is formed by extending the first object focal plane 40.
- the imaging device 28 is advantageously designed so that the first object focal plane 40, projected into an axial horizontal plane, has a radius of curvature determined so that the circle “C” passes through the end edges of the input face 36 of the light rays, as illustrated in FIG. figure 7 .
- the end edges of the input face 36 define an arc 41 of the circle “C”.
- the so-called “inscribed angle” theorem states that an angle inscribed in the circle “C” which intercepts said arc 41 has the same value " ⁇ " regardless of the position of its vertex on the circle “C”.
- the angle " ⁇ " corresponds to the opening angle of the imaging device 28.
- This configuration thus makes it possible to very substantially improve the light output of the light sources 26 arranged at the end of line 32 with respect to a light module in which the light sources are arranged on a plane substrate. This configuration also avoids vignetting optical aberrations.
- the imaging device 28 has a single object focal surface which is formed by said first object focal surface 40.
- the matrix 24 of light sources 26 is designed so that the vertical distance "D2" separating two adjacent light sources 26 of the same column 34 is substantially equal to the horizontal distance "D1" separating two adjacent light sources 26 of the same line 32.
- the light beam 14 illuminates the screen 16 so that the light lines of light pixels 20 overlap vertically, in the same way as two light pixels 20 of the same line 32.
- the light beam 14 thus illuminates homogeneous screen 16.
- the die 24 has, in vertical axial section, a rectilinear shape, while the first object focal surface 40 has a shape of an arc of a circle.
- this configuration is not a problem since, as explained above, the vertical dimension of the matrix 24 is much smaller than its transverse dimension. As a result, the blur created by the effect of the curvature of the field is not perceptible to the naked eye on the luminous pixels 20 of the same column.
- the invention proposes a variant of this first embodiment which is represented in FIGS. figures 9 and 10 .
- the vertical distance "D2" separating two adjacent light sources 26 of the same column 34 is greater than the horizontal distance "D1" separating two sources adjacent luminaires 26 of the same line 32 so that, in the light beam 14A, the lines 42A of bright pixels 20 appear distinctly from each other with the interposition of darker interposed lines, as shown in FIG. figure 9 .
- the projector 12 then comprises two light modules 22A, 22B similar.
- the second light module 22B is arranged to project a light beam 14B having lines 42B of light pixels 20 between the lines 42A of light pixels of the other light beam 14A to create a homogeneous overall light beam.
- the two light modules 22A, 22B are here arranged in the same projector 12.
- the projector 12 comprises a housing 44 common closed by an ice 46 enclosing the two light modules 22A, 22B.
- the invention proposes a second embodiment of the invention which is represented in FIGS. figures 11 and 12 .
- the imaging device 28 is a bifocal device, sometimes also called astigmatism, which comprises, besides the first object focal surface 40, a second object focal surface 48.
- the second object focal surface 48 is arranged at a focal length "F2" with respect to the optical center of the imaging device 28.
- the first object focal surface 40 focuses the light rays in a horizontal plane, while the second object focal surface 48 focuses the light rays in a vertical plane.
- the light module further comprises a primary optical element 50 which shapes the light rays emitted by the light sources 26 to obtain light sources. vertically adjoining secondary members which are arranged on the second object focal surface.
- the primary optical element 50 is an optical part, or a set of parts and / or optical structures, arranged to transfer the light emitted by said light sources 26 onto a virtual projection surface, which is opposite and at a distance predefined of the matrix 24, in the direction of the emission of light, to form the secondary light sources 52.
- the virtual surface is advantageously a virtual concave surface in the form of a parallel sphere portion or coincident with the second object focusing surface 48.
- the virtual projection surface may be a cylinder portion parallel to the front face of the matrix 24.
- each secondary light source 52 has a height greater than that of each associated light source 26.
- the secondary light sources 52 are here joined vertically.
- the primary optical element 50 may be made in a single optical part but may comprise at least two optical parts which may have different shapes and / or refractive indices.
- the at least two pieces may also be made of different materials and may include coatings for improving light transmission efficiency, such as an antireflection coating.
- the primary element 50 may comprise diffractive or refractive structures, such as diffraction gratings or Fresnel structures.
- the primary optical element 50 comprises several layers of light guide 54 each of which is arranged facing a line 32 of associated light sources 26.
- a guide sheet 54 is defined as an optical part capable of guiding light by total internal reflection of this light, for example from an entrance face to an exit face.
- a guide sheet 54 has a small thickness compared to its length and its width.
- each guide ply 54 has an upper face 56 and an underside 58 of extended guide separated by a periphery. This circumference defines a thickness of the guide ply 56, which may be variable, for example increasing from one end to the other.
- the periphery comprises a vertical rear transverse face 60 input of light common to all light sources 26 of the associated line 32. The rear face 60 input is arranged near the associated light sources 26, for example a few millimeters.
- the light emitted by the light sources 26 which enters through the rear face 60 propagates inside the guide ply 60 by successive total internal reflections against the upper and lower faces 56, 58 towards a front transverse face 62 vertical exit.
- the front face 62 forms a portion of the periphery of the guide ply 54.
- each guide ply 54 has a height greater than that of its inlet face 60.
- each guide ply 54 has, in transverse longitudinal section, a profile diverging from its inlet face 60 to its outlet face 62.
- the input face 60 has a height that is substantially equal to the height of the emission surface of the associated light sources 26.
- the exit face 62 is thus illuminated over its entire height by the associated light sources 26, thus forming a line of secondary light sources 52.
- the first object focusing surface 40 of the imaging device 28 is arranged in the same manner as in the previous embodiments, that is to say in coincidence or near the light sources 26.
- the second focussing surface object 48 which is arranged substantially in coincidence with the outlet faces 62 of the guide plies 54.
- each light source 26 arranged substantially close to the first object focusing surface 40 the light rays emitted by the emission surface of said light source 14 are projected parallel by the imaging device 28 in vertical planes. longitudinal, so that the light beam associated with said light source 26 creates a light segment of generally rectangular shape transversely delimited by vertical edges which are the sharp image of the vertical edges of the emission surface.
- each light source 26 creates on the output face 62 of the guide web 20 a secondary light source 52.
- Each secondary light source 52 is thus delimited vertically by two transverse edges which coincide with the edges formed by the upper faces and lower 56, 58 with the outlet face 62.
- each secondary light source 52 Since the outlet face 62 is arranged substantially in coincidence with the second object focusing surface 48, the light rays emitted by each secondary light source 52 are thus projected parallel by the imaging device 28 in longitudinal transverse planes, so that the light beam associated with said light source 20 creates a luminous segment of generally rectangular shape delimited vertically by vertical edges which are the image clear of the transverse edges of the secondary light source 52.
- the secondary light sources 52 being substantially contiguous, the pixels 20 obtained are also vertically joined.
- the guide web is replaced by reflective surfaces.
- the space that was occupied by the guide web of the figure 12 is left empty, while the reflective surfaces are carried by prisms 64 which extend longitudinally from their base 66 located on the front face of the substrate 24, between two lines 32 to a free front transverse edge 68.
- the upper faces 58 and lower 56 of the prisms 64 form reflecting surfaces.
- the prisms fill exactly the gaps between two guiding layers of the figure 12 .
- This embodiment operates in the same way as the embodiment of the figure 12 and it provides the same benefits.
- the pixels obtained are sharper, particularly on the transverse edges of the area illuminated by the light beam.
- the light output of the module light is substantially improved compared to known designs.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Geometry (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Abstract
- au moins une matrice (24) de sources lumineuses (26) rangées en au moins une ligne (32) horizontale et en colonnes (34) verticales, les sources lumineuses (26) étant des surfaces émettrice de diodes électroluminescentes qui sont toutes agencées sur un substrat (30) commun ;
- au moins un dispositif d'imagerie (28) conçu pour projeter les sources lumineuses (26), le dispositif d'imagerie (28) comportant au moins une première surface focale objet (40) présentant un défaut de courbure de rayon de courbure déterminé ;
caractérisé en ce que le substrat (30) présente, dans un plan horizontal, une forme courbe parallèle à la première surface focale objet (40) du dispositif d'imagerie (28).
Description
- L'invention se rapporte au domaine technique des modules lumineux d'éclairage pour véhicule automobile.
- L'invention se rapporte plus particulièrement à un module lumineux de véhicule automobile comprenant :
- au moins une matrice de sources lumineuses rangées en au moins une ligne horizontales et en colonnes verticales, les sources lumineuses étant des surfaces émettrices de diodes électroluminescentes qui sont toutes agencées sur un substrat commun ;
- au moins un dispositif d'imagerie conçu pour projeter les sources lumineuses en un faisceau lumineux dans lequel chaque source lumineuse produit un pixel lumineux, l'activation des sources lumineuses d'une ligne formant une ligne lumineuse de pixels lumineux éclairée de manière homogène, le dispositif d'imagerie comportant au moins une première surface focale objet présentant un défaut de courbure de rayon de courbure déterminé.
- On connaît déjà des modules lumineux de ce type. Ils sont aptes à émettre longitudinalement vers l'avant un faisceau lumineux segmenté. Le dispositif d'éclairage comporte une matrice de sources lumineuses élémentaires qui est projetée vers l'avant par un dispositif d'imagerie pour former le faisceau lumineux segmenté en une matrice de pixels lumineux. Chaque pixel lumineux est éclairé par une source lumineuse associée. Les sources lumineuses sont susceptibles d'être activées de manière individuelle et indépendante. En allumant ou en éteignant sélectivement chacune des sources lumineuses élémentaires, il est possible de créer un faisceau lumineux éclairant spécifiquement certaines zones de la route en avant du véhicule, tout en laissant dans l'obscurité d'autres zones.
- Un tel module optique d'éclairage est notamment utilisé pour réaliser une fonction d'éclairage adaptatif aussi dite "ADB", acronyme de l'expression anglaise "Adaptative Driving Beam". Une telle fonction ADB est destinée à permettre de détecter de façon automatique un usager de la route susceptible d'être ébloui par un faisceau d'éclairage émis en mode feu de route par un projecteur, et à modifier le contour de ce faisceau d'éclairage de manière à créer une zone d'ombre à l'endroit où se trouve l'usager détecté tout en continuant à éclairer la route avec un faisceau à grande portée de part et d'autre de l'usager. Les avantages de la fonction ADB sont multiples : confort d'utilisation, meilleure visibilité par rapport à un éclairage en mode feu de croisement, risque d'éblouissement fortement réduit, conduite plus sûre...
- Un tel module optique comporte généralement une matrice de sources lumineuses, généralement formées par des diodes électroluminescentes (LEDs), et un dispositif d'imagerie. Les diodes électroluminescentes sont agencées sur la surface d'un substrat plan qui s'étend dans un plan orthogonal à la direction d'émission principale des diodes électroluminescentes. Chaque source lumineuse est imagée par l'optique de projection pour former un pixel lumineux. Chaque pixel lumineux est susceptible d'être éclairé sélectivement par activation ou désactivation de chaque source lumineuse.
- Un tel module optique est cependant susceptible d'être soumis à des aberrations optiques telles que l'aberration de sphéricité, l'aberration de coma, l'aberration de distorsion, l'astigmatisme, l'aberration de courbure de champ, etc.
- La présente invention concerne plus particulièrement la résolution des problèmes posés par l'aberration de courbure de champ aussi appelée "courbure de champ de Petzval". Théoriquement, le dispositif d'imagerie est supposé présenter une surface focale objet formée par un plan orthogonal à l'axe optique de ladite optique. Cependant, cette surface focale objet présente en réalité une courbure sphérique concave.
- De ce fait, les sources lumineuses de la matrice étant agencées dans un plan orthogonal à l'axe optique de l'optique de projection, seules les sources lumineuses élémentaires secondaires situées sur la surface focale objet courbe sont projetées de manière nette. Les autres sources lumineuses situées en avant ou en arrière de la surface focale objet courbe seront projetées de manière plus ou moins floue en fonction de leur distance longitudinale par rapport à la surface focale objet. Plus la source lumineuse sera éloignée de la surface focale objet, plus le pixel lumineux associé sera flou.
- La matrice de sources lumineuses présente généralement une dimension horizontale très supérieure à sa direction verticale. Ainsi, les sources lumineuses agencées à chaque extrémité d'une ligne sont suffisamment éloignées de la surface focale objet pour que le défaut de courbure ait des effets visibles sur les pixels lumineux correspondant. Le défaut de courbure a donc des effets gênant sur les lignes horizontales de pixels lumineux, tandis que les effets sur les colonnes verticales de pixels lumineux sont peu perceptibles à l'oeil nu.
- Pour résoudre ce problème, on a déjà proposé d'interposer un élément optique primaire entre les sources lumineuses et le dispositif d'imagerie. L'élément optique primaire comporte par exemple des guides de lumière dont chacun est associé à une source lumineuse. Les faces de sortie des guides de lumière sont agencées sur une surface courbe épousant la courbure de la surface focale objet réelle de l'optique de projection. Le dispositif d'imagerie projette alors une image des faces de sortie des guides de lumière.
- Les diodes électroluminescentes étant portées par une carte à circuit imprimé plane, les faces d'entrée des guides de lumière sont agencées dans un même plan. De ce fait, les guides de lumières situés transversalement à distance de l'axe optique de l'optique de projection présentent une longueur supérieure à celle des guides de lumière situés à proximité dudit axe optique. Un tel élément optique primaire est peu aisé à fabriquer du fait des longueurs variables des guides de lumière.
- En outre, la longueur des guides de lumière situés aux extrémités de l'élément optique primaire est telle que le choix de matériau pour réaliser l'élément optique primaire est limité par exemple à la silicone. Il est notamment très complexe et extrêmement onéreux de réaliser les guides de lumière en polycarbonate ou en PMMA.
- On a aussi proposé d'interposer un élément optique de correction de la courbure de champ entre le dispositif d'imagerie et la matrice de sources lumineuses.
- Cependant, une telle solution impose à nouveau d'ajouter un élément au module lumineux. Le coût de fabrication et le poids du module lumineux sont alors augmentés.
- L'invention propose un module lumineux de véhicule automobile comprenant :
- au moins une matrice de sources lumineuses rangées en au moins une ligne horizontales et en colonnes verticales, les sources lumineuses étant des surfaces émettrices de diodes électroluminescentes qui sont toutes agencées sur un substrat commun ;
- au moins un dispositif d'imagerie conçu pour projeter les sources lumineuses en un faisceau lumineux dans lequel chaque source lumineuse produit un pixel lumineux, l'activation des sources lumineuses d'une ligne formant une ligne lumineuse de pixels lumineux éclairée de manière homogène, le dispositif d'imagerie comportant au moins une première surface focale objet présentant un défaut de courbure de rayon de courbure déterminé ;
caractérisé en ce que le substrat présente, dans un plan horizontal, une forme courbe au moins en partie parallèle ou confondue à la première surface focale objet du dispositif d'imagerie. - Une telle forme du substrat permet d'agencer chaque source lumineuse d'une ligne à une unique distance de la première surface de focalisation objet du dispositif d'imagerie. Il en résulte que les pixels lumineux obtenus par projection des sources lumineuses d'une même ligne présentent sensiblement un même profil d'intensité lumineuse quelle que soit leur position le long de la ligne. Notamment un pixel lumineux situé en bout de ligne présentera sensiblement la même distribution d'intensité lumineuse qu'un pixel lumineux situé en milieu de ligne.
- Selon un autre aspect de l'invention, le substrat qui porte la matrice de sources lumineuses est flexible au moins dans un plan horizontal pour adapter son rayon de courbure au rayon de courbure de la première surface focale objet.
- On entend par flexible que le substrat peut être courbé sous contrainte et qu'il reprend sa forme initiale lorsque la contrainte est supprimée. En particulier, le substrat peut reprendre une forme plane dans son état non contraint.
- Il est ainsi possible d'adapter le rayon de courbure du substrat au rayon de courbure de la première surface de focalisation objet du dispositif d'imagerie. Ceci permet notamment d'utiliser un même modèle de matrice de sources lumineuses avec différents dispositifs d'imagerie. Cela permet en outre de régler parfaitement le rayon de courbure de la matrice à chaque dispositif d'imagerie.
- En variante, le substrat est aussi flexible dans un plan vertical pour former une portion de sphère après déformation.
- Selon un autre aspect de l'invention, le dispositif d'imagerie comporte une face d'entrée des rayons lumineux, le dispositif d'imagerie étant conçu pour que la première surface focale objet présente un rayon de courbure déterminé pour que, en projection dans un plan horizontal, le cercle prolongeant virtuellement ladite première surface focale objet passe par les bords d'extrémité de la face d'entrée des rayons lumineux.
- Ceci permet très avantageusement d'améliorer le rendement lumineux du module lumineux en augmentant le flux lumineux des sources lumineuses émis par les sources lumineuses situées en bout de ligne à travers le dispositif d'imagerie.
- Selon une variante de l'invention, les sources lumineuses sont confondues avec la première surface focale objet du dispositif d'imagerie.
- Cette variante est particulièrement intéressante lorsque les sources lumineuses d'une même ligne sont sensiblement jointives.
- Selon un autre aspect de l'invention, les sources lumineuses sont décalées vers l'arrière par rapport à la première surface focale objet d'une distance de décalage déterminée.
- Par exemple, la distance de décalage est définie de manière qu'un cône dont la base s'appuie sur la circonférence de la face d'entrée du dispositif d'imagerie et dont le sommet est situé sur le foyer intercepte, dans le prolongement de son sommet, un segment dont la longueur est égale à la distance entre le centre de deux sources lumineuses consécutives d'une même ligne.
- Ceci permet d'améliorer l'homogénéité lumineuse du faisceau lumineux émis par le module lumineux.
- Selon un premier mode de réalisation de l'invention, le dispositif d'imagerie comporte une unique surface focale objet qui est formée par ladite première surface focale objet.
- Un tel dispositif d'imagerie est plus simple à concevoir.
- Selon une première variante du premier mode de réalisation, la distance verticale séparant deux sources lumineuses adjacentes d'une même colonne est sensiblement égale à la distance horizontale séparant deux sources lumineuses adjacentes d'une même ligne de sorte que, dans le faisceau lumineux, les lignes lumineuses de pixels lumineux se chevauchent verticalement.
- Selon une deuxième variante du premier mode de réalisation, la distance verticale séparant deux sources lumineuses adjacentes d'une même colonne est supérieur à la distance horizontale séparant deux sources lumineuses adjacentes d'une même ligne de sorte que, dans le faisceau lumineux, les lignes lumineuses de pixels lumineux apparaissent distinctement les unes de autres avec interposition verticale de lignes intercalaires plus sombres.
- Selon cette deuxième variante, l'invention concerne aussi un projecteur de faisceau lumineux à segments pour véhicule automobile qui comporte deux modules lumineux chacun réalisé selon l'invention, les lignes de pixels lumineux d'un faisceau lumineux étant interposées entre les lignes de pixels lumineux de l'autre faisceau lumineux pour créer un faisceau lumineux global homogène.
- Selon un deuxième mode de réalisation de l'invention, le dispositif d'imagerie comporte une deuxième surfaces focale objet, la première surface focale objet focalisant les rayons lumineux dans un plan horizontal, et la deuxième surface focale objet focalisant les rayons lumineux dans un plan vertical, le module lumineux comportant un élément optique primaire qui met en forme les rayons lumineux émis par les sources lumineuses pour obtenir des sources lumineuses secondaires verticalement jointives qui sont agencées en coïncidence ou à proximité de la deuxième surface focale objet.
- Ceci permet avantageusement d'obtenir un faisceau lumineux homogène dans lequel les pixels lumineux se chevauchent aussi verticalement.
- D'autres caractéristiques et avantages de l'invention apparaitront au cours de la lecture de la description détaillée qui va suivre pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels :
- la
figure 1 est une vue de côté qui représente schématiquement un véhicule automobile équipé d'un module lumineux réalisé selon les enseignements de l'invention qui éclaire un écran transversal ; - la
figure 2 est une vue de face qui représente l'écran éclairé par le faisceau lumineux émis par le module lumineux de lafigure 1 qui est segmenté en plusieurs pixels lumineux chevauchants ; - la
figure 3 est un diagramme qui représente le profil d'intensité lumineuse de trois pixels lumineux adjacents du faisceau lumineux en fonction de leur position sur un axe transversal de l'écran ; - la
figure 4 est une vue en perspective qui représente schématiquement le module lumineux réalisé selon un premier mode de réalisation de l'invention ; - la
figure 5 est une vue de face qui représente une matrice de sources lumineuses qui équipe le module lumineux de lafigure 4 ; - la
figure 6 est une vue en coupe longitudinale transversale selon le plan de coupe 6-6 de lafigure 4 qui représente le substrat courbé de la matrice de sources lumineuses ainsi que la première surface de focalisation objet d'un dispositif d'imagerie du module lumineux ; - la
figure 7 est une vue similaire à celle de lafigure 6 qui représente une variante de réalisation de l'invention dans lequel la première surface de focalisation a été prolongée par un cercle passant par des bords d'extrémité de la surface d'entrée du dispositif d'imagerie ; - la
figure 8 est une vue en coupe verticale longitudinale selon le plan de coupe 8-8 de lafigure 4 ; - la
figure 9 est une vue de face similaire à celle de lafigure 2 dans laquelle l'écran est éclairé par un projecteur comportant deux modules lumineux réalisés selon une variante du premier mode de réalisation de l'invention ; - la
figure 10 est une vue en coupe longitudinale transversale qui représente schématiquement le projecteur comportant les deux modules qui éclairent l'écran de lafigure 9 ; - la
figure 11 est une vue similaire à celle de lafigure 6 qui représente un module lumineux réalisé selon un deuxième mode de réalisation de l'invention dans lequel il comporte un élément optique primaire et dans lequel le dispositif d'imagerie comporte deux surfaces de focalisation objet distinctes ; - la
figure 12 est une vue similaire à celle de lafigure 8 qui représente le module lumineux réalisé selon le deuxième mode de réalisation de l'invention ; - la
figure 13 est une vue similaire à celle de lafigure 12 qui représente une variante du deuxième mode de réalisation de l'invention. - Dans la suite de la description, des éléments présentant une structure identique ou des fonctions analogues seront désignés par une même référence.
- Dans la suite de la description, on adoptera à titre non limitatif un repère local lié au module lumineux présentant des orientations longitudinale, orientée d'arrière en avant et correspondant au sens de déplacement normal du véhicule, verticale, orientée de bas en haut, et transversale, orientée de gauche à droite indiquées par le trièdre "L,V,T" des figures. L'orientation verticale est ici utilisée à titre de repère géométrique pour la description du module lumineux, sans rapport avec la direction de la gravité.
- En outre, les orientations verticale et transversale sont indépendantes d'un repère lié au véhicule. A titre non limitatif, dans l'exemple de la
figure 1 , l'orientation transversale s'étend d'une aile à l'autre du véhicule parallèlement à la route, tandis que l'orientation verticale s'étend orthogonalement à la route, depuis les roues vers le toit du véhicule. Néanmoins, on comprendra que le module lumineux peut aussi être agencé dans le véhicule de manière que les orientations verticales et transversales soient pivotées autour de l'axe longitudinal par rapport au véhicule. - On a représenté à la
figure 1 un véhicule automobile 10 équipé d'un projecteur 12 qui produit un faisceau lumineux 14 segmenté en pixels lumineux qui réalise une fonction d'éclairage déterminée. De manière non limitative, il s'agit ici d'une fonction de feu de route. Le faisceau lumineux 14 est émis selon un axe "A" d'émission sensiblement longitudinal vers l'avant du véhicule 10. - Pour les besoins de la description, on a agencé un écran 16 transversal vertical à une distance longitudinale déterminée en avant du véhicule 10. L'écran 16 est ici agencé à 25 m du véhicule.
- Comme représenté à la
figure 2 , on a tracé sur l'écran 16 un axe transversal "H" et un axe vertical "V" concourants au niveau de l'axe "A" d'émission du faisceau lumineux 14. Les axes "H" et "V" sont gradués en degré d'ouverture du faisceau lumineux. - Le faisceau lumineux 14 éclaire une zone 18 de l'écran 16. Cette zone 18 éclairée est divisée en une matrice de pixels lumineux 20 juxtaposés qui sont rangés en lignes transversales et en colonnes verticales. Les pixels lumineux 20 sont activables individuellement et indépendamment les uns des autres.
- Le terme "juxtaposé" signifie que deux pixels lumineux 20 adjacents, verticalement ou transversalement, se chevauchent. Ainsi, lorsque tous les pixels lumineux 26 sont allumés, le faisceau lumineux 14 éclaire de manière sensiblement homogène la zone 18 de l'écran 16. Lorsqu'un pixel lumineux 20 est éteint, une portion de la place qu'il occupait sur l'écran 16 n'est pas éclairée par les pixels voisins.
- Plus particulièrement, chaque pixel lumineux 20 présente un profil d'intensité lumineuse en forme de cloche le long d'une ligne de coupe. On définit le chevauchement de deux pixels lumineux 20 par le fait que les profils lumineux de deux pixels lumineux successifs le long d'une ligne, par exemple transversale, se croisent.
- La
figure 3 donne un exemple non limitatif de chevauchement des pixels lumineux 20. Lafigure 3 représente les profils d'intensité lumineuse de trois pixels lumineux 20A, 20B, 20C adjacents projetés sur l'écran 16. Chaque pixel lumineux 20A, 20B, 20C présente un profil d'intensité lumineuse en forme de cloche, l'intensité lumineuse maximale Imax étant située au centre du pixel lumineux 20A, 20B, 20C. Comme on peut le voir le pixel lumineux 20A de gauche chevauche le pixel lumineux 20B central de manière que les courbes d'intensité lumineuse se croisent en un point "P1" présentant une intensité lumineuse sensiblement égale à la moitié de l'intensité lumineuse maximale Imax. De même, le pixel lumineux 20C de droite chevauche le pixel lumineux 20B central de manière que les courbes d'intensité lumineuse se croisent en un point "P2" présentant une intensité lumineuse sensiblement égale à la moitié de l'intensité lumineuse maximale Imax. Une bande centrale comprenant le sommet de la cloche n'est éclairée que par le pixel lumineux 20B central et cette bande centrale est entourée de bandes éclairées de manière dégradée et peu intense, qui s'étendent depuis la bande centrale respectivement jusqu'aux points P1 et P2. - En variante non représentée de l'invention, chaque pixel lumineux présente un profil lumineux se rapprochant d'une forme de créneau dans laquelle le sommet de la cloche est étalé pour former sensiblement un plateau. Dans ce cas, le croisement entre deux profils d'intensité lumineuse de deux pixels lumineux successifs se fait à une intensité lumineuse inférieure à la moitié de l'intensité maximale.
- Selon une autre variante non représentée de l'invention, par exemple lorsque les sources lumineuses sont projetées de manière floue, l'espace occupé par un pixel lumineux déterminé est susceptible d'être entièrement éclairé par les pixels lumineux adjacents. Dans ce cas, pour obtenir une zone entièrement sombre, il est nécessaire d'éteindre au moins deux pixels adjacents.
- Pour réaliser un tel faisceau lumineux 14, le projecteur 12 comporte au moins un module lumineux 22. Comme cela est par exemple représenté à la
figure 4 , le module lumineux 22 comporte au moins une matrice 24 de sources lumineuses 26 et au moins un dispositif 28 d'imagerie qui est conçu pour projeter les sources lumineuses en formant le faisceau lumineux 14 dans lequel chaque source lumineuse 26 produit un pixel lumineux 20. Les sources lumineuses 26 sont ici toutes identiques en dimensions. - Plus particulièrement, les sources lumineuses 26 sont formées par des surfaces émettrices de lumière de diodes électroluminescentes. Elles sont toutes agencées sur une face 29 avant d'un substrat commun 30. Le substrat commun 30 présente une forme de plaque qui s'étend dans un plan globalement vertical transversal
- Plus particulièrement, toutes les sources lumineuses 26 sont agencées dans un même plan parallèle ou confondu avec la face 29. Par exemple, si les diodes électroluminescentes font saillies par rapport à la face 29, elles font toutes saillies de la même distance.
- Les sources lumineuses 26 sont rangées en lignes 32 horizontales et en colonnes 34 verticales. La matrice 24 présente ici un plus grand nombre de colonnes 34 que de lignes 32. De ce fait, la matrice présente une largeur transversale très supérieure à sa hauteur verticale.
- Dans le mode de réalisation représenté à la
figure 5 , deux sources lumineuses 26 adjacentes d'une même ligne 32 sont espacées d'une première distance transversale "D1". Ici, la distance transversale "D1" est la même pour toutes les sources lumineuses 26 d'une même ligne 32. - De même, deux sources lumineuses 26 adjacentes d'une même colonne 34 sont espacées d'une deuxième distance verticale "D2". Ici, la distance verticale "D2" est la même pour toutes sources lumineuses d'une même colonne 34.
- Le module lumineux 22 comporte au moins un dispositif d'imagerie 28 qui est conçu pour projeter une image de chaque source lumineuse 26 sensiblement à l'infini. Le dispositif d'imagerie 28 est notamment conçu pour projeter les sources lumineuses 26 en formant le faisceau lumineux 14 dans lequel chaque source lumineuse 26 produit un pixel lumineux 20.
- Dans les modes de réalisation représentés aux figures, le dispositif d'imagerie 28 se présente sous la forme d'une unique lentille. On comprendra néanmoins que le dispositif d'imagerie peut aussi comprendre au moins un élément réfléchissant et/ou une ou plusieurs lentilles.
- De manière générale, le dispositif d'imagerie 28 présente une face 36 d'entrée des rayons lumineux et une face 38 de sortie du faisceau lumineux 14.
- Le dispositif d'imagerie 28 présente au moins une première longueur focale F1 et une première surface focale objet 40 globalement verticale transversale qui est agencé sensiblement en coïncidence avec les sources lumineuses 26.
- La première surface focale objet 40 est notamment agencée de manière que, lorsque toutes les sources lumineuses 26 d'une ligne 32 sont activées, l'écran 16 soit éclairé de manière homogène par une ligne lumineuse de pixels lumineux 20 correspondant.
- Dans l'usage courant, la surface focale objet 40 du dispositif d'imagerie 30 est représentée en première approximation par une surface focale objet 40 plane et parfaitement orthogonale à l'axe "A" optique. Cependant, dans la réalité, il est connu que l'optique 14 de projection présente une surface focale objet ayant un défaut de courbure sphérique concave. Un tel défaut est appelé aberration de champ de Petzval. Le défaut de courbure présente un rayon de courbure de rayons de courbure déterminé. Ainsi, comme représenté par exemple à la
figure 6 , en vue de section selon un plan de coupe horizontal, la première surface focale objet 40 apparaît comme un arc de cercle. - Pour que les pixels lumineux 20 d'une même ligne présentent une netteté homogène, l'invention propose que le substrat 30 de la matrice 24 présente, dans un plan horizontal, une forme courbe au moins en partie parallèle à la première surface focale objet 40 du dispositif d'imagerie 28. En particulier, la partie du substrat 30 comportant les sources lumineuses 26 peut présenter, dans un plan horizontal, une forme courbe parallèle à la première surface focale objet 40 du dispositif d'imagerie 28 tandis que les extrémités du substrat 30 situées de part et d'autre de la partie du substrat 30 comportant les sources lumineuses 26 peut présenter, dans ce même plan horizontal, une forme parallèle ou non à la première surface focale objet 40 du dispositif d'imagerie 28.
- Selon un exemple représenté à la
figure 6 , la totalité du substrat 30 de la matrice 24 présente, dans un plan horizontal, une forme courbe parallèle à la première focale objet 40 du dispositif d'imagerie. - Le substrat 30 est ainsi courbé de manière que sa face avant 29 présente une forme de secteur de cylindre de génératrices verticales et de directrice en arc de cercle horizontal. Le rayon de courbure du substrat 30 est déterminé de manière que chaque ligne 32 de sources lumineuses 26 soit parallèle avec la surface focale objet 40 prise selon un plan de coupe horizontal passant par ladite ligne 32. Ainsi, toutes les sources lumineuses 26 d'une même ligne 32 sont agencées à la même distance de la première surface focale objet 40.
- Avantageusement, le substrat 30 qui porte la matrice 24 de sources lumineuses 26 est flexible au moins dans un plan horizontal pour adapter précisément son rayon de courbure au rayon de courbure de la première surface focale objet 40. Le substrat 30 est par exemple flexible élastiquement, la face 29 avant du substrat 30 présentant une forme plane dans son état non contraint, comme cela est représenté en traits interrompus à la
figure 6 . Ceci permet d'ajuster précisément le rayon de courbure du substrat 30 au défaut de courbure du dispositif d'imagerie 30 associé. - Pratiquement, la matrice 24 est montée sur une monture qui permet d'ajuster son rayon de courbure. La monture comporte par exemple deux mâchoires de serrage 35 qui sont chacune agencées contre un bord vertical du substrat 30 et qui serrent transversalement le substrat 30 pour le contraindre dans la position courbée voulue.
- En variante non représentée, la monture présente une surface d'appui courbe contre laquelle une face arrière du substrat 30 est fixée, par exemple par collage ou par emboîtement élastique ou par tout autre moyen de fixation adapté.
- Lorsque la distance transversale "D1" qui sépare deux sources lumineuses 26 adjacentes d'une même ligne 32 est sensiblement nulle, il est possible de faire coïncider parfaitement la première surface focale objet 40 avec les sources lumineuses pour obtenir un éclairage homogène d'une ligne de pixels lumineux 20 correspondants. Les sources lumineuses 26 sont ainsi confondues avec la première surface focale objet 40 du dispositif d'imagerie 28.
- Généralement, la distance transversale "D1" entre deux sources lumineuses 26 adjacentes d'une même ligne 32 n'est pas nulle. Par exemple la distance transversale "D1" est comprise entre 10% et 50% de la largeur d'une source lumineuse 26. Pour permettre d'obtenir un éclairage homogène de l'écran 16 par la ligne de pixels lumineux 20 correspondant, la surface focale objet 40 est décalée longitudinalement vers l'avant d'une distance longitudinale "D3" par rapport aux sources lumineuses 26 les plus proches, comme cela est représenté à la
figure 6 . Ceci permet d'imager la source lumineuse 26 par un pixel lumineux 20 légèrement flou et plus étalée transversalement qui chevauche les pixels adjacents 20, faisant ainsi disparaître les espaces sombres entre deux sources lumineuses 26 adjacentes transversalement. Dans ce cas, le rayon de courbure du substrat 30 est égal à la somme du rayon de courbure de la première surface focale objet 40 et de la distance longitudinale "D3" de décalage. - Dans le mode de réalisation représenté à la
figure 6 , la distance de décalage "D3" est définie de manière qu'un cône 43 dont la base s'appuie sur la circonférence de la face d'entrée 36 du dispositif d'imagerie 28 et dont le sommet est situé sur le foyer du dispositif d'imagerie 28 intercepte, dans le prolongement de son sommet, un segment dont la longueur est égale à la distance entre le centre de deux sources lumineuses 26 consécutives d'une même ligne 32. On notera que l'angle d'ouverture "α" du cône 43 correspond à l'angle d'ouverture du dispositif d'imagerie 28. - Selon un autre aspect de l'invention, on définit un cercle "C" virtuel qui est formé en prolongeant le premier plan focal objet 40. Le dispositif d'imagerie 28 est avantageusement conçu pour que le premier plan focal objet 40, en projection dans un plan horizontal axial, présente un rayon de courbure déterminé pour que le cercle "C" passe par les bords d'extrémité de la face d'entrée 36 des rayons lumineux, comme cela est illustré à la
figure 7 . Ainsi, les bords d'extrémité de la face d'entrée 36 délimitent un arc 41 du cercle "C". Le théorème dit de "l'angle inscrit" énonce qu'un angle inscrit dans le cercle "C" qui intercepte ledit arc 41 présente la même valeur "α" quelle que soit la position de son sommet sur le cercle "C". L'angle "α" correspond à l'angle d'ouverture du dispositif 28 d'imagerie. - En termes optiques, et dans le contexte de l'invention, cela signifie que le flux lumineux produit par une source lumineuse 26, agencée à proximité de la première surface focale objet 30, traversant la face d'entrée 36 du dispositif d'imagerie 28 est sensiblement identique pour toutes les sources lumineuses 26 de ladite ligne 32. Cette configuration permet ainsi d'améliorer très sensiblement le rendement lumineux des sources lumineuses 26 agencées en bout de ligne 32 par rapport à un module lumineux dans lequel les sources lumineuses sont agencées sur un substrat plan. Cette configuration permet aussi d'éviter les aberrations optiques de vignettage.
- Selon un premier mode de réalisation de l'invention qui est décrit en référence aux
figures 4 ,6 ,7 et8 , le dispositif d'imagerie 28 comporte une unique surface focale objet qui est formée par ladite première surface focale objet 40. - La matrice 24 de sources lumineuses 26 est conçue pour que la distance vertical "D2" séparant deux sources lumineuses 26 adjacentes d'une même colonne 34 soit sensiblement égale à la distance horizontale "D1" séparant deux sources lumineuses 26 adjacentes d'une même ligne 32. Ainsi, le faisceau lumineux 14 éclaire l'écran 16 de manière que les lignes lumineuses de pixels lumineux 20 se chevauchent verticalement, de la même manière que deux pixels lumineux 20 de la même ligne 32. Le faisceau lumineux 14 éclaire ainsi de manière homogène l'écran 16.
- Comme cela est représenté à la
figure 8 , lorsque le substrat 30 n'est flexible que dans un seul plan, la matrice 24 présente, en coupe axiale verticale, une forme rectiligne, tandis que la première surface focale objet 40 présente une forme d'arc de cercle. Cependant, cette configuration n'est pas gênante car, comme cela a été expliqué précédemment, la dimension verticale de la matrice 24 est très inférieure à sa dimension transversale. De ce fait le flou créé par l'effet de la courbure de champ n'est pas perceptible à l'oeil nu sur les pixels lumineux 20 d'une même colonne. - Cependant, il n'est pas toujours aisé d'obtenir une matrice 24 présentant des sources lumineuses aussi rapprochées verticalement.
- Pour résoudre ce problème, l'invention propose une variante de ce premier mode de réalisation qui est représentée aux
figures 9 et10 . La distance verticale "D2" séparant deux sources lumineuses 26 adjacentes d'une même colonne 34 est supérieur à la distance horizontale "D1" séparant deux sources lumineuses 26 adjacentes d'une même ligne 32 de sorte que, dans le faisceau lumineux 14A, les lignes 42A de pixels 20 lumineux apparaissent distinctement les unes des autres avec interposition de lignes intercalaires plus sombres, comme représenté à lafigure 9 . - Pour permettre d'obtenir un éclairage homogène de l'écran 16, le projecteur 12 comporte alors deux modules lumineux 22A, 22B similaires. Le deuxième module lumineux 22B est agencé de manière à projeter un faisceau lumineux 14B présentant des lignes 42B de pixels lumineux 20 entre les lignes 42A de pixels lumineux de l'autre faisceau lumineux 14A pour créer un faisceau lumineux global homogène.
- Les deux modules lumineux 22A, 22B sont ici agencés dans un même projecteur 12. Le projecteur 12 comporte un boîtier 44 commun fermé par une glace 46 renfermant les deux modules lumineux 22A, 22B.
- En variante, pour résoudre le problème posé lorsque la distance verticale "D2" entre les sources lumineuses 26 de la matrice 24 est trop important, l'invention propose un deuxième mode de réalisation de l'invention qui est représenté aux
figures 11 et12 . - Dans ce mode de réalisation, le dispositif d'imagerie 28 est un dispositif bifocal, parfois aussi appelé astigmate, qui comporte, outre la première surface focale objet 40, une deuxième surface focale objet 48. La deuxième surface focale objet 48 est agencée à une longueur focale "F2" par rapport au centre optique du dispositif d'imagerie 28.
- La première surface focale objet 40 focalise les rayons lumineux dans un plan horizontal, tandis que la deuxième surface focale objet 48 focalise les rayons lumineux dans un plan vertical.
- Le module lumineux comporte en outre un élément optique primaire 50 qui met en forme les rayons lumineux émis par les sources lumineuses 26 pour obtenir des sources lumineuses secondaires 52 verticalement jointive qui sont agencées sur la deuxième surface focale objet.
- L'élément optique primaire 50 est une pièce optique, ou un ensemble de pièces et/ou structures optiques, agencé pour transférer la lumière émise par les dites sources lumineuses 26 sur une surface virtuelle de projection, qui se situe en face et à une distance prédéfinie de la matrice 24, dans le sens de l'émission de la lumière, pour y former les sources lumineuses secondaires 52.
- Dans l'exemple représenté à la
figure 12 la surface virtuelle est avantageusement une surface concave virtuelle en forme de portion de sphère parallèle ou confondue avec la deuxième surface de focalisation objet 48. - En variante, la surface virtuelle de projection peut être une portion de cylindre parallèle à la face avant de la matrice 24.
- Avantageusement, chaque source lumineuse secondaire 52 présente une hauteur supérieure à celle de chaque source lumineuse 26 associée. Ainsi, les sources lumineuses secondaires 52 sont ici jointives verticalement.
- Bien entendu, l'élément optique primaire 50 peut être réalisé dans une seule pièce optique mais peut comprendre au moins deux pièces optiques qui peuvent avoir des formes et/ou indices de réfraction différents. Les dites au moins deux pièces peuvent également être fabriqué dans des matériaux différents et peuvent comprendre des revêtements pour améliorer l'efficacité de transmission de la lumière, tel qu'un revêtement antireflet. Afin d'optimiser l'efficacité et la qualité du faisceau projeté par le module de lumière, l'élément primaire 50 peut comprendre des structures diffractives ou réfractives, tels que des réseaux de diffraction ou des structures Fresnel.
- Dans le mode de réalisation représenté aux
figures 11 et12 , l'élément optique primaire 50 comporte plusieurs nappes de guidage 54 de la lumière dont chacune est agencée face à une ligne 32 de sources lumineuses 26 associée. - Une nappe de guidage 54 est définie comme une pièce optique apte à guider de la lumière par réflexion interne totale de cette lumière, par exemple d'une face d'entrée à une face de sortie. Une nappe de guidage 54 présente une épaisseur faible au regard de sa longueur et de sa largeur.
- Ainsi chaque nappe de guidage 54 présente une face supérieure 56 et une face inférieure 58 de guidage étendues séparée par un pourtour. Ce pourtour définit une épaisseur de la nappe de guidage 56, qui peut être variable, par exemple augmentant d'une extrémité à l'autre. Le pourtour comporte une face arrière 60 transversale verticale d'entrée de la lumière commune à toutes les sources lumineuses 26 de la ligne 32 associée. La face arrière 60 d'entrée est agencée à proximité des sources lumineuses 26 associées, par exemple à quelques millimètres.
- La lumière émise par les sources lumineuses 26 qui entre par la face arrière 60 se propage à l'intérieur de la nappe de guidage 60 par réflexions internes totales successives contre les faces 56, 58 supérieure et inférieure en direction d'une face 62 avant transversale verticale de sortie. La face avant 62 forme une portion du pourtour de la nappe de guidage 54.
- Dans le mode de réalisation représenté aux figures, la face de sortie 62 de chaque nappe de guidage 54 présente une hauteur supérieure à celle de sa face d'entrée 60. De ce fait, chaque nappe de guidage 54 présente, en coupe longitudinale transversale, un profil divergent depuis sa face d'entrée 60 jusqu'à sa face de sortie 62.
- La face d'entrée 60 présente une hauteur qui est sensiblement égale à la hauteur de la surface d'émission des sources lumineuses 26 associées.
- La face de sortie 62 est ainsi éclairée sur toute sa hauteur par les sources lumineuses 26 associées, formant ainsi une ligne de sources lumineuses secondaires 52.
- La première surface de focalisation objet 40 du dispositif d'imagerie 28 est agencée de la même manière que dans les modes de réalisation précédent, c'est-à-dire en coïncidence ou à proximité des sources lumineuses 26. La deuxième surface de focalisation objet 48 qui est agencé sensiblement en coïncidence avec les faces de sortie 62 des nappes de guidage 54.
- Ainsi, pour chaque source lumineuse 26 agencée sensiblement à proximité de la première surface de focalisation objet 40, les rayons lumineux émis par la surface d'émission de ladite source lumineuse 14 se retrouvent projetés parallèlement par le dispositif d'imagerie 28 dans des plans verticaux longitudinaux, de sorte que le faisceau lumineux associé à ladite source lumineuse 26 crée un segment lumineux de forme globalement rectangulaire délimité transversalement par des bords verticaux qui sont l'image nette des bords verticaux de la surface d'émission.
- De même, chaque source lumineuse 26 crée sur la face de sortie 62 de la nappe de guidage 20 une source lumineuse secondaire 52. Chaque source lumineuse secondaire 52 est ainsi délimitée verticalement par deux bords transversaux qui coïncident avec les arêtes formées par les faces supérieure et inférieure 56, 58 avec la face de sortie 62.
- La face de sortie 62 étant agencée sensiblement en coïncidence avec la deuxième surface de focalisation objet 48, les rayons lumineux émis par chaque source lumineuse secondaire 52 se retrouvent donc projetés parallèlement par le dispositif d'imagerie 28 dans des plans transversaux longitudinaux, de sorte que le faisceau lumineux associé à ladite source lumineuse 20 crée un segment lumineux de forme globalement rectangulaire délimité verticalement par des bords verticaux qui sont l'image nette des bords transversaux de la source lumineuse secondaire 52.
- Les sources lumineuses 52 secondaires étant sensiblement jointives, les pixels 20 obtenus sont aussi jointifs verticalement.
- Pour les mêmes raisons d'homogénéité du faisceau lumineux 14, on pourra prévoir de décaler légèrement la deuxième surface focale objet 48 vers l'avant par rapport aux sources lumineuses secondaires 52 pour permettre d'obtenir des pixels lumineux 20 qui se chevauchent légèrement verticalement, au sens expliqué précédemment.
- En variante de l'invention représentée à la
figure 13 , la nappe de guidage est remplacée par des surfaces réfléchissantes. Dans ce cas, l'espace qui était occupé par la nappe de guidage de lafigure 12 est laissé vide, tandis que les surfaces réfléchissantes sont portées par des prismes 64 qui s'étendent longitudinalement depuis leur base 66 située sur la face avant du substrat 24, entre deux lignes 32 jusqu'à une arête 68 transversale avant libre. Les faces supérieures 58 et inférieures 56 des prismes 64 forment des surfaces réfléchissantes. Les prismes remplissent exactement les vides entre deux nappes de guidage de lafigure 12 . Ce mode de réalisation fonctionne de la même manière que le mode de réalisation de lafigure 12 et il permet de procurer les mêmes avantages. - Grâce au module lumineux réalisé selon l'un quelconque des modes de réalisation précédemment décrits, les pixels obtenus sont plus nets, particulièrement sur les bords transversaux de la zone éclairée par le faisceau lumineux.
- En outre, lorsque le dispositif d'imagerie conçu selon l'autre aspect de l'invention de manière que ce que la sphère virtuelle portant la surface de focalisation objet passe par les bords de sa face d'entrée, le rendement lumineux du module lumineux est sensiblement amélioré par rapport aux conceptions connues.
Claims (11)
- Module lumineux (22) de véhicule automobile comprenant :- au moins une matrice (24) de sources lumineuses (26) rangées en au moins une ligne (32) horizontale et en colonnes (34) verticales, les sources lumineuses (26) étant des surfaces émettrice de diodes électroluminescentes qui sont toutes agencées sur un substrat (30) commun ;- au moins un dispositif d'imagerie (28) conçu pour projeter les sources lumineuses (26) en un faisceau lumineux (14) dans lequel chaque source lumineuse (26) produit un pixel lumineux (20), l'activation des sources lumineuses (26) d'une ligne (32) formant une ligne lumineuse de pixels lumineux (20) éclairée de manière homogène, le dispositif d'imagerie (28) comportant au moins une première surface focale objet (40) présentant un défaut de courbure de rayon de courbure déterminé ;
caractérisé en ce que le substrat (30) présente, dans un plan horizontal, une forme courbe au moins en partie parallèle ou confondue à la première surface focale objet (40) du dispositif d'imagerie (28). - Module lumineux (22) selon la revendication précédente, caractérisé en ce que le substrat (30) qui porte la matrice (24) de sources lumineuses (26) est flexible au moins dans un plan horizontal pour adapter son rayon de courbure au rayon de courbure de la première surface focale objet (40).
- Module lumineux (22) selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif d'imagerie (28) comporte une face d'entrée (36) des rayons lumineux, le dispositif d'imagerie (28) étant conçu pour que la première surface focale objet (40) présente un rayon de courbure déterminé pour que, en projection dans un plan horizontal, le cercle (C) prolongeant virtuellement ladite première surface focale objet (40) passe par les bords d'extrémité de la face d'entrée (36) des rayons lumineux.
- Module lumineux (22) selon l'une quelconque des revendications précédentes, caractérisé en ce que les sources lumineuses (26) sont confondues avec la première surface focale objet (40) du dispositif d'imagerie.
- Module lumineux (22) selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les sources lumineuses (26) sont décalées vers l'arrière par rapport à la première surface focale objet (40) d'une distance de décalage déterminée.
- Module lumineux (22) selon la revendication précédente, caractérisé en ce que la distance de décalage (D3) est définie de manière qu'un cône (43) dont la base s'appuie sur la circonférence de la face d'entrée (36) du dispositif (28) d'imagerie et dont le sommet est situé sur le foyer intercepte, dans le prolongement de son sommet, un segment dont la longueur est égale à la distance entre le centre de deux sources lumineuses (26) consécutives d'une même ligne (32).
- Module lumineux (22) selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif d'imagerie (28) comporte une unique surface focale objet (40) qui est formée par ladite première surface focale objet (40).
- Module lumineux (22) selon la revendication précédente, caractérisé en ce que la distance verticale (D2) séparant deux sources lumineuses (26) adjacentes d'une même colonne (34) est sensiblement égal à la distance horizontale (D1) séparant deux sources lumineuses (26) adjacentes d'une même ligne (32) de sorte que, dans le faisceau lumineux (14), les lignes lumineuses de pixels lumineux (20) se chevauchent verticalement.
- Module lumineux (22) selon la revendication 7, caractérisé en ce que la distance verticale (D2) séparant deux sources lumineuses (26) adjacentes d'une même colonne (34) est supérieur à la distance horizontale (D1) séparant deux sources lumineuses (26) adjacentes d'une même ligne (32) de sorte que, dans le faisceau lumineux (14), les lignes lumineuses de pixels lumineux (20) apparaissent distinctement les unes de autres avec interposition verticale de lignes intercalaires plus sombres.
- Module lumineux (22) selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le dispositif d'imagerie (28) comporte une deuxième surfaces focale objet (48), la première surface focale objet (42) focalisant les rayons lumineux dans un plan horizontal, et la deuxième surface focale objet (48) focalisant les rayons lumineux dans un plan vertical, le module lumineux (22) comportant un élément optique primaire (50) qui met en forme les rayons lumineux émis par les sources lumineuses (20) pour obtenir des sources lumineuses secondaires (52) verticalement jointives qui sont agencées en coïncidence ou à proximité de la deuxième surface focale objet (48).
- Projecteur (12) de faisceau lumineux (14) à segments pour véhicule automobile, caractérisé en ce qu'il comporte deux modules lumineux (22A, 22B) chacun réalisé selon la revendication 8, les lignes de pixels lumineux (20) d'un faisceau lumineux (14A) étant interposées entre les lignes de pixels lumineux (20) de l'autre faisceau lumineux (14B) pour créer un faisceau lumineux global homogène.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1759648A FR3072445B1 (fr) | 2017-10-16 | 2017-10-16 | Module lumineux pour vehicule automobile |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3470728A1 true EP3470728A1 (fr) | 2019-04-17 |
Family
ID=60515658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18198510.2A Pending EP3470728A1 (fr) | 2017-10-16 | 2018-10-03 | Module lumineux pour vehicule automobile |
Country Status (4)
Country | Link |
---|---|
US (1) | US10837613B2 (fr) |
EP (1) | EP3470728A1 (fr) |
CN (1) | CN109668109B (fr) |
FR (1) | FR3072445B1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3786518A1 (fr) * | 2019-08-27 | 2021-03-03 | Seoul Semiconductor Europe GmbH | Dispositif d'éclairage |
FR3141749A1 (fr) * | 2022-11-06 | 2024-05-10 | Valeo Vision | Dispositif d’éclairage |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220244627A1 (en) * | 2019-05-23 | 2022-08-04 | Osram Opto Semiconductors Gmbh | Lighting arrangement, light guide arrangement and method |
CN112443808A (zh) * | 2019-08-28 | 2021-03-05 | 堤维西交通工业股份有限公司 | 适应性头灯 |
FR3103025B1 (fr) * | 2019-09-27 | 2021-12-10 | Valeo Vision | Dispositif et procede de commande de sources lumineuses matricielles |
CN113154331B (zh) * | 2020-01-22 | 2024-01-23 | 扬明光学股份有限公司 | 交通工具的投射装置及其制造方法、车前头灯 |
CN115335630A (zh) * | 2020-03-13 | 2022-11-11 | 麦克赛尔株式会社 | 光学装置、光学装置的制造方法以及前照灯 |
JP7529981B2 (ja) | 2020-07-22 | 2024-08-07 | 日亜化学工業株式会社 | 光源装置 |
CN113231283B (zh) * | 2021-05-10 | 2023-06-27 | 上海润立美术设计有限公司 | 一种点、线、面光源可调式的uv-led固化装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010019486A1 (en) * | 2000-03-01 | 2001-09-06 | Vincent Thominet | Illumination device for vehicle |
EP2169295A1 (fr) * | 2008-09-29 | 2010-03-31 | Valeo Vision | Dispositif d'éclairage adaptatif pour véhicule automobile |
EP2505910A2 (fr) * | 2011-03-29 | 2012-10-03 | Automotive Lighting Reutlingen GmbH | Phare de véhicule automobile équipé d'une source lumineuse semi-conductrice |
DE202015105174U1 (de) * | 2014-11-03 | 2015-10-15 | Pintsch Bamag Antriebs- Und Verkehrstechnik Gmbh | Lichtmodul für Scheinwerfer und Scheinwerfer mit einem solchen Lichtmodul |
DE102015219211A1 (de) * | 2015-10-05 | 2017-04-06 | Automotive Lighting Reutlingen Gmbh | Lichtmodul für eine Kfz-Beleuchtungseinrichtung |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4228895C2 (de) * | 1992-08-29 | 2002-09-19 | Bosch Gmbh Robert | Kraftfahrzeug-Beleuchtungseinrichtung mit mehreren Halbleiterlichtquellen |
US7128442B2 (en) * | 2003-05-09 | 2006-10-31 | Kian Shin Lee | Illumination unit with a solid-state light generating source, a flexible substrate, and a flexible and optically transparent encapsulant |
DE102013114264B4 (de) * | 2013-12-18 | 2023-12-07 | HELLA GmbH & Co. KGaA | Scheinwerfer für Fahrzeuge |
WO2015183534A1 (fr) * | 2014-05-28 | 2015-12-03 | 3M Innovative Properties Company | Dispositifs mems sur substrat flexible |
JP6693052B2 (ja) * | 2015-06-02 | 2020-05-13 | 市光工業株式会社 | 車両用灯具 |
US10132478B2 (en) * | 2016-03-06 | 2018-11-20 | Svv Technology Innovations, Inc. | Flexible solid-state illumination devices |
FR3084723B1 (fr) * | 2018-07-31 | 2020-08-28 | Valeo Vision | Module lumineux comportant une matrice de sources lumineuses et un systeme optique bifocal |
-
2017
- 2017-10-16 FR FR1759648A patent/FR3072445B1/fr active Active
-
2018
- 2018-10-03 EP EP18198510.2A patent/EP3470728A1/fr active Pending
- 2018-10-16 CN CN201811202475.3A patent/CN109668109B/zh active Active
- 2018-10-16 US US16/162,000 patent/US10837613B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010019486A1 (en) * | 2000-03-01 | 2001-09-06 | Vincent Thominet | Illumination device for vehicle |
EP2169295A1 (fr) * | 2008-09-29 | 2010-03-31 | Valeo Vision | Dispositif d'éclairage adaptatif pour véhicule automobile |
EP2505910A2 (fr) * | 2011-03-29 | 2012-10-03 | Automotive Lighting Reutlingen GmbH | Phare de véhicule automobile équipé d'une source lumineuse semi-conductrice |
DE202015105174U1 (de) * | 2014-11-03 | 2015-10-15 | Pintsch Bamag Antriebs- Und Verkehrstechnik Gmbh | Lichtmodul für Scheinwerfer und Scheinwerfer mit einem solchen Lichtmodul |
DE102015219211A1 (de) * | 2015-10-05 | 2017-04-06 | Automotive Lighting Reutlingen Gmbh | Lichtmodul für eine Kfz-Beleuchtungseinrichtung |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3786518A1 (fr) * | 2019-08-27 | 2021-03-03 | Seoul Semiconductor Europe GmbH | Dispositif d'éclairage |
WO2021038009A1 (fr) * | 2019-08-27 | 2021-03-04 | Seoul Semiconductor Europe Gmbh | Dispositif d'éclairage |
US11739891B2 (en) | 2019-08-27 | 2023-08-29 | Seoul Semiconductor Europe Gmbh | Illumination device |
US11940104B2 (en) | 2019-08-27 | 2024-03-26 | Seoul Semiconductor Europe Gmbh | Illumination device |
FR3141749A1 (fr) * | 2022-11-06 | 2024-05-10 | Valeo Vision | Dispositif d’éclairage |
WO2024094529A1 (fr) * | 2022-11-06 | 2024-05-10 | Valeo Vision | Dispositif d'éclairage |
Also Published As
Publication number | Publication date |
---|---|
CN109668109B (zh) | 2021-08-17 |
US20190113199A1 (en) | 2019-04-18 |
US10837613B2 (en) | 2020-11-17 |
CN109668109A (zh) | 2019-04-23 |
FR3072445B1 (fr) | 2020-11-13 |
FR3072445A1 (fr) | 2019-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3470728A1 (fr) | Module lumineux pour vehicule automobile | |
EP3147557B1 (fr) | Element optique primaire pour module lumineux de vehicule automobile | |
EP3290777B1 (fr) | Module optique pour éclairer des points de portique | |
EP3301347B1 (fr) | Dispositif d'éclairage pour véhicule automobile comportant un guide de lumière | |
EP3167226B1 (fr) | Module lumineux d'un véhicule automobile | |
EP3517827B1 (fr) | Module lumineux comportant un élément optique primaire équipé de deux nappes de mise en forme | |
EP1610057A1 (fr) | Module d'éclairage pour véhicule automobile et projecteur comportant un tel module | |
EP3301349B1 (fr) | Module optique pour véhicule automobile | |
EP3181991A1 (fr) | Module d'eclairage automobile avec fonctions code et route combinees et une source lumineuse ajustable | |
EP3611425B1 (fr) | Module lumineux de véhicule automobile apte à générer un faisceau lumineux avec au moins une rangée d'unités d'illumination | |
EP1500869A1 (fr) | Module d'éclairage elliptique sans cache réalisant un faisceau d'éclairage à coupure et projecteur comportant un tel module | |
EP3315851B1 (fr) | Module optique pour projeter un faisceau lumineux à coupure comportant des moyens de focalisation horizontale | |
EP3604904B1 (fr) | Module lumineux comportant une matrice de sources lumineuses et un système optique bifocal | |
EP4264120A1 (fr) | Projecteur automobile avec plusieurs modules d'éclairage sur une platine commune inclinée | |
EP3511608B1 (fr) | Module optique pour vehicule automobile | |
EP3379143A1 (fr) | Module lumineux avec correction de chromatisme | |
EP4285051A1 (fr) | Dispositif d'éclairage de la route d'un véhicule automobile | |
EP2730838B1 (fr) | Module d'éclairage pour projecteur de véhicule automobile comprenant plusieurs sources lumineuses | |
EP3470727B1 (fr) | Module d'éclairage formant un motif lumineux divisé en une portion supérieure aux bords verticaux nets et une portion inférieure aux bords verticaux floux | |
FR3055691A1 (fr) | Module d'eclairage a ecran diffractif pour vehicule automobile | |
EP3502550A1 (fr) | Faisceau lumineux segmente realisant des fonctions d'eclairage | |
EP2472176B1 (fr) | Dispositif d'éclairage et/ou de signalisation notamment de véhicule automobile | |
EP2944514A1 (fr) | Système d'éclairage pour projecteur de véhicule automobile comprenant plusieurs modules d'éclairage | |
WO2023030808A1 (fr) | Module lumineux pour vehicule automobile | |
FR2918441A1 (fr) | Projecteur de vehicule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181003 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200514 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F21Y 107/10 20160101ALN20240530BHEP Ipc: F21Y 115/10 20160101ALN20240530BHEP Ipc: F21Y 107/70 20160101ALN20240530BHEP Ipc: F21S 41/153 20180101ALI20240530BHEP Ipc: F21S 41/19 20180101ALI20240530BHEP Ipc: F21S 41/255 20180101ALI20240530BHEP Ipc: F21S 41/143 20180101AFI20240530BHEP |
|
INTG | Intention to grant announced |
Effective date: 20240617 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |