EP3468788A1 - Verfahren und system zur steuerung eines aktuators eines stössels einer presse - Google Patents
Verfahren und system zur steuerung eines aktuators eines stössels einer presseInfo
- Publication number
- EP3468788A1 EP3468788A1 EP17745498.0A EP17745498A EP3468788A1 EP 3468788 A1 EP3468788 A1 EP 3468788A1 EP 17745498 A EP17745498 A EP 17745498A EP 3468788 A1 EP3468788 A1 EP 3468788A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ram
- group
- stroke
- actuator
- active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000005086 pumping Methods 0.000 claims abstract description 11
- 239000012530 fluid Substances 0.000 claims description 3
- 238000004080 punching Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims 1
- 238000013459 approach Methods 0.000 abstract description 4
- 230000033001 locomotion Effects 0.000 description 10
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000006837 decompression Effects 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003245 working effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/16—Control arrangements for fluid-driven presses
- B30B15/163—Control arrangements for fluid-driven presses for accumulator-driven presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/16—Control arrangements for fluid-driven presses
- B30B15/18—Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/16—Control arrangements for fluid-driven presses
- B30B15/18—Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram
- B30B15/20—Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram controlling the speed of the ram, e.g. the speed of the approach, pressing or return strokes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/022—Systems essentially incorporating special features for controlling the speed or actuating force of an output member in which a rapid approach stroke is followed by a slower, high-force working stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
- F15B11/042—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
- F15B11/0423—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling pump output or bypass, other than to maintain constant speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
- F15B11/04—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
- F15B11/044—Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B1/00—Installations or systems with accumulators; Supply reservoir or sump assemblies
- F15B1/02—Installations or systems with accumulators
- F15B1/024—Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B1/00—Installations or systems with accumulators; Supply reservoir or sump assemblies
- F15B1/02—Installations or systems with accumulators
- F15B1/027—Installations or systems with accumulators having accumulator charging devices
- F15B1/033—Installations or systems with accumulators having accumulator charging devices with electrical control means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B1/00—Installations or systems with accumulators; Supply reservoir or sump assemblies
- F15B1/26—Supply reservoir or sump assemblies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20507—Type of prime mover
- F15B2211/20515—Electric motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20561—Type of pump reversible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20569—Type of pump capable of working as pump and motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/21—Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
- F15B2211/212—Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30505—Non-return valves, i.e. check valves
- F15B2211/30515—Load holding valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/3056—Assemblies of multiple valves
- F15B2211/30565—Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/3056—Assemblies of multiple valves
- F15B2211/30565—Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
- F15B2211/30575—Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve in a Wheatstone Bridge arrangement (also half bridges)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/315—Directional control characterised by the connections of the valve or valves in the circuit
- F15B2211/31523—Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
- F15B2211/31529—Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having a single pressure source and a single output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/315—Directional control characterised by the connections of the valve or valves in the circuit
- F15B2211/31552—Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line
- F15B2211/31558—Directional control characterised by the connections of the valve or valves in the circuit being connected to an output member and a return line having a single output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/315—Directional control characterised by the connections of the valve or valves in the circuit
- F15B2211/3157—Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
- F15B2211/31576—Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/32—Directional control characterised by the type of actuation
- F15B2211/327—Directional control characterised by the type of actuation electrically or electronically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/32—Directional control characterised by the type of actuation
- F15B2211/329—Directional control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40507—Flow control characterised by the type of flow control means or valve with constant throttles or orifices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/415—Flow control characterised by the connections of the flow control means in the circuit
- F15B2211/41581—Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a return line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/46—Control of flow in the return line, i.e. meter-out control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/505—Pressure control characterised by the type of pressure control means
- F15B2211/50509—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
- F15B2211/50536—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/505—Pressure control characterised by the type of pressure control means
- F15B2211/50554—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure downstream of the pressure control means, e.g. pressure reducing valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/515—Pressure control characterised by the connections of the pressure control means in the circuit
- F15B2211/5158—Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and an output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/575—Pilot pressure control
- F15B2211/5753—Pilot pressure control for closing a valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/625—Accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6309—Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6306—Electronic controllers using input signals representing a pressure
- F15B2211/6313—Electronic controllers using input signals representing a pressure the pressure being a load pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6336—Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/635—Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
- F15B2211/6355—Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
Definitions
- the invention relates to a method and a system for controlling an actuator of a ram of a press, used for working pieces to be worked, to make the working cycle and the structure of the press more economical.
- a known hydraulic circuit installed on a press to actuate its ram comprises a series of components that allow the ram, in order to perform workings of pieces such as punching or folding, to carry out a quick stroke of approach to the piece, followed by a slower extra-stroke to perform working, and a final return stroke in the rest position raised by the piece.
- presses are divided in two types, namely presses that have a ram having a considerable self-weight, which affects its general operation, and presses that have rams with a self-weight that is considered light and which scarcely affect the general operation.
- a servo-valve is arranged that, in turn, is hydraulically connected with the push chamber of the cylinder the piston of which actuates the ram.
- the movement of the piston in this case, is controlled by the servo-valve.
- an asynchronous motor that, however, in this case functions with a fixed number of revolutions and is connected with a variable-flow pump, which, in turn, feeds the push chamber of the cylinder the piston of which actuates the ram.
- the movement of the piston of the cylinder is controlled by the servo-valve mounted on the pump that controls the flow-rate and the working pressure.
- the pumps used are in both cases - as already said - of the four-quadrant type-
- pumps must be able to reverse their direction of rotation as quickly as possible, typically in some milliseconds, to allow the performance of the working cycles of the pieces.
- a first drawback consists in the fact that known pumps are typically subject to cavitation phenomena during the extremely quick reversals of motion, while they remain without oil and, consequently, without lubrication, causing the interruption of the hydrostatic support action of the rotating parts.
- a second drawback consists in the fact that pumps of the four-quadrant type, which are renownedly expensive and have a limited efficiency, are generally mounted in these hydraulic circuits, which, therefore, makes also the manufacturing and the maintenance of the presses that use them proportionally expensive.
- a further drawback consists in the fact that with the use of known presses it is very difficult to establish some special working parameters exactly, such as, for instance, the verification and the possible successive correction of the folding angle of a piece during its working, i.e. it is very difficult to move the ram at a low speed with centesimal displacements in both directions.
- An object of the invention is to improve the known state of the art.
- Another object of the invention is to provide a method and a system for controlling an actuator of a ram of a press that allows to reduce general manufacturing costs.
- a further object of the invention is to achieve a method and a system for controlling an actuator of a ram of a press that has a structure that is simplified and, consequently, economical as compared to the state of the art.
- FIG. 1 is a view of a diagram of a hydraulic system according to the invention, in a configuration of a ram of a press provided with a considerable self-weight and stationary at an upper dead center;
- FIG. 2 is a view of the hydraulic system of Figure 1, in a configuration of quick descent of the ram using self-weight;
- FIG. 3 is a view of the hydraulic system of Figure 1, in a configuration of slowed down descent of the ram in the direction of a piece to be worked;
- FIG. 4 is a view of the hydraulic system of Figure 1, in a working configuration of a piece to be worked;
- FIG. 5 is a view of the hydraulic system of Figure 1, in a configuration of quick decompression
- FIG. 6 is a view of the hydraulic system of Figure 1, in a configuration of controlled decompression
- FIG. 7 is a view of the hydraulic system of Figure 1, in a configuration of return of the ram to the upper dead center;
- FIG. 8 is a view of a diagram of a hydraulic system according to the invention, in a configuration of a ram of a press provided with a self-weight that is not considerable, in a configuration of loading an accumulator inserted in the system;
- FIG. 9 is the diagram of Figure 8 in a condition of stop of the ram to an upper dead center
- FIG. 10 is the diagram of Figure 8 in a condition of quick descent, of working and of maintenance of the action of the ram;
- FIG. 11 is the diagram of Figure 8 in a condition of return of the ram toward the upper dead center.
- both the brushless motor 1 (hereinafter shortly motor 1) and the two-quadrant pump 2 (hereinafter shortly pump 2) are standing still and in the lower chamber 13 there is enough oil under pressure to keep the actuating cylinder 10 raised to the UDC, overcoming the self-weight "P" of the ram of the press.
- ED6 switches to the open position "6A" connecting the hydraulic line (x) with the pump 2 that, pressed by the hydraulic pressure caused by the self-weight "P” of the actuating cylinder 10 and of the ram coupled therewith, performs a passive counter-rotation in a direction of rotation, in the specific case indicated by the left arrow "SX", while the motor 1 performs the function of controlling the passive counter-rotation speed of the pump 2, acting as a regulator of the same.
- the motor 1 actuates the pump 2, which reverses its direction of rotation, passing from a counter-rotation "SX" to an active pumping rotation indicated by the arrow "DX".
- the motor 1 actuates the pump 2, which rotates in an active rotation and feeds with oil under pressure the lower chamber 13 raising the actuating cylinder 10 until it reaches its UDC.
- the oil under pressure reaches also the chamber 113 on the rod side of the cylinder 115, which, however, remains stationary, since the shut-off valve 116 is positioned in the closed condition 1161, preventing drainage of oil from the chamber 114 on the head side of the cylinder 115.
- the press punch is raised in relation to the die and an operator can position a piece to be worked under the ram, between the punch and the die, or can carry out other maintenance operations.
- a condition is observed that can be alternatively of quick descent of the ram, or a working condition, or a condition of so-called maintenance, this latter being a condition in which the ram remains stationary in a position of work completed and waits, for instance, for the yield of the material with which a piece is manufactured during the working phase, or for the cooling down of a piece just manufactured.
- shut- off valve 116 is switched to the open position 116A, connecting the pump 102 that rotates in an active rotation "DX”, actuated by the motor 101, delivering oil under pressure to the chamber 114 following the arrows F2.
- the self-weight of the ram is substantially uninfluential with respect to the movement of descent of the cylinder 115, which is moved, therefore, by the push of oil under pressure that reaches the chamber 114 on the push side of the cylinder 115 through the line (x): the movement of the cylinder 115 is opposed in the phase of descent by the pressure of the oil that is present in the chamber 113 on the rod side and that in this condition flows out towards the accumulator 105 along the hydraulic line (o), according to the direction of the arrow F4.
- the descent of the actuating cylinder 105 is controlled by a known signaling system of its position and, when it reaches the lower limit position that corresponds to the final working position of a piece to be worked, the phase of keeping mentioned before is activated, in which the actuating cylinder 105 is kept stationary until the material in which the piece to be worked is manufactured has stabilized or cooled down: this is the case, for instance, of a folding work of a sheet metal piece that, after the active phase of proper folding, requires a waiting phase, to allow the folded sheet metal to stabilize its own condition of internal stress caused by folding, or to cool the formed piece, for instance in case of forming pieces manufactured in glass.
- shut-off valve 116 is kept in the open configuration 116A connecting, through the hydraulic line (#), the chamber 114 with the outlet 103, through the pump 102.
- the counter-rotation "SX" is contrary to the active rotation “DX” and the counter-rotation speed is controlled by the motor 101 that, in practice, acts as a brake for the rotation of the pump 102 that becomes a control element of the outflow of oil through the hydraulic line (#) and, consequently, of the speed of reascent of the cylinder 115 toward the UDC.
- the pressure reducer 108 allows both to change the pressure inside the accumulator 105 and to discharge a small quantity of oil through its drainage duct.
- This pressure increase causes a drainage of small quantities of oil from the pressure reducer (of the order of 2-4 liters per minute, considering that the drainage activates in the cycle, only in the phase of descent of the cylinder) that is restored when the cylinder 115 carries out a reascent stroke.
- pressure inside the accumulator 105 decreases down to a value lower than the one determined by the pressure regulator 108, and the oil present in the inside is constantly refilled by a supply of additional fresh oil.
- the action of the accumulator 105 besides improving the positioning accuracy of the ram/rammer, allows to control the displacement speeds thereof and with the counter-rotation of the brushless motor and of the pump, allows the rammer to move micrometrically in both directions, i.e. to float, a condition that, with the use of four-quadrant pumps, is difficult to be achieved.
- the presence of the accumulator 105 allows both to obtain an improvement of the final position, and to control the speed of the ram causing it to move micrometrically in both directions.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Presses (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22156619.3A EP4043197B1 (de) | 2016-06-14 | 2017-06-14 | Verfahren und system zur steuerung eines aktuators eines stössels einer presse |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITUA2016A004346A ITUA20164346A1 (it) | 2016-06-14 | 2016-06-14 | Un metodo ed un impianto per il controllo di un attuatore di una slitta di una pressa |
PCT/IB2017/053525 WO2017216737A1 (en) | 2016-06-14 | 2017-06-14 | A method and a system for controlling an actuator of a ram of a press |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22156619.3A Division EP4043197B1 (de) | 2016-06-14 | 2017-06-14 | Verfahren und system zur steuerung eines aktuators eines stössels einer presse |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3468788A1 true EP3468788A1 (de) | 2019-04-17 |
Family
ID=57184658
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22156619.3A Active EP4043197B1 (de) | 2016-06-14 | 2017-06-14 | Verfahren und system zur steuerung eines aktuators eines stössels einer presse |
EP17745498.0A Withdrawn EP3468788A1 (de) | 2016-06-14 | 2017-06-14 | Verfahren und system zur steuerung eines aktuators eines stössels einer presse |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22156619.3A Active EP4043197B1 (de) | 2016-06-14 | 2017-06-14 | Verfahren und system zur steuerung eines aktuators eines stössels einer presse |
Country Status (3)
Country | Link |
---|---|
EP (2) | EP4043197B1 (de) |
IT (1) | ITUA20164346A1 (de) |
WO (1) | WO2017216737A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111572082A (zh) * | 2020-04-17 | 2020-08-25 | 江苏国力锻压机床有限公司 | 一种玻璃钢制品的液压加工方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11260441B2 (en) * | 2017-11-24 | 2022-03-01 | Danieli & C. Officine Meccaniche S.P.A. | Press for extruding metal material |
IT201900010191A1 (it) * | 2019-06-26 | 2020-12-26 | Salvagnini Italia Spa | Macchina per lavorare lamiere metalliche |
ES2937059T3 (es) * | 2018-10-01 | 2023-03-23 | Salvagnini Italia Spa | Máquina para trabajar la chapa |
IT201800009060A1 (it) * | 2018-10-01 | 2020-04-01 | Salvagnini Italia Spa | Sistema di azionamento idraulico per un apparato di punzonatura |
DE102021101539B4 (de) * | 2021-01-25 | 2024-09-26 | Langenstein & Schemann Gmbh | Hydraulische Umformmaschine zum Pressen von Werkstücken, insbesondere Schmiedehammer, und Verfahren zum Betreiben einer hydraulischen Umformmaschine, insbesondere eines Schmiedehammers |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000329104A (ja) * | 1999-05-20 | 2000-11-28 | Kawasaki Hydromechanics Corp | 押圧用の油圧制御方法 |
WO2001066340A1 (en) * | 2000-03-06 | 2001-09-13 | Amada Company, Limited | Device and method for controlling stop of hydraulic press and device and method for detecting trouble of speed selector valve |
US7051526B2 (en) * | 2004-10-01 | 2006-05-30 | Moog Inc. | Closed-system electrohydraulic actuator |
EP2252362A1 (de) * | 2008-02-07 | 2010-11-24 | University of Pittsburgh - Of the Commonwealth System of Higher Education | Vorrichtungen, systeme und verfahren für intrakorporalen gasaustausch |
DE102009051316B4 (de) * | 2009-10-29 | 2015-11-05 | Eisenmann Ag | Anlage zum Behandeln, insbesondere zum kataphoretischen Tauchlackieren, von Gegenständen |
WO2012062416A1 (de) * | 2010-11-11 | 2012-05-18 | Robert Bosch Gmbh | Hydraulische achse |
TR201101488A2 (tr) * | 2011-02-16 | 2012-03-21 | Ermaksan Maki̇na Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ | Düşük gürültü seviyesine sahip enerji tasarruflu abkant pres |
DE102012104125A1 (de) * | 2012-05-10 | 2013-11-14 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Verfahren zum Betreiben einer hydraulischen Presse und eine hydraulische Presse |
DE102012104124A1 (de) * | 2012-05-10 | 2013-11-14 | Dieffenbacher GmbH Maschinen- und Anlagenbau | Verfahren und Vorrichtung zur adaptiven Steuerung einer hydraulischen Presse |
DE102014218886B3 (de) * | 2014-09-19 | 2015-11-12 | Voith Patent Gmbh | Hydraulischer Antrieb mit Eilhub und Lasthub |
-
2016
- 2016-06-14 IT ITUA2016A004346A patent/ITUA20164346A1/it unknown
-
2017
- 2017-06-14 WO PCT/IB2017/053525 patent/WO2017216737A1/en unknown
- 2017-06-14 EP EP22156619.3A patent/EP4043197B1/de active Active
- 2017-06-14 EP EP17745498.0A patent/EP3468788A1/de not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111572082A (zh) * | 2020-04-17 | 2020-08-25 | 江苏国力锻压机床有限公司 | 一种玻璃钢制品的液压加工方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4043197A1 (de) | 2022-08-17 |
EP4043197B1 (de) | 2024-05-15 |
ITUA20164346A1 (it) | 2017-12-14 |
WO2017216737A1 (en) | 2017-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3468788A1 (de) | Verfahren und system zur steuerung eines aktuators eines stössels einer presse | |
KR100906434B1 (ko) | 변환밸브장치 및 유체압 실린더장치 | |
US3759144A (en) | Hydraulic actuating system for hydraulically operated bending machine | |
CN104089078B (zh) | 用于直线行程阀门的比例调节装置 | |
US20160084276A1 (en) | Hydraulic drive with rapid stroke and load stroke | |
JP7182434B2 (ja) | 液圧システム | |
US3192718A (en) | Multiple piston distributive pump with hydraulic system for the synchronized operation of a plurality of working cylinders | |
JP2012106483A (ja) | 射出成形機及び油圧アクチュエータ | |
US2274226A (en) | Broaching machine | |
US2713773A (en) | Hydraulic pit prop or jack | |
JP6886381B2 (ja) | 液圧システム | |
US2683966A (en) | Hydraulic press | |
JP2016223601A5 (de) | ||
JP6781579B2 (ja) | 精密打抜プレスの主駆動部の制御の為の装置及び方法 | |
KR101997684B1 (ko) | 고압 유체 시스템 | |
US2286358A (en) | Hydraulic control for variable delivery pumps | |
US1062069A (en) | Machine-saw. | |
RU117527U1 (ru) | Гидравлический привод скважинного насоса | |
US8485087B2 (en) | Fluid distributor apparatus and punching method | |
US1980514A (en) | Hydraulic press | |
RU2613150C1 (ru) | Насосная установка с электрогидравлическим приводом | |
US3472026A (en) | Rapid cycle press and hydraulic system therefor | |
JP5729741B2 (ja) | ダイクッション装置 | |
KR101740362B1 (ko) | 승강 가능한 대형 구조물의 유압구동장치 | |
US1939886A (en) | Hydraulic press |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20201217 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VOITH TURBO S.R.L. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20220216 |