EP3463653A1 - Composition catalytique a base de chrome et d'un ligand a base de phosphine et son utilisation dans un procede de procuction d'octenes - Google Patents

Composition catalytique a base de chrome et d'un ligand a base de phosphine et son utilisation dans un procede de procuction d'octenes

Info

Publication number
EP3463653A1
EP3463653A1 EP17723148.7A EP17723148A EP3463653A1 EP 3463653 A1 EP3463653 A1 EP 3463653A1 EP 17723148 A EP17723148 A EP 17723148A EP 3463653 A1 EP3463653 A1 EP 3463653A1
Authority
EP
European Patent Office
Prior art keywords
composition
groups
chromium
chosen
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17723148.7A
Other languages
German (de)
English (en)
Inventor
Pierre-Alain Breuil
David Proriol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3463653A1 publication Critical patent/EP3463653A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/1875Phosphinites (R2P(OR), their isomeric phosphine oxides (R3P=O) and RO-substitution derivatives thereof)
    • B01J31/188Amide derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/1875Phosphinites (R2P(OR), their isomeric phosphine oxides (R3P=O) and RO-substitution derivatives thereof)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/36Catalytic processes with hydrides or organic compounds as phosphines, arsines, stilbines or bismuthines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines

Definitions

  • the present invention describes a catalyst composition based on chromium and a particular ligand.
  • the invention also relates to the process for preparing said composition and its use in a process for producing octene from ethylene.
  • Chromium-based catalyst systems or compositions and diphosphine ligands are known to catalyze the selective conversion of ethylene to octene-1.
  • the effectiveness of such systems is a function of the reaction conditions and the choice of the ligand structure. In particular, the nature and position of all the substituents of the ligand used have a decisive influence on the performance of the catalytic system.
  • One of the defects of these catalytic compositions is the obligation of their implementation at low temperature, that is to say at a temperature of between 45 and 60 ° under penalty of significant deactivation of the catalytic system and the loss of selectivity. in octene-1.
  • the operation at high temperature is advantageous in that it makes it possible in particular to increase the viscosity and thus the management of the heavy by-products formed.
  • None of the ligands described comprises the molecule fragment corresponding to the structure N (R 6 ) with R 6 corresponding to the formula -XOP-, with X being a divalent bridging group advantageously chosen from alkylidenes.
  • the described catalytic compositions have shown a high-temperature degraded octene-1 selectivity.
  • the Applicant in his research has developed a novel catalyst composition
  • a novel catalyst composition comprising at least one chromium precursor, at least one heteroatomic ligand described by the general formula (I) (R 1 ) 2 P-O- (CH 2 ) nN [P (R 2 ) 2] 2, and at least one activator.
  • the composition according to the invention has shown particularly advantageous catalytic properties, especially in the olefin tetramerization reaction and more particularly in the tetramerization reaction of ethylene in octene-1. Surprisingly, it has been observed that the compositions according to the invention have a very good productivity in octene-1 notwithstanding the implementation of the tetramerisation process at temperatures going beyond 60 ⁇ , or even beyond 80 ⁇ .
  • compositions according to the invention can be implemented in a tetramerization reaction under higher temperature conditions than the conventional compositions of the prior art, without impairing the productivity of octene-1 of the catalytic system, nor its selectivity towards the production of octene-1.
  • alkyl means a linear or branched hydrocarbon chain having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms.
  • Preferred alkyl groups are preferably selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl and hexyl. These alkyl groups may be substituted with heteroelements or groups containing heteroelements such as a halide, an alkoxy.
  • alkoxy substituent means an alkyl-O- group in which the term alkyl has the meaning given above. Preferred examples of alkoxy substituents are methoxy or ethoxy.
  • cyclic alkyl is meant a monocyclic hydrocarbon group having a number of carbons greater than 3, preferably between 4 and 24, more preferably between 5 and 18, preferably a cyclopentyl, cyclohexyl, cyclooctyl or cyclododecyl, or polycyclic (bicyclic or tricyclic) group having a carbon number greater than 3, preferably between 5 and 18, such as, for example, adamantyl or norbornyl groups; .
  • These groups may be substituted by heteroelements or groups containing heteroelements such as a halide, an alkoxy.
  • aromatic is meant a mono- or polycyclic aromatic group substituted or not, preferably mono- or bicyclic substituted or unsubstituted, having a number of carbon atoms between 5 and 20.
  • the group is polycyclic, it is that is, it comprises more than one ring aromatic ring, the ring rings can advantageously be condensed two by two or attached in pairs by bonds ⁇ .
  • the aromatic group according to the invention may contain a heteroelement such as nitrogen, oxygen or sulfur. These groups may be substituted by heteroelements or groups containing heteroelements such as a halide, an alkoxy.
  • the present invention relates to a composition
  • a composition comprising:
  • groups R 1 and R 2 which are identical or different from each other, whether or not they are linked together, are chosen from cyclic or non-cyclic alkyl groups and aromatic groups, and n is an integer greater than or equal to 1,
  • the integer n of the fragment - (CH 2) n - of the ligand is between 1 and 15.
  • the molar ratio between the ligand and the chromium precursor is between 0.01 and 100.
  • the molar ratio between the activator and the chromium precursor is between 1 and 10,000.
  • the chromium precursor is selected from CrCl 3 , CrCl 3 (tetrahydrofuran) 3 , Cr (acetylacetonate) 3 , Cr (naphthenate) 3 , Cr (2-ethylhexanoate) 3 , Cr (acetate) 3 .
  • the groups R 1 and R 2 of the ligand which are identical or different from each other, whether or not they are linked together, are chosen from a cyclic or non-cyclic alkyl group, aromatic or otherwise, having from 1 to 15 carbon atoms.
  • the groups R 1 and R 2 which are identical to or different from each other, linked or not to each other, are chosen from methyl, trifluoromethyl, ethyl, n-propyl, i-propyl, n-butyl and i-butyl groups, and -butyl, pentyl, cyclopentyl, hexyl, cyclohexyl, adamantyl, substituted or unsubstituted, whether or not containing heteroelements; phenyl, o-tolyl, m-tolyl, p-tolyl, mesityl, 3,5-dimethylphenyl, 4-n-butylphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 2-isopropoxyphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl, 3,5-ditert-butyl-4-methoxyphenyl, 2-ch
  • the activating agent is chosen from tris (hydrocarbyl) aluminum compounds, chlorinated or brominated hydrocarbylaluminum compounds, aluminum halides, aluminoxanes, organoboron compounds, organic compounds capable of giving a proton, taken alone. or in mixture.
  • the invention also relates to the process for preparing the composition according to the invention, comprising contacting
  • groups R 1 and R 2 which are identical or different from each other, whether or not they are linked together, are chosen from cyclic or non-cyclic alkyl groups and aromatic groups, and n is an integer greater than or equal to 1,
  • compositions according to the invention as a catalyst.
  • the invention relates to a process for the tetramination of ethylene to octene-1.
  • compositions according to the invention are provided.
  • the present invention relates to a composition
  • a composition comprising:
  • groups R 1 and R 2 which are identical or different from each other, whether or not they are linked together, are chosen from cyclic or non-cyclic alkyl groups and aromatic groups, and n is an integer greater than or equal to 1,
  • the chromium precursor according to the invention may be chosen from chromium compounds used in olefin oligomerization processes.
  • the chromium precursor present in the composition according to the invention may comprise one or more identical or different anions chosen from the group formed by halides, carboxylates, acetylacetonates, alkoxy and aryloxy anions.
  • the chromium compound may be a chromium (II) or chromium (III) salt, but also a salt of different oxidation state that may comprise one or more identical or different anions such as, for example, halides, carboxylates, acetylacetonates, alkoxy or aryloxy anions.
  • the chromium precursors preferably used in the invention are the chromium (III) compounds because they are more accessible, but a chromium (I) or chromium (II) compound may also be suitable.
  • the chromium precursor is selected from CrCl 3 , CrCl 3 (tetrahydrofuran) 3 , Cr (acetylacetonate) 3 , Cr (naphthenate) 3 , Cr (2-ethylhexanoate) 3 , Cr (acetate) 3 .
  • the heteroatomic liqand is selected from CrCl 3 , CrCl 3 (tetrahydrofuran) 3 , Cr (acetylacetonate) 3 , Cr (naphthenate) 3 , Cr (2-ethylhexanoate) 3 , Cr (acetate) 3 .
  • the integer number n of the - (CH 2 ) n - fragment of the ligand according to the invention is preferably between 1 and 15, more preferably between 2 and 15, even more preferably between 2 and 10, and even more preferably between 3 and 6.
  • the groups R 1 and R 2 which are identical to or different from each other, whether or not linked to one another, are chosen from a cyclic or non-cyclic alkyl group having from 1 to 15 carbon atoms, preferably from 1 to 10 carbon atoms, or an aromatic group having a number of carbons greater than 3, preferably between 4 and 24, more preferably between 5 and 18.
  • the groups R 1 and R 2 identical or different.
  • the groups R 1 and R 2 which are identical to or different from each other, whether or not linked to one another are chosen from methyl, ethyl, i-propyl, n-butyl, i-butyl and t-butyl groups. , cyclopentyl, cyclohexyl.
  • the groups R 1 and R 2 which are identical to or different from each other, whether or not linked to one another are chosen from phenyl, o-tolyl, m-tolyl, p-tolyl, mesityl and 2-methoxyphenyl groups.
  • the activating agent is the activating agent
  • the composition according to the invention may include an activating agent.
  • the activating agent may be chosen from compounds known to those skilled in the art. Mixtures of activating agents may also be used.
  • the activating agents according to the invention are chosen from tris (hydrocarbyl) aluminum compounds, chlorinated or brominated compounds of hydrocarbylaluminium, aluminum halides, aluminoxanes, organoboron compounds, organic compounds capable of giving a proton , taken alone or mixed.
  • alkylaluminium halides such as dimethylaluminum chloride, diethylaluminum chloride, ethylaluminium dichloride, methylaluminum sesquichloride, ethylaluminium sesquichloride, methylaluminum dichloride, dichloride, and the like. isobutylaluminum, aluminum trichloride; and aluminoxanes, used alone or as a mixture.
  • Aluminoxanes are well known to those skilled in the art as oligomeric compounds that can be prepared by the controlled addition of water to an aluminum alkyl, for example trimethylaluminum. Such compounds can be linear, cyclic or mixtures of these compounds. They are generally represented by the formula [RAIO] a wherein R is a hydrocarbon group and a is a number from 2 to 50.
  • the aluminoxane is chosen from methylaluminoxane (MAO) and / or ethylaluminoxane (EAO) and or among modified aluminoxanes such as modified methylaluminoxane (MMAO).
  • said activating agent is preferably chosen from Lewis acids of tris (aryl) borane type such as tris (perfluorophenyl) borane, tris (3,5-bis (trifluoromethyl) phenyl) borane, tris (2,3,4,6-tetrafluorophenyl) borane, tris (perfluoronaphthyl) borane, tris (perfluobiphenyl) borane and their derivatives and (aryl) borates associated with a triphenylcarbenium cation or to a trisubstituted ammonium cation such as triphenylcarbenium tetrakis (perfluorophenyl) borate, ⁇ , ⁇ -dimethylanilinium tetrakis (perfluorophenyl) borate, ⁇ , ⁇ -diethylanilinium tetrakis (3,5-bis
  • said activating agent is chosen from organic compounds capable of giving a proton
  • said activating agent is preferably chosen from the acids of formula HY in which Y represents an anion, such as HBF 4 or F 3 CS0 3 H.
  • compositions according to the invention are preferably prepared by placing in contact with each other.
  • groups R 1 and R 2 which are identical or different from each other, whether or not they are linked together, are chosen from cyclic or non-cyclic alkyl groups and aromatic groups, and n is an integer greater than or equal to 1,
  • the molar ratio between the ligand and the chromium precursor is between 0.01 and 100, and preferably between 0.5 and 5, in particular 0.8 and 3.
  • the molar ratio between the activator and the chromium precursor is between 1 and 10,000, preferably between 100 and 5000, even more preferably between 200 and 3500.
  • compositions according to the invention may be prepared in situ in the presence or in the absence of the filler, in particular ethylene.
  • the compositions according to the invention may be in the presence or absence of a solvent.
  • a solvent advantageously chosen from solvents capable of dissolving the reagents.
  • organic solvents There may be mentioned saturated or unsaturated aliphatic hydrocarbon solvents such as pentane, hexane, cyclohexane, methylcyclohexane, or heptane, cyclohexene, cyclooctene or cyclooctadiene.
  • Aromatic solvents such as benzene, toluene or xylenes may be mentioned. There may be mentioned oxygenated solvents such as diethyl ether or tetrahydrofuran, chlorinated solvents such as dichloromethane or chlorobenzene. These solvents can be used alone or as a mixture.
  • the temperature at which the components of the composition according to the invention are mixed is advantageously between -40 and + 150 °, preferably between 0 and + 80 °, for example at a temperature close to room temperature (15 to 30 ° C.). The mixing can be carried out under an atmosphere of ethylene or inert gas.
  • Another object of the invention relates to the use of the compositions according to the invention as a catalyst.
  • compositions according to the invention can be used as a catalyst in a chemical transformation reaction, in particular in an oligomerization process comprising contacting said feedstock comprising olefins having a number of carbon atoms of between 2 and 10 with the composition according to the invention, said method is advantageously operated at a total pressure of between atmospheric pressure and 20 MPa and at a temperature between -40 and 250 ⁇ C.
  • composition according to the invention is advantageously used in an olefin tetramerization process, in particular in an ethylene tetramerisation process in octene-1.
  • the solvent of the oligomerization process may be chosen from organic solvents and preferably from ethers, alcohols, chlorinated solvents and saturated or unsaturated hydrocarbons, aromatic or otherwise, cyclic or otherwise.
  • said solvent is chosen from hexane, cyclohexane, methylcyclohexane, heptane, butane or isobutane, monoolefins or diolefins preferably comprising 4 to 20 carbon atoms, benzene, toluene, toluene or toluene.
  • reaction solvent is an ionic liquid
  • it is advantageously chosen from the ionic liquids described in US Pat. Nos. 6,951,831 B2 and FR 2,895,406 B1.
  • Oligomerization is defined as the conversion of a monomer unit into a compound or mixture of compounds of the general formula C p H 2p with 4 ⁇ p ⁇ 80, preferably with 4 ⁇ p ⁇ 50, most preferably with 4 ⁇ p ⁇ 26 and more preferably with 4 ⁇ p ⁇ 14.
  • the olefins used in the oligomerization process are olefins having from 2 to 10 carbon atoms.
  • said olefins are chosen from ethylene, propylene, n-butenes and n-pentenes, alone or as a mixture, pure or diluted.
  • said olefins are diluted, said olefins are diluted with one or more alkane (s), as found in "cuts" from petroleum refining processes, such as catalytic cracking or cracking at the same time. steam.
  • the olefin used in the oligomerization process and in particular in the tetramerization process according to the invention is ethylene.
  • Said olefins can come from non-fossil resources such as biomass.
  • the olefins used in the oligomerization process according to the invention and in particular in the tetramerization process according to the invention can be produced from alcohols, and in particular by dehydration of alcohols.
  • the oligomerization process in particular the tetramerization process according to the invention, advantageously operates at a total pressure of between atmospheric pressure and 20 MPa, preferably between 0.1 and 8 MPa, and at a temperature of between -40 and + 250 °, preferably between 0 and 150 °, preferably between 20 and 135 °, preferably between 45 and 100 °, preferably between 75 and 100 °, preferably between 80 and 100 °.
  • the heat generated by the reaction can be removed by any means known to those skilled in the art.
  • the oligomerization process in particular the tetramerization process according to the invention, can be carried out in a closed system, in a semi-open system or continuously, with one or more reaction stages. Vigorous agitation is advantageously used to ensure good contact between the reagent (s) and the catalytic system.
  • the products of the present process can be used, for example, as components in plastics and more particularly polyethylene, motor fuels, as fillers in a hydroformylation process for the synthesis of aldehydes and alcohols, as components for chemical, pharmaceutical or perfume industry and / or as fillers in a metathesis process for the synthesis of propylene for example.
  • the molar ratio between the ligand and the chromium is 2.
  • methylaluminoxane (MAO) is used in a MAO molar ratio on the Cr (acac) 3 precursor of 600.
  • the reaction is carried out under 4.5 MPa. ethylene.
  • the ligands are evaluated at three different temperatures or 45 ⁇ C, 80 ⁇ and 100 ⁇ C.
  • the Ref ligand below is used as a comparative and evaluated under the same conditions and L3.
  • a 100 ml reactor is pressurized with ethylene.
  • the reaction solvent is introduced into the reactor as well as the MAO (10% by weight in toluene).
  • the reactor is then placed under 0.5 MPa of ethylene and stirred for 5 minutes.
  • the solution formed by the chromium precursor Cr (acac) 3 and the ligand is then introduced into the reactor.
  • the reactor is then placed under 2 MPa of ethylene pressure and heated to the test temperature. The pressure is completed at 4.5 MPa and agitation at 1000 rpm is started.
  • the system is under pressure control.
  • the ethylene feed is cut off and the reactor cooled.
  • the liquid phase and the optionally formed polymer are recovered and weighed.
  • the polymer is weighed after drying at 100 ° for one night.
  • the liquid phase is then neutralized with a sulfuric acid solution at 10% by weight.
  • the analysis of the liquid phase is carried out by gas phase chromatography with an HP 685 GC equipped with a PONA brand column.
  • the results of the experiments are shown in the table below.
  • the ethylene consumption described in the table corresponds to the amount (in grams) of ethylene converted during the catalytic test into reaction products.
  • the activity described in g / (g Cr. H) in the table corresponds to the amount of ethylene (in grams) converted by one gram of chromium from the catalytic composition reported over one hour of reaction.
  • Figure 1 shows the evolution of the C8 productivity as a function of the reaction temperature.
  • the productivity C8 described in FIG. 1 corresponds to the amount of octenes (in gram) transformed by one gram of chromium resulting from the catalytic composition reported over one hour of reaction. It is calculated by multiplying the activity by the percentage of C8 which is the weight percentage of C8 compared to the products formed.
  • a % percentage weight compared to the products formed.
  • b % 1 -C 6 percentage of hexene-1 in the C 6 section .
  • c % 1 -C 8 percentage of octene-1 in the C 8 section .
  • compositions according to the invention make it possible to significantly increase the proportion of C8 (% C8) relative to the other products formed when the temperature is brought from 45 ⁇ to 80 ⁇ .
  • productivity 08 observed with the compositions (with L1, L2 and L3) according to the invention is thus much greater than that observed with the composition used as a comparative example (Ref).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

L'invention porte sur une composition comprenant au moins un précurseur de chrome, au moins un ligand hétéroatomique et optionnellement, au moins un activateur. L'invention porte également sur le procédé de préparation de la composition selon l'invention et l'utilisation de ladite composition dans un procédé d'oligomérisation d'oléfines.

Description

COMPOSITION CATALYTIQUE A BASE DE CHROME ET D'UN LIGAND
A BASE DE PHOSPHINE ET SON UTILISATION DANS UN PROCEDE DE PROCUCTION DOCTENES
La présente invention décrit une composition catalytique à base de chrome et d'un ligand particulier. L'invention concerne également le procédé de préparation de ladite composition ainsi que son utilisation dans un procédé de production d'octène à partir d'éthylène.
Art antérieur
Les systèmes ou compositions catalytiques à base de chrome et des ligands de type diphosphine sont connus pour catalyser la conversion sélective de l'éthylène en octène-1 . L'efficacité de tels systèmes est fonction des conditions de réaction et du choix de la structure du ligand. En particulier, la nature et la position de tous les substituants du ligand utilisé ont une influence déterminante sur les performances du système catalytique.
Parmi les compositions catalytiques connues, on peut citer les exemples de compositions à base de chrome et de ligand bis(phosphino)amine de type «PNP». L'article J. Am. Chem. Soc. 2004, 126, 14712-14713 de Bollmann et al. et les demandes de la famille WO2004/056479 A1 rapportent l'utilisation de ligands décrits par la formule (R)nA-B-C(R)n, avec A et C étant sélectionnés parmi les atomes de phosphore, d'arsenic, d'antimoine, d'oxygène, de bismuth, de sulfure, de sélénium ou d'azote, oxydés ou non. Ces ligands sont utilisés pour la réaction de tétramérisation de l'éthylène en octène-1 dans des conditions de température de 45^. Parmi la longue liste de ligan ds cités, aucun n'est décrit comme répondant à la formule (PR)2N-X-0-PR2, avec X étant un groupement pontant divalent.
Un des défauts de ces compositions catalytiques est l'obligation de leur mise en œuvre à basse température, c'est-à-dire à une température comprise entre 45 et 60^ sous peine de désactivation notable du système catalytique ainsi que la perte de sélectivité en octène-1 . Mais, le fonctionnement à haute température a ceci d'avantageux, qu'il permet notamment d'augmenter la viscosité et donc la gestion des sous-produits lourds formés.
Pour tenter de résoudre ce problème, les demandes de brevet WO2013/168102 A1 et WO2013/168106 A1 ont récemment décrit la tétramérisation des oléfines à des températures élevées, notamment supérieures à 80^, réalisés ave c des systèmes catalytiques à base de ligands R1 R2P-X-PR3R4, avec des groupements R1 , R2, R3 et R4 fluorés ou non, et X pouvant être un groupement N(R6) dans lequel R6 est choisi parmi entre autres les groupements alkyle, cycloalkyle, aryle, aryloxy, alcoxy, les aminocarbonyl, les groupes silyl et leurs dérivés. Aucun des ligands décrits ne comprend le fragment de molécule répondant à la structure N(R6) avec R6 répondant à la formule -X-O-P-, avec X étant un groupement pontant divalent avantageusement choisi parmi les alkylidènes. D'autre part, les compositions catalytiques décrites ont montré une sélectivité en octène-1 dégradée à haute température.
La demanderesse dans ses recherches a mis au point une nouvelle composition catalytique comprenant au moins un précurseur de chrome, au moins un ligand hétéroatomique décrit par la formule générale (I) (R1)2P-0-(CH2)n-N[P(R2)2]2, et au moins un activateur. La composition selon l'invention a montré des propriétés catalytiques particulièrement intéressantes, notamment dans la réaction de tétramérisation des oléfines et plus particulièrement dans la réaction de tétramérisation de l'éthylène en octène-1 . De manière surprenante, il a été observé que les compositions selon l'invention présentent une très bonne productivité en octène-1 nonobstant la mise en œuvre du procédé de tétramérisation à des températures allant au-delà de 60Ό, voire au -delà de 80Ό.
Un avantage des compositions selon l'invention réside en ce qu'elles peuvent être mises en œuvre dans une réaction de tétramérisation dans des conditions de température plus élevée que les compositions classiques de l'art antérieur, sans nuire à la productivité en octène-1 du système catalytique, ni à sa sélectivité envers la production d'octène-1 . Définitions
Au sens de la présente invention, on entend par « alkyle » une chaîne hydrocarbonée linéaire ou ramifiée ayant de 1 à 15 atomes de carbone, de préférence de 1 à 10 atomes de carbone. Des groupes alkyles préférés sont avantageusement choisis parmi les groupes méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, tertio-butyle, pentyle et hexyle. Ces groupements alkyles peuvent être substitués par des hétéroéléments ou des groupes contenant des hétéroéléments tels qu'un halogénure, un alcoxy. On entend par un substituant « alcoxy », un groupe alkyl-O- dans lequel le terme alkyle a la signification donnée ci-dessus. Des exemples préférés de substituants alcoxy sont les groupes méthoxy ou éthoxy. Par « alkyle cyclique », on entend on entend un groupe hydrocarboné monocyclique ayant un nombre de carbones supérieur à 3, de préférence entre 4 et 24, de manière plus préférée entre 5 et 18, de préférence un groupe cyclopentyle, cyclohexyle, cyclooctyle ou cyclododécyle, ou polycyclique (bi- ou tricyclique) ayant un nombre de carbones supérieur à 3, de préférence entre 5 et 18, tels que par exemple les groupes adamantyle ou norbornyle. Ces groupements peuvent être substitués par des hétéroéléments ou des groupes contenant des hétéroéléments tels qu'un halogénure, un alcoxy.
Par « aromatique », on entend un groupe mono- ou polycyclique aromatique substitué ou non, de préférence mono- ou bicyclique substitué ou non, ayant un nombre d'atomes de carbone entre 5 et 20. Lorsque le groupe est polycyclique, c'est-à-dire qu'il comprend plus d'un noyau aromatique cyclique, les noyaux cycliques peuvent avantageusement être condensés deux à deux ou rattachés deux à deux par des liaisons σ. Le groupe aromatique selon l'invention peut contenir un hétéroélément tel l'azote, l'oxygène ou le soufre. Ces groupements peuvent être substitués par des hétéroéléments ou des groupes contenant des hétéroéléments tels qu'un halogénure, un alcoxy.
Description sommaire de l'invention La présente invention porte sur une composition comprenant :
- au moins un précurseur de chrome,
- au moins un ligand hétéroatomique décrit par la formule générale (I)
(R1)2P-0-(CH2)n-N[P(R2)2]2
dans lequel les groupements R1 et R2, identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi les groupements alkyles cycliques ou non et les groupements aromatiques, et n est un entier supérieur ou égal à 1 ,
- et optionnellement, au moins un activateur.
Avantageusement selon l'invention, le nombre entier n du fragment -(CH2)n- du ligand est compris entre 1 et 15. Avantageusement, le rapport molaire entre le ligand et le précurseur de chrome est compris entre 0,01 et 100.
Avantageusement, le rapport molaire entre l'activateur et le précurseur de chrome est compris entre 1 et 10000. De préférence, le précurseur de chrome est choisi parmi CrCI3, CrCI3(tétrahydrofurane)3,Cr(acétylacétonate)3, Cr(naphténate)3, Cr(2-éthylhexanoate)3, Cr(acétate)3.
Avantageusement, les groupements R1 et R2 du ligand, identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi un groupement alkyle cyclique ou non, aromatique ou non, ayant de 1 à 15 atomes de carbone.
De préférence, les groupements R1 et R2 identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi les groupements méthyle, trifluorométhyle, éthyle, n-propyle, i- propyle, n-butyle, i-butyle, t-butyle, pentyle, cyclopentyle, hexyle, cyclohexyle, adamantyle, substitués ou non, contenant ou non des hétéroéléments; les groupements phényle, o-tolyle, m-tolyle, p-tolyle, mésityle, 3,5-diméthylphényle, 4-n-butylephényle, 2-méthoxyphényle, 3- méthoxyphényle, 4-méthoxyphényle, 2-isopropoxyphényle, 4-méthoxy-3,5-diméthylphényle, 3,5-ditert-butyl-4-méthoxyphényle, 2-chlorophényle, 3-chlorophényle, 4-chlorophenyle, 2- fluorophényle, 3-fluorophényle, 4-fluorophényle, 4-trifluorométhylphényle, 3,5- di(trifluorométhyl)phényle, benzyle, naphthyle, bisnaphthyle, pyridyle, bisphényle, furanyle, thiophényle, substitués ou non, contenant ou non des hétéroéléments.
Avantageusement, l'agent activateur est choisi parmi les composés tris(hydrocarbyl)aluminium, les composés chlorés ou bromés d'hydrocarbylaluminium, les halogénures d'aluminium, les aluminoxanes, les composés organoborés, les composés organiques susceptibles de donner un proton, pris seuls ou en mélange.
L'invention porte également sur le procédé de préparation de la composition selon l'invention comprenant la mise en contact
- d'au moins un précurseur de chrome,
- avec au moins un ligand hétéroatomique décrit par la formule générale (I)
(R1)2P-0-(CH2)n-N[P(R2)2]2
dans lequel les groupements R1 et R2, identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi les groupements alkyles cycliques ou non et les groupements aromatiques, et n est un entier supérieur ou égal à 1 ,
- et optionnellement, avec au moins un activateur. Un autre aspect de l'invention concerne l'utilisation des compositions selon l'invention en tant que catalyseur.
De manière avantageuse, l'invention porte sur un procédé de tétramérisation de l'éthylène en octène-1 .
Description détaillée de l'invention
Compositions selon l'invention
La présente invention porte sur une composition comprenant :
- au moins un précurseur de chrome,
- au moins un ligand hétéroatomique décrit par la formule générale (I)
(R1)2P-0-(CH2)n-N[P(R2)2]2
dans lequel les groupements R1 et R2, identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi les groupements alkyles cycliques ou non et les groupements aromatiques, et n est un entier supérieur ou égal à 1 ,
- et optionnellement, au moins un activateur. Le précurseur de chrome
Le précurseur de chrome selon l'invention peut être choisi parmi les composés de chrome utilisés dans les procédés d'oligomérisation des oléfines.
Le précurseur de chrome présent dans la composition selon l'invention peut comporter un ou plusieurs anions identiques ou différents choisis dans le groupe formé par les halogénures, les carboxylates, les acétylacétonates, les anions alcoxy et aryloxy. Le composé du chrome peut être un sel de chrome(ll) ou de chrome(lll), mais aussi un sel de degré d'oxydation différent pouvant comporter un ou plusieurs anions identiques ou différents tels que par exemple des halogénures, des carboxylates, des acétylacétonates, des anions alcoxy ou aryloxy. Les précurseurs du chrome utilisés de préférence dans l'invention sont les composés du chrome(lll) car ils sont plus accessibles, mais un composé du chrome(l) ou du chrome(ll) peut aussi convenir.
De préférence selon l'invention, le précurseur de chrome est choisi parmi CrCI3, CrCI3(tétrahydrofurane)3,Cr(acétylacétonate)3, Cr(naphténate)3, Cr(2-éthylhexanoate)3, Cr(acétate)3. Le liqand hétéroatomigue
Le ligand de la composition catalytique selon l'invention est décrit par la formule générale (I)
(R1)2P-0-(CH2)n-N[P(R2)2]2 dans lequel les groupements R1 et R2, identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi les groupements alkyles cycliques ou non et les groupements aromatiques, et n est un entier supérieur ou égal à 1 .
Le nombre entier n du fragment -(CH2)n- du ligand selon l'invention est de préférence compris entre 1 et 15, de manière plus préférée entre 2 et 15, de manière encore plus préférée entre 2 et 10, et encore plus préférentiellement entre 3 et 6. Selon l'invention, les groupements R1 et R2 identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi un groupement alkyle cyclique ou non ayant de 1 à 15 atomes de carbone, de préférence de 1 à 10 atomes de carbone, ou un groupement aromatique ayant un nombre de carbones supérieur à 3, de préférence entre 4 et 24, de manière plus préférée entre 5 et 18. De préférence, les groupements R1 et R2 identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi les groupements méthyle, trifluorométhyle, éthyle, n-propyle, i- propyle, n-butyle, i-butyle, t-butyle, pentyle, cyclopentyle, hexyle, cyclohexyle, adamantyle, substitués ou non, contenant ou non des hétéroéléments; les groupements phényle, o-tolyle, m-tolyle, p-tolyle, mésityle, 3,5-diméthylphényle, 4-n-butylephényle, 2-méthoxyphényle, 3- méthoxyphényle, 4-méthoxyphényle, 2-isopropoxyphényle, 4-méthoxy-3,5-diméthylphényle, 3,5-ditert-butyl-4-méthoxyphényle, 2-chlorophényle, 3-chlorophényle, 4-chlorophenyle, 2- fluorophényle, 3-fluorophényle, 4-fluorophényle, 4-trifluorométhylphényle, 3,5- di(trifluorométhyl)phényle, benzyle, naphthyle, bisnaphthyle, pyridyle, bisphényle, furanyle, thiophényle, substitués ou non, contenant ou non des hétéroéléments. Dans une mise en œuvre particulière, les groupements R1 et R2 identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi les groupements méthyle, éthyle, i- propyle, n-butyle, i-butyle, t-butyle, cyclopentyle, cyclohexyle. Dans une mise en œuvre particulière, les groupements R1 et R2 identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi les groupements phényle, o-tolyle, m- tolyle, p-tolyle, mésityle, 2-méthoxyphényle, 3-méthoxyphényle, 4-méthoxyphényle, 2- chlorophényle, 3-chlorophényle, 4-chlorophenyle, 2-fluorophényle, 3-fluorophényle, 4- fluorophényle.
L'agent activateur
La composition selon l'invention peut inclure un agent activateur. L'agent activateur peut être choisi parmi les composés connus de l'homme du métier. Des mélanges d'agents activateurs peuvent également être utilisés. Avantageusement, les agents activateurs selon l'invention sont choisis parmi les composés tris(hydrocarbyl)aluminium, les composés chlorés ou bromés d'hydrocarbylaluminium, les halogénures d'aluminium, les aluminoxanes, les composés organoborés, les composés organiques susceptibles de donner un proton, pris seuls ou en mélange.
Parmi les dérivés d'aluminium on peut citer les halogénures d'alkylaluminiums tels que le chlorure de diméthylaluminium, le chlorure de diéthylaluminium, le dichlorure d'éthylaluminium, le sesquichlorure de méthylaluminium, le sesquichlorure d'éthylaluminium, le dichlorure de méthylaluminium, le dichlorure d'isobutylaluminium, le trichlorure d'aluminium ; et les aluminoxanes, utilisés seuls ou en mélange.
Les aluminoxanes sont bien connus par l'homme de l'art comme des composés oligomériques pouvant être préparés par l'addition contrôlée d'eau sur un alkylaluminium, par exemple le triméthylaluminium. De tels composés peuvent être linéaires, cycliques ou des mélanges de ces composés. Ils sont généralement représentés par la formule [RAIO]a où R est un groupement hydrocarboné et a est un nombre de 2 à 50. Préférentiellement, l'aluminoxane est choisi parmi le méthylaluminoxane (MAO) et/ou l'éthylaluminoxane (EAO) et/ou parmi les aluminoxanes modifiés tels que le méthylaluminoxane modifié (MMAO).
Dans le cas où ledit agent activateur est choisi parmi les composés organoborés, ledit agent activateur est de préférence choisi parmi les acides de Lewis de type tris(aryl)borane tels que le tris(perfluorophényl)borane, le tris(3,5-bis(trifluorométhyl)phényl)borane, le tris(2,3,4,6-tétrafluorophényl)borane, le tris(perfluoronaphtyl)borane, le tris(perfluobiphényl)borane et leurs dérivés et les (aryl)borates associés à un cation triphénylcarbénium ou à un cation ammonium trisubstitué tels que le triphénylcarbenium tétrakis(perfluorophényl)borate, le Ν,Ν-diméthylanilinium tétrakis(perfluorophényl)borate, le Ν,Ν-diéthylanilinium tétrakis(3,5-bis(trifluorométhyl)phényl)borate, le triphénylcarbenium tétrakis(3,5-bis(trifluorométhyl)phényl)borate.
Dans le cas où ledit agent activateur est choisi parmi les composés organiques susceptibles de donner un proton, ledit agent activateur est de préférence choisi parmi les acides de formule HY dans lequel Y représente un anion, tels que HBF4 ou F3CS03H.
Préparation des compositions selon l'invention
Un autre objet de l'invention porte sur le procédé de préparation des compositions selon l'invention. Les compositions selon l'invention sont de préférence préparées par la mise en contact
- d'au moins un précurseur de chrome,
- avec au moins un ligand hétéroatomique décrit par la formule générale (I)
(R1)2P-0-(CH2)n-N[P(R2)2]2
dans lequel les groupements R1 et R2, identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi les groupements alkyles cycliques ou non et les groupements aromatiques, et n est un entier supérieur ou égal à 1 ,
- et optionnellement, avec au moins un activateur.
Dans une mise en œuvre particulière, le rapport molaire entre le ligand et le précurseur de chrome est compris entre 0,01 et 100, et de préférence entre 0,5 et 5, en particulier de 0,8 et 3.
Lorsque l'activateur est présent dans la composition, le rapport molaire entre l'activateur et le précurseur de chrome est compris entre 1 et 10000, de préférence entre 100 et 5000, de manière encore plus préférée entre 200 et 3500.
Lors du procédé de préparation, les composants de la composition peuvent être ajoutés simultanément ou séquentiellement, dans n'importe quel ordre. La composition selon l'invention peut être préparée in-situ en présence ou en l'absence de la charge, notamment de l'éthylène. Les compositions selon l'invention peuvent être en présence ou non de solvant. On peut utiliser un solvant avantageusement choisi parmi les solvants capables de dissoudre les réactifs. On préfère pour ce faire utiliser des solvants organiques. On peut citer les solvants hydrocarbures aliphatiques saturés ou non tels que le pentane, l'hexane, le cyclohexane, le méthylecyclohexane, ou l'heptane, le cyclohexène, le cyclooctène ou le cyclooctadiène. On peut citer les solvants aromatiques tels que le benzène, le toluène ou les xylènes. On peut citer les solvants oxygénés tels que le diéthyléther ou le tétrahydrofurane, les solvants chlorés tels que le dichlorométhane ou le chlorobenzène. Ces solvants peuvent être utilisés seuls ou en mélange. La température à laquelle les composants de la composition selon l'invention sont mélangés est avantageusement comprise entre -40 et +150Ό, d e préférence entre 0 et +80Ό, par exemple à une température voisine de l'ambiante (15 à 30 Ό). Le mélange peut être effectué sous une atmosphère d'éthylène ou de gaz inerte.
Utilisation des compositions selon l'invention Un autre objet de l'invention concerne l'utilisation des compositions selon l'invention comme catalyseur.
Les compositions selon l'invention peuvent être utilisées comme catalyseur dans une réaction de transformation chimique, en particulier, dans un procédé d'oligomerisation comprenant la mise en contact de ladite charge comprenant des oléfines ayant un nombre d'atomes de carbone compris entre 2 et 10 avec la composition selon l'invention, ledit procédé étant avantageusement opéré à une pression totale comprise entre la pression atmosphérique et 20 MPa et à une température comprise entre -40 et +250<C.
La composition selon l'invention est avantageusement mise en œuvre dans un procédé de tétramérisation d'oléfines, en particulier dans un procédé de tétramérisation d'éthylène en octène-1 .
Le solvant du procédé d'oligomérisation peut être choisi parmi les solvants organiques et de préférence parmi les éthers, les alcools, les solvants chlorés et les hydrocarbures saturés, insaturés, aromatiques ou non, cycliques ou non. En particulier, ledit solvant est choisi parmi l'hexane, le cyclohexane, le méthylecyclohexane, l'heptane, le butane ou l'isobutane, les monooléfines ou dioléfines comportant de préférence 4 à 20 atomes de carbone, le benzène, le toluène, l'ortho-xylène, le mésitylène, l'éthylbenzène, le dichlorométhane, le chlorobenzène, le méthanol, l'ethanol, purs ou en mélange, et les liquides ioniques. Dans le cas où ledit solvant de réaction est un liquide ionique, il est avantageusement choisi parmi les liquides ioniques décrits dans les brevets US 6, 951 ,831 B2 et FR 2895406 B1 .
L'oligomérisation est définie comme la transformation d'une unité monomère en un composé ou mélange de composés de formule générale CpH2p avec 4 < p < 80, de préférence avec 4 < p < 50, de manière préférée avec 4 < p < 26 et de manière plus préférée avec 4 < p < 14.
Les oléfines utilisées dans le procédé d'oligomérisation sont des oléfines comportant de 2 à 10 atomes de carbone. De préférence, lesdites oléfines sont choisies parmi l'éthylène, le propylène, les n-butènes et les n-pentènes, seules ou en mélange, pures ou diluées. Dans le cas où lesdites oléfines sont diluées, lesdites oléfines sont diluées par un ou plusieurs alcane(s), tels qu'on les trouve dans des « coupes » issues des procédés de raffinage du pétrole, comme le craquage catalytique ou le craquage à la vapeur.
De manière préférée, l'oléfine utilisée dans le procédé d'oligomérisation et en particulier dans le procédé de tétramérisation selon l'invention est l'éthylène. Lesdites oléfines peuvent venir de ressources non fossiles telles que la biomasse. Par exemple, les oléfines utilisées dans le procédé d'oligomérisation selon l'invention et en particulier dans le procédé de tétramérisation selon l'invention peuvent être produites à partir d'alcools, et en particulier par déshydratation des alcools.
Le procédé d'oligomérisation, en particulier le procédé de tétramérisation selon l'invention opère avantageusement à une pression totale comprise entre la pression atmosphérique et 20 MPa, de préférence entre 0,1 et 8 MPa, et à une température comprise entre -40 et +250Ό, de préférence entre 0 et 150Ό, de préfé rence entre 20 et 135Ό, de préférence entre 45 et 100Ό, de préférence entre 75 et 100Ό, de préférence entre 80 et 100Ό.
La chaleur engendrée par la réaction peut être éliminée par tous les moyens connus de l'homme du métier.
Le procédé d'oligomérisation, en particulier le procédé de tétramérisation selon l'invention, peut être conduit en système fermé, en système semi-ouvert ou en continu, avec un ou plusieurs étages de réaction. Une vigoureuse agitation est avantageusement mise en œuvre pour assurer un bon contact entre le ou les réactifs et le système catalytique. Les produits du présent procédé peuvent trouver une application par exemple comme composants dans les plastiques et plus particulièrement le polyéthylène, de carburants pour automobiles, comme charges dans un procédé d'hydroformylation pour la synthèse d'aldéhydes et d'alcools, comme composants pour l'industrie chimique, pharmaceutique ou la parfumerie et/ou comme charges dans un procédé de métathèse pour la synthèse de propylène par exemple.
Les exemples suivants illustrent l'invention sans en limiter la portée. Exemples
Synthèse des liqands
Liqand L1
L1
Dans un Schlenk de 100 mL, on introduit 30 mL de dichlorométhane (CH2CI2), 6 mL de triéthylamine (44,4 mmol) et 2,71 g (12,3 mmol) de Ph2PCI. A 0<C, on additionne 0,256 g (3,4 mmol) de 3-aminopropanol. On laisse agiter 2 h à température ambiante. On évapore le solvant. On extrait le produit au pentane, puis on évapore le pentane sous vide. On purifie le produit sur une colonne d'alumine avec un mélange de Dichlorométhane/Pentane dans un rapport 30/70 (volume/volume). On obtient 0,4g d'une huile blanchâtre très visqueuse, soit un rendement d'environ 19%.
RMN 1 H (300,1 MHz, CD2CI2); 5(ppm): 7,55-7,12 (m, 30H); 3,48 (m, 2H); 3,41 (m, 2H); 1 ,55- 1 ,40 (m, 2H); RMN 31 P (121 ,5 MHz, CD2CI2); 5(ppm): 1 1 1 ,4; 63,4; RMN 13C (75,5MHz, CD2CI2); 5(ppm): 142,6; 140,0; 133,1 ; 130,4; 129,6; 129,2; 128,6; 128,5; 68,2; 50,7; 33,6. Liqand L2
L2 Dans un Schlenk de 100 ml_, on introduit 60 ml_ de CH2CI2, 3,0 g (29,6 mmol) de triéthylamine et 4,37 g (19,8 mmol) Ph2PCI. A 0<C, on ajoute 0,54 g (6,0 mmol) de 4- aminobutanol. On laisse agiter une nuit à température ambiante. On filtre puis on évapore le solvant. On élimine la triéthylamine par co-évaporation avec du toluène. On purifie par recristallisation dans l'éthanol. On obtient environ 1 g d'huile très visqueuse, soit un rendement d'environ 26%.
RMN 1 H (300,1 MHz, CD2CI2); 5(ppm): 7,55-7,27 (m, 30H); 3,54 (m, 2H); 3,31 (dt, 2H); 1 ,44- 1 ,27 (m, 2H); 1 ,27-1 ,13 (m, 2H); RMN 13C (75,5MHz, CD2CI2); 5(ppm): 142,8; 140,1 ; 133,1 ; 130,4; 129,5; 129,1 ; 128,6; 128,5; 70,0; 53,1 ; 29,1 ; 28,5; RMN 31 P (121 ,5 MHz, CD2CI2); 5(ppm): 1 10,4; 62,6.
Liqand L3
L3
Dans un Schlenk, on pèse 0,436 g (3,72 mmol) de 6-aminohexanol. On ajoute 6 ml_ de triéthylamine (44,45 mmol) et 30 ml_ de dichlorométhane (CH2CI2). A ΟΌ, on additionner goutte à goutte 1 ,81 g (8,20 mmol) de Ph2PCI. On laisse agiter 2 h à température ambiante. On filtre puis on évapore les produits volatiles. On extrait avec 6 fois 7 ml_ de pentane. On élimine le solvant sous vide. On obtient 1 ,2 g d'une huile jaunâtre très visqueuse, soit un rendement d'environ 66%.
RMN 1 H (300,1 MHz, CD2CI2); 5(ppm): 7,53-7,22 (m, 30H); 3,71 (m, 2H); 3,23 (m, 2H); 1 ,44 (m, 2H); 1 ,06 (m, 4H); 0,91 (m, 2H). RMN 31 P (121 ,5 MHz, CD2CI2); 5(ppm): 1 10,6; 62,5; RMN 13C (75,5MHz, CD2CI2); 5(ppm): 143,0; 140,2; 133,1 ; 130,4; 129,5; 129,1 ; 128,7; 128,4; 70,4; 53,4; 31 ,7; 31 ,6; 26,7; 25,7.
Tests catalvtiques
Les ligands L1 , L2 et L3 sont évalués en présence de Cr(acac)3 (acac=acétylacétonate) pour la réaction de tétramérisation de l'éthylène. Le rapport molaire entre le ligand et le chrome est de 2. On utilise comme agent activateur le méthylaluminoxane (MAO) dans un rapport molaire MAO sur le précurseur Cr(acac)3 de 600. La réaction est opérée sous 4,5 MPa d'éthylène. Les ligands sont évaluées à trois températures différentes soit 45<C, 80Ό et 100<C. Le ligand Ref ci-dessous est utilisé comme comparatif et évalué dans les mêmes conditions et L3.
Conditions opératoires : un réacteur de 100 ml_ est mis sous pression d'éthylène. Le solvant de réaction est introduit dans le réacteur ainsi que le MAO (10% poids dans le toluène). Le réacteur est alors placé sous 0,5 MPa d'éthylène et agité pendant 5 minutes. Après dépressurisation, la solution formée par le précurseur de chrome Cr(acac)3 et le ligand est alors introduite dans le réacteur. Le réacteur est ensuite mis sous 2 MPa de pression d'éthylène et chauffé à la température de test. La pression est complétée à 4,5 MPa et l'agitation à 1000 tours/minute est démarrée. Le système est alors sous contrôle de pression.
A la fin du test, l'alimentation en éthylène est coupée et le réacteur refroidi. Une fois le réacteur dégazé, la phase liquide et le polymère éventuellement formé sont récupérés et pesés. Le polymère est pesé après séchage à 100Ό p endant une nuit. La phase liquide est alors neutralisée par une solution d'acide sulfurique à 10% poids. L'analyse de la phase liquide est réalisée par chromatographie phase gaz avec un GC HP 685 équipé d'une colonne de marque PONA.
Les résultats des expériences sont indiqués dans le tableau ci-dessous. La consommation en éthylène décrite dans le tableau correspond à la quantité (en gramme) d'éthylène transformé au cours du test catalytique en produits de réaction. L'activité décrite en g/(gCr.h) dans le tableau correspond à la quantité d'éthylène (en gramme) transformée par un gramme de chrome issu de la composition catalytique rapportée sur une heure de réaction.
La figure 1 représente l'évolution de la productivité en C8 en fonction de la température de réaction. La productivité C8 décrite dans la figure 1 correspond à la quantité d'octènes (en gramme) transformée par un gramme de chrome issu de la composition catalytique rapportée sur une heure de réaction. Elle est calculée en multipliant l'activité par le pourcentage de C8 qui est le pourcentage poids de C8 par rapport aux produits formés. Temp. Tps Consommation Activité
Ligand (<C) (min) en C 2H4 (g) (g/(9cr- ) %C6 a %1 -C6 b %C8 a %1 -C8 C %a (mg)
Ref* 45 8 21 ,5 621 21 ,2 76,0 62,6 98,8 1 ,0 210
Ref* 80 30 18,1 140 33,2 88,6 55,8 99,1 1 ,6 283
Ref* 100 30 16,2 125 46,1 93,9 39,6 98,9 3,7 569
L1 45 8 17,3 494 14,7 31 ,5 42,3 93,7 14,0 2259
L1 80 15 18,2 278 27,9 66,3 57,4 97,4 1 ,3 228
L1 100 30 16,6 127 38,6 84,3 44,3 97,9 4,0 628
L2 45 15 21 ,1 321 16,7 35,6 50,0 94,4 8,3 1615
L2 80 10 16,7 380 27,4 66,6 58,4 97,5 2,2 334
L2 100 15 19,5 296 38,3 82,8 45,7 97,8 3,0 562
L3 45 8 10,0 288 14,7 32,9 53,1 95,2 5,2 497
L3 80 15 7,8 274 27,3 68,4 60,1 97,8 1 ,5 260
L3 100 30 19,9 153 36,0 83,5 43,8 97,9 7,8 1437
Conditions de réaction: Cr(acac)3, nCr=5 μηιοΙ; Ligand/Cr=2, (MAO/Cr=600); Solvant =Cyclohexane (50 ml_), Pression = 4,5 MPa de C2H4.* = exemple comparatif. a % = pourcentage poids par rapport aux produits formés. b %1 -C6 : pourcentage d'hexène-1 dans la coupe C6. c %1 -C8 : pourcentage d'octène-1 dans la coupe C8. PE= Polyéthylène, Temp.= température, Tps = temps.
On observe que les compositions selon l'invention permettent d'augmenter de manière significative la proportion de C8 (%C8) par rapport aux autres produits formés lorsque la température est amenée de 45Ό à 80Ό. En particuli er à 80Ό, on peut noter que la productivité 08 observée avec les compositions (avec L1 , L2 et L3) selon l'invention est ainsi largement supérieure à celle observée avec la composition utilisée comme exemple comparatif (Ref).

Claims

REVENDICATIONS
Composition comprenant :
- au moins un précurseur de chrome,
- au moins un ligand hétéroatomique décrit par la formule générale (I)
(R1)2P-0-(CH2)n-N[P(R2)2]2 dans lequel les groupements R1 et R2, identiques ou différents entre eux, liés ou non entre eux, sont choisis parmi les groupements alkyles cycliques ou non et les groupements aromatiques, et n est un entier supérieur ou égal à 1 .
- et optionnellement, au moins un activateur.
Composition selon la revendication 1 dans laquelle le nombre entier n du fragment -(CH2)n- du ligand est compris entre 1 et 15.
Composition selon la revendication 1 ou 2 dans laquelle le rapport molaire entre le ligand et le précurseur de chrome est compris entre 0,01 et 100.
Composition selon l'une des revendications précédentes dans laquelle le rapport molaire entre l'activateur et le précurseur de chrome est compris entre 1 et 10000.
Composition selon l'une des revendications précédentes dans laquelle le précurseur de chrome est choisi parmi CrCI3, CrCI3(tétrahydrofurane)3,Cr(acétylacétonate)3, Cr(naphténate)3, Cr(2-éthylhexanoate)3, Cr(acétate)3.
Composition selon l'une des revendications précédentes dans laquelle, l'agent activateur est choisi parmi les composés tris(hydrocarbyl)aluminium, les composés chlorés ou bromés d'hydrocarbylaluminium, les halogénures d'aluminium, les aluminoxanes, les composés organoborés, les composés organiques susceptibles de donner un proton, pris seuls ou en mélange.
7. Procédé de préparation de la composition selon l'une des revendications précédentes comprenant la mise en contact
- d'au moins un précurseur de chrome,
- avec au moins un ligand hétéroatomique décrit par la formule générale (I)
(R1)2P-0-(CH2)n-N[P(R2)2]2
dans lequel les groupements R1 , R2 et n répondent à la définition selon l'une des revendications précédentes,
- et optionnellement, avec au moins un activateur répondant à la définition selon l'une des revendications précédentes. 8. Procédé de préparation selon la revendication 7 dans laquelle les composants de la composition sont mélangés à une température comprise entre -40 et +150<C.
9. Utilisation des compositions selon l'une des revendications 1 à 6 ou préparées selon la revendication 7 ou 8 en tant que catalyseur.
10. Procédé d'oligomérisation d'une charge d'oléfines comprenant la mise en contact de ladite charge comprenant des oléfines ayant un nombre d'atomes de carbone compris entre 2 et 10 avec une composition selon l'une des revendications 1 à 6 ou préparée selon la revendication 7 ou 8, ledit procédé étant opéré à une pression totale comprise entre la pression atmosphérique et 20 MPa et à une température comprise entre -40 et +250<C. 1 1 . Procédé selon la revendication 10 dans lequel le procédé est un procédé de tétramérisation de l'éthylène en octène-1 .
EP17723148.7A 2016-05-31 2017-05-17 Composition catalytique a base de chrome et d'un ligand a base de phosphine et son utilisation dans un procede de procuction d'octenes Withdrawn EP3463653A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1654932A FR3051683B1 (fr) 2016-05-31 2016-05-31 Composition catalytique a base de chrome et d'un ligand a base de phosphine et son utilisation dans un procede de procuction d'octenes
PCT/EP2017/061884 WO2017207280A1 (fr) 2016-05-31 2017-05-17 Composition catalytique a base de chrome et d'un ligand a base de phosphine et son utilisation dans un procede de procuction d'octenes

Publications (1)

Publication Number Publication Date
EP3463653A1 true EP3463653A1 (fr) 2019-04-10

Family

ID=56404223

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17723148.7A Withdrawn EP3463653A1 (fr) 2016-05-31 2017-05-17 Composition catalytique a base de chrome et d'un ligand a base de phosphine et son utilisation dans un procede de procuction d'octenes

Country Status (5)

Country Link
US (1) US10646858B2 (fr)
EP (1) EP3463653A1 (fr)
CN (1) CN109195703B (fr)
FR (1) FR3051683B1 (fr)
WO (1) WO2017207280A1 (fr)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10303931B4 (de) 2002-02-04 2013-04-18 Institut Français du Pétrole Katalytische Zusammensetzung zur Dimerisierung, Co-Dimerisierung, Oligomerisierung und Polymerisation der Olefine
BRPI0316870B1 (pt) * 2002-12-20 2019-10-08 Sasol Technology (Pty) Ltd. Trimerização de olefinas
FR2895406B1 (fr) 2005-12-22 2010-08-13 Inst Francais Du Petrole Procede pour la fabrication de 2,3-dimethylbut-1-ene
CN100443178C (zh) * 2006-03-10 2008-12-17 中国石油天然气股份有限公司 一种乙烯低聚的催化剂组合物及其应用
KR101074202B1 (ko) * 2007-01-18 2011-10-14 에스케이종합화학 주식회사 에틸렌 사량체화 촉매계 및 이를 이용한 1-옥텐의 제조방법
CN103044181A (zh) * 2011-10-17 2013-04-17 中国石油天然气股份有限公司 一种乙烯四聚反应制备辛烯-1的方法
EP2847150B1 (fr) * 2012-05-09 2019-07-17 Sasol Technology (Proprietary) Limited Tétramérisation d'éthylène
KR102102347B1 (ko) 2012-05-09 2020-04-21 사솔 테크날러지 (프로프라이어터리) 리미티드 에틸렌의 사량체화
CN104511311B (zh) * 2013-09-30 2017-07-07 华东理工大学 一种高选择性的乙烯三聚、四聚催化剂体系及其使用方法

Also Published As

Publication number Publication date
FR3051683A1 (fr) 2017-12-01
WO2017207280A1 (fr) 2017-12-07
CN109195703B (zh) 2022-06-24
FR3051683B1 (fr) 2020-10-09
US10646858B2 (en) 2020-05-12
US20190168202A1 (en) 2019-06-06
CN109195703A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CA3007314C (fr) Composition catalytique a base de nickel et de ligand de type phosphine et d&#39;une base de lewis et son utilisation dans un procede d&#39;oligomerisation des olefines
EP2567752B1 (fr) Nouvelle composition catalytique à base de nickel et procédé d&#39;oligomérisation des oléfines utilisant ladite composition
WO2017072026A1 (fr) Composition catalytique a base de nickel en presence d&#39;un activateur specifique et son utilisation dans un procede d&#39;oligomerisation des olefines
FR3020285A1 (fr) Nouvelle composition catalytique a base de nickel et son utilisation dans un procede d&#39;oligomerisation des olefines
EP2572782B1 (fr) Procédé de séparation du butène-2 d&#39;une coupe C4 contenant du butène-2 et du butène-1 par oligomérisation sélective du butène-1
FR2804622A1 (fr) Composition catalytique pour la dimerisation, la codimerisation et l&#39;oligomerisation des olefines
EP2939743A1 (fr) Nouveaux complexes à base de nickel et leur utilisation dans un procede de transformations des olefines
CA2889601A1 (fr) Nouveaux complexes cycliques a base de nickel et leur utilisation dans un procede de transformation des olefines
FR2806644A1 (fr) Composition catalytique et procede pour la catalyse de dimerisation, de codimerisation et d&#39;oligomerisation des olefines
EP3328542B1 (fr) Procédé de dimerisation de l&#39;éthylène
WO2017016688A1 (fr) Nouvelle composition catalytique à base de nickel et d&#39;un ligand de type phosphine complexé au nickel et son utilisation dans un procédé d&#39;oligomérisation des oléfines
EP3013841B1 (fr) Nouveau complexe à base de nickel et son utilisation dans un procede d&#39;oligomerisation des olefines
WO2017207280A1 (fr) Composition catalytique a base de chrome et d&#39;un ligand a base de phosphine et son utilisation dans un procede de procuction d&#39;octenes
EP3013474A1 (fr) Nouvelle composition catalytique à base de nickel et son utilisation dans un procede d&#39;oligomerisation des olefines
FR2806645A1 (fr) Composition catalytique et procede de dimerisation, de codimerisation et d&#39;oligomerisation des olefines
FR3051793A1 (fr) Complexes a base de nickel, et de ligands de type oxyde de phosphine secondaire et son utilisation dans un procede d&#39;oligomerisation des olefines
FR3116739A1 (fr) Nouvelle composition catalytique a base de chrome comprenant un additif hydrocarbure aromatique et procede associe pour l’oligomerisation de l’ethylene en octene-1
FR3014331A1 (fr) Nouvelle composition catalytique a base de nickel et son utilisation dans un procede d&#39;oligomerisation des olefines
FR3007674A1 (fr) Nouvelle composition catalytique a base de nickel et son utilisation dans un procede d&#39;oligomerisation des olefines

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210720

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220110

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20220608

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221019