EP3448976A1 - Copolymere zur verbesserung der klarspülleistung - Google Patents

Copolymere zur verbesserung der klarspülleistung

Info

Publication number
EP3448976A1
EP3448976A1 EP16718360.7A EP16718360A EP3448976A1 EP 3448976 A1 EP3448976 A1 EP 3448976A1 EP 16718360 A EP16718360 A EP 16718360A EP 3448976 A1 EP3448976 A1 EP 3448976A1
Authority
EP
European Patent Office
Prior art keywords
dishwashing detergent
acid
mol
weight
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16718360.7A
Other languages
English (en)
French (fr)
Inventor
Inga Kerstin Vockenroth
Doris Dahlmann
Ard De Zeeuw
Thomas Möller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP3448976A1 publication Critical patent/EP3448976A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3749Polyolefins; Halogenated polyolefins; Natural or synthetic rubber; Polyarylolefins or halogenated polyarylolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0091Dishwashing tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0073Anticorrosion compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces

Definitions

  • the present invention relates to dishwashing detergents with improved rinse aid performance, the use of these dishwashing detergents, and a machine dishwashing method using these dishwashing detergents.
  • Machine-washed dishes are often subject to more stringent requirements today than manually-washed dishes. So even a completely cleaned of leftovers dishes is then rated as not flawless if it has after dishwasher washing whitish, based on water hardness or other mineral salts stains that come from lack of wetting agent from dried water droplets. Such staining and streaking is in principle observable on surfaces of all kinds (porcelain, glass, plastic, stainless steel), but especially on glass surfaces.
  • dishwashing agents are used in dishwashing formulations. Through a mediated by these agents film formation on the dishes, the water should run as completely as possible from the dishes, so that the surfaces are residue-free and flawless gloss at the end of the wash program. Although the use of such rinse aids is known in the art, there continues to be a need for dishwashing detergents which exhibit improved rinse performance.
  • the object underlying the present invention was therefore to provide a dishwashing detergent with improved rinsing performance.
  • the copolymers according to the invention when used in customary dishwashing formulations, bring about improved film formation on items to be washed, whereby the water can run off the items in a thin coherent film so that no drops of water, streaks or films remain during the subsequent drying process.
  • the formation of streaks on items to be washed, in particular glass is suppressed and the drying and rinsing performance is significantly improved, even with low-temperature cleaning cycles ( ⁇ 50 ° C).
  • a first aspect of the present invention therefore relates to a dishwashing detergent, in particular an automatic dishwashing detergent, containing, based on the total weight of the dishwashing detergent, from 0.1 to 25.0% by weight, in particular from 0.5 to 10% by weight, of a copolymer obtainable by Polymerization of a) 70-95 mol%, in particular 75-92 mol%, particularly preferably 77-85 mol%, of at least one C2-4 alkene monomer, in particular ethylene or propylene; and
  • a dishwashing agent according to the invention in a machine dishwashing process, in particular the use for improving the rinsing performance when cleaning dishes in an automatic dishwashing machine.
  • Yet another object of the invention is a machine dishwashing process in which a dishwasher detergent according to the invention is used, in particular for the purpose of improving the rinse performance.
  • At least one means 1 or more, ie 1, 2, 3, 4, 5, 6, 7, 8, 9 or more.
  • the indication refers to the kind of the ingredient and not
  • at least one alkene means at least one kind of alkene, that is, one kind of alkene or a mixture of several different alkenes can be used.
  • weight information refers to all compounds of the specified type which are contained in the composition / mixture, ie that the composition does not contain any further compounds of this type beyond the stated amount of the corresponding compounds. All percentages given in connection with the compositions described herein, unless explicitly stated otherwise, relate to% by weight, in each case based on the mixture in question.
  • fatty acids or fatty alcohols or their derivatives - unless otherwise stated - representative of branched or unbranched carboxylic acids or alcohols or their derivatives having preferably 6 to 22 carbon atoms.
  • the oxo alcohols or their derivatives which are obtainable, for example, by the RoELEN's oxo synthesis, can also be used correspondingly.
  • alkaline earth metals are referred to below as counterions for monovalent anions, this means that the alkaline earth metal is present only in half - as sufficient to charge balance - amount of substance as the anion.
  • the copolymer used according to the invention is obtainable by polymerization of alkenes with ethylenically unsaturated carboxylic acids.
  • alkenes are ethylene, propylene and butylene.
  • Suitable carboxylic acid monomers include, in particular, acrylic and methacrylic acid, but also crotonic acid, and dicarboxylic acids such as maleic acid or its anhydride, itaconic acid and fumaric acid are suitable.
  • Particular preference is given to copolymers of ethylene and acrylic acid, with 5-30, in particular 8-25, more preferably 15-23 mol% of acid.
  • the carboxylic acid monomers can be used in the form of the free acid or in the form of their salts, in particular the alkali metal or ammonium salts.
  • the copolymer can be completely or partially neutralized after polymerization with suitable alkaline reagents.
  • suitable alkaline reagents for example, the Solubility (in water or aqueous solvents), the solids content to be achieved and, in the case of a dispersion of the polymer, adjust the average particle size.
  • the copolymers are obtainable by polymerization methods known per se in the art.
  • the polymerization is preferably a free-radical polymerization in which radical initiators, in particular, can be used as initiators.
  • the molecular weight M w of the polymers used is preferably in the range from 10,000 to 1,000,000.
  • the molecular weights given in the present text refer, unless stated otherwise, to the number-average molecular weight (Mn).
  • Mn number-average molecular weight
  • the molecular weight Mn can be determined by gel permeation chromatography (GPC) according to DIN 55672-1: 2007-08 with THF as the eluent. Unless indicated otherwise, the listed molecular weights are those determined by GPC.
  • the number average molecular weight M n can also be determined by GPC as indicated above.
  • the copolymers used according to the invention are in the dishwashing agents preferably at 0.1 to 25% by weight, more preferably at 0.5 to 10% by weight and more preferably at about 5.0% by weight, based on the total weight of the dishwashing detergent contain. Absolute amounts are typically in the range of 0.1 to 5 g / job, preferably in the range of 0.1 to 2 g / job, more preferably about 1 g / job.
  • compositions according to the invention may comprise at least one further constituent, preferably selected from the group consisting of surfactants, in particular nonionic and / or anionic surfactants, builders, enzymes, thickeners, sequestering agents, electrolytes, corrosion inhibitors, in particular silver protectants, glass corrosion inhibitors, foam inhibitors, dyes, fragrances, Bitter substances, and antimicrobial agents.
  • surfactants in particular nonionic and / or anionic surfactants
  • builders enzymes, thickeners, sequestering agents
  • electrolytes corrosion inhibitors, in particular silver protectants, glass corrosion inhibitors, foam inhibitors, dyes, fragrances, Bitter substances, and antimicrobial agents.
  • the agents described herein preferably contain at least one nonionic surfactant.
  • nonionic surfactants it is possible to use all nonionic surfactants known to the person skilled in the art.
  • Suitable nonionic surfactants are, for example, alkyl glycosides of the general formula RO (G) x in which R corresponds to a primary straight-chain or methyl-branched, especially methyl-branched, 2-position aliphatic radical having 8 to 22, preferably 12 to 18, carbon atoms and G is the symbol which is a glycose unit having 5 or 6 C atoms, preferably glucose.
  • R corresponds to a primary straight-chain or methyl-branched, especially methyl-branched, 2-position aliphatic radical having 8 to 22, preferably 12 to 18, carbon atoms and G is the symbol which is a glycose unit having 5 or 6 C atoms, preferably glucose.
  • Degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1, 2 to 1, 4.
  • nonionic surfactants that can be used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • surfactants are the polyhydroxy fatty acid amides known as PHFA.
  • low-foaming nonionic surfactants are preferably used, in particular alkoxylated, especially ethoxylated, low-foaming nonionic surfactants.
  • the automatic dishwashing detergents contain nonionic surfactants from the group of the alkoxylated alcohols.
  • nonionic surfactants which have a melting point above room temperature.
  • Nonionic (s) surfactants having a melting point above 20 ° C, preferably above 25 ° C, more preferably between 25 and 60 ° C and especially between 26.6 and 43.3 ° C, is / are particularly preferred.
  • surfactants come from the groups of alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols and mixtures of these surfactants with structurally complicated surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene ((PO / EO / PO) surfactants).
  • Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
  • nonionic surfactants are those which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before a block of the other groups follows.
  • R2 R3 in which R is a straight-chain or branched, saturated or mono- or polyunsaturated Ce-24-alkyl or alkenyl radical; each group R 2 or R 3 is independently selected from -Ch, -CH 2 CH 3, -CH 2 CH 2 -CH 3, CH (CH 3) 2 and the indices w, x, y, z independently represent integers from 1 to 6.
  • nonionic surfactants having a C9-alkyl group having 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units followed by 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units.
  • Preferred nonionic surfactants here are those of the general formula
  • R is -CH (OH) CH 2 O- (AO) w- (A'0) x- (A "0) y - (A '" 0) z R 2 in which
  • R is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24-alkyl or alkenyl radical
  • R 2 is H or a linear or branched hydrocarbon radical having 2 to 26 carbon atoms
  • A, ⁇ ', A "and A'” independently represent a radical from the group
  • w, x, y and z are values between 0.5 and 120, where x, y and / or z can also be 0.
  • poly (oxyalkylated) nonionic surfactants which, according to the formula R 0 [CH 2 CH 2 OCH 2 CH (OI-l) R 2 , in addition to a radical R, which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having from 2 to 30 carbon atoms, preferably having from 4 to 22 carbon atoms, furthermore having a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 having 1 to 30 carbon atoms, where x is between 1 and 90, preferably Values between 30 and 80 and especially for values between 30 and 60 stands.
  • R which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having from 2 to 30 carbon atoms, preferably having from 4 to 22 carbon atoms, furthermore having a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 having 1 to 30 carbon atoms, where x is between 1 and 90
  • surfactants of the formula R 0 [CH 2 CH (CH 3) O] x [CH 2 CH 2 O] yCH 2 CH (OH) R 2 in which R is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof, R 2 is a linear one or branched Hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1, 5 and y is a value of at least 15 stands.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 0 [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] jOR 2 where R and R 2 are linear or branched , saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n-butyl, 2-butyl or 2-methyl 2-butyl radical, x are values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5.
  • each R 3 in the above formula R 0 [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] jOR 2 may be different.
  • R and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, with radicals having 8 to 18 carbon atoms being particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x> 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been selected here by way of example and may well be greater, the range of variation increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R ⁇ R 2 and R 3 is as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • Particularly preferred are surfactants in which the radicals R and R 2 have 9 to 14 carbon atoms, R 3 stands for H and x assumes values of 6 to 15.
  • nonionic surfactants of the general formula have proven to be particularly effective
  • R is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24-alkyl or alkenyl radical
  • R 2 is a linear or branched hydrocarbon radical having 2 to 26 carbon atoms
  • A is a radical from the group CH 2 CH 2 , CH 2 CH 2 CH 2 , CH 2 CH (CH 3 ), preferably CH 2 CH 2 , and
  • w stands for values between 1 and 120, preferably 10 to 80, in particular 20 to 40
  • nonionic surfactants include, for example, the C4-22 fatty alcohol (EO) io-so-2-hydroxyalkyl ethers, in particular also the C8-12 fatty alcohol (EO) 22-2-hydroxydecyl ethers and the C4-22 fatty alcohol (EO) 4o 8o-2-hydroxyalkyl ethers.
  • compositions described herein which comprise at least one nonionic surfactant, preferably a nonionic surfactant from the group of hydroxy mixed ethers, contain the surfactant in various embodiments in an amount based on the total weight of the composition of at least 5 wt.%, Preferably at least 10 wt. %. In specific embodiments, the amount may be more than 10% by weight, for example 1 1-15% by weight.
  • the amounts used per application may be in the range of 1 to 2-10 g / job, preferably in the range of 2 to 5 g / job.
  • Suitable anionic surfactants in the washing or cleaning agents are all anionic surface-active substances. These are characterized by a water-solubilizing, anionic group such as.
  • a carboxylate As a carboxylate, sulfate, sulfonate or phosphate group and a lipophilic alkyl group having about 8 to 30 carbon atoms.
  • glycol or polyglycol ether groups, ester, ether and amide groups and hydroxyl groups may be present in the molecule.
  • Suitable anionic surfactants are preferably present in the form of the sodium, potassium and ammonium as well as the mono-, di- and trialkanolammonium salts having 2 to 4 C atoms in the alkanol group.
  • Preferred anionic surfactants in the detergents or cleaners are alkyl sulfates, alkyl polyglycol ether sulfates and ether carboxylic acids having 10 to 18 C atoms in the alkyl group and up to 12 glycol ether groups in the molecule.
  • washing or cleaning agents used according to the invention comprise at least one surfactant of the formula
  • R is a linear or branched, substituted or unsubstituted alkyl, aryl or alkylaryl radical, preferably a linear, unsubstituted alkyl radical, more preferably a fatty alcohol radical.
  • Preferred radicals R are selected from decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl radicals and mixtures thereof, where the representatives with even number of carbon atoms are preferred.
  • radicals R are derived from C 12 -C 18 -fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or C 10 -C 20 oxo alcohols.
  • AO represents an ethylene oxide (EO) or propylene oxide (PO) moiety, preferably an ethylene oxide moiety.
  • the index n stands for an integer from 1 to 50, preferably from 1 to 20 and especially from 2 to 10. Most preferably, n stands for the numbers 2, 3, 4, 5, 6, 7 or 8.
  • X stands for a monovalent cation or the nth part of an n-valent cation, the alkali metal ions are preferred, and Na + or K + including Na, with Na + being extremely preferred.
  • Other cations X + can be selected from NhV, Mn 2+ , and mixtures thereof.
  • particularly preferred detergents or cleaners contain at least one anionic surfactant selected from fatty alcohol ether sulfates of the formula A-1 O
  • detergents or cleaners additionally or alternatively contain at least one surfactant of the formula
  • R 3 is a linear or branched, substituted or unsubstituted alkyl, aryl or alkylaryl radical and the grouping -A- for -O- or a chemical bond.
  • certain radicals R 3 are preferred.
  • R 3 is preferably a linear, unsubstituted alkyl radical, more preferably a fatty alcohol radical.
  • Preferred radicals R are selected from decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl radicals and mixtures thereof, where the representatives with even number of carbon atoms are preferred.
  • Particularly preferred radicals R are derived from C 12 -C 18 -fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or C 10 -C 20 oxo alcohols.
  • Y stands for a monovalent cation or the n-th part of an n-valent cation, the alkali metal ions being preferred, and Na + or K + being preferred, Na + being extremely preferred.
  • Other cations Y + may be selected from NH 4 + , Zn 2+ , V 2 Mg 2+ , Y 2 Ca 2+ , Y 2 Mn 2+ , and mixtures thereof.
  • R 3 is preferably a linear or branched unsubstituted alkylaryl radical.
  • X is a monovalent cation or the nth part of an n-valent cation, the alkali metal ions being preferred, and Na + or K + being preferred, Na + being extremely preferred.
  • Other cations X + can be selected from NhV, Mn 2+ , and mixtures thereof.
  • Such highly preferred surfactants are selected from linear or branched alkylbenzenesulfonates of the formula
  • R ' and R " together contain from 9 to 19, preferably from 1 to 15, and in particular from 1 to 13, carbon atoms
  • a particularly preferred representative can be described by the formula:
  • Suitable amphoteric surfactants are, for example, betaines of the formula (R iii ) (R iv ) (R v ) N + CH 2 COO " , in which R i is an alkyl radical optionally interrupted by hetero atoms or heteroatom groups having 8 to 25, preferably 10 to 21 carbon atoms and R iv as well R v are identical or different alkyl radicals having 1 to 3 carbon atoms, in particular Cio-Cis-alkyl dimethylcarboxymethylbetain and Cn-Ci7-alkylamidopropyl-dimethylcarboxymethylbetain.
  • Suitable cationic surfactants include the quaternary ammonium compounds of the formula (R vi ) (R vii ) (R viii ) (R ix ) N + X " , in which R vi to R ix for four identical or different, in particular two long and two short-chain, alkyl radicals and X "are an anion, in particular a halide ion, for example, didecyl-dimethyl-ammonium chloride, alkyl-benzyl-didecyl-ammonium chloride and mixtures thereof.
  • quaternary surface-active compounds in particular having a sulfonium, phosphonium, iodonium or arsonium group, which are also known as antimicrobial agents.
  • the agent can be designed with an antimicrobial effect or its possibly existing antimicrobial effect due to other ingredients can be improved.
  • the content of cationic and / or amphoteric surfactants is preferably less than 6% by weight, preferably less than 4% by weight, very particularly preferably less than 2% by weight and in particular less than 1% by weight. %. Automatic dishwashing detergents containing no cationic or amphoteric surfactants are particularly preferred.
  • Suitable builders which may be present in the washing or cleaning agent are in particular silicates, aluminum silicates (in particular zeolites), carbonates, salts of organic di- and polycarboxylic acids and mixtures of these substances.
  • crystalline layered silicates of general formula NaMSix02x + i ⁇ y H2O can be used wherein M is sodium or hydrogen, x is a number from 1, 9 to 22, preferably from 1: 9 to 4, particularly preferred values for x being 2, 3 or 4, and y is a number from 0 to 33, preferably from 0 to 20.
  • the crystalline tikformigen silicates of the formula NaMSix02x + i ⁇ y H2O are sold, for example, by the company Clariant GmbH (Germany) under the trade name Na-SKS.
  • silicates Na-SKS-1 (Na 2 Si 2 2045 ⁇ x H 2 O, kenyaite), Na-SKS-2 (Na 2 Si 4 O 29 ⁇ x H 2 O, magadiite), Na-SKS-3 (Na 2 Si 8 0i7 ⁇ x H2O) or Na-SKS-4 (Na2Si409 ⁇ x H2O, makatite).
  • crystalline phyllosilicates of the formula x 02x + i are NaMSi ⁇ y H2O, where x is the second Specifically, both .beta.- and ⁇ -sodium Na2Si20s ⁇ y H2O, and further especially Na-SKS-5 (a-Na 2 Si 2 05), Na-SKS-7 (.beta.-Na2 Si2 05, natrosilite) Na-SKS-9 (NaHSi 2 0 5 ⁇ H2O), Na-SKS-10 (NaHSi 2 0 5 - 3 H2O, kanemite), Na-SKS-1 1 (t-Na 2 Si 2 05) and Na-SKS -13 (NaHSi 2 0 5 ), but especially Na-SKS-6 (5-Na 2 Si 2 O) is preferred.
  • Na-SKS-5 a-Na 2 Si 2 05
  • Na-SKS-7 .beta.-Na2 Si2 05
  • Machine dishwashing detergents preferably contain a weight proportion of the crystalline silicate of the formula NaMSi x technikformigen 02x + y i ⁇ H2O of 0, 1 to 20 wt .-%, preferably from 0.2 to 15 wt .-% and in particular from 0.4 to 10 Wt .-%, each based on the total weight of these agents.
  • amorphous sodium silicates having a modulus Na 2 O: SiO 2 of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which are preferably delayed in dissolution and secondary wash properties.
  • the dissolution delay compared to conventional amorphous sodium silicates can in various ways, for example by surface treatment, compounding, compaction / densification or by over-drying.
  • amorphous is understood to mean that the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle , cause.
  • Alkalimetallphosphate is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric (HP03) n and orthophosphoric H3PO4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • phosphates are the pentasodium triphosphate, NasPsO-io (sodium tripolyphosphate) and the corresponding potassium salt pentapotassium triphosphate, K5P3O10 (potassium tripolyphosphate) and corresponding mixed salts (sodium potassium tripolyphosphates).
  • the agents are phosphate-free.
  • phosphates are used as washing or cleaning substances in machine dishwashing detergent in the present application
  • preferred agents comprise this phosphate (s), preferably alkali metal phosphate (s), particularly preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate ), in amounts of 5 to 80 wt .-%, preferably from 15 to 75 wt .-% and in particular from 20 to 70 wt .-%, each based on the weight of the automatic dishwashing detergent.
  • the cleaning agents may contain, in particular, phosphonates as a further builder.
  • the phosphonate compound is preferably a hydroxyalkane and / or aminoalkane phosphonate used.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs.
  • Phosphonates are contained in the compositions preferably in amounts of 0.1 to 10 wt .-%, in particular in amounts of 0.5 to 8 wt .-%, each based on the total weight of the cleaning agent.
  • alkali carriers are, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogencarbonates, alkali metal sesquicarbonates, the alkali silicates, alkali metal silicates mentioned, and mixtures of the abovementioned substances, preference being given for the purposes of this invention to using the alkali metal carbonates, in particular sodium carbonate, sodium hydrogencarbonate or sodium sesquicarbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate and sodium disilicate.
  • the optional alkali metal hydroxides are preferably only in small amounts, preferably in amounts below 10 wt .-%, preferably below 6 wt .-%, more preferably below 4 % By weight and in particular below 2% by weight, in each case based on the total weight of the automatic dishwashing detergent.
  • Particularly preferred are agents which, based on their total weight, contain less than 0.5% by weight and in particular no alkali metal hydroxides.
  • the cleaning agents of the invention may further contain a sulfopolymer.
  • the proportion by weight of the sulfopolymer in the total weight of the cleaning agent according to the invention is preferably from 0.1 to 20 wt .-%, in particular from 0.5 to 18 wt .-%, particularly preferably 1, 0 to 15 wt .-%, in particular from 4 to 14 wt .-%, especially from 6 to 12 wt .-%.
  • the sulfopolymer is typically employed in the form of an aqueous solution, the aqueous solutions typically containing from 20 to 70 weight percent, more preferably from 30 to 50 weight percent, preferably from about 35 to 40 weight percent sulfopolymers.
  • the sulfopolymer used is preferably a copolymeric polysulfonate, preferably a hydrophobically modified copolymeric polysulfonate.
  • copolymers may have two, three, four or more different monomer units.
  • Preferred copolymeric polysulfonates contain not only sulfonic acid group-containing monomer (s) but also at least one monomer selected from the group consisting of unsaturated carboxylic acids.
  • unsaturated carboxylic acids are acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, ⁇ -cyanoacrylic acid, crotonic acid, ⁇ -phenyl-acrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, methylenemalonic acid, sorbic acid, cinnamic acid or mixtures thereof. It goes without saying that it is also possible to use the unsaturated dicarboxylic acids.
  • Particularly preferred monomers containing sulfonic acid groups are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3 Methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propenylsulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 3-sulfo - Propylmethacrylat, sulfomethacrylamide, sulfomethylmethacrylamide and mixtures of said acids or their water-
  • the sulfonic acid groups may be wholly or partially in neutralized form, i. the acidic acid of the sulfonic acid group in some or all sulfonic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • partially or fully neutralized sulfonic acid-containing copolymers is preferred according to the invention.
  • the monomer distribution of the copolymers preferably used according to the invention in the case of copolymers containing only monomers containing carboxylic acid groups and monomers containing sulfonic acid groups is preferably from 5 to 95% by weight, more preferably from 50 to 90% by weight of the sulfonic acid group-containing monomer. % and the proportion of the carboxylic acid group-containing monomer 10 to 50 wt .-%, the monomers are hereby preferably selected from the aforementioned.
  • the molar mass of the sulfo copolymers preferably used according to the invention can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred cleaning agents are characterized in that the copolymers have molecular weights of 2000 to 200,000 gmol -1 , preferably from 4000 to 25,000 gmol and in particular from 5000 to 15,000 gmol -1 .
  • organic cobuilders are in particular polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders and the already mentioned above as builders phosphonates. These classes of substances are described below.
  • Useful organic builders are, for example, the polycarboxylic acids which can be used in the form of the free acid and / or their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures thereof.
  • NTA nitrilotriacetic acid
  • the free acids also typically have the property of an acidifying component and thus also serve to set a lower and milder pH of the automatic dishwashing detergents.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • citric acid and / or citrates in these compositions has proved to be particularly advantageous for the cleaning and rinsing performance of agents according to the invention. Therefore, according to the invention, preference is given to automatic dishwasher detergents, characterized in that the automatic dishwashing agent contains citric acid or a salt of citric acid and the weight proportion of citric acid or of the salt of citric acid is preferably more than 10% by weight, preferably more than 15% by weight and in particular between 20 and 40 wt .-% is.
  • phosphate-free builders are aminocarboxylic acids and / or their salts. Particularly preferred members of this class are methylglycinediacetic acid (MGDA) or its salts, and glutamic diacetic acid (GLDA) or its salts or ethylenediaminediacetic acid or its salts (EDDS).
  • MGDA methylglycinediacetic acid
  • GLDA glutamic diacetic acid
  • EDDS ethylenediaminediacetic acid or its salts
  • the content of these aminocarboxylic acids or their salts may for example be between 0.1 and 15% by weight, preferably between 0.5 and 10% by weight and in particular between 0.5 and 6% by weight.
  • Aminocarboxylic acids and their salts can be used together with the abovementioned builders, in particular also with the phosphate-free builders.
  • the group of polymers includes, in particular, the washing or cleaning-active polymers, for example the rinse aid polymers and / or polymers which act as softeners.
  • cationic, anionic and amphoteric polymers can be used in automatic dishwashing detergents in addition to nonionic polymers.
  • amphoteric polymers also have, in addition to a positively charged group in the polymer chain, also negatively charged groups or monomer units. These groups may be, for example, carboxylic acids, sulfonic acids or phosphonic acids.
  • Preferred useful amphoteric polymers are selected from the group of the alkylacrylamide / acrylic acid copolymers, the alkylacrylamide / methacrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid copolymers, the alkylacrylamide / acrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / methacrylic acid / alkylaminoalkyl (meth) - acrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkylacrylamide / alkymethacrylate / alkylaminoethylmethacrylate / alkylmethacrylate copolymers and the copolymers of unsaturated carboxylic acids, cationically derivatized unsaturated carboxylic acids and optionally further ionic or nonion
  • Preferred zwitterionic polymers are from the group of acrylamidoalkyl trialkyl ammonium chloride / acrylic acid copolymers and their alkali metal and ammonium salts, the acrylamidoalkyltrialkylammonium chloride / methacrylic acid copolymers and their alkali metal and ammonium salts and the Methacroylethylbetain / methacrylate copolymers.
  • “Cationic polymers” are polymers which carry a positive charge in the polymer molecule, which can be realized, for example, by (alkyl) ammonium groups or other positively charged groups present in the polymer chain.
  • Particularly preferred cationic polymers originate from the groups of the quaternized cellulose derivatives, the polysiloxanes with quaternary groups, the cationic guar derivatives, the polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic acid, the copolymers of vinylpyrrolidone with quaternized derivatives of dialkylamino acrylate and methacrylate, the vinylpyrrolidone-Methoimidazoliniumchlorid copolymers, the quaternized polyvinyl alcohols or the polymers listed under the INCI names Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27.
  • the enzyme preparations or enzyme compositions of the invention contain at least one protease and optionally one or more other enzymes.
  • suitable enzymes include, but are not limited to, amylases, lipases, hemicellulases, cellulases, perhydrolases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents, which are preferably used accordingly.
  • Agents according to the invention preferably contain enzymes in total amounts of from 1 ⁇ 10 6 to 5% by weight, based on active protein. The protein concentration can help with known methods, for example the BCA method or the biuret method.
  • proteases are among the most technically important enzymes of all. For detergents and cleaners, they are the longest established and contained in virtually all modern, powerful detergents and cleaners enzymes. They cause the degradation of protein-containing stains on the items to be cleaned. Of these, in turn, proteases of the subtilisin type (subtilases, subtilopeptidases, EC 3.4.21.62) are particularly important, which are due to the catalytically active amino acids serine proteases. They act as nonspecific endopeptidases and hydrolyze any acid amide linkages that are internal to peptides or proteins. Their pH optimum is usually in the clearly alkaline range.
  • Subtilases Subtilisin-like Proteases
  • R. Siezen pages 75-95 in "Subtilisin enzymes", edited by R. Bott and C. Betzel, New York, 1996.
  • Subtilases are naturally occurring formed by microorganisms. Of these, especially the subtilisins formed and secreted by Bacillus species are to be mentioned as the most important group within the subtilases.
  • subtilisin-type proteases preferably used in detergents and cleaners are the subtilisins BPN 'and Carlsberg, the protease PB92, the subtilisins 147 and 309, the protease from Bacillus lentus, in particular from Bacillus lentus DSM 5483, subtilisin DY and the the subtilases, but not the subtilisins in the narrower sense attributable enzyme thermitase, proteinase K and the proteases TW3 and TW7, as well as variants of said proteases, which have a relation to the parent protease modified amino acid sequence.
  • Proteases are selectively or randomly modified by methods known from the prior art and thus optimized, for example, for use in detergents and cleaners. These include point mutagenesis, deletion or insertion mutagenesis or fusion with other proteins or protein parts. Thus, correspondingly optimized variants are known for most proteases known from the prior art.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from ⁇ . amyloliquefaciens, from ⁇ . stearothermophilus, from Aspergillus niger and A. oryzae and the improved for use in detergents developments of the aforementioned amylases. Furthermore, for this purpose, the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and cyclodextrin glucanotransferase (CGTase) from ⁇ . agaradherens (DSM 9948).
  • lipases or cutinases are also usable according to the invention.
  • lipases or cutinases include, for example, those originally from Humicola lanuginosa (Thermomyces lanuginosus), or improved lipases, in particular those with the amino acid exchange D96L.
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • a protein and / or enzyme may be particularly protected during storage against damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Detergents may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • Cleaning-active proteases and amylases are generally not provided in the form of the pure protein but rather in the form of stabilized, storage and transportable preparations.
  • Such prefabricated preparations include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, low in water and / or added with stabilizers or further auxiliaries.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • a preferably natural polymer or in the form of capsules for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • in superimposed layers may additionally contain other active ingredients, such as stabilizers, emulsifiers, pigments, bleaches or dyes be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • the enzyme protein forms only a fraction of the total weight of conventional enzyme preparations.
  • Protease and amylase preparations preferably used according to the invention contain between 0.1 and 40% by weight, preferably between 0.2 and 30% by weight, more preferably between 0.4 and 20% by weight and in particular between 0, 8 and 10 wt .-% of the enzyme protein.
  • detergents which, based in each case on their total weight, contain 0.1 to 12% by weight, preferably 0.2 to 10% by weight and in particular 0.5 to 8% by weight, of enzyme preparations.
  • compositions described herein may also include enzyme stabilizers.
  • stabilizers are reversible protease inhibitors.
  • Benzamidine hydrochloride, borax, boric acids, boronic acids or their salts or esters are frequently used for this purpose, including, in particular, derivatives with aromatic groups, for example ortho, meta or para-substituted phenylboronic acids, in particular 4-formylphenylboronic acid, or the salts or Esters of the compounds mentioned.
  • peptide aldehydes that is oligopeptides with a reduced C-terminus, especially those of 2 to 50 monomers are used for this purpose.
  • peptidic reversible protease inhibitors include ovomucoid and leupeptin.
  • specific, reversible peptide inhibitors for the protease subtilisin and fusion proteins from proteases and specific peptide inhibitors are suitable.
  • enzyme stabilizers are amino alcohols such as mono-, di-, triethanol- and -propanolamine and mixtures thereof, aliphatic carboxylic acids up to C12, such as succinic acid, other dicarboxylic acids or salts of said acids. End-capped fatty acid amide alkoxylates are also suitable for this purpose. Certain organic acids used as builders are capable, as disclosed in WO 97/18287, of additionally stabilizing a contained enzyme.
  • Bleaching agents are washing or cleaning substances. Among the compounds which serve as bleaching agents in water H2O2, sodium percarbonate, sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance. Further useful bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and peroxygenic salts or peracids which yield H2O2, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid. It is also possible to use all other inorganic or organic peroxy bleaches known to the person skilled in the art. As bleaching agents according to the invention, the percarbonates and in particular sodium percarbonate are particularly preferred.
  • automatic dishwashing agents which contain from 1 to 35% by weight, preferably from 2.5 to 30% by weight, particularly preferably from 3.5 to 20% by weight and in particular from 5 to 15% by weight of bleaching agent, preferably sodium percarbonate , contain.
  • the automatic dishwashing agents additionally contain at least one bleach activator.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • All of the bleach activators known to the person skilled in the art are multiply acylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT).
  • TAED tetraacetylethylenediamine
  • DADHT 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine
  • acylated glycolurils in particular tetraacetylglycoluril (TAGU)
  • N-acylimides in particular N-nonanoylsuccinimide (NOSI)
  • NOSI N-nonanoylsuccinimide
  • acylated phenolsulfonates in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS) are particularly preferably used.
  • Combinations of conventional bleach activators can also be used.
  • bleach activator TAED according to the invention especially in combination with a percarbonate bleach, preferably sodium percarbonate, is very particularly preferred.
  • bleach activators are preferably used in amounts of up to 10% by weight, in particular from 0.1% by weight to 8% by weight, especially from 2 to 8% by weight and more preferably from 2 to 6% by weight, based in each case on the total weight of bleach activator-containing agents.
  • the pH of the cleaning agent can be adjusted by means of customary pH regulators, the pH value being selected depending on the desired application.
  • the pH is in a range of 5.5 to 10.5, preferably 5.5 to 9.5, more preferably 7 to 9, especially greater than 7, especially in the range 7.5 to 8.5
  • the pH adjusting agents are acids and / or alkalis, preferably alkalis. Suitable acids are in particular organic acids such as acetic acid, citric acid, glycolic acid, lactic acid, succinic acid, adipic acid, malic acid, tartaric acid and gluconic acid or also Sulfamic acid.
  • Suitable bases are selected from the group of alkali and alkaline earth metal hydroxides and carbonates, in particular the alkali metal hydroxides, of which potassium hydroxide and especially sodium hydroxide is preferred.
  • volatile alkali for example in the form of ammonia and / or alkanolamines, which may contain up to 9 carbon atoms in the molecule.
  • the alkanolamine here is preferably selected from the group consisting of mono-, di-, triethanol- and -propanolamine and mixtures thereof.
  • the alkanolamine is preferably contained in agents according to the invention in an amount of from 0.5 to 10% by weight, in particular in an amount of from 1 to 6% by weight.
  • the composition according to the invention may also contain one or more buffer substances (INCI Buffering Agents), usually in amounts of 0.001 to 5 wt .-%. Preference is given to buffer substances which are at the same time complexing agents or even chelating agents (chelating agents, INCI chelating agents).
  • buffer substances are the citric acid or the citrates, in particular the sodium and potassium conduction rates, for example trisodium citrate 2H.sub.2O and tripotassium citrate.RTM.
  • Glass corrosion inhibitors prevent the occurrence of haze, streaks and scratches, but also iridescence of the glass surface of machine-cleaned glasses.
  • Preferred glass corrosion inhibitors come from the group of magnesium and zinc salts and magnesium and zinc complexes.
  • the content of zinc salt in dishwashing agents is preferably between 0.1 to 5 wt.%, Preferably between 0.2 and 4 wt.% And in particular between 0.4 and 3 wt.
  • the content of zinc in oxidized form (calculated as Zn 2+ ) is between 0.01 and 1% by weight, preferably between 0.02 and 0.5% by weight and in particular between 0.04 and 0.2% by weight. -%, in each case based on the total weight of the glass corrosion inhibitor-containing agent.
  • perfume oils or perfumes within the scope of the present invention, individual fragrance compounds, e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used. Preferably, however, mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures such as are available from vegetable sources, e.g. Pine, citrus, jasmine, patchouli, rose or ylang-ylang oil.
  • preservatives may be included in the compositions. Suitable examples are preservatives from the groups of alcohols, aldehydes, antimicrobial acids and / or their salts, carboxylic acid esters, acid amides, phenols, phenol derivatives, diphenyls, diphenylalkanes, urea derivatives, oxygen, nitrogen acetals and formals, benzamidines, isothiazoles and derivatives thereof such as isothiazolines and isothiazolinones, phthalimide derivatives, pyridine derivatives, antimicrobial surface-active compounds, guanidines, antimicrobial amphoteric compounds, quinolines, 1, 2-dibromo-2,4-dicyanobutane, iodo-2-propynyl-butyl-carbamate, iodine, iodophores and peroxides.
  • Preferred antimicrobial agents are preferably selected from the group comprising ethanol, n-propanol, i-propanol, 1, 3-butanediol, phenoxyethanol, 1, 2-propylene glycol, glycerol, undecylenic acid, citric acid, lactic acid, benzoic acid, salicylic acid, thymol, 2- Benzyl 4-chlorophenol, 2,2'-methylenebis (6-bromo-4-chlorophenol), 2,4,4'-trichloro-2'-hydroxydiphenyl ether, N- (4-chlorophenyl) -N- ( 3,4-dichlorophenyl) urea, N, N '- (1, 10-decanediyldi-1-pyridinyl-4-ylidene) bis (1-octanamine) -dihydrochloride, N, N'-bis (4- Chlorophenyl) -3,12-diimino-2,4,1,1,
  • particularly preferred preservatives are selected from the group comprising salicylic acid, quaternary surfactants, in particular benzalkonium chloride and isothiazoles and their derivatives such as isothiazolines and isothiazolinones.
  • the formulation of automatic dishwashing agents described herein can be carried out in different ways.
  • the agents may be in solid or liquid form as well as in a combination of solid and liquid forms. Powder, granules, extrudates, compacts, in particular tablets, are particularly suitable as firm supply forms.
  • the liquid supply forms based on water and / or organic solvents may be thickened, in the form of gels.
  • the agents can be formulated in the form of single-phase or multi-phase products. The individual phases of multiphase agents may have the same or different states of matter.
  • the dishwashing detergents can be present as shaped bodies.
  • disintegration aids so-called tablet disintegrants
  • tablet disintegrants or disintegrants are meant excipients which ensure the rapid disintegration of tablets in water or other media and for the rapid release of the active ingredients.
  • Desintegration aids may preferably be used in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight, based in each case on the total weight of the disintegration assistant-containing agent.
  • the automatic dishwashing agents described herein are preferably prefabricated into dosage units. These metering units preferably comprise the necessary for a cleaning cycle amount of washing or cleaning-active substances. Preferred metering units have a weight between 12 and 30 g, preferably between 14 and 26 g and in particular between 16 and 22 g.
  • the volume of the aforementioned metering units and their spatial form are selected with particular preference so that a metering of the prefabricated units is ensured via the metering chamber of a dishwasher.
  • the volume of Dosage unit is therefore preferably between 10 and 35 ml, preferably between 12 and 30 ml.
  • the automatic dishwashing agents in particular the prefabricated metering units, have a water-soluble coating, with particular preference.
  • the water-soluble coating is preferably formed from a water-soluble film material selected from the group consisting of polymers or polymer blends.
  • the wrapper may be formed of one or two or more layers of the water-soluble film material.
  • the water-soluble film material of the first layer and the further layers, if present, may be the same or different. Particularly preferred are films which, for example, can be glued and / or sealed to packages such as hoses or cushions after being filled with an agent.
  • the water soluble package may have one or more chambers.
  • the agent may be contained in one or more chambers, if any, of the water soluble envelope.
  • the amount of agent preferably corresponds to the full or half dose needed for a rinse.
  • the water-soluble coating contains polyvinyl alcohol or a polyvinyl alcohol copolymer.
  • Water-soluble coatings containing polyvinyl alcohol or a polyvinyl alcohol copolymer have a good stability with a sufficiently high water solubility, in particular cold water solubility on.
  • Suitable water-soluble films for producing the water-soluble coating are preferably based on a polyvinyl alcohol or a polyvinyl alcohol copolymer whose molecular weight is in the range from 10,000 to 1,000,000 gmo, preferably from 20,000 to 500,000 gmo, more preferably from 30,000 to 100,000 gmor and especially from 40,000 to 80,000 gmol lies.
  • polyvinyl alcohol is usually carried out by hydrolysis of polyvinyl acetate, since the direct synthesis route is not possible.
  • polyvinyl alcohol copolymers which are prepared from correspondingly polyvinyl acetate copolymers. It is preferred if at least one layer of the water-soluble coating comprises a polyvinyl alcohol whose degree of hydrolysis makes up 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%.
  • a polymer selected from the group comprising (meth) acrylic acid-containing (co) polymers, polyacrylamides, oxazoline polymers, polystyrene sulfonates, a polymer suitable for producing the water-soluble coating polyvinyl alcohol-containing Polyurethanes, polyesters, polyethers, polylactic acid or mixtures of the above polymers may be added.
  • a preferred additional polymer is polylactic acids.
  • Preferred polyvinyl alcohol copolymers include, in addition to vinyl alcohol, dicarboxylic acids as further monomers.
  • Suitable dicarboxylic acids are itaconic acid, malonic acid, succinic acid and mixtures thereof, with itaconic acid being preferred.
  • polyvinyl alcohol copolymers include, in addition to vinyl alcohol, an ethylenically unsaturated carboxylic acid, its salt or its esters.
  • Such polyvinyl alcohol copolymers particularly preferably contain, in addition to vinyl alcohol, acrylic acid, methacrylic acid, acrylates, methacrylates or mixtures thereof.
  • the film material contains further additives.
  • the film material may contain, for example, plasticizers such as dipropylene glycol, ethylene glycol, diethylene glycol, propylene glycol, glycerol, sorbitol, mannitol or mixtures thereof.
  • Further additives include, for example, release aids, fillers, crosslinking agents, surfactants, antioxidants, UV absorbers, antiblocking agents, anti-sticking agents or mixtures thereof.
  • Suitable water-soluble films for use in the water-soluble casings of the water-soluble packaging according to the invention are films sold by the company MonoSol LLC, for example under the designation M8630, C8400 or M8900.
  • Other suitable films include films named Solublon® PT, Solublon® GA, Solublon® KC or Solublon® KL from Aicello Chemical Europe GmbH or the films VF-HP from Kuraray.
  • the corresponding use of the automatic dishwasher detergents according to the invention is likewise an object of the invention.
  • the invention likewise relates to a dishwashing process, in particular a machine dishwashing process, in which a dishwashing detergent according to the invention is used.
  • the subject matter of the present application is therefore furthermore a process for the cleaning of dishes in a dishwashing machine, in which the agent according to the invention is metered into the interior of a dishwasher during the passage of a dishwashing program before the main wash cycle or during the main wash cycle.
  • the metering or the entry of the agent according to the invention into the interior of the dishwasher can be done manually, but preferably the agent is metered by means of the metering chamber into the interior of the dishwasher.
  • Example 1 Various formulations were prepared according to the following table and pressed into tablets weighing 20 g. The quantities are in wt .-% of the active ingredient.
  • E1 is a composition of the invention containing the PE / AA copolymer
  • V1 is a conventional commercial formulation
  • V2 is a commercial formulation without clear rinsing agents.
  • V3 corresponds to V2, to which a Cio-12 alcohol with 5 EO / 5 PO units was added as rinse aid surfactant.
  • PE-AA copolymer (poly) ethylene acrylic acid copolymer according to the invention
  • Modified polycarboxylate Sokalan HP 1 1
  • Example 2 rinse test
  • Rinse rinses based on the visual appearance of the dry items to be washed (porcelain, glasses, plastic parts and stainless steel) are assigned as parameters.
  • a tablet is dosed with the above recipe and 100 g of dirt are dosed per wash to simulate a normally soiled load.
  • the filming is determined in a Bosch SMS 68M12 dishwasher with the program 50 ° C Eco time-shortened. Water hardness 21 ° dH. After completion of the rinse cycle, the machine is fully opened for 30 minutes and then the clear rinse effect is visually determined in the black box (black-painted room, D6500 daylight lamp). On the crockery and cutlery remaining dried water drops, streaks, coverings and films are scored on a scale of 1 - 10. 10 means no movies, 1 means strong filming.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Detergent Compositions (AREA)

Abstract

Die vorliegende Erfindung betrifft Geschirrspülmittel mit verbesserter Klarspülleistung, enthaltend bezogen auf das Gesamtgewicht des Geschirrspülmittels 0,1 bis 25,0 Gew eines Copolymers erhältlich durch Polymerisation von 70-95 mol-% mindestens eines C2-4 Alken-Monomers; und 5-30 mol-% mindestens eines ethylenisch ungesättigten C3-8 Carbonsäure-Monomers oder eines Salzes davon, die Verwendung dieser Geschirrspülmittel sowie ein Verfahren zum maschinellen Geschirrspülen unter Verwendung dieser Geschirrspülmittel und die Verwendung der Copolymere zum Verbessern der Klarspülleistung eines Geschirrspülmittels.

Description

Copolymere zur Verbesserung der Klarspülleistung
Die vorliegende Erfindung betrifft Geschirrspülmittel mit verbesserter Klarspülleistung, die Verwendung dieser Geschirrspülmittel sowie ein Verfahren zum maschinellen Geschirrspülen unter Verwendung dieser Geschirrspülmittel.
An maschinell gespültes Geschirr werden heute häufig höhere Anforderungen gestellt als an manuell gespültes Geschirr. So wird auch ein von Speiseresten völlig gereinigtes Geschirr dann als nicht einwandfrei bewertet, wenn es nach dem maschinellen Geschirrspülen noch weißliche, auf Wasserhärte oder anderen mineralischen Salzen beruhende Flecken aufweist, die mangels Netzmittel aus eingetrockneten Wassertropfen stammen. Derartige Flecken- und Schlierenbildung ist prinzipiell auf Oberflächen aller Art (Porzellan, Glas, Kunststoff, Edelstahl), insbesondere jedoch auf Glasoberflächen beobachtbar.
Um glanzklares und fleckenloses Geschirr zu erhalten, werden in Geschirrspülrezepturen Klarspüleragenzien verwendet. Durch eine durch diese Agenzien vermittelte Filmbildung auf dem Geschirr soll das Wasser möglichst vollständig vom Spülgut ablaufen, so dass die Oberflächen am Ende des Spülprogramms rückstandsfrei und makellos glänzend sind. Obwohl die Verwendung derartiger Klarspüler im Stand der Technik bekannt ist, besteht weiterhin Bedarf an Geschirrspülmitteln, die eine verbesserte Klarspülleistung zeigen.
Die der vorliegenden Erfindung zugrunde liegende Aufgabe bestand daher darin, ein Geschirrspülmittel mit verbesserter Klarspülleistung bereitzustellen.
Es wurde nun überraschenderweise gefunden, dass die erfindungsgemäßen Copolymere bei der Verwendung in gängigen Geschirrspülmittelrezepturen eine verbesserte Filmbildung auf Spülgutoberflächen herbeiführen, wodurch das Wasser in einem dünnen, zusammenhängenden Film vom Spülgut ablaufen kann, so dass beim anschließenden Trocknungsvorgang keine Wassertropfen, Streifen oder Filme zurückbleiben. Dadurch wird die Schlierenbildung auf Spülgut, insbesondere Glas, unterdrückt und die Trocknungs- und Klarspülleistung auch bei Niedrigtemperatur-Reinigungsgängen (< 50 °C) deutlich verbessert.
Ein erster Aspekt der vorliegenden Erfindung betrifft daher ein Geschirrspülmittel, insbesondere ein maschinelles Geschirrspülmittel, enthaltend bezogen auf das Gesamtgewicht des Geschirrspülmittels 0, 1 bis 25,0 Gew.-%, insbesondere 0,5 bis 10 Gew.-%, eines Copolymers erhältlich durch Polymerisation von a) 70-95 mol-%, insbesondere 75-92 mol-%, besonders bevorzugt 77-85 mol-%, mindestens eines C2-4 Alken-Monomers, insbesondere Ethylen oder Propylen; und
b) 5-30 mol-%, insbesondere 8-25 mol-%, besonders bevorzugt 15-23 mol-%, mindestens eines ethylenisch ungesättigten C3-8 Carbonsäure-Monomers, insbesondere Acryl- oder Methacrylsäure, oder eines Salzes davon.
Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung eines erfindungsgemäßen Geschirrspülmittels in einem maschinellen Geschirrspülverfahren, insbesondere die Verwendung zur Verbesserung der Klarspülleistung bei der Reinigung von Geschirr in einer automatischen Geschirrspülmaschine.
Noch ein weiterer Gegenstand der Erfindung ist ein maschinelles Geschirrspülverfahren, bei dem ein erfindungsgemäßes Geschirrspülmittel insbesondere zu dem Zweck, die Klarspülleistung zu verbessern, zum Einsatz kommt.
Schließlich ist ebenso die Verwendung eines Copolymers wie oben definiert zur Verbesserung der Klarspülleistung eines maschinellen Geschirrspülmittels Gegenstand der vorliegenden Erfindung.
Diese und weitere Aspekte, Merkmale und Vorteile der Erfindung werden für den Fachmann aus dem Studium der folgenden detaillierten Beschreibung und Ansprüche ersichtlich. Dabei kann jedes Merkmal aus einem Aspekt der Erfindung in jedem anderen Aspekt der Erfindung eingesetzt werden. Ferner ist es selbstverständlich, dass die hierin enthaltenen Beispiele die Erfindung beschreiben und veranschaulichen sollen, diese aber nicht einschränken und insbesondere die Erfindung nicht auf diese Beispiele beschränkt ist. Alle Prozentangaben sind, sofern nicht anders angegeben, Gewichts-%. Numerische Bereiche, die in dem Format„von x bis y" angegeben sind, schließen die genannten Werte ein. Wenn mehrere bevorzugte numerische Bereiche in diesem Format angegeben sind, ist es selbstverständlich, dass alle Bereiche, die durch die Kombination der verschiedenen Endpunkte entstehen, ebenfalls erfasst werden.
„Mindestens ein", wie hierin verwendet, bedeutet 1 oder mehr, d.h. 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder mehr. Bezogen auf einen Inhaltsstoff bezieht sich die Angabe auf die Art des Inhaltsstoffs und nicht auf die absolute Zahl der Moleküle.„Mindestens ein Alken" bedeutet somit beispielsweise mindestens eine Art von Alken, d.h. dass eine Art von Alken oder eine Mischung mehrerer verschiedener Alkene verwendet werden kann. Zusammen mit Gewichtsangaben bezieht sich die Angabe auf alle Verbindungen der angegebenen Art, die in der Zusammensetzung/Mischung enthalten sind, d.h. dass die Zusammensetzung über die angegebene Menge der entsprechenden Verbindungen hinaus keine weiteren Verbindungen dieser Art enthält. Alle Prozentangaben, die im Zusammenhang mit den hierin beschriebenen Zusammensetzungen gemacht werden, beziehen sich, sofern nicht explizit anders angegeben auf Gew.-%, jeweils bezogen auf die betreffende Mischung.
Im Rahmen der vorliegenden Erfindung stehen Fettsäuren bzw. Fettalkohole bzw. deren Derivate - soweit nicht anders angegeben - stellvertretend für verzweigte oder unverzweigte Carbonsäuren bzw. Alkohole bzw. deren Derivate mit vorzugsweise 6 bis 22 Kohlenstoffatomen. Insbesondere sind auch die beispielsweise nach der RoELENschen Oxo-Synthese erhältlichen Oxo-Alkohole bzw. deren Derivate entsprechend einsetzbar.
Wann immer im Folgenden Erdalkalimetalle als Gegenionen für einwertige Anionen genannt sind, so bedeutet das, dass das Erdalkalimetall natürlich nur in der halben - zum Ladungsausgleich ausreichenden - Stoffmenge wie das Anion vorliegt.
Stoffe, die auch als Inhaltsstoffe von kosmetischen Mitteln dienen, werden nachfolgend ggf. gemäß der International Nomenclature Cosmetic Ingredient (INCI)-Nomenklatur bezeichnet. Chemische Verbindungen tragen eine INCI-Bezeichnung in englischer Sprache, pflanzliche Inhaltsstoffe werden ausschließlich nach Linne in lateinischer Sprache aufgeführt, so genannte Trivialnamen wie "Wasser", "Honig" oder "Meersalz" werden ebenfalls in lateinischer Sprache angegeben. Die INCI- Bezeichnungen sind dem International Cosmetic Ingredient Dictionary and Handbook - Seventh Edition (1997) zu entnehmen, das von The Cosmetic, Toiletry, and Fragrance Association (CTFA), 1 101 17th Street, NW, Suite 300, Washington, DC 20036, USA, herausgegeben wird und mehr als 9.000 INCI-Bezeichnungen sowie Verweise auf mehr als 37.000 Handelsnamen und technische Bezeichnungen einschließlich der zugehörigen Distributoren aus über 31 Ländern enthält. Das International Cosmetic Ingredient Dictionary and Handbook ordnet den Inhaltsstoffen eine oder mehrere chemische Klassen (Chemical Classes), beispielsweise Polymerie Ethers, und eine oder mehrere Funktionen (Functions), beispielsweise Surfactants - Cleansing Agents, zu, die es wiederum näher erläutert und auf die nachfolgend ggf. ebenfalls Bezug genommen wird.
Die erfindungsgemäß eingesetzte Copolymer ist erhältlich durch Polymerisation von Alkenen mit ethylenisch ungesättigten Carbonsäuren. Als Alkene sind insbesondere Ethylen, Propylen und Butylen geeignet. Geeignete Carbonsäuremonomere schließen insbesondere Acryl- und Methacrylsäure ein, aber auch Crotonsäure, und Dicarbonsäuren, wie Maleinsäure oder dessen Anhydrid, Itaconsäure und Fumarsäure sind geeignet. Besonders bevorzugt sind Copolymere von Ethylen und Acrylsäure, mit 5-30, insbesondere 8-25, noch bevorzugter 15-23 mol-% Säureanteil. Die Carbonsäure-Monomere können in Form der freien Säure oder in Form ihrer Salze, insbesondere der Alkalimetall- oder Ammoniumsalze eingesetzt werden. Alternativ kann das Copolymer auch nach der Polymerisation mit geeigneten alkalischen Reagenzien ganz oder teilweise neutralisiert werden. Über den Neutralisationsgrad lassen sich beispielsweise die Löslichkeit (in Wasser bzw. wässrigen Lösungsmitteln), der zu erzielende Feststoffanteil und, im Fall einer Dispersion des Polymers, die mittlere Partikelgröße einstellen.
Die Copolymere sind mit im Stand der Technik per se bekannten Polymerisationsverfahren zugänglich. Die Polymerisation ist vorzugsweise eine radikalische Polymerisation, bei der insbesondere Radikalstarter als Initiatoren eingesetzt werden können.
Das Molekulargewicht Mw der eingesetzten Polymere liegt vorzugsweise im Bereich von 10000- 1000000. Die im vorliegenden Text angegebenen Molekulargewichte beziehen sich, soweit nicht anders angegeben, auf das Zahlenmittel des Molekulargewichts (Mn). Das Molekulargewicht Mn kann durch Gelpermeationschromatographie (GPC) gemäß DIN 55672-1 :2007-08 mit THF als Eluent bestimmt werden. Falls nicht anders angegeben, sind die aufgeführten Molekulargewichte solche, die mittels GPC bestimmt wurden. Das Zahlenmittel des Molekulargewichts Mn kann ebenfalls mittels GPC, wie oben angegeben, bestimmt werden.
Die erfindungsgemäß eingesetzten Copolymere sind in den Geschirrspülmitteln bevorzugt mit 0, 1 - 25 Gew.-%, besonders bevorzugt mit 0,5 - 10 Gew.-% und noch bevorzugter mit ungefähr 5,0 Gew.- % bezogen auf das Gesamtgewicht des Geschirrspülmittels enthalten. Absolute Mengen liegen typischerweise im Bereich von 0,1 bis 5 g/job, vorzugsweise im Bereich von 0,1 bis 2 g/job, noch bevorzugter bei ungefähr 1 g/job.
„Ungefähr" oder„ca.", wie hierin im Zusammenhang mit einem Zahlenwert verwendet bezieht sich auf den Zahlenwert ±10 %, vorzugsweise ±5%.
Die erfindungsgemäßen Mittel können mindestens einen weiteren Bestandteil enthalten, vorzugsweise ausgewählt aus der Gruppe bestehend aus Tensiden, insbesondere nichtionischen und/oder anionischen Tensiden, Gerüststoffen, Enzymen, Verdickern, Sequestrierungsmitteln, Elektrolyten, Korrosionsinhibitoren, insbesondere Silberschutzmitteln, Glaskorrosionsinhibitoren, Schauminhibitoren, Farbstoffen, Duftstoffen, Bitterstoffen, und antimikrobiellen Wirkstoffen.
Die hierin beschriebenen Mittel enthalten vorzugsweise mindestens ein nichtionisches Tensid. Als nichtionische Tenside können alle dem Fachmann bekannten nichtionischen Tenside eingesetzt werden.
Als nichtionische Tenside eignen sich beispielsweise Alkylglykoside der allgemeinen Formel RO(G)x, in der R einem primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen entspricht und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4.
Eine weitere Klasse einsetzbarer nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden können, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind die als PHFA bekannten Polyhydroxyfettsäureamide.
Bevorzugt werden allerdings schwachschäumende nichtionische Tenside eingesetzt, insbesondere alkoxylierte, vor allem ethoxylierte, schwachschäumende nichtionische Tenside. Mit besonderem Vorzug enthalten die maschinellen Geschirrspülmittel nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole.
Insbesondere bevorzugt sind nichtionische Tenside, die einen Schmelzpunkt oberhalb Raumtemperatur aufweisen. Nichtionische(s) Tenside mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, ist/sind besonders bevorzugt.
Bevorzugt einzusetzende Tenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen ((PO/EO/PO)-Tenside). Solche (PO/EO/PO)-Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.
Besonders bevorzugte Niotenside sind solche, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier sind nichtionische Tenside der allgemeinen Formel
Ri-0-(C H2-C H2-0)— (C H2-C H-0)-(C H2-C H2-0)r(C H2-C H-O)— H
R2 R3 bevorzugt, in der R für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten Ce-24-Alkyl- oder -Alkenylrest steht; jede Gruppe R2 bzw. R3 unabhängig voneinander ausgewählt ist aus -Ch , -CH2CH3, -CH2CH2-CH3, CH(CH3)2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.
Somit sind insbesondere nichtionische Tenside bevorzugt, die einen C9-is-Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt von 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten aufweisen.
Bevorzugte nichtionische Tenside sind hierbei solche der allgemeinen Formel
R -CH(OH)CH20-(AO)w-(A'0)x-(A"0)y-(A'"0)z-R2, in der
R für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht;
R2 für H oder einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht;
A, Α', A" und A'" unabhängig voneinander für einen Rest aus der Gruppe
-CH2CH2, -CH2CH2-CH2, -CH2-CH(CH3), -CH2-CH2-CH2-CH2, -CH2-CH(CH3)-CH2-, - CH2-CH(CH2-CH3) stehen,
w, x, y und z für Werte zwischen 0,5 und 120 stehen, wobei x, y und/oder z auch 0 sein können.
Bevorzugt werden insbesondere solche endgruppenverschlossene, poly(oxyalkylierten) Niotenside, die, gemäß der Formel R 0[CH2CH20]xCH2CH(OI-l)R2, neben einem Rest R , welcher für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 2 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest R2 mit 1 bis 30 Kohlenstoffatomen aufweisen, wobei x für Werte zwischen 1 und 90, vorzugsweise für Werte zwischen 30 und 80 und insbesondere für Werte zwischen 30 und 60 steht.
Besonders bevorzugt sind Tenside der Formel R 0[CH2CH(CH3)0]x[CH2CH20]yCH2CH(OH)R2, in der R für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1 ,5 sowie y für einen Wert von mindestens 15 steht.
Zur Gruppe dieser nichtionischen Tenside zählen beispielsweise die C2-26 Fettalkohol-(PO)i-(EO)is- 4o-2-hydroxyalkylether, insbesondere auch die Ce-io Fettalkohol-(PO)i-(EO)22-2-hydroxydecylether. Besonders bevorzugt werden weiterhin solche endgruppenverschlossene poly(oxyalkylierten) Niotenside der Formel R 0[CH2CH20]x[CH2CH(R3)0]yCH2CH(OH)R2, in der R und R2 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht, R3 unabhängig voneinander ausgewählt ist aus -CH3, -CH2CH3, -CH2CH2-CH3, -CH(CH3)2, vorzugsweise jedoch für -CH3 steht, und x und y unabhängig voneinander für Werte zwischen 1 und 32 stehen, wobei Niotenside mit R3 = -CH3 und Werten für x von 15 bis 32 und y von 0,5 und 1 ,5 ganz besonders bevorzugt sind.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel R 0[CH2CH(R3)0]x[CH2]kCH(OH)[CH2]jOR2, in der R und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl- , 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x > 2 ist, kann jedes R3 in der oben stehenden Formel R 0[CH2CH(R3)0]x[CH2]kCH(OH)[CH2]jOR2 unterschiedlich sein. R und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C- Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
Wie vorstehend beschrieben, kann jedes R3 in der oben stehenden Formel unterschiedlich sein, falls x > 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)- Gruppen einschließt, oder umgekehrt.
Besonders bevorzugte endgruppenverschlossene poly(oxyalkylierte) Alkohole der oben stehenden Formel weisen Werte von k = 1 und j = 1 auf, so dass sich die vorstehende Formel zu R 0[CH2CH(R3)0]xCH2CH(OH)CH2OR2 vereinfacht. In der letztgenannten Formel sind R\ R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
Als besonders wirkungsvoll haben sich schließlich die nichtionischen Tenside der allgemeinen Formel
R -CH(OH)CH20-(AO)w-R2 erwiesen, in der
R für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht;
R2 für einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht;
- A für einen Rest aus der Gruppe CH2CH2, CH2CH2CH2, CH2CH(CH3), vorzugsweise für CH2CH2 steht, und
w für Werte zwischen 1 und 120, vorzugsweise 10 bis 80, insbesondere 20 bis 40 steht
Zur Gruppe dieser nichtionischen Tenside zählen beispielsweise die C4-22 Fettalkohol-(EO)io-so-2- hydroxyalkylether, insbesondere auch die C8-12 Fettalkohol-(EO)22-2-hydroxydecylether und die C4- 22 Fettalkohol-(EO)4o-8o-2-hydroxyalkylether.
In verschiedenen Ausführungsformen der Erfindung können anstelle der oben definierten endgruppenverschlossenen Hydroxymischether auch die entsprechenden nicht endgruppenverschlossenen Hydroxymischether eingesetzt werden. Diese können den obigen Formeln genügen, wobei R2 aber Wasserstoff ist und R , R3, A, Α', A", A'", w, x, y und z wie oben definiert sind.
Die hierin beschriebenen Mittel, die mindestens ein nichtionisches Tensid, vorzugsweise ein nichtionisches Tensid aus der Gruppe der Hydroxymischether, umfassen, enthalten das Tensid in verschiedenen Ausführungsformen in einer Menge bezogen auf das Gesamtgewicht des Mittels von mindestens 5 Gew.%, vorzugsweise mindestens 10 Gew.%. In konkreten Ausführungsformen kann die Menge mehr als 10 Gew.%, beispielsweise 1 1-15 Gew.% betragen. Die absolut pro Anwendung eingesetzten Mengen können beispielsweise im Bereich von 1 ,2-10 g/job, vorzugsweise im Bereich von 2-5 g/job liegen. Als anionische Tenside eignen sich in den Wasch- oder Reinigungsmitteln alle anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Geeignete anionische Tenside liegen vorzugsweise in Form der Natrium-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe vor.
Bevorzugte anionische Tenside in den Wasch- oder Reinigungsmitteln sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolethergruppen im Molekül.
Bevorzugte erfindungsgemäß eingesetzte Wasch- oder Reinigungsmittel enthalten mindestens ein Tensid der Formel
R -0-(AO)n-S03- X+.
In dieser Formel steht R für einen linearen oder verzweigten, substituierten oder unsubstituierten Alkyl-, Aryl- oder Alkylarylrest, vorzugsweise für einen linearen, unsubstituierten Alkylrest, besonders bevorzugt für einen Fettalkoholrest. Bevorzugte Reste R sind ausgewählt aus Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl-, Eicosylresten und deren Mischungen, wobei die Vertreter mit gerader Anzahl an C-Atomen bevorzugt sind. Besonders bevorzugte Reste R sind abgeleitet von Ci2-Ci8-Fettalkoholen, beispielsweise von Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder von Cio-C2o-Oxoalkoholen.
AO steht für eine Ethylenoxid- (EO) oder Propylenoxid- (PO) Gruppierung, vorzugsweise für eine Ethylenoxidgruppierung. Der Index n steht für eine ganze Zahl von 1 bis 50, vorzugsweise von 1 bis 20 und insbesondere von 2 bis 10. Ganz besonders bevorzugt steht n für die Zahlen 2, 3, 4, 5, 6, 7 oder 8. X steht für ein einwertiges Kation oder den n-ten Teil eines n-wertigen Kations, bevorzugt sind dabei die Alkalimetallionen und darunter Na+ oder K+, wobei Na+ äußerst bevorzugt ist. Weitere Kationen X+ können ausgewählt sein aus NhV, Mn2+, und deren Mischungen.
Zusammenfassend enthalten besonders bevorzugte Wasch- oder Reinigungsmittel mindestens ein anionisches Tensid, ausgewählt aus Fettalkoholethersulfaten der Formel A-1 O
H3C SO3 ~ Na+
(A-1 ) mit k = 1 1 bis 19, n = 2, 3, 4, 5, 6, 7 oder 8. Ganz besonders bevorzugte Vertreter sind Na-Ci2-14 Fettalkoholethersulfate mit 2 EO (k = 1 1-13, n = 2 in Formel A-1 ).
Weitere bevorzugte Wasch- oder Reinigungsmittel enthalten zusätzlich oder alternativ mindestens ein Tensid der Formel
R3-A-S03- Y+.
In dieser Formel steht R3 für einen linearen oder verzweigten, substituierten oder unsubstituierten Alkyl-, Aryl- oder Alkylarylrest und die Gruppierung -A- für -O- oder eine chemische Bindung. In anderen Worten lassen sich durch die vorstehende Formel Sulfat- (A = O) oder Sulfonat- (A = chemische Bindung) -tenside beschreiben. In Abhängigkeit von der Wahl der Gruppierung A sind bestimmte Reste R3 bevorzugt. Bei den Sulfattensiden (A = O) steht R3 vorzugsweise für einen linearen, unsubstituierten Alkylrest, besonders bevorzugt für einen Fettalkoholrest. Bevorzugte Reste R sind ausgewählt aus Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl-, Eicosylresten und deren Mischungen, wobei die Vertreter mit gerader Anzahl an C-Atomen bevorzugt sind. Besonders bevorzugte Reste R sind abgeleitet von Ci2-Ci8-Fettalkoholen, beispielsweise von Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder von Cio-C2o-Oxoalkoholen. Y steht für ein einwertiges Kation oder den n-ten Teil eines n-wertigen Kations, bevorzugt sind dabei die Alkalimetallionen und darunter Na+ oder K+, wobei Na+ äußerst bevorzugt ist. Weitere Kationen Y+ können ausgewählt sein aus NH4 +, Zn2+,V2 Mg2+,Y2 Ca2+,Y2 Mn2+, und deren Mischungen.
Solche besonders bevorzugten Tenside sind ausgewählt aus Fettalkoholsulfaten der Formel mit k = 1 1 bis 19. Ganz besonders bevorzugte Vertreter sind Na-Ci2-14 Fettalkoholsulfate (k = 1 1- 13).
Bei den Sulfonattensiden (A = chemische Bindung), welche gegenüber den Sulfattensiden bevorzugt sind, steht R3 vorzugsweise für einen linearen oder verzweigten unsubstituierten Alkylarylrest. Auch hier steht X für ein einwertiges Kation oder den n-ten Teil eines n-wertigen Kations, bevorzugt sind dabei die Alkalimetallionen und darunter Na+ oder K+, wobei Na+ äußerst bevorzugt ist. Weitere Kationen X+ können ausgewählt sein aus NhV, Mn2+, und deren Mischungen.
Solche äußerst bevorzugten Tenside sind ausgewählt aus linearen oder verzweigten Alkylbenzolsulfonaten der Formel
in der R' und R" zusammen 9 bis 19, vorzugsweise 1 1 bis 15 und insbesondere 1 1 bis 13 C-Atome enthalten. Ein ganz besonders bevorzugter Vertreter lässt sich durch die Formel beschreiben:
An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside eingesetzt werden.
Geeignete Amphotenside sind beispielsweise Betaine der Formel (Riii)(Riv)(Rv)N+CH2COO", in der Ri einen gegebenenfalls durch Heteroatome oder Heteroatomgruppen unterbrochenen Alkylrest mit 8 bis 25, vorzugsweise 10 bis 21 Kohlenstoffatomen und Riv sowie Rv gleichartige oder verschiedene Alkylreste mit 1 bis 3 Kohlenstoffatomen bedeuten, insbesondere Cio-Cis-Alkyl- dimethylcarboxymethylbetain und Cn-Ci7-Alkylamidopropyl-dimethylcarboxymethylbetain.
Geeignete Kationtenside sind u.a. die quartären Ammoniumverbindungen der Formel (Rvi)(Rvii)(Rviii)(Rix)N+ X", in der Rvi bis Rix für vier gleich- oder verschiedenartige, insbesondere zwei lang- und zwei kurzkettige, Alkylreste und X" für ein Anion, insbesondere ein Halogenidion, stehen, beispielsweise Didecyl-dimethyl-ammoniumchlorid, Alkyl-benzyl-didecyl-ammoniumchlorid und deren Mischungen. Weitere geeignete kationische Tenside sind die quaternären oberflächenaktiven Verbindungen, insbesondere mit einer Sulfonium-, Phosphonium-, Jodonium- oder Arsoniumgruppe, die auch als antimikrobielle Wirkstoffe bekannt sind. Durch den Einsatz von quaternären oberflächenaktiven Verbindungen mit antimikrobieller Wirkung kann das Mittel mit einer antimikrobiellen Wirkung ausgestaltet werden bzw. dessen gegebenenfalls aufgrund anderer Inhaltsstoffe bereits vorhandene antimikrobielle Wirkung verbessert werden.
In maschinellen Geschirrspülmitteln, beträgt der Gehalt an kationischen und/oder amphoteren Tensiden vorzugsweise weniger als 6 Gew.-%, bevorzugt weniger als 4 Gew.-%, ganz besonders bevorzugt weniger als 2 Gew.-% und insbesondere weniger als 1 Gew.-%. Maschinelle Geschirrspülmittel, welche keine kationischen oder amphoteren Tenside enthalten, werden besonders bevorzugt.
Als Gerüststoffe, die in dem Wasch- oder Reinigungsmittel enthalten sein können, sind insbesondere Silikate, Aluminiumsilikate (insbesondere Zeolithe), Carbonate, Salze organischer Di- und Polycarbonsäuren sowie Mischungen dieser Stoffe zu nennen.
Vorzugsweise können kristalline schichtförmige Silikate der allgemeinen Formel NaMSix02x+i y H2O eingesetzt werden, worin M Natrium oder Wasserstoff darstellt, x eine Zahl von 1 ,9 bis 22, vorzugsweise von 1 ,9 bis 4, wobei besonders bevorzugte Werte für x 2, 3 oder 4 sind, und y für eine Zahl von 0 bis 33, vorzugsweise von 0 bis 20 steht. Die kristallinen schichtformigen Silikate der Formel NaMSix02x+i y H2O werden beispielsweise von der Firma Clariant GmbH (Deutschland) unter dem Handelsnamen Na-SKS vertrieben. Beispiele für diese Silikate sind Na-SKS-1 (Na2Si22045 x H2O, Kenyait), Na-SKS-2 (Na2Sii4029 x H2O, Magadiit), Na-SKS-3 (Na2Si80i7 x H2O) oder Na-SKS-4 (Na2Si409 x H2O, Makatit). Für die Zwecke der vorliegenden Erfindung besonders geeignet sind kristalline Schichtsilikate der Formel NaMSix02x+i y H2O, in denen x für 2 steht. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na2Si20s y H2O sowie weiterhin vor allem Na-SKS-5 (a-Na2Si205), Na-SKS-7 (ß-Na2Si205, Natrosilit), Na-SKS-9 (NaHSi205 H2O), Na-SKS-10 (NaHSi205 - 3 H2O, Kanemit), Na-SKS-1 1 (t-Na2Si205) und Na-SKS-13 (NaHSi205), insbesondere aber Na-SKS-6 (5-Na2Si20s) bevorzugt.
Maschinelle Geschirrspülmittel enthalten vorzugsweise einen Gewichtsanteil des kristallinen schichtformigen Silikats der Formel NaMSix02x+i y H2O von 0, 1 bis 20 Gew.-%, bevorzugt von 0,2 bis 15 Gew.-% und insbesondere von 0,4 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht dieser Mittel.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na20:Si02 von 1 :2 bis 1 :3,3, vorzugsweise von 1 :2 bis 1 :2,8 und insbesondere von 1 :2 bis 1 :2,6, welche vorzugsweise löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" verstanden, dass die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen, hervorrufen.
Im Rahmen der vorliegenden Erfindung ist es bevorzugt, dass diese(s) Silikat(e), vorzugsweise Alkalisilikate, besonders bevorzugt kristalline oder amorphe Alkalidisilikate, in den Mitteln in Mengen von 3 bis 60 Gew.-%, vorzugsweise von 8 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des maschinellen Geschirrspülmittels, enthalten sind.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- oder Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HP03)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Technisch besonders wichtige Phosphate sind das Pentanatriumtriphosphat, NasPsO-io (Natriumtripolyphosphat) sowie das entsprechende Kaliumsalz Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat) und entsprechende Mischsalze (Natriumkaliumtripolyphosphate). Vorzugsweise sind die Mittel aber phosphatfrei.
Werden im Rahmen der vorliegenden Anmeldung Phosphate als wasch- oder reinigungsaktive Substanzen im maschinellen Geschirrspülmittel eingesetzt, so enthalten bevorzugte Mittel diese(s) Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 15 bis 75 Gew.-% und insbesondere von 20 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des maschinellen Geschirrspülmittels.
Die Reinigungsmittel können als weiteren Gerüststoff insbesondere auch Phosphonate enthalten. Als Phosphonat-Verbindung wird vorzugsweise ein Hydroxyalkan- und/oder Aminoalkanphosphonat eingesetzt. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1 , 1-diphosphonat (HEDP) von besonderer Bedeutung. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Phosphonate sind in den Mitteln vorzugsweise in Mengen von 0, 1 bis 10 Gew.-%, insbesondere in Mengen von 0,5 bis 8 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Reinigungsmittels, enthalten.
Weitere Gerüststoffe sind die Alkaliträger. Als Alkaliträger gelten beispielsweise Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetall- sesquicarbonate, die genannten Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden können. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat. Aufgrund ihrer im Vergleich mit anderen Buildersubstanzen geringen chemischen Kompatibilität mit den übrigen Inhaltsstoffen von maschinellen Geschirrspülmitteln, werden die optionalen Alkalimetallhydroxide bevorzugt nur in geringen Mengen, vorzugsweise in Mengen unterhalb 10 Gew.-%, bevorzugt unterhalb 6 Gew.-%, besonders bevorzugt unterhalb 4 Gew.-% und insbesondere unterhalb 2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des maschinellen Geschirrspülmittels, eingesetzt. Besonders bevorzugt werden Mittel, welche bezogen auf ihr Gesamtgewicht weniger als 0,5 Gew.-% und insbesondere keine Alkalimetallhydroxide enthalten.
Besonders bevorzugt ist der Einsatz von Carbonat(en) und/oder Hydrogencarbonat(en), vorzugsweise Alkalicarbonat(en), besonders bevorzugt Natriumcarbonat, in Mengen von 2 bis 50 Gew.-%, vorzugsweise von 5 bis 40 Gew.-% und insbesondere von 7,5 bis 30 Gew.-%, jeweils bezogen auf das Gewicht des maschinellen Geschirrspülmittels. Besonders bevorzugt werden Mittel, welche bezogen auf das Gewicht des maschinellen Geschirrspülmittels weniger als 20 Gew.-%, vorzugsweise weniger als 17 Gew.-%, bevorzugt weniger als 13 Gew.-% und insbesondere weniger als 9 Gew.-% Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonat(e), besonders bevorzugt Natriumcarbonat enthalten.
Die erfindungsgemäßen Reinigungsmittel können ferner ein Sulfopolymer enthalten. Der Gewichtsanteil des Sulfopolymers am Gesamtgewicht des erfindungsgemäßen Reinigungsmittels beträgt vorzugsweise von 0, 1 bis 20 Gew.-%, insbesondere von 0,5 bis 18 Gew.-%, besonders bevorzugt 1 ,0 bis 15 Gew.-%, insbesondere von 4 bis 14 Gew.-%, vor allem von 6 bis 12 Gew.-%. Das Sulfopolymer wird üblicheweise in Form einer wässrigen Lösung eingesetzt, wobei die wässrigen Lösungen typischerweise 20 bis 70 Gew.-%, insbesondere 30 bis 50 Gew.-%, vorzugsweise etwa 35 bis 40 Gew.-% Sulfopolymere enthalten. Als Sulfopolymer wird vorzugsweise ein copolymeres Polysulfonat, vorzugsweise ein hydrophob modifiziertes copolymeres Polysulfonat, eingesetzt.
Die Copolymere können zwei, drei, vier oder mehr unterschiedliche Monomereinheiten aufweisen. Bevorzugte copolymere Polysulfonate enthalten neben Sulfonsäuregruppen-haltigem(n) Monomer(en) wenigstens ein Monomer aus der Gruppe der ungesättigten Carbonsäuren.
Als ungesättigte Carbonsäure(n) wird/werden mit besonderem Vorzug ungesättigte Carbonsäuren der Formel R (R2)C=C(R3)COOH eingesetzt, in der R bis R3 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
Besonders bevorzugte ungesättigte Carbonsäuren sind Acrylsäure, Methacrylsäure, Ethacrylsäure, α-Chloroacrylsäure, a-Cyanoacrylsäure, Crotonsäure, a-Phenyl-Acrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure, Citraconsäure, Methylenmalonsäure, Sorbinsäure, Zimtsäure oder deren Mischungen. Einsetzbar sind selbstverständlich auch die ungesättigten Dicarbonsäuren.
Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel R5(R6)C=C(R7)-X-S03H bevorzugt, in der R5 bis R7 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit - NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(0)-NH-C(CH3)2-, -C(O)- NH-C(CH3)2-CH2- und -C(0)-NH-CH(CH3)-CH2-.
Unter diesen Monomeren bevorzugt sind solche der Formeln
H2C=CH-X-S03H
in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -Chta, -CH2CH3, -CH2CH2CH3 und -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus - (CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(0)-NH-C(CH3)2-, -C(0)-NH-C(CH3)2-CH2- und -C(0)-NH-CH(CH3)-CH2-.
Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1- propansulfonsäure, 2-Acrylamido-2-propansulfonsäure, 2-Acrylamido-2-methyl-1 - propansulfonsäure, 2-Methacrylamido-2-methyl-1-propansulfonsäure, 3-Methacrylamido-2-hydroxy- propansulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Allyloxybenzolsulfonsäure, Methallyloxybenzolsulfonsäure, 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2- propenl-sulfonsäure, Styrolsulfonsäure, Vinylsulfonsäure, 3-Sulfopropylacrylat, 3-Sulfo- propylmethacrylat, Sulfomethacrylamid, Sulfomethylmethacrylamid sowie Mischungen der genannten Säuren oder deren wasserlösliche Salze.
In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. dass das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Der Einsatz von teil- oder vollneutralisierten sulfonsäuregruppenhaltigen Copolymeren ist erfindungsgemäß bevorzugt.
Die Monomerenverteilung der erfindungsgemäß bevorzugt eingesetzten Copolymere beträgt bei Copolymeren, die nur Carbonsäuregruppen-haltige Monomere und Sulfonsäuregruppen-haltige Monomere enthalten, vorzugsweise jeweils 5 bis 95 Gew.-%, besonders bevorzugt beträgt der Anteil des Sulfonsäuregruppen-haltigen Monomers 50 bis 90 Gew.-% und der Anteil des Carbonsäuregruppen-haltigen Monomers 10 bis 50 Gew.-%, die Monomere sind hierbei vorzugsweise ausgewählt aus den zuvor genannten.
Die Molmasse der erfindungsgemäß bevorzugt eingesetzten Sulfo-Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Reinigungsmittel sind dadurch gekennzeichnet, dass die Copolymere Molmassen von 2000 bis 200.000 gmol ~1 , vorzugsweise von 4000 bis 25.000 gmol und insbesondere von 5000 bis 15.000 gmol-1 aufweisen.
Als organische Cobuilder sind insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder sowie die bereits oben als Gerüststoffe genannten Phosphonate zu nennen. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form der freien Säure und/oder ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Die freien Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH- Wertes der maschinellen Geschirrspülmittel. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als besonders vorteilhaft für die Reinigungs- und Klarspülleistung erfindungsgemäßer Mittel hat sich der Einsatz von Citronensäure und/oder Citraten in diesen Mitteln erwiesen. Erfindungsgemäß bevorzugt werden daher maschinelle Geschirrspülmittel, dadurch gekennzeichnet, dass das maschinelle Geschirrspülmittel Citronensäure oder ein Salz der Citronensäure enthält und das der Gewichtsanteil der Citronensäure oder des Salzes der Citronensäure vorzugsweise mehr als 10 Gew.-%, bevorzugt mehr als 15 Gew.-% und insbesondere zwischen 20 und 40 Gew.-% beträgt.
Eine weitere bedeutende Klasse der phosphatfreien Gerüststoffe stellen Aminocarbonsäuren und/oder ihre Salze dar. Besonders bevorzugte Vertreter dieser Klasse sind Methylglycindiessigsäure (MGDA) oder ihre Salze sowie Glutamindiessigsäure (GLDA) oder ihre Salze oder Ethylendiamindiessigsäure oder ihre Salze (EDDS). Der Gehalt an diesen Aminocarbonsäuren bzw. ihren Salzen kann beispielsweise zwischen 0,1 und 15 Gew.-% bevorzugt zwischen 0,5 und 10 Gew.-% und insbesondere zwischen 0,5 und 6 Gew.-% ausmachen. Aminocarbonsäuren und ihre Salze können zusammen mit den vorgenannten Gerüststoffen, insbesondere auch mit den phosphatfreien Gerüststoffen eingesetzt werden.
Neben den erfindungsgemäßen Polyethylenacrylaten können weitere polymere Verbindungen verwendet werden.
Zur Gruppe der Polymere zählen insbesondere die wasch- oder reinigungsaktiven Polymere, beispielsweise die Klarspülpolymere und/oder als Enthärter wirksame Polymere. Generell sind in maschinellen Geschirrspülmitteln neben nichtionischen Polymeren auch kationische, anionische und amphotere Polymere einsetzbar. „Amphotere Polymere" im Sinne der vorliegenden Erfindung weisen neben einer positiv geladenen Gruppe in der Polymerkette weiterhin auch negativ geladenen Gruppen bzw. Monomereinheiten auf. Bei diesen Gruppen kann es sich z.B. um Carbonsäuren, Sulfonsäuren oder Phosphonsäuren handeln.
Bevorzugte einsetzbare amphotere Polymere stammen aus der Gruppe der Alkylacrylamid/Acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure-Copolymere, der Alkylacrylamid/Acrylsäure/Alkyl- aminoalkyl(meth)acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)- acrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure- Copolymere, der Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat- Copolymere sowie der Copolymere aus ungesättigten Carbonsäuren, kationisch derivatisierten ungesättigten Carbonsäuren und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
Bevorzugt einsetzbare zwitterionische Polymere stammen aus der Gruppe der Acrylamidoalkyl- trialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze, der Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze und der Methacroylethylbetain/Methacrylat-Copolymere.
„Kationische Polymere" sind Polymere, welche eine positive Ladung im Polymermolekül tragen. Diese kann beispielsweise durch in der Polymerkette vorliegende (Alkyl-)Ammoniumgruppierungen oder andere positiv geladene Gruppen realisiert werden. Besonders bevorzugte kationische Polymere stammen aus den Gruppen der quaternierten Cellulose-Derivate, der Polysiloxane mit quaternären Gruppen, der kationischen Guar-Derivate, der polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure, der Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylamino- acrylats und -methacrylats, der Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere, der quaternierter Polyvinylalkohole oder der unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere.
Die Enzymzubereitungen oder Enzymzusammensetzungen der Erfindung enthalten mindestens eine Protease und optional ein oder mehrerer weitere Enzyme. Weitere geeignete Enzyme umfassen, ohne darauf beschränkt zu sein, Amylasen, Lipasen, Hemicellulasen, Cellulasen, Perhydrolasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Erfindungsgemäße Mittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 x 10 6 bis 5 Gew.-% bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren oder dem Biuret-Verfahren bestimmt werden.
Proteasen gehören zu den technisch bedeutendsten Enzymen überhaupt. Für Wasch- und Reinigungsmittel sind sie die am längsten etablierten und in praktisch allen modernen, leistungsfähigen Wasch- und Reinigungsmitteln enthaltenen Enzyme. Sie bewirken den Abbau proteinhaltiger Anschmutzungen auf dem Reinigungsgut. Hierunter sind wiederum Proteasen vom Subtilisin-Typ (Subtilasen, Subtilopeptidasen, EC 3.4.21.62) besonders wichtig, welche aufgrund der katalytisch wirksamen Aminosäuren Serin-Proteasen sind. Sie wirken als unspezifische Endopeptidasen und hydrolysieren beliebige Säureamidbindungen, die im Inneren von Peptiden oder Proteinen liegen. Ihr pH-Optimum liegt meist im deutlich alkalischen Bereich. Einen Überblick über diese Familie bietet beispielsweise der Artikel „Subtilases: Subtilisin-like Proteases" von R. Siezen, Seite 75-95 in „Subtilisin enzymes", herausgegeben von R. Bott und C. Betzel, New York, 1996. Subtilasen werden natürlicherweise von Mikroorganismen gebildet. Hierunter sind insbesondere die von Bacillus- Spezies gebildeten und sezernierten Subtilisine als bedeutendste Gruppe innerhalb der Subtilasen zu erwähnen.
Beispiele für die in Wasch- und Reinigungsmitteln bevorzugt eingesetzten Proteasen vom Subtilisin- Typ sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Protease aus Bacillus lentus, insbesondere aus Bacillus lentus DSM 5483, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7, sowie Varianten der genannten Proteasen, die eine gegenüber der Ausgangsprotease veränderte Aminosäuresequenz aufweisen. Proteasen werden durch aus dem Stand der Technik bekannte Verfahren gezielt oder zufallsbasiert verändert und so beispielsweise für den Einsatz in Wasch- und Reinigungsmitteln optimiert. Dazu gehören Punktmutagenese, Deletions- oder Insertionsmutagenese oder Fusion mit anderen Proteinen oder Proteinteilen. So sind für die meisten aus dem Stand der Technik bekannten Proteasen entsprechend optimierte Varianten bekannt.
Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus ß. amyloliquefaciens, aus ß. stearothermophilus, aus Aspergillus niger und A. oryzae sowie die für den Einsatz in Reinigungsmitteln verbesserten Weiterentwicklungen der vorgenannten Amylasen. Des Weiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus ß. agaradherens (DSM 9948) hervorzuheben.
Erfindungsgemäß einsetzbar sind weiterhin Lipasen oder Cutinasen, insbesondere wegen ihrer Triglycerid-spaltenden Aktivitäten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L.
Weiterhin können Enzyme eingesetzt werden, die unter dem Begriff Hemicellulasen zusammengefasst werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und ß-Glucanasen.
Zur Erhöhung der bleichenden Wirkung können erfindungsgemäß Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) eingesetzt werden. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluss zu gewährleisten (Mediatoren).
Ein Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Reinigungsmittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar.
Reinigungsaktive Proteasen und Amylasen werden in der Regel nicht in Form des reinen Proteins sondern vielmehr in Form stabilisierter, lager- und transportfähiger Zubereitungen bereitgestellt. Zu diesen vorkonfektionierten Zubereitungen zählen beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren oder weiteren Hilfsmitteln versetzt.
Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalienundurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so dass ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
Wie aus der vorherigen Ausführungen ersichtlich, bildet das Enzym-Protein nur einen Bruchteil des Gesamtgewichts üblicher Enzym-Zubereitungen. Erfindungsgemäß bevorzugt eingesetzte Protease- und Amylase-Zubereitungen enthalten zwischen 0, 1 und 40 Gew.-%, bevorzugt zwischen 0,2 und 30 Gew.-%, besonders bevorzugt zwischen 0,4 und 20 Gew.-% und insbesondere zwischen 0,8 und 10 Gew.-% des Enzymproteins.
Bevorzugt werden insbesondere solche Reinigungsmittel, die, jeweils bezogen auf ihr Gesamtgewicht, 0, 1 bis 12 Gew.-%, vorzugsweise 0,2 bis 10 Gew.-% und insbesondere 0,5 bis 8 Gew.-% Enzym-Zubereitungen enthalten.
Die hierin beschriebenen Zusammensetzungen können auch Enzymstabilisatoren beinhalten. Eine Gruppe von Stabilisatoren sind reversible Proteaseinhibitoren. Häufig werden hierfür Benzamidin- Hydrochlorid, Borax, Borsäuren, Boronsäuren oder deren Salze oder Ester eingesetzt, darunter vor allem Derivate mit aromatischen Gruppen, etwa ortho-, meta- oder para-substituierte Phenylboronsäuren, insbesondere 4-Formylphenyl-Boronsäure, beziehungsweise die Salze oder Ester der genannten Verbindungen. Auch Peptidaldehyde, das heißt Oligopeptide mit reduziertem C-Terminus, insbesondere solche aus 2 bis 50 Monomeren werden zu diesem Zweck eingesetzt. Zu den peptidischen reversiblen Proteaseinhibitoren gehören unter anderem Ovomucoid und Leupeptin. Auch spezifische, reversible Peptid-Inhibitoren für die Protease Subtilisin sowie Fusionsproteine aus Proteasen und spezifischen Peptid-Inhibitoren sind hierfür geeignet.
Weitere Enzymstabilisatoren sind Aminoalkohole wie Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen, aliphatische Carbonsäuren bis zu C12, wie beispielsweise Bernsteinsäure, andere Dicarbonsäuren oder Salze der genannten Säuren. Auch endgruppenverschlossene Fettsäureamidalkoxylate sind für diesen Zweck geeignet. Bestimmte als Builder eingesetzte organische Säuren vermögen, wie in WO 97/18287 offenbart, zusätzlich ein enthaltenes Enzym zu stabilisieren.
Weitere Enzymstabilisatoren sind dem Fachmann aus dem Stand der Technik bekannt. Bleichmittel sind wasch- oder reinigungsaktive Substanzen. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumpercarbonat, das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Einsetzbar sind außerdem alle weiteren dem Fachmann aus dem Stand der Technik bekannten anorganischen oder organischen Peroxybleichmittel. Als Bleichmittel werden erfindungsgemäß die Percarbonate und hier insbesondere Natriumpercarbonat besonders bevorzugt.
Erfindungsgemäß werden maschinelle Geschirrspülmittel bevorzugt, die 1 bis 35 Gew.-%, vorzugsweise 2,5 bis 30 Gew.-%, besonders bevorzugt 3,5 bis 20 Gew.-% und insbesondere 5 bis 15 Gew.-% Bleichmittel, vorzugsweise Natriumpercarbonat, enthalten.
In verschiedenen Ausführungsformen der Erfindung enthalten die maschinellen Geschirrspülmittel zusätzlich mindestens einen Bleichaktivator. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Von allen dem Fachmann aus dem Stand der Technik bekannten Bleichaktivatoren werden mehrfach acylierte Alkylendiamine, insbesondere Tetraacetyl- ethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexahydro- 1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS) besonders bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Als Bleichaktivator wird erfindungsgemäß TAED, insbesondere in Kombination mit einem Percarbonat-Bleichmittel, vorzugsweise Natriumpercarbonat, ganz besonders bevorzugt.
Diese Bleichaktivatoren werden vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt.
Generell kann der pH-Wert des Reinigungsmittels mittels üblicher pH-Regulatoren eingestellt werden, wobei der pH-Wert abhängig von dem gewünschten Einsatzzweck gewählt wird. In verschiedenen Ausführungsformen liegt der pH-Wert in einem Bereich von 5,5 bis 10,5, vorzugsweise 5,5 bis 9,5, noch bevorzugter 7 bis 9, insbesondere größer 7, vor allem im Bereich 7,5 bis 8,5. Als pH-Stellmittel dienen Säuren und/oder Alkalien, vorzugsweise Alkalien. Geeignete Säuren sind insbesondere organische Säuren wie die Essigsäure, Zitronensäure, Glycolsäure, Milchsäure, Bernsteinsäure, Adipinsäure, Äpfelsäure, Weinsäure und Gluconsäure oder auch Amidosulfonsäure. Daneben können aber auch die Mineralsäuren Salzsäure, Schwefelsäure und Salpetersäure bzw. deren Mischungen eingesetzt werden. Geeignete Basen stammen aus der Gruppe der Alkali- und Erdalkalimetallhydroxide und -carbonate, insbesondere der Alkalimetallhydroxide, von denen Kaliumhydroxid und vor allem Natriumhydroxid bevorzugt ist. Besonders bevorzugt ist allerdings flüchtiges Alkali, beispielsweise in Form von Ammoniak und/oder Alkanolaminen, die bis zu 9 C-Atome im Molekül enthalten können. Das Alkanolamin ist hierbei vorzugsweise ausgewählt aus der Gruppe bestehend aus Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen. Das Alkanolamin ist in erfindungsgemäßen Mitteln vorzugsweise in einer Menge von 0,5 bis 10 Gew.-%, insbesondere in einer Menge von 1 bis 6 Gew.-%, enthalten.
Zur Einstellung und/oder Stabilisierung des pH-Werts kann das erfindungsgemäße Mittel auch ein oder mehrere Puffersubstanzen (INCI Buffering Agents) enthalten, üblicherweise in Mengen von 0,001 bis 5 Gew.-%. Bevorzugt sind Puffersubstanzen, die zugleich Komplexbildner oder sogar Chelatbildner (Chelatoren, INCI Chelating Agents) sind. Besonders bevorzugte Puffersubstanzen sind die Citronensäure bzw. die Citrate, insbesondere die Natrium- und Kaliumeitrate, beispielsweise Trinatriumcitrat 2H20 und Trikaliumcitrat Ή2Ο.
Glaskorrosionsinhibitoren verhindern das Auftreten von Trübungen, Schlieren und Kratzern aber auch das Irisieren der Glasoberfläche von maschinell gereinigten Gläsern. Bevorzugte Glaskorrosionsinhibitoren stammen aus der Gruppe der Magnesium- und Zinksalze sowie der Magnesium- und Zinkkomplexe. Im Rahmen der vorliegenden Erfindung beträgt der Gehalt an Zinksalz in Geschirrspülmitteln vorzugsweise zwischen 0, 1 bis 5 Gew.-%, bevorzugt zwischen 0,2 bis 4 Gew.- % und insbesondere zwischen 0,4 bis 3 Gew.-%, bzw. der Gehalt an Zink in oxidierter Form (berechnet als Zn2+) zwischen 0,01 bis 1 Gew.-%, vorzugsweise zwischen 0,02 bis 0,5 Gew.-% und insbesondere zwischen 0,04 bis 0,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Glaskorrosionsinhibitor-haltigen Mittels.
Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pinien-, Citrus-, Jasmin-, Patchouli-, Rosen- oder Ylang-Ylang-Öl.
Weiterhin können Konservierungsmittel in den Mitteln enthalten sein. Geeignet sind beispielsweise Konservierungsmittel aus den Gruppen der Alkohole, Aldehyde, antimikrobiellen Säuren und/oder deren Salze, Carbonsäureester, Säureamide, Phenole, Phenolderivate, Diphenyle, Diphenylalkane, Harnstoffderivate, Sauerstoff-, Stickstoff-Acetale sowie -Formale, Benzamidine, Isothiazole und deren Derivate wie Isothiazoline und Isothiazolinone, Phthalimidderivate, Pyridinderivate, antimikrobiellen oberflächenaktiven Verbindungen, Guanidine, antimikrobiellen amphoteren Verbindungen, Chinoline, 1 ,2-Dibrom-2,4-dicyanobutan, lodo-2-propynyl-butyl-carbamat, lod, lodophore und Peroxide. Bevorzugte antimikrobielle Wirkstoffe werden vorzugsweise ausgewählt aus der Gruppe umfassend Ethanol, n-Propanol, i-Propanol, 1 ,3-Butandiol, Phenoxyethanol, 1 ,2- Propylenglykol, Glycerin, Undecylensäure, Zitronensäure, Milchsäure, Benzoesäure, Salicylsäure, Thymol, 2-Benzyl-4-chlorphenol, 2,2'-Methylen-bis-(6-brom-4-chlorphenol), 2,4,4'-Trichlor-2'- hydroxydiphenylether, N-(4-Chlorphenyl)-N-(3,4-dichlorphenyl)-harnstoff, N,N'-(1 , 10-decandiyldi-1- pyridinyl-4-yliden)-bis-(1-octanamin)-dihydrochlorid, N,N'-Bis-(4-Chlorphenyl)-3, 12-diimino- 2,4, 1 1 , 13-tetraazatetradecandiimidamid, antimikrobielle quaternäre oberflächenaktive Verbindungen, Guanidine. Besonders bevorzugte Konservierungsmittel sind jedoch ausgewählt aus der Gruppe umfassend Salicylsäure, quaternäre Tenside, insbesondere Benzalkoniumchlorid und Isothiazole und deren Derivate wie Isothiazoline und Isothiazolinone.
Generell kann die Konfektionierung hierin beschriebener maschineller Geschirrspülmittel in unterschiedlicher Weise erfolgen. Die Mittel können in fester oder flüssiger sowie als Kombination fester und flüssiger Angebotsformen vorliegen. Als feste Angebotsformen eignen sich insbesondere Pulver, Granulate, Extrudate, Kompaktate, insbesondere Tabletten. Die flüssigen Angebotsformen auf Basis von Wasser und/oder organischen Lösungsmitteln können verdickt, in Form von Gelen vorliegen. Die Mittel können in Form einphasiger oder mehrphasiger Produkte konfektioniert werden. Die einzelnen Phasen mehrphasiger Mittel können gleiche oder unterschiedliche Aggregatzustände aufweisen.
Die Geschirrspülmittel können als Formkörper vorliegen. Um den Zerfall solcher vorgefertigter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, so genannte Tablettensprengmittel, in diese Mittel einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder anderen Medien und für die zügige Freisetzung der Wirkstoffe sorgen. Bevorzugt können Desintegrationshilfsmittel in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationshilfsmittelhaltigen Mittels, eingesetzt werden.
Die hierin beschriebenen maschinellen Geschirrspülmittel werden vorzugsweise zu Dosiereinheiten vorkonfektioniert. Diese Dosiereinheiten umfassen vorzugsweise die für einen Reinigungsgang notwendige Menge an wasch- oder reinigungsaktiven Substanzen. Bevorzugte Dosiereinheiten weisen ein Gewicht zwischen 12 und 30 g, bevorzugt zwischen 14 und 26 g und insbesondere zwischen 16 und 22 g auf. Das Volumen der vorgenannten Dosiereinheiten sowie deren Raumform sind mit besonderem Vorzug so gewählt, dass eine Dosierbarkeit der vorkonfektionierten Einheiten über die Dosierkammer einer Geschirrspülmaschine gewährleistet ist. Das Volumen der Dosiereinheit beträgt daher bevorzugt zwischen 10 und 35 ml, vorzugsweise zwischen 12 und 30 ml.
Die maschinellen Geschirrspülmittel, insbesondere die vorgefertigten Dosiereinheiten weisen mit besonderem Vorzug eine wasserlösliche Umhüllung auf.
Die wasserlösliche Umhüllung wird vorzugsweise aus einem wasserlöslichen Folienmaterial, welches ausgewählt ist aus der Gruppe, bestehend aus Polymeren oder Polymergemischen, gebildet. Die Umhüllung kann aus einer oder aus zwei oder mehr Lagen aus dem wasserlöslichen Folienmaterial gebildet werden. Das wasserlösliche Folienmaterial der ersten Lage und der weiteren Lagen, falls vorhanden, kann gleich oder unterschiedlich sein. Besonders bevorzugt sind Folien, die beispielsweise zu Verpackungen wie Schläuchen oder Kissen verklebt und/oder versiegelt werden können, nachdem sie mit einem Mittel befüllt wurden.
Die wasserlösliche Verpackung kann eine oder mehr Kammern aufweisen. Das Mittel kann in einer oder mehreren Kammern, falls vorhanden, der wasserlöslichen Umhüllung enthalten sein. Die Menge an Mittel entspricht vorzugsweise der vollen oder halben Dosis, die für einen Spülgang benötigt wird.
Es ist bevorzugt, dass die wasserlösliche Umhüllung Polyvinylalkohol oder ein Polyvinylalkoholcopolymer enthält. Wasserlösliche Umhüllungen, die Polyvinylalkohol oder ein Polyvinylalkoholcopolymer enthalten, weisen eine gute Stabilität bei einer ausreichend hohen Wasserlöslichkeit, insbesondere Kaltwasserlöslichkeit, auf.
Geeignete wasserlösliche Folien zur Herstellung der wasserlöslichen Umhüllung basieren bevorzugt auf einem Polyvinylalkohol oder einem Polyvinylalkoholcopolymer, dessen Molekulargewicht im Bereich von 10.000 bis 1.000.000 gmo , vorzugsweise von 20.000 bis 500.000 gmo , besonders bevorzugt von 30.000 bis 100.000 gmor und insbesondere von 40.000 bis 80.000 gmol liegt.
Die Herstellung von Polyvinylalkohol geschieht üblicherweise durch Hydrolyse von Polyvinylacetat, da der direkte Syntheseweg nicht möglich ist. Ähnliches gilt für Polyvinylalkoholcopolymere, die aus entsprechend aus Polyvinylacetatcopolymeren hergestellt werden. Bevorzugt ist, wenn wenigstens eine Lage der wasserlöslichen Umhüllung einen Polyvinylalkohol umfasst, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% ausmacht.
Einem zur Herstellung der wasserlöslichen Umhüllung geeignetem Polyvinylalkohol-enthaltendem Folienmaterial kann zusätzlich ein Polymer ausgewählt aus der Gruppe umfassend (Meth)Acrylsäure-haltige (Co)Polymere, Polyacrylamide, Oxazolin-Polymere, Polystyrolsulfonate, Polyurethane, Polyester, Polyether, Polymilchsäure oder Mischungen der vorstehenden Polymere zugesetzt sein. Ein bevorzugtes zusätzliches Polymer sind Polymilchsäuren.
Bevorzugte Polyvinylalkoholcopolymere umfassen neben Vinylalkohol Dicarbonsäuren als weitere Monomere. Geeignete Dicarbonsäuren sind Itaconsäure, Malonsäure, Bernsteinsäure und Mischungen daraus, wobei Itaconsäure bevorzugt ist.
Ebenfalls bevorzugte Polyvinylalkoholcopolymere umfassen neben Vinylalkohol eine ethylenisch ungesättige Carbonsäure, deren Salz oder deren Ester. Besonders bevorzugt enthalten solche Polyvinylalkoholcopolymere neben Vinylalkohol Acrylsäure, Methacrylsäure, Acrylsäureester, Methacrylsäureester oder Mischungen daraus.
Es kann bevorzugt sein, dass das Folienmaterial weitere Zusatzstoffe enthält. Das Folienmaterial kann beispielsweise Weichmacher wie Dipropylenglycol, Ethylenglycol, Diethylenglycol, Propylenglycol, Glycerin, Sorbitol, Mannitol oder Mischungen daraus enthalten. Weitere Zusatzstoffe umfassen beispielsweise Freisetzungshilfen, Füllmittel, Vernetzungsmittel, Tenside, Antioxidationsmittel, UV-Absorber, Antiblockmittel, Antiklebemittel oder Mischungen daraus.
Geeignete wasserlösliche Folien zum Einsatz in den wasserlöslichen Umhüllungen der wasserlöslichen Verpackungen gemäß der Erfindung sind Folien, die von der Firma MonoSol LLC beispielsweise unter der Bezeichnung M8630, C8400 oder M8900 vertrieben werden. Andere geeignete Folien umfassen Folien mit der Bezeichnung Solublon® PT, Solublon® GA, Solublon® KC oder Solublon® KL von der Aicello Chemical Europe GmbH oder die Folien VF-HP von Kuraray.
Die entsprechende Verwendung der erfindungsgemäßen maschinellen Geschirrspülmittel ist ebenfalls Gegenstand der Erfindung. Ebenso betrifft die Erfindung ein Geschirrspülverfahren, insbesondere maschinelles Geschirrspülverfahren, bei welchem ein Geschirrspülmittel gemäß der Erfindung eingesetzt wird. Gegenstand der vorliegenden Anmeldung ist daher weiterhin ein Verfahren zur Reinigung von Geschirr in einer Geschirrspülmaschine, bei welchem das erfindungsgemäße Mittel während des Durchlaufens eines Geschirrspülprogramms vor Beginn des Hauptspülgangs oder im Verlaufe des Hauptspülgangs in den Innenraum einer Geschirrspülmaschine eindosiert wird. Die Eindosierung bzw. der Eintrag des erfindungsgemäßen Mittels in den Innenraum der Geschirrspülmaschine kann manuell erfolgen, vorzugsweise wird das Mittel jedoch mittels der Dosierkammer in den Innenraum der Geschirrspülmaschine dosiert.
Die im Kontext mit den erfindungsgemäßen Mitteln beschriebenen Ausführungsformen sind ohne weiteres auch auf die erfindungsgemäßen Verfahren und Verwendungen übertragbar und umgekehrt. Beispiele
Beispiel 1 : Es wurden verschiedene Rezepturen entsprechend der nachfolgenden Tabelle hergestellt und zu 20 g schweren Tabletten verpresst. Die Mengenangaben sind dabei in Gew.-% des Aktivstoffs. Bei E1 handelt es sich dabei um eine erfindungsgemäße Zusammensetzung, die das PE/AA-Copolymer enthält, V1 ist eine herkömmliche marktübliche Formulierung und V2 eine marktübliche Formulierung ohne Klarspülagenzien. V3 entspricht schließlich V2, dem als Klarspültensid ein Cio-12-Alkohol mit 5 EO/5 PO-Einheiten zugefügt wurde.
Tabelle 1 : Zusammensetzung des maschinellen Geschirrspülmittels
PE-AA-Copolymer = erfindungsgemäßes (Poly)ethylenacrylsäure Copolymer)
Modifiziertes Polycarboxylat = Sokalan HP 1 1 Beispiel 2: Klarspültest
Zur Bestimmung des Klarspüleffekts werden ausgewählte und definierte Geschirrteile 4-mal gespült und nach den 2., 3. und 4. Spülzyklus visuell abgemustert. Der erste Spülgang dient als Konditionierung der Geschirrteile. Als Kenngrößen werden Klarspülnoten auf Basis des optischen Erscheinungsbildes des trockenen Spülguts (Porzellan, Gläser, Kunststoffteile und Edelstahl) vergeben. Es wird eine Tablette mit der oben genannten Rezeptur dosiert und pro Spülgang werden 100 g Schmutz dosiert, um eine normal verschmutzte Beladung zu simulieren.
Das Filming wird in einer Bosch SMS 68M12 Geschirrspülmaschine mit dem Programm 50 °C Eco zeitverkürzt bestimmt. Wasserhärte 21 °dH. Nach Beendigung des Spülzyklus wird die Maschine 30 min vollständig geöffnet und anschließend im schwarzen Kasten (schwarz gestrichener Raum, D6500 Tageslichtlampe) der Klarspüleffekt visuell bestimmt. Auf dem Geschirr und Besteck werden verbliebene eingetrocknete Wassertropfen, Schlieren, Beläge und Filme auf einer Skala von 1 - 10 bewertet. 10 bedeutet keine Filme, 1 bedeutet starke Filmbildung.
Folgendes Ergebnis wurde durch Zugabe von dem erfindungsgemäßen Polymer erreicht:
Tabelle 2: Klarspülergebnis
Es ist klar zu sehen, dass die Zugabe von 1 g erfindungsgemäßem Copolymer insbesondere im Vergleich zur Referenz ohne Klarspültenside (V2) sowie zu einer Marktformulierung (V1 ) zu einer Verbesserung führt. Auch im Vergleich zu einer Formulierung mit einem Standardklarspültensid (V3) kann das neue Polymer Vorteile erzielen.

Claims

Patentansprüche
1. Geschirrspülmittel, insbesondere maschinelles Geschirrspülmittel, enthaltend bezogen auf das Gesamtgewicht des Geschirrspülmittels 0, 1 bis 25,0 Gew.-%, insbesondere 0,5 bis 10 Gew.-%, eines Copolymers erhältlich durch Polymerisation von
a) 70-95 mol-%, insbesondere 75-92 mol-%, besonders bevorzugt 77-85 mol-%, mindestens eines C2-4 Alken-Monomers, insbesondere Ethylen oder Propylen; und b) 5-30 mol-%, insbesondere 8-25 mol-%, besonders bevorzugt 15-23 mol-%, mindestens eines ethylenisch ungesättigten C3-8 Carbonsäure-Monomers, insbesondere Acryl- oder Methacrylsäure, oder eines Salzes davon.
2. Geschirrspülmittel nach Anspruch 1 , dadurch gekennzeichnet, dass das Copolymer erhältlich ist durch Polymerisation von Ethylen und Acrylsäure.
3. Geschirrspülmittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Copolymer mit geeigneten alkalischen Reagenzien ganz oder zumindest teilweise neutralisiert sind.
4. Geschirrspülmittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Molekulargewicht Mw des Copolymers vorzugsweise im Bereich von 10000-1000000, bezogen auf das Zahlenmittel (Mn), liegt.
5. Geschirrspülmittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Copolymer in einer Menge von ungefähr 5,0 Gew.-% bezogen auf das Gesamtgewicht des Geschirrspülmittels enthalten ist.
6. Geschirrspülmittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Copolymer in einer absoluten Mengen von 0,1 bis 5 g/job, vorzugsweise 0,1 bis 2 g/job, noch bevorzugter ungefähr 1 g/job in dem Geschirrspülmittel enthalten ist.
7. Geschirrspülmittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Geschirrspülmittel mindestens einen weiteren Bestandteil, vorzugsweise mindestens zwei weitere Bestandteile, ausgewählt aus der Gruppe bestehend aus Tensiden, insbesondere nichtionischen und/oder anionischen Tensiden, Gerüststoffen, Enzymen, Verdickern, Sequestrierungsmitteln, Elektrolyten, Korrosionsinhibitoren, insbesondere Silberschutzmitteln, Glaskorrosionsinhibitoren, Schauminhibitoren, Farbstoffen, Duftstoffen, Bitterstoffen, antimikrobiellen Wirkstoffen und Desintegrationshilfsmitteln enthält.
8. Verwendung eines Geschirrspülmittels nach einem der Ansprüche 1 bis 7 in einem maschinellen Geschirrspülverfahren.
9. Maschinelles Geschirrspülverfahren, dadurch gekennzeichnet, dass ein Geschirrspülmittel nach einem der Ansprüche 1 bis 8 zum Einsatz kommt.
10. Verwendung eines Copolymers erhältlich durch Polymerisation von
a) 70-95 mol-%, insbesondere 75-92 mol-%, besonders bevorzugt 77-85 mol-%, mindestens eines C2-4 Alken-Monomers, insbesondere Ethylen oder Propylen; und b) 5-30 mol-%, insbesondere 8-25 mol-%, besonders bevorzugt 15-23 mol-%, mindestens eines ethylenisch ungesättigten C3-8 Carbonsäure-Monomers, insbesondere Acryl- oder Methacrylsäure, oder eines Salzes davon, zur Verbesserung der Klarspülleistung eines maschinellen Geschirrspülmittels.
EP16718360.7A 2016-04-25 2016-04-25 Copolymere zur verbesserung der klarspülleistung Withdrawn EP3448976A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2016/059198 WO2017186263A1 (de) 2016-04-25 2016-04-25 Copolymere zur verbesserung der klarspülleistung

Publications (1)

Publication Number Publication Date
EP3448976A1 true EP3448976A1 (de) 2019-03-06

Family

ID=55808604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16718360.7A Withdrawn EP3448976A1 (de) 2016-04-25 2016-04-25 Copolymere zur verbesserung der klarspülleistung

Country Status (5)

Country Link
US (1) US20190062677A1 (de)
EP (1) EP3448976A1 (de)
KR (1) KR20180135438A (de)
AU (1) AU2016404416A1 (de)
WO (1) WO2017186263A1 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU70136A1 (de) * 1974-05-21 1976-04-13
US4784786A (en) * 1986-04-16 1988-11-15 Creative Product Resource Associates, Ltd. Glass cleaning composition containing an EMA resin and a poly(acrylamidomethylpropane) sulfonic acid to reduce friction and streaking
US4762637A (en) * 1986-11-14 1988-08-09 Lever Brothers Company Encapsulated bleach particles for machine dishwashing compositions
ES2569913T3 (es) * 2008-07-07 2016-05-13 Basf Se Composición de enzima que comprende partículas poliméricas que contienen enzima
JP5952296B2 (ja) * 2010-12-17 2016-07-13 ダウ グローバル テクノロジーズ エルエルシー 洗濯用洗剤におけるフレグランスの放出のためのエチレンアクリル酸コポリマー水性分散体

Also Published As

Publication number Publication date
US20190062677A1 (en) 2019-02-28
WO2017186263A1 (de) 2017-11-02
AU2016404416A1 (en) 2018-06-21
KR20180135438A (ko) 2018-12-20

Similar Documents

Publication Publication Date Title
EP3209762B1 (de) Geschirrspülmittel enthaltend metallkomplexe
EP3872157B1 (de) Geschirrspülmittel enthaltend metallkomplexe
EP3502224A1 (de) Maschinelles geschirrspülmittel mit verbesserter reinigungsleistung, verfahren unter einsatz dieses mittels sowie verwendung des mittels
EP3481936B1 (de) Geschirrspülmittel enthaltend zuckersäure und aminocarbonsäure
EP3431575A1 (de) Geschirrspülmittel enthaltend citratdihydrat und -anhydrat
DE102018212086A1 (de) Geschirrspülmittel mit Ceteareth-9
WO2015086475A1 (de) Maschinelles geschirrspülmittel enthaltend n-basierte komplexbildner
EP3436559A1 (de) Geschirrspülmittel mit verbesserter klarspülleistung
DE102017223117A1 (de) Maschinelles Geschirrspülmittel mit verbesserter Klarspül- und Reinigungsleistung, Verfahren unter Einsatz dieses Mittels sowie Verwendung des Mittels
WO2016102388A1 (de) Geschirrspülmittel mit verbesserter klarspülleistung
WO2017186263A1 (de) Copolymere zur verbesserung der klarspülleistung
WO2023117380A1 (de) Metallkomplexe und geschirrspülmittel, die sie enthalten
DE102014226904A1 (de) Copolymere zur Verbesserung der Klarspülleistung
WO2018002178A1 (de) Reinigungsmittel mit verringerter glaskorrosion
DE102020214069A1 (de) Metallkomplexe und Geschirrspülmittel, die sie enthalten
DE102020214114A1 (de) Metallkomplexe und Geschirrspülmittel, die sie enthalten
DE102019219864A1 (de) Wirkstoffsystem gegen Bildung von Kalkflecken
WO2022100949A1 (de) Geschirrspülmittel, die metallkomplexe enthalten
DE102021214708A1 (de) Metallkomplexe und Geschirrspülmittel, die sie enthalten
EP3502220A1 (de) Maschinelles geschirrspülmittel mit verbesserter klarspül- und reinigungsleistung, verfahren unter einsatz dieses mittels sowie verwendung des mittels
DE102021214688A1 (de) Metallkomplexe und Geschirrspülmittel, die sie enthalten
EP3498810A1 (de) Maschinelles geschirrspülmittel mit verbesserter klarspül- und reinigungsleistung, verfahren unter einsatz dieses mittels sowie verwendung des mittels
DE102014206148A1 (de) Maschinelles Geschirrspülmittel enthaltend Phosphonopolycarbonsäure
EP3842511A1 (de) Nichtionisches tensid zur verbesserung der klarspülleistung beim automatischen geschirrspülen
EP3440176A1 (de) Geschirrspülmittel enthaltend harnstoffderivate

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190926