EP3445961B1 - Procede d'optimisation d'un temps de redemarrage d'un moteur thermique par pilotage de la pression dans un rail d'injection - Google Patents

Procede d'optimisation d'un temps de redemarrage d'un moteur thermique par pilotage de la pression dans un rail d'injection Download PDF

Info

Publication number
EP3445961B1
EP3445961B1 EP17715240.2A EP17715240A EP3445961B1 EP 3445961 B1 EP3445961 B1 EP 3445961B1 EP 17715240 A EP17715240 A EP 17715240A EP 3445961 B1 EP3445961 B1 EP 3445961B1
Authority
EP
European Patent Office
Prior art keywords
pressure
injection rail
heat engine
engine
rail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17715240.2A
Other languages
German (de)
English (en)
Other versions
EP3445961A1 (fr
Inventor
Sebastien BOUCRAUT
Jean Jacques ALLIEZ
Guillaume Anfray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
PSA Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSA Automobiles SA filed Critical PSA Automobiles SA
Publication of EP3445961A1 publication Critical patent/EP3445961A1/fr
Application granted granted Critical
Publication of EP3445961B1 publication Critical patent/EP3445961B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure

Definitions

  • the invention relates to a method for optimizing a restart time of a heat engine by controlling the pressure in a rail for injecting fuel into the engine when the engine is stopped.
  • the heat engine advantageously a gasoline engine, is part of the powertrain of a motor vehicle, the vehicle being able to be a hybrid vehicle comprising for its propulsion in addition to the heat engine a motor other than heat, for example an electric motor.
  • the thermal engine stopping phase is always carried out from an idling speed, this can result from a stress due to a turbocharger when this is present. If a heat engine has to be stopped while it is at a speed higher than the idle speed, it must go through an idle phase before it can be stopped.
  • a heat engine comprises one or more cylinders, an injector being associated with the cylinder (s) for supplying fuel to the cylinder or cylinders.
  • the fuel passing through an engine fuel supply system comprising a fuel tank and a high pressure pump is sent to each injector by a pressurized injection rail up to 200 bar for a petrol fuel engine. .
  • the pressure in the injection rail during the stopping phase of the engine is that of the idling speed, located around 50 bars.
  • the engine hotter than the rail will heat the injection rail while gradually cooling during the shutdown time of the engine. Once the temperature and the pressure in the injection rail have stabilized, the pressure in the injection rail will gradually drop depending on the natural leaks from the high pressure pump and the decrease in temperature of the injection rail following substantially that of the engine. This configuration is called heat stroke.
  • the temperatures of the heat engine and of the fuel, in particular in the injection rail are identical or close to one another. There is therefore no possibility of the injection rail heating up by the heat engine and the pressure in the injection rail increasing at the start of the heat engine shutdown period.
  • the pressure in the injection rail drops progressively as a function of natural leaks from the high-pressure pump and the temperature of the heat engine, but faster than in the first case and without having gone through a maximum. This configuration therefore does not present a heat stroke.
  • the optimal solution is therefore to manage to stay in the injection rail for as long as possible above the minimum restart injection pressure to inject fuel into the combustion engine, so that fuel can be injected very quickly during the next start.
  • This phase where the engine is stopped, can last up to 1.5 hours in the context of a hybrid vehicle. It is likely that after such a stop, the pressure in the injection rail can drop below the minimum restart injection pressure. Specific cases will now be detailed with regard to the figures 1 to 4 .
  • the Figures 1 and 2 illustrate a respective configuration according to the first case detailed above with a large temperature difference ⁇ T + between the temperatures of the injection rail and of the heat engine, this respectively for a hot engine MotC and a cold engine MotF.
  • the Figures 1 and 2 illustrate optimal configurations because they make it possible to take advantage of the hotstroke phenomenon to maximize the stop time spent with a pressure in the rail above the minimum pressure in the rail to inject during a restart.
  • the figures 3 and 4 illustrate a respective configuration according to the second case detailed above with a small temperature difference ⁇ T- between the temperatures of the injection rail and the heat engine, this respectively for a hot engine MotC and a cold engine MotF.
  • the engine speed Rm is symbolized by the curve with dots.
  • the engine speed Rm is just before the engine stops at the engine idling speed Rr and is canceled quickly after the engine stops.
  • the curve with squares symbolizes the pressure in the injection rail or Prail measured in bars, the speed and pressure curves being a function of time t.
  • the figures 1 and 3 show the case of a relatively hot MotC heat engine while the figures 2 and 4 show the case of a relatively cold MotF heat engine.
  • the pressure in the injection rail starting from an initial injection rail pressure at standstill around 50 bars passes in 18 minutes by a maximum of 220 bars before decreasing in time for, at the figure 1 , respectively reach a pressure of 35 bars in 92 minutes, a total time of 110 minutes or, at the figure 2 , respectively reach a pressure of 55 bars in 27 minutes, i.e. a total time of 45 minutes at the figure 2 .
  • the pressure in the injection rail cannot go through a maximum due to the small temperature difference ⁇ T- between the temperatures of the injection rail and the heat engine.
  • the pressure in the injection rail decreases in 7 minutes to reach a pressure of 35 bars then becomes zero in 18 minutes at the figure 3 , the engine being a hot MotC engine in this figure.
  • the heat engine shutdown phases can last up to 1 hour 30 minutes, with restart time performance which is degraded by the fact that each restart requires the injection system to increase in pressure in order to obtain the minimum injection pressure to inject fuel into the engine.
  • the document FR-A-2 994 714 describes a process for managing the preparation for (re) starting a petrol petrol engine for a hybrid vehicle with sending a request for preparation of the heat engine to a preparation manager driving at least one device for preparing the heat engine to reduce the overall (re) start time of the heat engine.
  • the manager receives several parameters representative of the operation of the engine and determines a recommended waiting time before training and a necessary training time of the thermal engine for its (re) start.
  • the problem underlying the invention is to anticipate when the heat engine stops the pressure drop in the injection rail associated with the heat engine so that the pressure in the injection rail is , for the duration of the shutdown, as long as possible maintained above a minimum injection pressure to ensure a restart of the engine.
  • a method for optimizing a restart time of a thermal engine of a motor vehicle the thermal engine being associated with a rail for injecting pressurized fuel, the pressure in the injection rail which must be above a threshold that can be calibrated as the minimum injection authorization pressure during restart of the heat engine following a stop time of the heat engine during which the pressure in the injection rail decreases from a so-called initial pressure setpoint at the start of the combustion engine shutdown, and a forced increase in the pressure in the prevailing injection rail is effected when the engine stops until '' to obtain the initial pressure setpoint, controlling the initial pressure setpoint maximizing an interval of the stopping time during which the pressure in the injection rail is above the minimum auto pressure injection during restart characterized in that the initial pressure setpoint is determined on the basis of an estimate of a future increase in the pressure in the injection rail experienced during the phase when the engine is stopped, from the difference between temperatures of the injection rail and of the heat engine, this estimate of the increase in pressure in the injection rail comprising a predetermined conversion
  • the function of controlling the pressure in the injection rail when the engine of a powertrain is stopped makes it possible to optimally manage the pressure in the rail as a function of the difference between the temperature of the fuel in the rail which can be taken as the temperature of the rail and the temperature of the heat engine which can be taken as the temperature of the coolant. This allows the pressure in the injection rail to remain as long as possible, during a prolonged shutdown of the internal combustion engine, above the minimum injection authorization pressure during restart.
  • the solution proposed by the present invention makes it possible to avoid having a high pressure pump in the fuel supply system of the heat engine more efficient than that commonly used, which provides a very strong economic advantage. Indeed, the disadvantage of the commonly used pump was that it could not quickly increase the pressure during a restart. This is no longer necessary by application of the method according to the present invention, the pressure in the injection rail being maintained for as long as possible during a stop of the vehicle at a pressure level allowing the restart of the heat engine. The benefits in restart time are therefore improved.
  • this increase in pressure being a function of the difference between the temperatures of the injection rail and of the heat engine
  • the forced increase in pressure is greater the smaller the difference between the temperatures of the injection rail and of the heat engine.
  • the pressure in the injection rail can rise due to the heating of the rail by the warmer engine with high thermal inertia which begins to cool. This is not the case for a small difference between the temperatures of the injection rail and the heat engine. In this case, the pressure in the injection rail can only go down as well as the temperature of the injection rail during such a stop.
  • this pressure difference is obtained by learning during the stopping of the heat engine.
  • learning begins at a request to stop the heat engine, for a defined learning time.
  • the learning time can be calibrated as a function of the difference in temperatures of the injection rail and of the heat engine).
  • the old value of the learning variable is replaced by the new value learned.
  • updating the learning of the pressure difference for a given temperature difference is authorized when the learning number reaches a learning threshold.
  • the initial pressure setpoint of the injection rail is less than or equal to the maximum pressure in operation of the rail d 'injection.
  • the temperature of the injection rail is the temperature of the fuel leaving a high pressure pump located upstream of the injection rail in a fuel supply system to the heat engine and the temperature of the heat engine is the temperature of a cooling fluid circulating in a cooling system of the heat engine.
  • the invention relates to a motor vehicle comprising a powertrain comprising a heat engine with at least one cylinder, an injector being associated with the cylinder for supplying fuel to said at least one cylinder, the fuel being sent to the injector by a rail.
  • injection system under pressure in operation characterized in that when the engine stops, an initial pressure setpoint in the injection rail is determined as a function of a difference between temperatures of the injection rail and of the engine, and that a forced increase in the pressure in the prevailing injection rail is carried out when the engine is stopped until the initial pressure setpoint is obtained, the initial pressure setpoint being controlled by a computer on board the motor vehicle for implementing a method according to any of the variants described above.
  • Such a computer which may be an engine control computer is already present on board the vehicle. It suffices simply to add a software part specifically dedicated to controlling the pressure in the rail when the vehicle is stopped, which is an inexpensive solution and does not require additional mechanical means. This software part can be integrated without difficulty into the strategy for controlling the pressure in the injection rail during the operation of the thermal engine already present in the engine control.
  • the vehicle is a hybrid vehicle comprising the powertrain and an engine other than a combustion engine for propelling the vehicle, the combustion engine of the powertrain being frequently stopped and restarted, the vehicle being propelled by the engine other than combustion engine. '' a stop of the engine.
  • the present invention relates to a method for optimizing a restart time of a heat engine of a motor vehicle, the heat engine being associated with a rail for injecting fuel under pressure.
  • it is sought to allow the restart of the heat engine in a very short time, the pressure of the injector rail not having to drop too low, which shortens the restart time.
  • the injection rail is to be maintained for the longest possible stop time at least at a minimum restart injection pressure to restart the engine.
  • This minimum injection pressure is predetermined and known for each type of engine and corresponds to the pressure in the injection rail necessary to ensure a fuel supply to the heat engine sufficient for its restart.
  • the pressure in the injection rail can however pass at the beginning of this stopping by a maximum of pressure as shown in the Figures 1 and 2 when the temperature difference ⁇ T + between the rail injection and the engine is high.
  • the engine heats the injection rail and increases the pressure in the injection rail directly after stopping due to its thermal inertia while starting to decrease in temperature. Then the rail and motor temperatures decrease simultaneously.
  • the initial pressure setpoint Cons Prail ini is controlled as a function of a difference ⁇ T between temperatures of the Trail injection rail and of the heat engine Tmot. Control of the Cons Prail ini initial pressure setpoint maximizes an interval of the stop time during which the pressure in the injection rail is above the minimum restart injection pressure.
  • the initial pressure of the injection rail must rise to the target pressure Prail M of the injection rail, the target pressure Prail M being less than or equal to the maximum operating pressure of the injection rail.
  • the maximum operating pressure of the injection rail can be around 200 to 250 bars for a petrol engine.
  • this can be done by additional heating of the injection rail increasing its temperature and consequently its pressure.
  • the latter solution has a thermal inertia which will not cause a very rapid increase in pressure and is not preferred taken as an alternative alone to a pressure increase.
  • the figure 6 illustrates a flow diagram showing the successive stages of the method for optimizing a restart time of a thermal engine of a motor vehicle according to the invention.
  • an estimator 7 of pressure in the injection rail in the heat engine stop phase determines an increase in the pressure ⁇ Prail ini in the injection rail suffered during the phase where the engine is stopped. This determination is carried out with, on the one hand, the temperature of the Trail injection rail and, on the other hand, the temperature of the heat engine Tmot, a difference ⁇ T between these two temperatures Trail and Tmot being established.
  • the temperature of the Trail injection rail can be measured or estimated. This temperature of the Trail injection rail can be the temperature of the fuel leaving a high pressure pump located directly upstream of the injection rail in a fuel supply system to the engine.
  • the temperature of the Tmot heat engine can be measured or estimated. This temperature of the heat engine Tmot can be the temperature of a cooling fluid circulating in a cooling system of the heat engine.
  • the difference ⁇ T between these two temperatures Trail and Tmot is transmitted to a pre-established map 1 which can be associated with a correction map 2.
  • Map 1 makes it possible to convert the difference ⁇ T between temperatures of the Trail injection rail and of the heat engine Tmot in a pressure difference ⁇ Prail ini in the injection rail at the start of the engine shutdown.
  • Correction mapping 2 if used, makes it possible to optimize the estimation of the pressure difference ⁇ Prail ini in the injection rail thanks to a learning system.
  • the pressure in the injection rail of the injection system is controlled, via a mapping 3, to an initial Cons Prail ini pressure setpoint to maximize the time spent above the minimum injection pressure to inject fuel during a new start.
  • This pressure setpoint may be the maximum target pressure value Prail M in the case where the increase in the rail pressure predicted in the stopped heat engine phase is zero, the maximum operating value possibly being from 220 to 250 bars or more. This is advantageous in the case where the difference ⁇ T between temperatures of the Trail injection rail and of the Tmot heat engine is small, that is to say in the case where the pressure in the rail will not increase at the start of stopping the heat engine by possible heating of the injection rail by the heat engine.
  • this pressure setpoint is less than the maximum target pressure value Prail M to take into account the increase in the predicted rail pressure and thus do not exceed this maximum operating pressure of the injection rail.
  • the application of the initial pressure reference Cons Prail ini and the implementation of the method according to the invention can be carried out following a request to stop the DAmot thermal engine.
  • the method according to the invention can be implemented by a computer, advantageously an engine control of the heat engine already in charge of the voucher. operation of the fuel injection system in normal operation of the engine.
  • Cons Prail HA of the injection rail so as to be differentiated from the pressure setpoint when stopped. of the heat engine as proposed by the method according to the invention.
  • Cons Prail HA non-stop pressure setpoint it is known to control the pressure of the injection rail during the operation of the heat engine by a pressure setpoint in the Cons Prail injection rail.
  • the initial pressure setpoint Cons Prail ini when the thermal engine is stopped, the initial pressure setpoint Cons Prail ini is used to control the pressure of the injection rail during the stopping of the thermal engine.
  • a switch, advantageously virtual, in the computer can be provided to selectively, on the one hand, suspend the pressure setpoint when Cons Consil HA stops while the engine is stopped by replacing it with the initial pressure setpoint Cons Prail ini and , on the other hand, suspend the application of the method according to the present invention and the application of the initial pressure setpoint Cons Prail ini during the operation of the heat engine from the start or restart of the heat engine.
  • a learning system 9 may be provided. Following a learning authorization, the operation of the learning system 9, as may be envisaged in the context of the present invention, is described below:
  • a learning block 4 is defined. In this learning block 4, it is defined x pressure variables A1 to Ax, x being the dimension of the mapping 1, the variables A1 to Ax each being associated with a difference of temperature ⁇ T1 to ⁇ Tx.
  • a block 6 for updating the correction cartography 2 is defined. In this block 6, x pressure correction variables B1 to Bx are defined.
  • a counter block 5 is defined. In this counter block 5, there are defined x variables C1 to Cx for counting the learning number.
  • the variables B1 to Bx correspond to the x points of the correction map 2 for each temperature difference ⁇ T.
  • n the index, between 1 and x, corresponding to the temperature difference ⁇ T observed at the start of learning.
  • the maximum pressure target Prail M in the injection rail during the stopped phase of the heat engine is introduced at the input of learning block 4. It is used to calculate the pressure correction at the output of this learning block 4. This output is equal to the pressure difference between the value taken by An and this target of maximum pressure Prail M.
  • This target of maximum pressure in the rail Prail M can be calibrated and can be different depending on the type of internal combustion engine.
  • the learning is carried out following a request to stop the DAmot thermal engine and for a learning time that can be calibrated, in particular as a function of the difference ⁇ T of the temperatures of the Trail injection rail and of the Tmot thermal engine.
  • a learning time that can be calibrated, in particular as a function of the difference ⁇ T of the temperatures of the Trail injection rail and of the Tmot thermal engine.
  • the maximum pressure target Prail M and the measured pressure Prail mes of the injection rail from the stopping of the heat engine during the learning time.
  • a learning phase can start at the request to stop the heat engine and ends when the learning time defined for a temperature difference ⁇ T between the temperatures of the injection rail and the heat engine has elapsed, the difference of temperature ⁇ T being read at the time of the stop request.
  • the measured rail pressure Prail mes is observed and the maximum of this pressure is noted.
  • the reference 5 symbolizes the counter of the number of learning per mapping point, the mapping points being the variables C1 to Cx of the counter.
  • an update authorization is carried out on a learning threshold AMaj, this learning threshold can be calibrated.
  • the update is referenced 6 and relates to the variables of correction vectors B1 to Bx.
  • a counter R is then reset to zero.
  • the learning time can be different depending on the temperature difference ⁇ T.
  • the learning time and the learning threshold must be large enough for the correction made by the pressure estimator 7 in the injection rail to be robust, but they must also allow a significant learning frequency.
  • the invention also relates to a motor vehicle comprising a powertrain comprising a heat engine, the heat engine advantageously but not limited to a gasoline engine.
  • the heat engine comprises at least one cylinder, an injector being associated with the cylinder for supplying fuel to said at least one cylinder, the fuel being sent to the injector by an injection rail pressurized during operation. .
  • an initial Cons Prail ini pressure setpoint in the injection rail is controlled as a function of a difference ⁇ T between temperatures of the Trail injection rail and of the heat engine Tmot, the pressure setpoint initial Cons Prail ini being controlled by a computer on board the motor vehicle for the implementation of such a method for optimizing a restart time.
  • the computer comprises means for receiving the temperatures of the Trail injection rail and of the Tmot heat engine, means for establishing a difference ⁇ T in temperature and means for calculating the initial pressure setpoint Cons Prail ini to be applied to the pressure in the injection rail at the start of the engine shutdown.
  • the computer can also include a learning system as previously described.
  • a preferred application of the invention is for a hybrid vehicle comprising the previously described powertrain and an engine other than a combustion engine for propelling the vehicle, advantageously an electric motor.
  • the engine of the powertrain of such a hybrid vehicle is frequently stopped and restarted, the vehicle being propelled by the engine other than the engine when the engine is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

  • L'invention porte sur un procédé d'optimisation d'un temps de redémarrage d'un moteur thermique par pilotage de la pression dans un rail d'injection de carburant dans le moteur lors de l'arrêt du moteur. Le moteur thermique, avantageusement un moteur essence, fait partie du groupe motopropulseur d'un véhicule automobile, le véhicule pouvant être un véhicule hybride comportant pour sa propulsion en plus du moteur thermique un moteur autre que thermique, par exemple un moteur électrique.
  • Sur un moteur essence conventionnel, la phase d'arrêt moteur thermique s'effectue toujours à partir d'un régime de ralenti, ceci pouvant résulter d'une contrainte due à un turbocompresseur quand celui-ci est présent. Si un arrêt du moteur thermique doit être réalisé alors que celui-ci est à un régime supérieur au régime de ralenti, il doit passer par une phase de ralenti avant de pouvoir réaliser son arrêt.
  • De manière connue, un moteur thermique comprend un ou des cylindres, un injecteur étant associé au(x) cylindre(s) pour l'alimentation en carburant du ou des cylindres. Le carburant passant dans un système d'alimentation en carburant du moteur comprenant un réservoir de carburant et une pompe haute pression est envoyé à chaque injecteur par un rail d'injection mis sous pression en fonctionnement pouvant atteindre 200 bars pour un moteur thermique à carburant essence. La pression dans le rail d'injection lors de la phase d'arrêt du moteur thermique est celle du régime de ralenti, située aux alentours de 50 bars.
  • Lors d'une phase d'arrêt, deux cas sont à prendre en considération. Dans le premier cas, il y a un écart significatif entre la température du moteur thermique et la température du carburant dans le rail d'injection. La pression dans le rail d'injection va alors augmenter progressivement après la phase d'arrêt moteur.
  • En effet, le moteur plus chaud que le rail va réchauffer le rail d'injection tout en se refroidissant progressivement pendant la durée d'arrêt du moteur thermique. Une fois la température et la pression dans le rail d'injection stabilisées, la pression dans le rail d'injection va chuter progressivement en fonction des fuites naturelles de la pompe haute pression et de la diminution de la température du rail d'injection suivant sensiblement celle du moteur thermique. Cette configuration est appelée coup de chaud.
  • Dans le deuxième cas, les températures du moteur thermique et du carburant notamment dans le rail d'injection sont identiques ou proches l'une de l'autre. Il n'y a donc pas de possibilité de réchauffement du rail d'injection par le moteur thermique et augmentation de la pression dans le rail d'injection au début de la durée d'arrêt du moteur thermique. La pression dans le rail d'injection chute progressivement en fonction des fuites naturelles de la pompe haute pression et de la température du moteur thermique mais plus vite que dans le premier cas et sans être passée par un maximum. Cette configuration ne présente donc pas de coup de chaud.
  • Lors d'un redémarrage du moteur thermique, des performances en temps de redémarrage doivent être respectées. L'un des leviers prépondérants pour l'obtention de cette performance en temps est l'obtention de la pression d'injection minimale pour injecter. Celle-ci peut être par exemple située entre 35 et 55 bars.
  • Entre un arrêt moteur thermique et le redémarrage du moteur thermique suivant, la solution optimale est donc d'arriver à rester dans le rail d'injection le plus longtemps possible au-dessus de la pression d'injection minimale de redémarrage pour injecter du carburant dans le moteur thermique, afin de pouvoir injecter très rapidement du carburant lors du prochain démarrage.
  • Cette phase où le moteur thermique est arrêté peut durer jusqu'à 1h30 dans le cadre d'un véhicule hybride. Il est vraisemblable qu'après un tel arrêt la pression dans le rail d'injection puisse être descendue en dessous de la pression d'injection minimale de redémarrage. Des cas spécifiques vont maintenant être détaillés en regard des figures 1 à 4.
  • Les figures 1 et 2 illustrent une configuration respective selon le premier cas détaillé plus haut avec une forte différence de température ΔT+ entre les températures du rail d'injection et du moteur thermique, ceci respectivement pour un moteur chaud MotC et un moteur froid MotF. Les figures 1 et 2 illustrent des configurations optimales car permettant de profiter du phénomène coup de chaud pour maximiser la durée d'arrêt passée avec une pression dans le rail au-dessus de la pression dans le rail minimale pour injecter lors d'un redémarrage.
  • Les figures 3 et 4 illustrent une configuration respective selon le deuxième cas détaillé plus haut avec une faible différence de température ΔT- entre les températures du rail d'injection et du moteur thermique, ceci respectivement pour un moteur chaud MotC et un moteur froid MotF.
  • Pour les figures 1 à 4, le régime moteur Rm est symbolisé par la courbe avec des points. Le régime moteur Rm est juste avant l'arrêt du moteur au régime de ralenti Rr du moteur et s'annule rapidement après l'arrêt du moteur. La courbe avec des carrés symbolise la pression dans le rail d'injection ou Prail mesurée en bars, les courbes de régime et de pression étant en fonction d'un temps t. Les figures 1 et 3 montrent le cas d'un moteur thermique relativement chaud MotC tandis que les figures 2 et 4 montrent le cas d'un moteur thermique relativement froid MotF.
  • Aux figures 1 et 2, la pression dans le rail d'injection en partant d'une pression de rail d'injection initiale à l'arrêt vers 50 bars passe en 18 minutes par un maximum de 220 bars avant de décroître dans le temps pour, à la figure 1, arriver respectivement à une pression de 35 bars en 92 minutes soit un temps total de 110 minutes ou, à la figure 2, arriver respectivement à une pression de 55 bars en 27 minutes soit un temps total de 45 minutes à la figure 2.
  • Aux figures 3 et 4, la pression dans le rail d'injection ne peut pas passer par un maximum du fait de la faible différence de température ΔT- entre les températures du rail d'injection et du moteur thermique. En partant d'une pression de rail d'injection initiale à l'arrêt vers 50 bars, la pression dans le rail d'injection décroît en 7 minutes pour arriver à une pression de 35 bars puis devient nulle en 18 minutes à la figure 3, le moteur étant un moteur chaud MotC à cette figure.
  • A la figure 4 qui est comme à la figure 2 la configuration la plus défavorable avec un moteur froid MotF, en partant d'une pression de rail d'injection initiale à l'arrêt vers 50 bars, la pression dans le rail d'injection devient nulle en 8 minutes. Il en résulte, dans les cas des figures 3 et 4, que la durée de temps passée au-dessus de la pression rail minimale pour injecter est très faible, au plus de 7 minutes, ce qui est lié au fait que l'arrêt se fait au régime de ralenti Rr, avec une valeur de pression rail associée faible d'environ 50 bars.
  • Pour des véhicules hybrides, les phases d'arrêt du moteur thermique peuvent durer jusqu'à 1h30, avec une performance en temps de redémarrage qui est dégradée du fait qu'à chaque redémarrage, il faut que le système d'injection monte en pression afin d'obtenir la pression minimale d'injection pour injecter du carburant dans le moteur thermique.
  • Le document FR-A-2 994 714 décrit un procédé de gestion de la préparation au (re)démarrage d'un moteur thermique essence pour un véhicule hybride avec envoi d'une demande de préparation du moteur thermique à un gestionnaire de préparation pilotant au moins un dispositif de préparation du moteur thermique pour réduire le temps de (re)démarrage global du moteur thermique. Le gestionnaire reçoit plusieurs paramètres représentatifs du fonctionnement du moteur et détermine un temps d'attente conseillé avant entraînement et un temps d'entraînement nécessaire du moteur thermique pour son (re)démarrage.
  • Ce document n'anticipe cependant pas une baisse de pression dans le rail d'injection avec cette pression devenant inférieure à la pression d'injection minimale et empêchant le redémarrage du moteur thermique. Il n'apporte donc aucune solution préventive contre un redémarrage rendu impossible dans ces conditions de pression mais seulement des solutions palliatives mises en oeuvre pour favoriser le redémarrage.
  • On connait encore le document EP2336531A1 correspondant au préambule de la revendication 1.
  • Par conséquent, le problème à la base de l'invention est d'anticiper à l'arrêt d'un moteur thermique la baisse de pression dans le rail d'injection associé au moteur thermique afin que la pression dans le rail d'injection soit, lors de la durée de l'arrêt, le plus longtemps possible maintenue au-dessus d'une pression d'injection minimale pour assurer un redémarrage du moteur thermique.
  • Pour atteindre cet objectif, il est prévu selon l'invention un procédé d'optimisation d'un temps de redémarrage d'un moteur thermique de véhicule automobile, le moteur thermique étant associé à un rail d'injection de carburant sous pression, la pression dans le rail d'injection devant être au-dessus d'un seuil calibrable en tant que pression minimale d'autorisation de l'injection au cours du redémarrage du moteur thermique suivant une durée d'arrêt du moteur thermique pendant laquelle la pression dans le rail d'injection diminue à partir d'une consigne de pression dite initiale en début d'arrêt du moteur thermique, et qu'il est effectué une augmentation forcée de la pression dans le rail d'injection régnante à l'arrêt du moteur jusqu'à obtenir la consigne de pression initiale, le pilotage de la consigne de pression initiale maximisant un intervalle de la durée d'arrêt pendant lequel la pression dans le rail d'injection est au-dessus de la pression minimale d'autorisation de l'injection au cours du redémarrage
    caractérisé en ce que la consigne de pression initiale est déterminée en fonction d'une estimation d'une augmentation à venir de la pression dans le rail d'injection subie pendant la phase où le moteur est arrêté, à partir de la différence entre des températures du rail d'injection et du moteur thermique, cette estimation de l'augmentation de la pression dans le rail d'injection comprenant une conversion prédéterminée de la différence entre les températures du rail d'injection et du moteur thermique en une augmentation de pression dans le rail d'injection et l'ajout d'une correction correspondant à un écart de pression entre une cible de pression maximale dans le rail d'injection et une pression maximale relevée dans le rail d'injection pour la différence entre les températures du rail d'injection et du moteur thermique.
  • La fonction de pilotage de la pression dans le rail d'injection lors d'un arrêt du moteur thermique d'un groupe motopropulseur permet de gérer de manière optimale la pression dans le rail en fonction de l'écart entre la température du carburant dans le rail qui peut être prise comme température du rail et la température du moteur thermique qui peut être prise comme température du liquide de refroidissement. Cela permet de conserver le plus longtemps possible, lors d'un arrêt prolongé du moteur thermique, la pression dans le rail d'injection au-dessus de la pression minimale d'autorisation de l'injection au cours du redémarrage.
  • La solution proposée par la présente invention permet d'éviter d'avoir une pompe haute pression dans le système d'alimentation en carburant du moteur thermique plus performante que celle utilisée couramment, ce qui procure un avantage économique très fort. En effet, le désavantage de la pompe utilisée couramment était de ne pas pouvoir augmenter rapidement la pression lors d'un redémarrage. Ceci n'est plus nécessaire par application du procédé selon la présente invention, la pression dans le rail d'injection étant maintenue le plus longtemps possible pendant un arrêt du véhicule à un niveau de pression permettant le redémarrage du moteur thermique. Les prestations en temps de redémarrage sont donc améliorées.
  • Avantageusement, cette augmentation de pression étant fonction de la différence entre les températures du rail d'injection et du moteur thermique, l'augmentation forcée de pression est plus forte plus la différence entre les températures du rail d'injection et du moteur thermique est faible. En effet, quand la différence entre les températures du rail d'injection et du moteur thermique est forte, la pression dans le rail d'injection peut monter du fait du réchauffement du rail par le moteur plus chaud à forte inertie thermique qui commence à se refroidir. Ceci n'est pas le cas pour une faible différence entre les températures du rail d'injection et du moteur thermique. Dans ce cas, la pression dans le rail d'injection ne peut que descendre de même que la température du rail d'injection pendant un tel arrêt.
  • Avantageusement, cet écart de pression est obtenu par un apprentissage pendant l'arrêt du moteur thermique.
  • Avantageusement, l'apprentissage débute à une demande d'arrêt du moteur thermique, pour une durée d'apprentissage définie.
  • Avantageusement, la durée d'apprentissage est calibrable en fonction de la différence des températures du rail d'injection et du moteur thermique).
  • Avantageusement, dès lors que la durée d'apprentissage est écoulée, si la valeur maximale de pression rail relevée est supérieure à la valeur contenue dans une variable d'apprentissage de la pression alors l'ancienne valeur de la variable d'apprentissage est remplacée par la nouvelle valeur apprise.
  • Avantageusement, la mise à jour de l'apprentissage de l'écart de pression pour une différence de température donnée est autorisé lorsque le nombre d'apprentissage atteint un seuil d'apprentissage.
  • Avantageusement, quand la pression dans le rail d'injection est limitée en utilisation à une pression maximale en fonctionnement du rail d'injection, la consigne de pression initiale du rail d'injection est inférieure ou égale à la pression maximale en fonctionnement du rail d'injection.
  • Avantageusement, la température du rail d'injection est la température du carburant en sortie d'une pompe haute pression se trouvant en amont du rail d'injection dans un système d'alimentation de carburant au moteur thermique et la température du moteur thermique est la température d'un fluide de refroidissement circulant dans un système de refroidissement du moteur thermique.
  • L'invention concerne un véhicule automobile comportant un groupe motopropulseur comprenant un moteur thermique avec au moins un cylindre, un injecteur étant associé au cylindre pour l'alimentation en carburant dudit au moins un cylindre, le carburant étant envoyé à l'injecteur par un rail d'injection mis sous pression en fonctionnement, caractérisé en ce qu'à l'arrêt du moteur thermique, une consigne de pression initiale dans le rail d'injection est déterminée en fonction d'une différence entre des températures du rail d'injection et du moteur thermique, et qu'il est effectué une augmentation forcée de la pression dans le rail d'injection régnante à l'arrêt du moteur jusqu'à obtenir la consigne de pression initiale, la consigne de pression initiale étant pilotée par un calculateur embarqué dans le véhicule automobile pour une mise en œuvre d'un procédé selon l'une quelconque des variantes précédemment décrites.
  • Un tel calculateur qui peut être un calculateur de contrôle moteur est déjà présent à bord du véhicule. Il suffit simplement d'ajouter une partie logicielle spécifiquement dédiée au pilotage de la pression dans le rail lors d'un arrêt du véhicule, ce qui est une solution peu coûteuse et ne requérant pas des moyens mécaniques supplémentaires. Cette partie logicielle peut être intégrée sans difficulté à la stratégie de pilotage de la pression dans le rail d'injection lors du fonctionnement du moteur thermique déjà présente dans le contrôle moteur.
  • Avantageusement, le véhicule est un véhicule hybride comprenant le groupe motopropulseur et un moteur autre que thermique pour une propulsion du véhicule, le moteur thermique du groupe motopropulseur étant fréquemment arrêté et redémarré, la propulsion du véhicule étant assurée par le moteur autre que thermique lors d'un arrêt du moteur thermique.
  • D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et au regard des dessins annexés donnés à titre d'exemples non limitatifs et sur lesquels :
    • les figures 1 et 2 illustrent de courbes de pression dans un rail d'injection de carburant pour moteur thermique et de régime moteur lors d'un arrêt du moteur, le moteur étant relativement chaud à la figure 1 et froid à la figure 2, une forte différence de température existant entre le rail d'injection et le moteur, la pression n'étant pas pilotée conformément à un procédé selon la présente invention à ces figures,
    • les figures 3 et 4 illustrent de courbes de pression dans un rail d'injection de carburant pour moteur thermique et de régime moteur lors d'un arrêt du moteur, le moteur étant relativement chaud à la figure 3 et froid à la figure 4, une faible différence de température existant entre le rail d'injection et le moteur, la pression n'étant pas pilotée conformément à un procédé selon la présente invention à ces figures,
    • la figure 5 illustre deux courbes respectivement de pression dans un rail d'injection de carburant pour moteur thermique et de régime moteur lors d'un arrêt du moteur, la pression étant pilotée conformément à un procédé selon la présente invention, l'échelle de temps étant montrée agrandie par rapport aux figures 1 à 4 en ne montrant que la durée de temps suivant immédiatement une demande d'arrêt du moteur,
    • la figure 6 est un logigramme montrant les diverses étapes d'un procédé d'optimisation d'un temps de redémarrage d'un moteur thermique de véhicule automobile par pilotage de la pression dans le rail d'injection pendant l'arrêt du moteur selon un mode de réalisation de la présente invention,
    • les figures 7 et 8 illustrent de courbes de pression dans un rail d'injection de carburant pour moteur thermique et de régime moteur lors d'un arrêt du moteur, le moteur étant relativement chaud à la figure 7 et froid à la figure 8, une faible différence de température existant entre le rail d'injection et le moteur, la pression dans le rail d'injection étant pilotée conformément à un procédé selon la présente invention à ces figures.
  • Il est à garder à l'esprit que les figures sont données à titre d'exemples et ne sont pas limitatives de l'invention. Elles constituent des représentations schématiques de principe destinées à faciliter la compréhension de l'invention et ne sont pas nécessairement à l'échelle des applications pratiques.
  • Dans ce qui va suivre, il est fait référence à toutes les figures prises en combinaison. Quand il est fait référence à une ou des figures spécifiques, ces figures sont à prendre en combinaison avec les autres figures pour la reconnaissance des références numériques désignées.
  • Les figures 1 à 4 ont déjà été décrites dans la partie introductive de la présente demande.
  • En se référant aux figures 5 à 8, la présente invention concerne un procédé d'optimisation d'un temps de redémarrage d'un moteur thermique de véhicule automobile, le moteur thermique étant associé à un rail d'injection de carburant sous pression. Dans ce procédé, il est recherché à permettre le redémarrage du moteur thermique en un temps très court, la pression du rail d'injecteur ne devant pas descendre trop bas, ce qui permet de raccourcir le temps de redémarrage.
  • En effet, le rail d'injection est à maintenir pendant une durée d'arrêt la plus longue possible au moins à une pression d'injection minimale de redémarrage pour effectuer le redémarrage du moteur. Cette pression d'injection minimale est prédéterminée et connue pour chaque type de moteur et correspond à la pression dans le rail d'injection nécessaire pour assurer une alimentation en carburant du moteur thermique suffisante pour son redémarrage.
  • Pendant la durée de l'arrêt du moteur thermique, la pression dans le rail d'injection peut cependant passer au début de cet arrêt par un maximum de pression comme montré aux figures 1 et 2 quand la différence ΔT+ de température entre le rail d'injection et le moteur est élevée. En effet, dans ce cas, le moteur chauffe le rail d'injection et augmente la pression dans le rail d'injection directement après l'arrêt du fait de son inertie thermique tout en commençant à baisser en température. Ensuite, les températures du rail et du moteur décroissent simultanément.
  • Selon l'invention, la consigne de pression initiale Cons Prail ini est pilotée en fonction d'une différence ΔT entre des températures du rail d'injection Trail et du moteur thermique Tmot. Le pilotage de la consigne de pression initiale Cons Prail ini maximise un intervalle de la durée d'arrêt pendant lequel la pression dans le rail d'injection est au-dessus de la pression d'injection minimale de redémarrage.
  • En se référant notamment aux figures 7 et 8 qui montrent les cas les plus défavorables de diminution de pression avec une différence ΔT- de température entre le rail d'injection et le moteur thermique relativement faible et qui sont à comparer aux figures 3 et 4 qui montrent des cas selon l'état de la technique, il est procédé à une augmentation de pression dans le rail d'injection débutant au voisinage de l'instant d'arrêt du moteur.
  • Cela peut être fait un peu avant l'instant d'arrêt du moteur, juste un peu après ou juste à l'arrêt du moteur, la première solution étant montrée aux figures 7 et 8. La montée en pression dans le rail d'injection ainsi obtenue est nettement plus rapide que la montée de pression par inertie thermique du moteur précédemment dénommée coup de chaud, alors que ce coup de chaud peut ne pas être présent pour une différence ΔT- de température entre le rail d'injection et le moteur thermique relativement faible.
  • En se référant notamment aux figures 5 et 6, après une demande d'arrêt du moteur thermique DAmot, le régime moteur symbolisé par la courbe avec des points et qui était au régime ralenti Rr décroît rapidement tandis qu'il est procédé à une augmentation forcée de la pression du rail Prail symbolisée par la courbe avec des carrés. La pression dans le rail d'injection Prail peut passer alors de 50 bars à 200 bars relativement rapidement, cette dernière pression étant prise comme consigne de pression initiale au début de l'arrêt du moteur. L'échelle de durée montrée à la figure 5 est agrandie par rapport aux échelles de durée précédemment montrées aux figures 1 à 4.
  • En se référant notamment aux figures 5 à 8, la pression initiale du rail d'injection doit monter à la pression cible Prail M du rail d'injection, la pression cible Prail M étant inférieure ou égale à la pression maximale en fonctionnement du rail d'injection. Pour ordre d'idée, sans que cela soit limitatif, la pression maximale en fonctionnement du rail d'injection peut être vers les 200 à 250 bars pour un moteur à essence.
  • Il peut donc être effectué une augmentation forcée de la pression dans le rail d'injection régnante à l'arrêt du moteur jusqu'à obtenir la consigne de pression initiale Cons Prail ini. Cette augmentation de pression est fonction des températures du rail d'injection Trail et du moteur thermique Tmot, l'augmentation forcée de pression étant plus forte plus la différence ΔT entre les températures du rail d'injection Trail et du moteur thermique Tmot est faible.
  • En effet, quand la différence ΔT entre les températures du rail d'injection Trail et du moteur thermique Tmot est faible, si aucune augmentation forcée de la pression n'est exercée sur le rail d'injection, la pression de même que la température dans le rail d'injection ne peuvent que descendre plus ou moins progressivement lors d'un arrêt prolongé du moteur thermique.
  • Plusieurs possibilités d'augmentation forcée de la pression dans le rail d'injection peuvent être mises en oeuvre en alternative ou en complément. Par exemple, lors d'un arrêt du moteur, il est possible d'exercer une surpression du carburant alimentant le rail d'injection. Ceci peut être fait par une pompe haute pression se trouvant en amont du rail d'injection dans le système d'alimentation en carburant du moteur.
  • En alternative ou en complément, ceci peut être fait par un chauffage additionnel du rail d'injection augmentant sa température et par conséquent sa pression. Cette dernière solution présente une inertie thermique qui ne va pas provoquer une augmentation très rapide de la pression et n'est pas préférée prise en alternative seule à une augmentation de pression.
  • La figure 6 illustre un logigramme montrant les étapes successives du procédé d'optimisation d'un temps de redémarrage d'un moteur thermique de véhicule automobile selon l'invention.
  • Lors de la demande d'arrêt du moteur thermique, un estimateur 7 de pression dans le rail d'injection en phase d'arrêt du moteur thermique détermine une augmentation de la pression ΔPrail ini dans le rail d'injection subie pendant la phase où le moteur thermique est arrêté. Cette détermination est réalisée avec, d'une part, la température du rail d'injection Trail et, d'autre part, la température du moteur thermique Tmot, une différence ΔT entre ces deux températures Trail et Tmot étant établie.
  • La température du rail d'injection Trail peut être mesurée ou estimée. Cette température du rail d'injection Trail peut être la température du carburant en sortie d'une pompe haute pression se trouvant directement en amont du rail d'injection dans un système d'alimentation de carburant au moteur thermique. La température du moteur thermique Tmot peut être mesurée ou estimée. Cette température du moteur thermique Tmot peut être la température d'un fluide de refroidissement circulant dans un système de refroidissement du moteur thermique.
  • La différence ΔT entre ces deux températures Trail et Tmot est transmise à une cartographie 1 préétablie pouvant être associée à une cartographie de correction 2. Au moins la cartographie 1 permet de convertir la différence ΔT entre températures du rail d'injection Trail et du moteur thermique Tmot en une différence de pression ΔPrail ini dans le rail d'injection en début d'arrêt du moteur thermique. La cartographie de correction 2, si elle est utilisée, permet d'optimiser l'estimation de la différence de pression ΔPrail ini dans le rail d'injection grâce à un système d'apprentissage.
  • En fonction du niveau d'augmentation de la pression du rail en phase moteur thermique arrêté prédit par l'estimateur 7, donc à venir, la pression dans le rail d'injection du système d'injection est pilotée, via une cartographie 3, à une consigne de pression initiale Cons Prail ini permettant de maximiser la durée passée au-dessus de la pression d'injection minimale pour injecter du carburant lors d'un nouveau démarrage.
  • Cette consigne en pression pourra être la valeur de pression maximale cible Prail M dans le cas où l'augmentation de la pression rail prédite en phase moteur thermique arrêté est nulle, la valeur maximale de fonctionnement pouvant être de 220 à 250 bars ou plus. Ceci est avantageux dans le cas ou la différence ΔT entre températures du rail d'injection Trail et du moteur thermique Tmot est faible, c'est-à-dire dans le cas où la pression dans le rail ne va pas augmenter en début d'arrêt du moteur thermique par un possible réchauffement du rail d'injection par le moteur thermique.
  • Dans le cas où l'augmentation de la pression rail prédite en phase moteur thermique arrêté est non nulle, cette consigne en pression est inférieur à la valeur de pression maximale cible Prail M pour prendre en compte l'augmentation de la pression rail prédite et ainsi ne pas dépasser cette pression maximale de fonctionnement du rail d'injection.
  • L'application de la consigne de pression initiale Cons Prail ini et la mise en œuvre du procédé selon l'invention peuvent se faire suivant une demande d'arrêt du moteur thermique DAmot. Le procédé selon l'invention peut être implémenté par un calculateur, avantageusement un contrôle moteur du moteur thermique déjà en charge du bon fonctionnement du système d'injection de carburant en fonctionnement normal du moteur thermique.
  • De manière usuelle, lors du fonctionnement du moteur, il est établi une consigne de pression du rail d'injection dite ici consigne de pression hors arrêt Cons Prail HA du rail d'injection pour être différenciée de la consigne de pression lors de l'arrêt du moteur thermique comme le propose le procédé selon l'invention. A partir de cette consigne de pression hors arrêt Cons Prail HA, il est connu de piloter la pression du rail d'injection lors du fonctionnement du moteur thermique par une consigne de pression dans le rail d'injection Cons Prail.
  • Dans le cadre de la présente invention, lors de l'arrêt du moteur thermique il est utilisé la consigne de pression initiale Cons Prail ini pour piloter la pression du rail d'injection pendant l'arrêt du moteur thermique. Un commutateur, avantageusement virtuel, dans le calculateur peut être prévu pour sélectivement, d'une part, suspendre la consigne de pression hors arrêt Cons Prail HA pendant l'arrêt du moteur thermique en la remplaçant par la consigne de pression initiale Cons Prail ini et, d'autre part, suspendre la mise en application du procédé selon la présente invention et l'application de la consigne de pression initiale Cons Prail ini pendant le fonctionnement du moteur thermique dès le démarrage ou le redémarrage du moteur thermique.
  • Dans un mode préférentiel de la présente invention, il peut être prévu un système d'apprentissage 9. Suite à une autorisation d'apprentissage, le fonctionnement du système d'apprentissage 9, tel que pouvant être envisagé dans le cadre de la présente invention, est décrit ci-dessous :
  • Il est défini un bloc d'apprentissage 4. Dans ce bloc d'apprentissage 4, il est défini x variables A1 à Ax de pression, x étant la dimension de la cartographie 1, les variables A1 à Ax étant associées chacune à une différence de température ΔT1 à ΔTx. Il est défini un bloc 6 de mise à jour de la cartographie de correction 2. Dans ce bloc 6, il est défini x variables B1 à Bx de correction de pression. Il est défini un bloc compteur 5. Dans ce bloc compteur 5, il est défini x variables C1 à Cx de comptage du nombre d'apprentissage.
  • Les variables B1 à Bx correspondent aux x points de la cartographie de correction 2 pour chaque différence de température ΔT. On définit n l'indice, compris entre 1 et x, correspondant à la différence ΔT de température observée en début d'apprentissage. La cible de pression maximale Prail M dans le rail d'injection pendant la phase arrêtée du moteur thermique est introduite en entrée du bloc d'apprentissage 4. Elle est utilisée pour calculer la correction de pression en sortie de ce bloc d'apprentissage 4. Cette sortie est égale à l'écart de pression entre la valeur prise par An et cette cible de pression maximale Prail M. Cette cible de pression maximale dans le rail Prail M peut être calibrée et peut être différente selon le type de moteur thermique.
  • L'apprentissage est réalisé suite à une demande d'arrêt du moteur thermique DAmot et pendant une durée d'apprentissage pouvant être calibrée, notamment en fonction de la différence ΔT des températures du rail d'injection Trail et du moteur thermique Tmot. On trouve en entrée du bloc d'apprentissage 4 la cible de pression maximale Prail M et la pression mesurée Prail mes du rail d'injection à partir de l'arrêt du moteur thermique pendant la durée d'apprentissage.
  • En parallèle, dès lors que la durée d'apprentissage est écoulée, le compteur Cn entre C1 et Cx et appartenant au bloc référencé 5 est incrémenté. Si la valeur de ce compteur Cn est supérieure au seuil d'apprentissage calibrable alors la variable Bn est mise à jour telle que Bn = An - Prail M, cette mise à jour AMaj se faisant dans le bloc 6. Une mise à zéro R du compteur Cn et de la variable An sont alors effectuées.
  • Une phase d'apprentissage peut débuter à la demande d'arrêt du moteur thermique et se termine lorsque la durée d'apprentissage définie pour une différence de température ΔT entre les températures du rail d'injection et du moteur thermique est écoulée, la différence de température ΔT étant relevée au moment de la demande d'arrêt. Tout au long de la phase d'apprentissage, la pression rail mesurée Prail mes est observée et le maximum de cette pression est relevée.
  • Dans le mode préférentiel de réalisation de l'apprentissage, dès lors que la durée d'apprentissage est écoulée, si la valeur maximale de pression rail relevée est supérieure à la valeur contenue dans la variable d'apprentissage de la pression An alors l'ancienne valeur de An est remplacé par la nouvelle valeur apprise.
  • La référence 5 symbolise le compteur du nombre d'apprentissage par point de cartographie, les points de cartographie étant les variables C1 à Cx du compteur. En sortie du compteur du nombre d'apprentissage, il est procédé à une autorisation de mise à jour sur un seuil d'apprentissage AMaj, ce seuil d'apprentissage pouvant être calibré. La mise à jour est référencé 6 et concerne les variables de vecteurs de correction B1 à Bx. Il est ensuite procédé à une mise à zéro R du compteur.
  • La durée d'apprentissage peut être différente en fonction de la différence ΔT de température. La durée d'apprentissage et le seuil d'apprentissage doivent être suffisamment importants pour que la correction apportée par l'estimateur 7 de pression dans le rail d'injection soit robuste mais ils doivent également permettre une fréquence d'apprentissage importante.
  • Dans le cas où un redémarrage intervient pendant l'apprentissage, c'est-à-dire que la durée d'apprentissage n'a pas été atteinte, l'apprentissage s'interrompt, le compteur 5 n'est pas incrémenté et la variable An n'est pas mise à jour.
  • En se référant aussi à la figure 6 pour la référence Cons Prail ini, les figures 7 et 8 sont à comparer aux figures 3 et 4 pour constater les gains obtenus par la mise en œuvre du procédé conforme à la présente invention. Le maintien de la pression à la consigne Cons Prail ini dans le rail d'injection en début d'arrêt du moteur thermique pour un moteur chaud MotC est illustré à la figure 7 et atteint 92 minutes soit un gain de 92 - 7 = 85 minutes par rapport à la figure 3 symbolisant une durée obtenue dans les mêmes conditions selon un procédé de l'état de la technique.
  • Le maintien de la pression à la consigne Cons Prail ini dans le rail d'injection en début d'arrêt moteur thermique pour un moteur froid MotF est illustré à la figure 8 et atteint 27 minutes soit un gain de 27 - 0 = 27 minutes par rapport à la figure 4 symbolisant une durée obtenue dans les mêmes conditions selon un procédé de l'état de la technique.
  • L'invention concerne aussi un véhicule automobile comportant un groupe motopropulseur comprenant un moteur thermique, le moteur thermique étant avantageusement mais pas limitativement un moteur à essence. De manière connue, le moteur thermique comporte au moins un cylindre, un injecteur étant associé au cylindre pour l'alimentation en carburant dudit au moins un cylindre, le carburant étant envoyé à l'injecteur par un rail d'injection mis sous pression en fonctionnement.
  • A l'arrêt du moteur thermique, une consigne de pression initiale Cons Prail ini dans le rail d'injection est pilotée en fonction d'une différence ΔT entre des températures du rail d'injection Trail et du moteur thermique Tmot, la consigne de pression initiale Cons Prail ini étant pilotée par un calculateur embarqué dans le véhicule automobile pour une mise en œuvre d'un tel procédé d'optimisation d'un temps de redémarrage.
  • Le calculateur comprend des moyens de réception des températures du rail d'injection Trail et du moteur thermique Tmot, des moyens d'établissement d'une différence ΔT de température et des moyens de calcul de la consigne de pression initiale Cons Prail ini à appliquer sur la pression dans le rail d'injection au début de l'arrêt du moteur. Le calculateur peut comprendre aussi un système d'apprentissage tel que précédemment décrit.
  • Une application préférentielle de l'invention mais non limitative est pour un véhicule hybride comprenant le groupe motopropulseur précédemment décrit et un moteur autre que thermique pour une propulsion du véhicule, avantageusement un moteur électrique. Le moteur thermique du groupe motopropulseur d'un tel véhicule hybride est fréquemment arrêté et redémarré, la propulsion du véhicule étant assurée par le moteur autre que thermique lors d'un arrêt du moteur thermique.
  • De tels véhicules hybrides se développent de plus en plus au fil des années du fait de contraintes environnementales et la résolution du problème d'un redémarrage optimisé avec un temps de redémarrage diminué est cruciale pour leur développement.
  • L'invention n'est nullement limitée aux modes de réalisation décrits et illustrés qui n'ont été donnés qu'à titre d'exemples.

Claims (11)

  1. Procédé d'optimisation d'un temps de redémarrage d'un moteur thermique de véhicule automobile, le moteur thermique étant associé à un rail d'injection de carburant sous pression, la pression dans le rail d'injection devant être au-dessus d'un seuil calibrable en tant que pression minimale d'autorisation de l'injection au cours du redémarrage du moteur thermique suivant une durée d'arrêt du moteur thermique pendant laquelle la pression dans le rail d'injection diminue à partir d'une consigne de pression dite initiale (Cons Prail ini) en début d'arrêt du moteur thermique, et qu'il est effectué une augmentation forcée de la pression dans le rail d'injection régnante à l'arrêt du moteur jusqu'à obtenir la consigne de pression initiale (Cons Prail ini), le pilotage de la consigne de pression initiale (Cons Prail ini) maximisant un intervalle de la durée d'arrêt pendant lequel la pression dans le rail d'injection est au-dessus de la pression minimale d'autorisation de l'injection au cours du redémarrage,
    caractérisé en ce que la consigne de pression initiale (Cons Prail ini) est déterminée en fonction d'une estimation d'une augmentation à venir de la pression (ΔPrail ini) dans le rail d'injection subie pendant la phase où le moteur est arrêté, à partir de la différence (ΔT) entre des températures du rail d'injection (Trail) et du moteur thermique (Tmot), cette estimation de l'augmentation de la pression (ΔPrail ini) dans le rail d'injection comprenant une conversion prédéterminée de la différence (ΔT) entre les températures du rail d'injection (Trail) et du moteur thermique (Tmot) en une augmentation de pression (ΔPrail ini) dans le rail d'injection et l'ajout d'une correction correspondant à un écart (Bn) de pression entre une cible de pression maximale (Prail M) dans le rail d'injection et une pression maximale relevée (An) dans le rail d'injection pour la différence (ΔT) entre les températures du rail d'injection (Trail) et du moteur thermique (Tmot).
  2. Procédé selon la revendication 1, dans lequel cette augmentation de pression étant fonction de la différence (ΔT) entre les températures du rail d'injection (Trail) et du moteur thermique (Tmot), l'augmentation forcée de pression est plus forte plus la différence (ΔT) entre les températures du rail d'injection (Trail) et du moteur thermique (Tmot) est faible.
  3. Procédé selon la revendication 1 ou 2 , caractérisé en ce que cet écart (Bn) de pression est obtenu par un apprentissage pendant l'arrêt du moteur thermique.
  4. Procédé selon la revendication 3, dans lequel l'apprentissage débute à une demande d'arrêt (DAmot) du moteur thermique, pour une durée d'apprentissage définie.
  5. Procédé selon la revendication 4, dans lequel la durée d'apprentissage est calibrable en fonction de la différence (ΔT) des températures du rail d'injection (Tail) et du moteur thermique (Tmot).
  6. Procédé selon la revendication 4 ou la revendication 5, dans lequel, dès lors que la durée d'apprentissage est écoulée, si la valeur maximale de pression rail relevée est supérieure à la valeur contenue dans une variable d'apprentissage de la pression alors l'ancienne valeur de la variable d'apprentissage est remplacée par la nouvelle valeur apprise.
  7. Procédé selon l'une quelconque les revendications 3 à 6, caractérisé en ce que la mise à jour de l'apprentissage de l'écart (Bn) de pression pour une différence de température (ΔT) donnée est autorisé lorsque le nombre d'apprentissage atteint un seuil d'apprentissage (AMaj).
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel, quand la pression dans le rail d'injection est limitée en utilisation à une pression maximale en fonctionnement (Prail M) du rail d'injection, la consigne de pression initiale (Cons Prail ini) du rail d'injection est inférieure ou égale à la pression maximale en fonctionnement (Prail M) du rail d'injection.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la température du rail d'injection (Trail) est la température du carburant en sortie d'une pompe haute pression se trouvant en amont du rail d'injection dans un système d'alimentation de carburant au moteur thermique et la température du moteur thermique (Tmot) est la température d'un fluide de refroidissement circulant dans un système de refroidissement du moteur thermique.
  10. Véhicule automobile comportant un groupe motopropulseur comprenant un moteur thermique avec au moins un cylindre, un injecteur étant associé au cylindre pour l'alimentation en carburant dudit au moins un cylindre, le carburant étant envoyé à l'injecteur par un rail d'injection mis sous pression en fonctionnement, caractérisé en ce qu'à l'arrêt du moteur thermique, une consigne de pression initiale (Cons Prail ini) dans le rail d'injection est déterminée en fonction d'une différence (ΔT) entre des températures du rail d'injection (Trail) et du moteur thermique (Tmot), et qu'il est effectué une augmentation forcée de la pression dans le rail d'injection régnante à l'arrêt du moteur jusqu'à obtenir la consigne de pression initiale (Cons Prail ini), la consigne de pression initiale (Cons Prail ini) étant pilotée par un calculateur embarqué dans le véhicule automobile pour une mise en œuvre d'un procédé selon l'une quelconque des revendications précédentes.
  11. Véhicule selon la revendication 10, lequel est un véhicule hybride comprenant le groupe motopropulseur et un moteur autre que thermique pour une propulsion du véhicule, le moteur thermique du groupe motopropulseur étant fréquemment arrêté et redémarré, la propulsion du véhicule étant assurée par le moteur autre que thermique lors d'un arrêt du moteur thermique.
EP17715240.2A 2016-04-19 2017-03-17 Procede d'optimisation d'un temps de redemarrage d'un moteur thermique par pilotage de la pression dans un rail d'injection Active EP3445961B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1653428A FR3050236B1 (fr) 2016-04-19 2016-04-19 Procede d’optimisation d’un temps de redemarrage d’un moteur thermique par pilotage de la pression dans un rail d’injection
PCT/FR2017/050619 WO2017182724A1 (fr) 2016-04-19 2017-03-17 Procede d'optimisation d'un temps de redemarrage d'un moteur thermique par pilotage de la pression dans un rail d'injection

Publications (2)

Publication Number Publication Date
EP3445961A1 EP3445961A1 (fr) 2019-02-27
EP3445961B1 true EP3445961B1 (fr) 2020-01-22

Family

ID=56101718

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17715240.2A Active EP3445961B1 (fr) 2016-04-19 2017-03-17 Procede d'optimisation d'un temps de redemarrage d'un moteur thermique par pilotage de la pression dans un rail d'injection

Country Status (4)

Country Link
EP (1) EP3445961B1 (fr)
CN (1) CN109072794B (fr)
FR (1) FR3050236B1 (fr)
WO (1) WO2017182724A1 (fr)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69827552T2 (de) * 1997-06-19 2005-05-04 Toyota Jidosha K.K., Toyota Brennstoffdrucksteuervorrichtung für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine
JP3829035B2 (ja) * 1999-11-30 2006-10-04 株式会社日立製作所 エンジンの燃料圧力制御装置
JP2005098138A (ja) * 2003-09-22 2005-04-14 Mitsubishi Electric Corp 筒内噴射式内燃機関の燃圧制御装置
JP4127188B2 (ja) * 2003-10-30 2008-07-30 トヨタ自動車株式会社 内燃機関の燃料供給装置
JP2005207339A (ja) * 2004-01-23 2005-08-04 Toyota Motor Corp 内燃機関の制御装置およびこれを搭載する自動車並びに内燃機関の運転停止方法
JP4407827B2 (ja) * 2005-08-08 2010-02-03 株式会社デンソー 筒内噴射式の内燃機関の制御装置
DE102007058229A1 (de) * 2007-12-04 2009-06-10 Robert Bosch Gmbh Verfahren zur Steuerung eines Kraftstoffeinspritzsystems einer Brennkraftmaschine mit Start-Stopp-Funktion
JP2010019088A (ja) * 2008-07-08 2010-01-28 Denso Corp アイドルストップ制御装置およびそれを用いた燃料噴射システム
JP2011127523A (ja) * 2009-12-18 2011-06-30 Bosch Corp 蓄圧式燃料噴射装置の制御装置及び制御方法並びに蓄圧式燃料噴射装置
DE102009055037B4 (de) * 2009-12-21 2013-05-29 Ford Global Technologies, Llc Common Rail Minimaldruck zum schnellen Druckaufbau
DE102010028910A1 (de) * 2010-05-12 2011-11-17 Robert Bosch Gmbh Verfahren zum Bereitstellen eines für ein Wiederanlassen einer Common-Rail-Brennkraftmaschine ausreichenden Raildrucks
FR2994714B1 (fr) 2012-08-21 2014-08-29 Peugeot Citroen Automobiles Sa Procede de gestion de la preparation au (re)demarrage d'un moteur thermique essence pour un vehicule hybride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017182724A1 (fr) 2017-10-26
EP3445961A1 (fr) 2019-02-27
CN109072794B (zh) 2021-08-17
CN109072794A (zh) 2018-12-21
FR3050236B1 (fr) 2018-04-13
FR3050236A1 (fr) 2017-10-20

Similar Documents

Publication Publication Date Title
FR2858017A1 (fr) Appareil de commande du moment de mise en marche et appareil de commande du moment d'arret d'un moteur a combustion interne, procedes de commande de ceux-ci et supports d'enregistrement
FR2906318A1 (fr) Procede de demarrage d'un moteur a combustion interne et dispositif ainsi que programme pour sa mise en oeuvre.
WO2017088970A1 (fr) Procede d'acceleration du chauffage d'un groupe motopropulseur d'un vehicule automobile pour le placer dans des conditions operatoires d'un test et/ou d'une operation de maintenance
FR2982316A1 (fr) Procede de regeneration d'un filtre a particules pour vehicule automobile hybrideprocede de regeneration d'un filtre a particules pour vehicule automobile hybride
EP3445961B1 (fr) Procede d'optimisation d'un temps de redemarrage d'un moteur thermique par pilotage de la pression dans un rail d'injection
EP2806143A1 (fr) Procédé d'arrêt d'un moteur thermique de véhicule automobile
FR2858666A1 (fr) Procede de demarrage d'un moteur a combustion interne a plusieurs cylindres
EP3655633B1 (fr) Procédé de lancement d'une régénération d'un filtre à particules
FR2909723A1 (fr) "procede pour ameliorer le demarrage a froid d'un moteur diesel"
FR3050486A1 (fr) Procede de limitation de fuite de carburant d'un injecteur apres l'arret moteur par refroidissement force du rail d'injection
FR2994714A1 (fr) Procede de gestion de la preparation au (re)demarrage d'un moteur thermique essence pour un vehicule hybride
EP2761153B1 (fr) Commande d'injection de carburant au démarrage d'un moteur thermique
EP1752656A2 (fr) Dispositif de démarrage d'un moteur à combustion interne, en particulier d'un moteur diesel sans bougie de préchauffage
WO2020058584A1 (fr) Procede d'apprentissage d'une correction de richesse d'un moteur froid
EP3850200B1 (fr) Procede de protection contre l'engazage d'un fluide caloporteur dans un systeme de refroidissement d'un moteur thermique
FR3058764A1 (fr) Moteur a combustion interne
EP2078840B1 (fr) Strategie de mise en oeuvre d'un processus de chauffage rapide d'un catalyseur
CN108699983B (zh) 用于运行电燃料泵的方法
FR2997455A1 (fr) Gestion du systeme d'injection d'un moteur
FR3022591A1 (fr) Procede de pilotage d'un moteur a combustion interne
FR3105462A1 (fr) Procédé d’estimation et d’ajustement d’un bilan énergie d’un gaz sous forme liquide contenu dans une cuve
FR2952967A1 (fr) Procede de gestion d'une sonde a oxygene associee a un moteur a combustion interne
FR3067403A1 (fr) Reserve de couple pour un groupe motopropulseur turbocompresse avec compresseur auxiliaire
EP3583311A1 (fr) Procédé de contrôle d'avance à l'allumage minimale d'un moteur thermique au cours de sa mise en route
FR3067409A1 (fr) Procede de synchronisation du regime d’un demarreur dans un vehicule equipe d’un systeme d’arret et de redemarrage automatique du moteur thermique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190809

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602017010960

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1227055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017010960

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20200227

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200614

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200423

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200522

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017010960

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PSA AUTOMOBILES SA

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1227055

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

26N No opposition filed

Effective date: 20201023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200317

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017010960

Country of ref document: DE

Owner name: STELLANTIS AUTO SAS, FR

Free format text: FORMER OWNER: PSA AUTOMOBILES SA, POISSY, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240220

Year of fee payment: 8

Ref country code: GB

Payment date: 20240220

Year of fee payment: 8