EP3445885B1 - Armature de rupteur de pont thermique pour la construction de bâtiments, et rupteur de pont thermique la comportant - Google Patents

Armature de rupteur de pont thermique pour la construction de bâtiments, et rupteur de pont thermique la comportant Download PDF

Info

Publication number
EP3445885B1
EP3445885B1 EP17717456.2A EP17717456A EP3445885B1 EP 3445885 B1 EP3445885 B1 EP 3445885B1 EP 17717456 A EP17717456 A EP 17717456A EP 3445885 B1 EP3445885 B1 EP 3445885B1
Authority
EP
European Patent Office
Prior art keywords
reinforcement
traces
steel
content
thermal break
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17717456.2A
Other languages
German (de)
English (en)
Other versions
EP3445885A1 (fr
Inventor
Nicolas Meyer
Christophe Bourgin
Angélique GAUTHIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ugitech SA
Original Assignee
Ugitech SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ugitech SA filed Critical Ugitech SA
Publication of EP3445885A1 publication Critical patent/EP3445885A1/fr
Application granted granted Critical
Publication of EP3445885B1 publication Critical patent/EP3445885B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/003Balconies; Decks
    • E04B1/0038Anchoring devices specially adapted therefor with means for preventing cold bridging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7679Means preventing cold bridging at the junction of an exterior wall with an interior wall or a floor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B2005/324Floor structures wholly cast in situ with or without form units or reinforcements with peripheral anchors or supports

Definitions

  • the present invention relates to metal products for the building, and more specifically the use of certain stainless steels as reinforcing elements and connecting parts between elements forming a building.
  • thermal bridge breakers i.e. areas where heat can easily pass from one element of the building to another, by using insulating connectors called "thermal bridge breakers" at these bridges. .
  • thermal bridge breakers make it possible to divide by three, or even more, the flow of heat loss between the elements they connect.
  • a typical case of use of such switches is the connection between a floor and a wall which is normally covered by a layer of insulation.
  • this layer is interrupted, and the heat can pass through this junction without being hindered other than by the wall/floor interface from one element to another, resulting in a significant loss of heat inside the heated building, or conversely a heat input coming from outside in a building initially at moderate indoor temperature.
  • thermal bridge breakers which introduce a layer of insulation into a zone which is normally devoid of it, and which comprise a metal reinforcement passing through this layer of insulation to take up the mechanical forces at the level of the connection. in question.
  • stainless steels would be good candidates to fulfill the requirements related to corrosion resistance.
  • stainless steels have a thermal conductivity ⁇ of the order of 15 W/(m.K), which is very advantageous compared to coated carbon steels, whose thermal conductivity is of the order of 45 W/(m.K).
  • the AISC American Institute of Steel Construction refers, for example, to the classic austenitic stainless steels 304 and 316 in its document “Thermal Bridging Solution” (March 2012).
  • duplex stainless steels with low levels of alloying elements such as Ni and Mo are a priori more economical solutions and less subject to variations in the cost of raw materials than austenitic stainless steels, and these grades are increasingly used.
  • the most widely used classic stainless steel grades are the austenitic grades 1.4301 (AISI 304), 1.4597 (UGI ® 204Cu) and the duplex grades 1.4362 and 1.4062.
  • the thermal regulations governing the construction of buildings impose increasingly low linear coefficients ⁇ at the junctions.
  • the French regulation RT 2012 imposes a ⁇ of less than 0.60 W/(mK)
  • the future regulation RT 2020 will probably lower ⁇ to less than 0.22 W/(mK).
  • manufacturers must and will have to strive to make their thermal bridge breakers even more insulating, which could be done by reducing the section of the reinforcements and/or using materials that are even weaker heat conductors than those just mentioned, and which would have a thermal conductivity ⁇ of less than 15 W/(mK).
  • the Cr content of the steel can be between 16.0% and 20.0%.
  • the Cr content of steel can be between 20.0% and 23.0%
  • the Ni content of the steel may be between 1.0% and 7.0%, preferably between 2.0% and 5.0%.
  • alloying elements may be at least one of Al, Ti, Nb, V, Ca and B, Al, Ti, Nb and V may each be present at a rate of at most 0.5% and Ca and B may each be present at most 0.05%.
  • the yield strength Rp0.2 can be greater than or equal to 600 MPa with a total elongation under maximum load Agt greater than or equal to 5%.
  • the thermal bridge breaker reinforcement can be obtained from a bar, a wire or a sheet
  • the invention also relates to a thermal bridge breaker for the construction of buildings, comprising an armature and a layer of insulation through which said armature passes, characterized in that said armature is made as stated previously.
  • the invention is based on the use, to manufacture a metal frame for a thermal bridge breaker between two elements of a building (wall and floor, for example), of a grade of stainless steel of austenitic or austenitic-ferritic structure whose chemical composition is not strictly speaking new, in that steels which could sometimes conform to it had already been used in the past (see documents US-A-4,814,140 and WO94/04714 for example), but whose suitability for this use, in the precise range of compositions of the invention, had never been recognized.
  • the figure 1 represents a connection zone between a facade 1 and a floor 2 of a building of conventional design, for which no attempt has been made to optimize the performance in terms of thermal insulation between the external environment 3 and the interior of the building 4
  • the interior side of the facade 1 is, of course, provided with an insulating coating 5. But this is interrupted at the level of the junction between the facade 1 and the floor 2, so that these two elements are in contact. direct and that the heat can pass from the interior to the exterior of the building (or vice versa) by crossing this contact zone (which is illustrated by the arrows in the figure 1 ).
  • Conventional building materials impose a linear loss coefficient ⁇ at this junction which is of the order of 1 W/(mK).
  • the figure 2 schematically represents the same building equipped with a thermal bridge breaker at the facade 1-floor 2 junction.
  • This breaker comprises, in known manner, an insulating layer 6 between the facade and the floor which replaces the usual direct contact between these two parts, and a metal reinforcement 7 which connects the facade 1 and the floor 2 by crossing the insulating layer 6.
  • the coefficient ⁇ is lowered, and the absorption of the forces by the reinforcement 7 ensures the mechanical functions that the insulator 6 alone could not fulfill.
  • this reinforcement 7 aims to improve with respect to known devices, by giving it particularly favorable mechanical and, above all, thermal properties, without it being necessary to modify the configuration of the reinforcement. This optimization is achieved by the choice of a particular grade of stainless steel which, at first glance, did not indicate that it would have been suitable for this purpose.
  • the C content is between traces and 0.08%, better still between 0.01% and 0.04%. A higher content would increase the risks of sensitizing the alloy to intergranular corrosion. A C content of less than 0.01 is difficult and costly to obtain industrially.
  • the Si content is between 1.5 and 4.0%, preferably between 2.0 and 3.0%.
  • Si is an alphagenic element (promoting the stability of ferrite), and is acceptable as long as it is not present in too great a quantity to upset the desired balance between austenite and ferrite. Adding more than 4.0% would degrade the toughness of the steel too much, and it is preferable, from this point of view, not to exceed a content of 3.0%.
  • Si is of particular interest.
  • the tests which will be presented below show that an Si content in the prescribed range, and more particularly between 2.0 and 3.0%, makes it possible to lower the thermal conductivity of the steel of the invention up to 12 to 13.5 W/(m.K) approximately, whereas the steels usually used to make the reinforcements of the junctions of thermal bridges have thermal conductivities greater than 14 W/(m.K), often of the order of 15 W/( m.K) or more. Above 3.0% Si, however, a reduction in the toughness of the steel begins to be observed, which becomes inadequate above 4.0% Si.
  • Mn content is between 4.0 and 10.0%. A large proportion of this cheap element is added which stabilizes the austenite and can, advantageously from the financial point of view, partially or totally replace Ni for this function.
  • Mn increases the solubility of N in liquid steel, and as it will be seen that relatively large quantities of N are required in the invention, the production of steel is facilitated by the large presence of Mn.
  • Ni content is between traces and 7.0%, preferably between traces and 5.0%.
  • Ni is the gammagenic element typically used in the manufacture of austenitic stainless steels, and its content makes it possible to adjust the balance of the austenitic and ferritic phases to obtain the desired mechanical properties.
  • Ni is an expensive element anyway, and whose price is likely to fluctuate in large proportions. To obtain a steel at a limited and relatively predictable cost price, which is one of the objectives of the invention, it is therefore necessary not to exceed the aforementioned values for the Ni content.
  • Ni may even be present only in the form of traces, that is to say at a low or very low content which only results from the melting of the raw materials and not from a voluntary addition. Its usual gammagenic role is then assumed entirely by manganese, carbon, nitrogen and possibly copper.
  • Ni is an element which strongly tends to reduce the thermal conductivity of steel. From this point of view, an important advantage can be found in adding a significant quantity of it and, therefore, in not replacing it completely with Mn. However, it is difficult to set an optimum quantity of Ni in the grade used according to the invention, as this optimum will depend in particular on financial factors, which are liable to vary greatly according to the price of Ni. A balance will have to be found by those skilled in the art at the time of the manufacture of the steel, between purely technical considerations and financial considerations. It is generally considered that from a metallurgical and thermal point of view the Ni content is preferably at least 1.0%, more preferably at least 2.0%. Accordingly, particularly preferred ranges of the Ni content are 1.0 to 7%, more preferably 2.0 to 5.0%.
  • the Cr content is between 16.0 and 23.0%. As is well known, it gives steel its stainless character from 11%. Cr also has the advantage of slightly lowering the thermal conductivity of the steel, and a minimum content of 16.0% is required according to the invention to properly combine these two effects.
  • a content less than or equal to 20.0% makes it possible to maintain the desired phase balance without proceeding to an excessive addition of Ni, Mn and other gammagenic elements.
  • a content of 20.0% to 23.0% makes it possible to significantly increase the corrosion resistance and can be imposed, possibly by compensating for the effect of the increase in the Cr content on the mechanical properties by adjusting the contents of Mn, Ni and N that routine experiments make it possible to achieve.
  • a Cr content higher than 23.0% unnecessarily increases the cost of the steel and would risk degrading certain mechanical properties too much.
  • the Mo content is between traces resulting from the elaboration and 2.0%.
  • This element is not essential, but it helps to improve resistance to corrosion. Its possible drawbacks are its alphagenic nature which risks preventing the achievement of the desired austenite-ferrite balance, in particular on the austenitic-ferritic grades, and the fact that it promotes the appearance of embrittling intermetallic phases. Moreover, its cost is high, which runs counter to one of the aims of the invention.
  • the Mo can be partially or completely substituted by W.
  • a substitution ratio of W/Mo of 2 is generally acceptable. Consequently, it is also considered that on the one hand, the content of W must not exceed 1.0%, and on the other hand that the sum Mo+W/2 must not exceed 2.0%.
  • a Mo content of 2.0% would correspond to a case where W was not added voluntarily and where the possible presence of traces of W would only result from the melting of the raw materials.
  • a W content of 1.0% would correspond to a case where Mo was not added voluntarily and where the possible presence of traces of Mo would only result from the melting of the raw materials.
  • the Cu content is between traces resulting from the mere melting of the raw materials and 3.0%. Adding Cu in the proportions mentioned has the advantages of slightly reducing the thermal conductivity and improving the ductility. But an addition of 3.0% should not be exceeded, because beyond that, the embrittling effect of the Cu would cause problems during hot forming, and moreover would unnecessarily increase the cost of the steel.
  • the Co content is between traces resulting from the sole fusion of very pure raw materials and 2.0%. Depending on the purity of the raw materials, in particular ferronickel, the residual Co content can reach 0.8%. It is preferred not to add Co voluntarily, as this costly element has no marked metallurgical effect in stainless steels below 2%, therefore for contents which would considerably increase the cost of the steel. 0.8% is therefore the maximum preferential content of Co.
  • the N content is between 0.10% (1000 ppm) and 0.30% (3000 ppm).
  • This element is important to ensure the corrosion resistance necessary in the application targeted by the invention, and if its content which would simply result from the absorption of atmospheric nitrogen during production is not high enough, it must be added, for example by blowing nitrogen gas into the liquid metal or by using significantly nitrided ferroalloys (in particular nitrided ferromanganese which contains several % of N).
  • N stabilizes the austenitic phase and makes it possible to adjust the balance of the various phases present. It also has an interesting hardening effect for achieving the desired high mechanical properties. But beyond 0.30%, it can cause problems during production, casting and hot rolling (formation of nitrides in the presence of alloying elements such as Al and especially Ti, and blowholes during solidification).
  • additional alloying elements may be present following a voluntary addition, among which may be mentioned, in a non-exhaustive manner: Ti, Nb and V to improve weldability, Al and Ca as deoxidizers and/or temperature control elements. number and composition of non-metallic inclusions, as well as B which improves forgeability. But the individual contents of these additional alloying elements must not exceed 0.5%, in particular for Al, Ti, Nb and V, and more particularly must not exceed 0.05% for Ca and B. And the sum of the content of alloying elements other than C, Si, Mn, Cr, Ni, Mo, W, Cu, Co, N and the content of impurities resulting from the production (for example S, P, etc.) does not exceed 1.0%. These limits aim to avoid the risk of disturbing the balances that the contents of the main alloying elements, obligatorily or optionally present within well-defined limits, make it possible to achieve.
  • One of the objectives of the invention is to obtain a thermal bridge breaker armature element having low thermal conductivity. This depends on the chemical analysis of the steel, and the crystallographic structure of the matrix.
  • the crystallographic structure of the steel is also an important factor in the ability of the steel to be hot shaped, by forging or otherwise. Since the armatures of thermal breaks can have relatively complex shapes for relatively small dimensions, this ability to be hot-shaped is a criterion which is often to be considered for the steels used in the invention.
  • the steel has an austenitic or austenitic-ferritic microstructure.
  • IF is, according to the invention, preferably ⁇ 20 if good hot formability is desired.
  • IF is, according to the invention, preferably ⁇ 40 if it is desired to obtain good hot formability.
  • an austenitic grade which is characterized by an IF of 40 to 70 at most. Beyond this limit, the steel would fall within the domain of ferritic steels, which is not desired from the point of view of the mechanical characteristics.
  • the picture 3 shows the correlation between the ferrite fraction at 1100°C measured by a magnetic method (known as sigmametry and as described in standard IEC 60404-14) and the ferritic index IF calculated by the previous formula, for the eight laboratory samples A to H and the industrial sample I of table 3. It can be seen that this correlation is very satisfactory.
  • microstructures of the steels used in the invention are relatively little dependent on the heat treatment and cooling conditions of the metal during its transformations. This therefore leaves a lot of freedom to the metallurgists to design the precise method of manufacturing the reinforcements of the invention.
  • the figure 4 shows the good correlation obtained between IC calculated by the formula above and the thermal conductivity ⁇ actually measured at 20°C by the so-called “hot disk” method which uses the transient plane source technique, on the thirteen samples in tables 1 and 2.
  • This figure, and the tables on which it is based also show that the thermal conductivity decreases when the quantity of alloying elements increases, and that Si in the first place and Ni in the second place are the most influential elements from this point of view. This is reflected in the above formula for calculating IC.
  • the IC index of the steel used must be ⁇ 13.5, preferably ⁇ 13.0, better still ⁇ 12.5.
  • the mechanical properties of the steels used in the invention prove to be sufficient for the application envisaged, in particular because of the high N content and the percentage of austenite which is always at least 40%.
  • the N content and the percentage of austenite according to the invention provide the desired ductility both for the ease of hot transformations and for the capacity of the reinforcement to deform during exceptional stresses such as an earthquake. .
  • the best ductilities are obtained for austenitic grades.
  • laboratory castings according to the invention referenced A to H, and reference castings, the compositions of which appear in Tables 1 to 2 which follow, in the form of ingots of 25 kg cross-section were developed.
  • a solution treatment was carried out at 1050°C, then milling to adapt the thickness, before cold transformation to a thickness of 3 mm.
  • Microstructure, forgeability, thermal conductivity and other mechanical properties were characterized on all samples.
  • An industrial casting I according to the invention of 40 t was also developed by melting in an electric furnace, decarburization by the AOD process, continuous casting in blooms of 205 mm side and hot rolling in round bars with a diameter of 115 mm, then in wire rod with a diameter of approximately 10.5 mm.
  • the wire rod was cold transformed into notched wire of 10 mm in diameter, at a reduction rate of 10 to 15%.
  • Austenitic structures are designated by A
  • austenitic-ferritic structures are designated by AF.
  • Sample G is a sample in accordance with the invention. Indeed, its composition means that its thermal conductivity ⁇ meets the broadest requirements set by the inventors: measured ⁇ is 13.3 W/(m.K), which is very well correlated with the calculated IC which is 13.4 (for a maximum of 13.5 according to the invention, which already constitutes a significant progress compared to the most current prior art to ensure, in an economic way, the respect of the energy standards present and probably to come).
  • This sample is poor in Cu and contains relatively little Ni and Si, hence its higher thermal conductivity than what the optimal variants of the invention make it possible to obtain, even if the individual contents of each of its elements are entirely in accordance with the corresponding requirements of the invention. It confirms that the composition of the steel to be used to implement the invention must imperatively be considered as a whole, as a coherent whole.
  • samples A to I in accordance with the invention, have mechanical properties which are not inferior to those of the reference steel UGI® 204Cu, except for the degree of elongation Agt. But this one remains at values acceptable for the intended application, and several of the samples even have tensile strengths Rm and yield strengths Rp0.2 significantly higher than those of the reference steel.
  • sample B has an Agt of 6%, therefore slightly higher than the 5% that the inventors consider to be the minimum value to be obtained. But on the other hand, this sample B has a very high Rm and Rp0.2 and an IC which is the lowest of those calculated. This steel can therefore constitute a very satisfactory solution to the problems posed, at least for manufacturing frames of thermal breakers whose shapes are not too complex.
  • FIGS. 5 and 6 show the results of forgeability tests, therefore representative of hot ductility, carried out at 1200°C ( figure 5 ) and at 1100°C ( figure 6 ) on the aforementioned laboratory samples A to G. Their rate of necking was measured as a function of their ferritic index IF.
  • the invention makes it possible to substantially improve the thermal insulation performance of stainless steel thermal bridge breakers, and this without having to sacrifice the mechanical properties of the usual stainless steel breakers, on the contrary.
  • Certain variants of the invention have a particularly high hot-formability, which gives access to forms of armatures for thermal bridge breakers which were not easily conceivable hitherto.
  • the constructors of buildings with low energy consumption therefore have, thanks to the invention, the possibility of exploiting new designs of thermal bridge breakers, which could be advantageous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Bridges Or Land Bridges (AREA)

Description

  • La présente invention concerne les produits métalliques pour le bâtiment, et plus précisément l'utilisation de certains aciers inoxydables comme éléments d'armatures et pièces de liaison entre des éléments formant un bâtiment.
  • La réalisation de bâtiments à basse consommation énergétique impose la mise en œuvre de dispositifs limitant les pertes thermiques intégrés à la structure du bâtiment. On peut ainsi citer la règlementation thermique française RT2012 qui définit des limites de consommation d'énergie primaire des bâtiments. Elle préconise de traiter les ponts thermiques, c'est-à-dire les zones où la chaleur peut facilement passer d'un élément du bâtiment à un autre, en utilisant au niveau de ces ponts des connecteurs isolants appelés « rupteurs de ponts thermiques ». Ces rupteurs de ponts thermiques permettent de diviser par trois, voire davantage, le flux de déperdition de chaleur entre les éléments qu'ils relient. Un cas typique d'utilisation de tels rupteurs est la liaison entre un plancher et un mur qui est normalement recouvert par une couche d'isolant. Au niveau de la jonction mur-plancher, cette couche est interrompue, et la chaleur peut transiter par cette jonction sans être gênée autrement que par l'interface mur/plancher d'un élément à l'autre, d'où une déperdition sensible de chaleur à l'intérieur du bâtiment chauffé, ou inversement un apport de chaleur venant de l'extérieur dans un bâtiment initialement à température intérieure modérée.
  • Il est donc connu d'utiliser des rupteurs de ponts thermiques qui introduisent une couche d'isolant dans une zone qui en est normalement dépourvue, et qui comportent une armature métallique traversant cette couche d'isolant pour reprendre les efforts mécaniques au niveau de la connexion en cause.
  • Il faut que ces armatures de rupteurs de ponts thermiques présentent les propriétés suivantes :
    • Des propriétés mécaniques élevées, notamment la limite d'élasticité, de façon à assurer la cohésion de la structure du bâtiment, et la ductilité de façon à pouvoir faire résister le bâtiment à des sollicitations exceptionnelles comme un tremblement de terre ;
    • Une bonne tenue à la corrosion en milieu atmosphérique, en particulier à la corrosion sous contrainte ; en effet, la partie de l'armature qui traverse l'isolant n'est pas noyée dans le béton, et est donc susceptible d'être soumise à la corrosion atmosphérique ;
    • Une conductivité thermique la plus basse possible, pour limiter les déperditions énergétiques à travers l'armature ;
    • Un coût matière raisonnable.
  • De toute évidence, des aciers inoxydables seraient de bons candidats pour remplir les exigences liées à la résistance à la corrosion.
  • Le document, "Thermal Bridging Solutions: Minimizing Structural Steel's Impact on Building Envelope Energy Transfer", Jeralee Anderson et al, SEI / AISC Thermal Steel Bridging Task Committee Members, A Supplement to Modern Steel Construction, March 2012, propose ainsi de réaliser une armature de rupteur de pont thermique en acier inoxydable.
  • Classiquement, les aciers inoxydables ont une conductivité thermique λ de l'ordre de 15 W/(m.K), ce qui est très avantageux par rapport aux aciers au carbone revêtus, dont la conductivité thermique est de l'ordre de 45 W/(m.K). L'AISC (American Institute of Steel Construction) fait, par exemple, référence aux aciers inoxydables austénitiques classiques 304 et 316 dans son document « Thermal Bridging Solution » (mars 2012).
  • Il reste à savoir quels aciers inoxydables seraient spécifiquement à même de remplir au mieux l'ensemble des exigences précitées.
  • Du point de vue du coût matière, les aciers inoxydables dits « duplex » à faibles teneurs en élément d'alliage comme Ni et Mo (nuances dites « lean duplex ») sont des solutions a priori plus économiques et moins sujettes aux variations du coût des matières premières que les aciers inoxydables austénitiques, et ces nuances sont de plus en plus souvent utilisées.
  • Les nuances d'aciers inoxydables classiques les plus utilisées sont les nuances austénitiques 1.4301 (AISI 304), 1.4597 (UGI®204Cu) et les nuances duplex 1.4362 et 1.4062.
  • On connait par ailleurs des documents WO 2015/1074802 A1 , WO 02/27056 A1 et WO 2014/055010 A1 des aciers inoxydables austéno-ferritiques, notamment pour matériaux de construction ou pour des câbles électriques.
  • Cependant, les règlementations thermiques régissant la construction des bâtiments imposent des coefficients linéiques ψ aux jonctions de plus en plus bas. Ainsi, la règlementation française RT 2012 impose un ψ de moins de 0,60 W/(m.K), et la future règlementation RT 2020 abaissera probablement ψ à moins de 0,22 W/(m.K). Ainsi, les fabricants doivent et devront s'efforcer de rendre leurs rupteurs de ponts thermiques encore plus isolants, ce qui pourrait se faire en diminuant la section des armatures et/ou en utilisant des matériaux encore plus faiblement conducteurs de la chaleur que ceux que l'on vient de citer, et qui auraient une conductivité thermique λ inférieure à 15 W/(m.K).
  • Mais ces solutions présentent deux difficultés, si on s'en tient à l'état de l'art le plus évident. D'une part, une réduction de la section des armatures rend celles-ci moins performantes mécaniquement, et il y a un risque que cette solution ne soit pas utilisable pour que le rupteur puisse remplir toutes ses fonctions liées à la structure du bâtiment. D'autre part, les nuances connues pour avoir une conductivité thermique de moins de 14 W/(m.K) sont des nuances austénitiques très alliées, donc très coûteuses, et auraient un coût prohibitif pour ce type d'utilisation.
  • Le but de l'invention est de proposer des rupteurs de ponts thermiques dont le matériau constitutif de l'armature métallique réponde au mieux aux différents impératifs qui ont été cités. Le matériau de l'armature devrait avoir :
    • Une conductivité thermique λ de au plus 13,5 W/(m.K), de préférence au plus de 13,0 W/(m.K), mieux au plus de 12,5 W/(m.K) ;
    • Des propriétés mécaniques correspondant à celles requises pour cette application, à savoir notamment une limite élastique Rp0,2 d'au moins 600 Mpa, mieux d'au moins 700 MPa, et un allongement total plastique sous charge maximale Agt d'au moins 5% après une mise en forme à froid ; on rappelle que Agt, auquel il est courant de se référer dans l'industrie du bâtiment, est la somme de l'allongement élastique et de l'allongement plastique à la charge d'essai maximale ;
    • Une bonne aptitude à la mise en forme à chaud et à froid ;
    • Un coût matière comparable à celui d'une nuance « lean duplex » 1.4362, voire inférieur.
  • A cet effet, l'invention a pour objet une armature de rupteur de pont thermique pour la construction de bâtiments, caractérisée en ce qu'elle est réalisée en un acier inoxydable austénitique ou austéno-ferritique dont la composition, en % pondéraux, consiste en :
    • traces ≤ C ≤ 0,08% ; de préférence 0,01 ≤ C ≤ 0,04% ;
    • 1,5% ≤ Si ≤ 4,0% ; de préférence 2,0% ≤ Si ≤ 3,0% ;
    • 4,0% ≤ Mn ≤ 10,0% ;
    • traces ≤ Ni ≤ 7,0% ; de préférence traces ≤ Ni ≤ 5,0% ;
    • 16,0% ≤ Cr ≤ 23,0% ;
    • traces ≤ Mo ≤ 2,0% ;
    • traces ≤ W ≤ 1,0% ;
    • traces ≤ Mo + W/2 ≤ 2,0% ;
    • traces ≤ Co ≤ 2,0%: de préférence traces ≤ Co ≤ 0,8%
    • traces ≤ Cu ≤ 3,0% ;
    • 0,10% ≤ N ≤ 0,25% ;
    le reste étant du fer, des éléments d'alliage autres que ceux précédemment mentionnés et des impuretés résultant de l'élaboration, le total de ces autres éléments d'alliages et des impuretés ne dépassant pas 1,0%, et aucun de ces autres éléments d'alliage n'étant présent individuellement à une teneur supérieure à 0,5%, et en ce que l'indice de conductivité thermique IC calculé selon :
    IC = 22,2 + 2,11 (1 - IF/100) - 0,89 Si - 0,77 Ni - 0,44 Mn - 0,17 Cr - 0,16 Cu avec IF = 6,7 Cr + 5,7 Mo + 10,7 Si - 8,6 Ni - 2,4 Mn - 0,5 Cu - 110 C - 150 N - 42,7 est ≤ 13,5, de préférence ≤ 13,0, mieux ≤ 12,5.
  • La teneur en Cr de l'acier peut être comprise entre 16,0% et 20,0%.
  • La teneur en Cr de l'acier peut être comprise entre 20,0% et 23,0%
  • La teneur en Ni de l'acier peut être comprise entre 1,0% et 7,0%, de préférence entre 2,0% et 5,0%.
  • L'indice ferritique IF de l'acier calculé selon :
    IF = 6,7 Cr + 5,7 Mo + 10,7 Si - 8,6 Ni - 2,4 Mn - 0,5 Cu - 110 C - 150 N - 42,7 peut être ≤ 20.
  • L'indice ferritique IF de l'acier calculé selon :
    IF = 6,7 Cr + 5,7 Mo + 10,7 Si - 8,6 Ni - 2,4 Mn - 0,5 Cu - 110 C - 150 N - 42,7 peut être ≥ 40 et ≤ 70.
  • Parmi lesdits autres éléments d'alliage peut figurer l'un au moins parmi Al, Ti, Nb, V, Ca et B, Al, Ti, Nb et V peuvent être chacun présents à raison d'au plus 0,5% et Ca et B peuvent être chacun présents à raison d'au plus 0,05%.
  • La limite d'élasticité Rp0,2 peut être supérieure ou égale à 600 MPa avec un allongement total sous charge maximale Agt supérieur ou égal à 5%.
  • L'armature de rupteur de pont thermique peut être obtenue à partir d'une barre, d'un fil ou d'une tôle
  • L'invention a également pour objet un rupteur de pont thermique pour la construction de bâtiments, comportant une armature et une couche d'isolant traversée par ladite armature, caractérisée en ce que ladite armature est réalisée comme il a été dit précédemment.
  • Comme on l'aura compris, l'invention repose sur l'utilisation, pour fabriquer une armature métallique de rupteur de pont thermique entre deux éléments d'un bâtiment (paroi et plancher, par exemple), d'une nuance d'acier inoxydable de structure austénitique ou austéno-ferritique dont la composition chimique n'est pas à proprement parler nouvelle, en ce que des aciers qui pourraient parfois y être conformes avaient déjà été utilisés dans le passé (voir les documents US-A-4 814 140 et WO94/04714 par exemple), mais dont le caractère adapté à cet usage, dans la gamme de compositions précise de l'invention, n'avait jamais été reconnu.
  • L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence aux figures annexées suivantes :
    • La figure 1 qui montre schématiquement en coupe longitudinale une zone de raccordement entre une façade et un plancher d'un bâtiment, dans laquelle, classiquement, on n'a pas placé de dispositif de rupture du pont thermique ;
    • La figure 2, qui montre schématiquement en coupe longitudinale une zone de raccordement entre une façade et un plancher d'un bâtiment, dans laquelle on a placé un dispositif de rupture du pont thermique qui peut être réalisé selon l'invention ;
    • La figure 3 qui montre la corrélation entre l'indice IF calculé traduisant la fraction de ferrite présente à 1100°C de l'invention et la fraction de ferrite effectivement mesurée par sigmamétrie ;
    • La figure 4 qui montre la corrélation entre l'indice IC calculé traduisant la conductivité thermique de l'acier et la conductivité thermique λ effectivement mesurée à température ambiante par la méthode dite « hot disk » (disque chaud) qui utilise la technique de la source plane transitoire ;
    • Les figures 5 et 6 qui montrent, sur des coulées de laboratoire, la ductilité à chaud à 1200°C (figure 5) et 1100°C (figure 6) des aciers testés, traduite par leur striction en %, en fonction de leur indice ferritique IF.
  • Les figures 1 et 2 rappellent, schématiquement, quel est le problème que l'invention entend résoudre.
  • La figure 1 représente une zone de raccordement entre une façade 1 et un plancher 2 d'un bâtiment de conception classique, dont on n'a pas cherché à optimiser les performances en termes d'isolation thermique entre le milieu extérieur 3 et l'intérieur du bâtiment 4. Le côté intérieur de la façade 1 est, certes, pourvu d'un revêtement isolant 5. Mais celui-ci s'interrompt au niveau de la jonction entre la façade 1 et le plancher 2, de sorte que ces deux éléments sont en contact direct et que la chaleur peut passer de l'intérieur à l'extérieur du bâtiment (ou inversement) en traversant cette zone de contact (ce qu'illustrent les flèches de la figure 1). Les matériaux de construction classiques imposent un coefficient linéique de déperdition ψ à cette jonction qui est de l'ordre de 1 W/(m.K).
  • La figure 2 représente schématiquement le même bâtiment équipé d'un rupteur de pont thermique au niveau de la jonction façade 1-plancher 2. Ce rupteur comporte, de façon connue, une couche isolante 6 entre la façade et le plancher qui remplace le contact direct habituel entre ces deux parties, et une armature métallique 7 qui relie la façade 1 et le plancher 2 en traversant la couche isolante 6. De cette façon, le coefficient ψ est abaissé, et la reprise des efforts par l'armature 7 assure les fonctions mécaniques que l'isolant 6 seul ne pourrait remplir. C'est cette armature 7 que l'invention vise à améliorer par rapport aux dispositifs connus, en lui conférant des propriétés mécaniques et, surtout, thermiques particulièrement favorables, sans qu'il soit nécessaire de modifier la configuration de l'armature. Cette optimisation est réalisée par le choix d'une nuance d'acier inoxydable particulière dont rien n'indiquait à première vue qu'elle aurait pu convenir à cet effet.
  • Les limites fixées pour les teneurs des divers éléments présents, à titre obligatoire, facultatif ou subi, sont justifiées comme suit. Toutes les teneurs sont données en % pondéraux.
  • La teneur en C est comprise entre des traces et 0,08%, mieux entre 0,01% et 0,04%. Une teneur plus importante augmenterait les risques de sensibilisation de l'alliage à la corrosion intergranulaire. Une teneur en C inférieure à 0,01 est difficile et coûteuse à obtenir industriellement.
  • La teneur en Si est comprise entre 1,5 et 4,0%, de préférence entre 2,0 et 3,0%. Si est un élément alphagène (favorisant la stabilité de la ferrite), et est acceptable dans la mesure où il n'est pas présent en trop grande quantité pour rompre l'équilibre désiré entre austénite et ferrite. En mettre plus de 4,0% dégraderait trop la ténacité de l'acier, et il est préférable, de ce point de vue, de ne pas dépasser une teneur de 3,0%.
  • C'est pour le réglage de la conductivité thermique que Si présente un intérêt particulier. Les essais qui seront présentés plus loin montrent qu'une teneur en Si dans la gamme prescrite, et plus particulièrement entre 2,0 et 3,0%, permet d'abaisser la conductivité thermique de l'acier de l'invention jusqu'à 12 à 13,5 W/(m.K) environ, alors que les aciers habituellement employés pour réaliser les armatures des jonctions de ponts thermiques ont des conductivités thermiques supérieures à 14 W/(m.K), souvent de l'ordre de 15 W/(m.K) ou davantage. Au-delà de 3,0% de Si, on commence cependant à observer une diminution de la ténacité de l'acier, qui devient inadéquate au-delà de 4,0% de Si.
  • La teneur en Mn est comprise entre 4,0 et 10,0%. On ajoute une proportion importante de cet élément bon marché qui stabilise l'austénite et peut, avantageusement du point de vue financier, se substituer partiellement ou totalement à Ni pour cette fonction. De plus, Mn accroît la solubilité de N dans l'acier liquide, et comme on verra que des quantités relativement importantes de N sont nécessaires dans l'invention, l'élaboration de l'acier est facilitée par la présence importante de Mn.
  • La teneur en Ni est comprise entre des traces et 7,0%, de préférence entre des traces et 5,0%. Ni est l'élément gammagène typiquement utilisé dans la fabrication des aciers inoxydables austénitiques, et sa teneur permet de régler l'équilibrage des phases austénitique et ferritique pour l'obtention des propriétés mécaniques désirées. Cependant, Ni est un élément de toute façon coûteux, et dont le cours est susceptible de fluctuer dans de larges proportions. Pour obtenir un acier à prix de revient limité et relativement prévisible, ce qui est un des objectifs de l'invention, il faut donc ne pas dépasser les valeurs précitées pour la teneur en Ni. En fait, Ni peut même n'être présent que sous forme de traces, c'est-à-dire à une teneur basse ou très basse qui ne résulte que de la fusion des matières premières et pas d'un ajout volontaire. Son rôle gammagène habituel est alors assumé entièrement par le manganèse, le carbone, l'azote et éventuellement le cuivre.
  • Cependant, comme on le verra, Ni est un élément qui tend fortement à réduire la conductivité thermique de l'acier. De ce point de vue, on peut trouver un avantage important à en ajouter une quantité significative et, donc, à ne pas le remplacer intégralement par Mn. Il est cependant difficile de fixer une quantité optimale de Ni dans la nuance utilisée selon l'invention, comme cet optimum va dépendre notamment de facteurs financiers, susceptibles de fortement varier selon le cours du Ni. Un équilibre sera à trouver par l'homme du métier au moment de la fabrication de l'acier, entre les considérations purement techniques et les considérations financières. On considère, de façon générale, que du point de vue métallurgique et thermique la teneur en Ni est de préférence d'au moins 1,0%, mieux d'au moins 2,0%. En conséquence, les gammes particulièrement préférentielles de la teneur en Ni sont de 1,0 à 7%, mieux de 2,0 à 5,0%.
  • La teneur en Cr est comprise entre 16,0 et 23,0%. Comme il est bien connu, il confère à l'acier son caractère inoxydable dès 11%. Le Cr a aussi l'avantage d'abaisser un peu la conductivité thermique de l'acier, et une teneur minimale de 16,0% est requise selon l'invention pour bien combiner ces deux effets. Une teneur inférieure ou égale à 20,0% permet de maintenir l'équilibre des phases souhaité sans procéder à un ajout trop élevé de Ni, Mn et autres éléments gammagènes. Une teneur de 20,0% à 23,0% permet d'augmenter sensiblement la résistance à la corrosion et peut être imposée, éventuellement en compensant l'effet de l'accroissement de la teneur en Cr sur les propriétés mécaniques par un ajustement des teneurs en Mn, Ni et N que des expériences de routine permettent de réaliser. Une teneur en Cr supérieure à 23,0% augmente inutilement le coût de l'acier et risquerait de trop dégrader certaines propriétés mécaniques.
  • Autrement dit, au-dessus de 20,0% on privilégie la tenue à la corrosion de la nuance. En dessous de 20,0% on privilégie le caractère économique de la nuance.
  • La teneur en Mo est comprise entre des traces résultant de l'élaboration et 2,0%. Cet élément n'est pas indispensable, mais il contribue à améliorer la tenue à la corrosion. Ses possibles inconvénients sont son caractère alphagène qui risque de s'opposer à l'obtention de l'équilibre austénite-ferrite désiré, notamment sur les nuances austéno-ferritiques, et le fait qu'il favorise l'apparition de phases intermétalliques fragilisantes. De plus son coût est élevé, ce qui va à l'encontre de l'un des buts de l'invention.
  • Pour l'amélioration de la résistance à la corrosion, le Mo peut être partiellement ou totalement substitué par du W. Un ratio de substitution de W/Mo de 2 est généralement acceptable. En conséquence, on considère aussi que d'une part, la teneur en W ne doit pas dépasser 1,0%, et d'autre part que la somme Mo + W/2 ne doit pas dépasser 2,0%. Une teneur en Mo de 2,0% correspondrait à un cas où W ne serait pas ajouté volontairement et où la possible présence de traces de W ne résulterait que de la fusion des matières premières. Une teneur en W de 1,0% correspondrait à un cas où Mo ne serait pas ajouté volontairement et où la possible présence de traces de Mo ne résulterait que de la fusion des matières premières.
  • La teneur en Cu est comprise entre des traces résultant de la seule fusion des matières premières et 3,0%. Un ajout de Cu dans les proportions citées a pour avantages de diminuer légèrement la conductivité thermique et d'améliorer la ductilité. Mais il ne faut pas dépasser un ajout de 3,0%, car au-delà, l'effet fragilisant du Cu poserait des problèmes lors de la mise en forme à chaud, et de plus augmenterait inutilement le coût de l'acier.
  • La teneur en Co est comprise entre des traces résultant de la seule fusion de matières premières trés pures et 2,0%. En fonction de la pureté des matières premières, notamment du ferronickel, la teneur en Co résiduel peut atteindre 0,8%. On préfère ne pas ajouter de Co volontairement, comme cet élément coûteux n'a pas d'effet métallurgique marqué dans les aciers inoxydables en-dessous de 2%, donc pour des teneurs qui augmenteraient considérablement le coût de l'acier. 0,8% est donc la teneur préférentielle maximale en Co.
  • La teneur en N est comprise entre 0,10% (1000 ppm) et 0,30% (3000 ppm). Cet élément est important pour assurer la résistance à la corrosion nécessaire dans l'application visée par l'invention, et si sa teneur qui résulterait simplement de l'absorption d'azote atmosphérique lors de l'élaboration n'est pas assez élevée, il faut en ajouter, par exemple en insufflant de l'azote gazeux dans le métal liquide ou en utilisant des ferroalliages significativement nitrurés (notamment du ferromanganèse nitruré qui contient plusieurs % de N). N stabilise la phase austénitique et permet de régler l'équilibrage des diverses phases en présence. Il a également un effet durcissant intéressant pour l'atteinte des propriétés mécaniques élevées recherchées. Mais au-delà de 0,30%, il peut poser des problèmes lors de l'élaboration, de la coulée et du laminage à chaud (formation de nitrures en cas de présence d'éléments d'alliage comme Al et surtout Ti, et de soufflures lors de la solidification).
  • D'autres éléments d'alliage supplémentaires peuvent être présents suite à un ajout volontaire, parmi lesquels on peut citer, de façon non exhaustive : Ti, Nb et V pour améliorer la soudabilité, Al et Ca comme désoxydants et/ou éléments de contrôle du nombre et de la composition des inclusions non-métalliques, ainsi que B qui améliore la forgeabilité. Mais les teneurs individuelles de ces éléments d'alliage supplémentaires ne doivent pas dépasser 0,5%, notamment pour Al, Ti, Nb et V, et plus particulièrement ne doivent pas dépasser 0,05% pour Ca et B. Et la somme des teneurs en éléments d'alliage autres que C, Si, Mn, Cr, Ni, Mo, W, Cu, Co, N et des teneurs des impuretés résultant de l'élaboration (par exemple S, P...) ne dépasse pas 1,0%. Ces limites visent à ne pas risquer de perturber les équilibres que les teneurs des principaux éléments d'alliage, obligatoirement ou optionnellement présents dans des limites bien définies, permettent d'atteindre.
  • D'autres conditions liant les teneurs en éléments d'alliage sont à respecter, selon l'invention.
  • L'un des objectifs de l'invention, comme on l'a dit, est d'obtenir un élément d'armature de rupteur de pont thermique présentant une faible conductivité thermique. Celle-ci dépend de l'analyse chimique de l'acier, et de la structure cristallographique de la matrice.
  • La structure cristallographique de l'acier est aussi un facteur important dans l'aptitude de l'acier à être mis en forme à chaud, par forgeage ou autre. Les armatures de rupteurs thermiques pouvant avoir des formes relativement complexes pour des dimensions relativement réduites, cette aptitude à être mis en forme à chaud est un critère qui est souvent à considérer pour les aciers utilisés dans l'invention.
  • En fonction de l'équilibrage des principaux éléments d'alliage qui ont été définis plus haut, l'acier a une microstructure austénitique ou austéno-ferritique. L'indice ferritique IF permet d'estimer le pourcentage de ferrite à 1100°C dans l'acier, donc dans la zone de températures la plus fréquemment rencontrée lors des mises en forme à chaud, à partir de la composition de l'acier. Il est obtenu par la formule, où les teneurs des différents éléments sont exprimées en % : IF = 6,7 Cr + 5,7 Mo + 10,7 Si 8,6 Ni 2,4 Mn 0,5 Cu 110 C 150 N 42,7
    Figure imgb0001
  • Pour les nuances austénitiques, IF est, selon l'invention, de préférence ≤ 20 si on veut obtenir une bonne formabilité à chaud.
  • Pour les nuances austéno-ferritiques, IF est, selon l'invention, de préférence ≥ 40 si on veut obtenir une bonne formabilité à chaud.
  • On verra plus loin que la zone d'IF comprise entre 20 et 40 est plutôt à éviter si on veut obtenir une formabilité à chaud élevée, comme l'invention peut le nécessiter.
  • Par ailleurs, pour obtenir une résistance à la corrosion sous contrainte satisfaisante, il est préférable de choisir, plutôt qu'une nuance austénitique, une nuance austéno-ferritique qui se caractérise par un IF de 40 à 70 au maximum. Au-delà de cette limite, l'acier relèverait du domaine des aciers ferritiques, ce qui n'est pas désiré du point de vue des caractéristiques mécaniques.
  • La figure 3 montre la corrélation entre la fraction de ferrite à 1100°C mesurée par une méthode magnétique (dite sigmamétrie et telle que décrite dans la norme IEC 60404-14) et l'indice ferritique IF calculé par la formule précédente, pour les huit échantillons de laboratoire A à H et l'échantillon industriel I du tableau 3. On voit que cette corrélation est très satisfaisante.
  • Les conditions sur IF qui ont été cités plus haut ne sont, cependant, pas absolument impératives, notamment dans les cas où les transformations à chaud sont peu contraignantes. Elles sont néanmoins conseillées pour la plupart des configurations d'armatures de rupteurs que l'on peut désirer obtenir.
  • Il est intéressant de noter que les microstructures des aciers utilisés dans l'invention sont relativement peu dépendantes des conditions de traitement thermique et de refroidissement du métal lors de ses transformations. Cela laisse donc beaucoup de libertés aux métallurgistes pour concevoir le mode précis de fabrication des armatures de l'invention.
  • Concernant la conductivité thermique λ de l'acier, comme on l'a dit elle dépend de la composition chimique et de la structure cristallographique de la matrice.
  • Les inventeurs ont pu déterminer une formule donnant un indice de conductivité IC dépendant de la composition de l'acier, et aussi de sa microstructure puisqu'elle fait intervenir l'indice ferritique IF défini ci-dessus. Cette formule est (les teneurs des différents éléments sont exprimés en %) : IC = 22,2 + 2,11 1 IF / 100 0,89 Si 0,77 Ni 0,44 Mn 0,17 Cr 0,16 Cu
    Figure imgb0002
  • La figure 4 montre la bonne corrélation obtenue entre IC calculé par la formule ci-dessus et la conductivité thermique λ effectivement mesurée à 20°C par la méthode dite « hot disk » qui utilise la technique de la source plane transitoire, sur les treize échantillons des tableaux 1 et 2. Cette figure, et les tableaux sur lesquels elle se fonde, montrent aussi que la conductivité thermique diminue lorsque la quantité d'éléments d'alliage augmente, et que Si en premier lieu et Ni en second lieu sont les éléments les plus influents de ce point de vue. C'est ce que traduit la formule ci-dessus permettant de calculer IC. Selon l'invention, l'indice IC de l'acier utilisé doit être ≤ 13,5, de préférence ≤ 13,0, mieux ≤ 12,5.
  • Les propriétés mécaniques des aciers utilisés dans l'invention s'avèrent suffisantes pour l'application envisagée, notamment en raison de la teneur en N élevée et du pourcentage d'austénite qui est toujours d'au moins 40%. La teneur en N et le pourcentage d'austénite selon l'invention procurent la ductilité désirée à la fois pour la facilité des transformations à chaud et pour la capacité de l'armature à se déformer lors de sollicitations exceptionnelles telles qu'un tremblement de terre. Les meilleures ductilités sont obtenues pour des nuances austénitiques.
  • A titre d'exemple, on a élaboré des coulées de laboratoire selon l'invention, référencées A à H et des coulées de référence, dont les compositions figurent dans les tableaux 1 à 2 qui suivent, sous forme de lingots de 25 kg de section initiale 100mm x 100mm et qui ont été transformées à chaud par forgeage jusqu'à une épaisseur de 18 mm à partir de 1250°C, puis laminage à chaud jusqu'à une épaisseur de 6 mm à partir de 1250°C. Un traitement de mise en solution a été effectué à 1050°C, puis un fraisage pour adapter l'épaisseur, avant une transformation à froid jusqu'à une épaisseur de 3 mm. La microstructure, la forgeabilité, la conductivité thermique et d'autres propriétés mécaniques ont été caractérisées sur tous les échantillons.
  • On a aussi élaboré une coulée industrielle I selon l'invention de 40 t par fusion au four électrique, décarburation par le procédé AOD, coulée continue en blooms de 205 mm de côté et laminage à chaud en barres rondes de diamètre 115 mm, puis en fil machine de diamètre 10,5 mm environ. Le fil machine a été transformé à froid en fil cranté de 10 mm de diamètre, à un taux de réduction de 10 à 15%.
  • Dans le tableau regroupant les compositions des différents échantillons, les éléments non mentionnés ne sont présents qu'à l'état de traces. Les structures austénitiques sont désignées par A, les structures austéno-ferritiques sont désignées par AF.
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
  • L'échantillon G est un échantillon conforme à l'invention. En effet, sa composition fait que sa conductivité thermique λ répond aux exigences les plus larges fixées par les inventeurs : λ mesurée est de 13,3 W/(m.K), ce qui est très bien corrélé au IC calculé qui est de 13,4 (pour un maximum de 13,5 selon l'invention, qui constitue déjà un progrès significatif par rapport à l'art antérieur le plus courant pour bien assurer, de façon économique, le respect des normes énergétiques présentes et vraisemblablement à venir). Cet échantillon est pauvre en Cu et contient relativement peu de Ni et de Si, d'où sa conductivité thermique plus élevée que ce que les variantes optimales de l'invention permettent d'obtenir, même si les teneurs individuelles de chacun de ses éléments sont tout à fait conformes aux exigences correspondantes de l'invention. Il confirme que la composition de l'acier à utiliser pour mettre l'invention en œuvre doit impérativement être considérée dans son ensemble, comme un tout cohérent.
  • Par ailleurs, les échantillons A à I, conformes à l'invention, présentent des propriétés mécaniques qui ne sont pas inférieures à celles de l'acier de référence UGI®204Cu, sauf pour le taux d'allongement Agt. Mais celui-ci demeure à des valeurs acceptables pour l'application envisagée, et plusieurs des échantillons ont même des résistances à la traction Rm et des limites d'élasticité Rp0,2 nettement supérieures à celles de l'acier de référence. On notera aussi que l'échantillon B a un Agt de 6%, donc de peu supérieur aux 5% que les inventeurs considèrent comme étant la valeur minimale à obtenir. Mais par ailleurs, cet échantillon B a une Rm et une Rp0,2 très élevées et un IC qui est le plus bas de ceux calculés. Cet acier peut donc constituer une solution très satisfaisante aux problèmes posés, au moins pour fabriquer des armatures de rupteurs thermiques dont les formes ne sont pas trop complexes.
  • Par ailleurs, les figures 5 et 6 montrent les résultats d'essais de forgeabilité, donc représentatifs de la ductilité à chaud, effectués à 1200°C (figure 5) et à 1100°C (figure 6) sur les échantillons de laboratoire A à G précités. On a mesuré leur taux de striction en fonction de leur indice ferritique IF.
  • Il ressort de ces figures que ces échantillons selon l'invention ont une ductilité qui n'est pas très favorable lorsque IF est compris entre 20 et 40%, donc correspond à un acier austéno-ferritique dont le caractère ferritique n'est pas encore très marqué. Ce « creux de ductilité » justifie donc que, selon des variantes préférées de l'invention, on conseille soit d'utiliser un acier franchement austénitique (à moins de 20% de ferrite, ce pourcentage étant calculé par l'indice IF dont on a vu qu'il rendait raisonnablement bien compte du pourcentage réel de ferrite, au moins pour les aciers utilisés), soit d'utiliser un acier austéno-ferritique contenant entre 40 et 70% de ferrite selon l'indice IF.
  • Comme on l'a vu, l'invention permet d'améliorer sensiblement les performances d'isolation thermique des rupteurs de ponts thermiques en acier inoxydable, et ceci sans devoir sacrifier les propriétés mécaniques des rupteurs en acier inoxydable habituels, au contraire. Certaines variantes de l'invention présentent une aptitude à la transformation à chaud particulièrement élevée, ce qui donne accès à des formes d'armatures de rupteurs de ponts thermiques qui n'étaient pas aisément envisageables jusqu'ici. Les constructeurs de bâtiments à faible consommation d'énergie ont donc, grâce à l'invention, la possibilité d'exploiter de nouvelles conceptions de rupteurs de ponts thermiques, qui pourraient être avantageuses.

Claims (10)

  1. Armature (7) de rupteur de pont thermique pour la construction de bâtiments, caractérisée en ce qu'elle est réalisée en un acier inoxydable austénitique ou austéno-ferritique dont la composition, en % pondéraux, consiste en :
    - traces ≤ C ≤ 0,08% ; de préférence 0,01 ≤ C ≤ 0,04% ;
    - 1,5% ≤ Si ≤ 4,0% ; de préférence 2,0% ≤ Si ≤ 3,0% ;
    - 4,0% ≤ Mn ≤ 10,0% ;
    - traces ≤ Ni ≤ 7,0% ; de préférence traces ≤ Ni ≤ 5,0% ;
    - 16,0% ≤ Cr ≤ 23,0% ;
    - traces ≤ Mo ≤ 2,0% ;
    - traces ≤ W ≤ 1,0% ;
    - traces ≤ Mo + W/2 ≤ 2,0% ;
    - traces ≤ Co ≤ 2,0%; de preference traces ≤ Co ≤ 0,8% ;
    - traces ≤ Cu ≤ 3,0% ;
    - 0,10% ≤ N ≤ 0,25% ;
    le reste étant du fer, des éléments d'alliage autres que ceux précédemment mentionnés et des impuretés résultant de l'élaboration, le total de ces autres éléments d'alliages et des impuretés ne dépassant pas 1,0%, et aucun de ces autres éléments d'alliage n'étant présent individuellement à une teneur supérieure à 0,5%, et en ce que l'indice de conductivité thermique IC calculé selon :
    IC = 22,2 + 2,11 (1 - IF/100) - 0,89 Si - 0,77 Ni - 0,44 Mn - 0,17 Cr - 0,16 Cu avec IF = 6,7 Cr + 5,7 Mo + 10,7 Si - 8,6 Ni - 2,4 Mn - 0,5 Cu - 110 C - 150 N - 42,7 est ≤ 13,5, de préférence ≤ 13,0, mieux ≤ 12,5.
  2. Armature (7) de rupteur de pont thermique selon la revendication 1, caractérisée en ce que la teneur en Cr est comprise entre 16,0% et 20,0%.
  3. Armature (7) de rupteur de pont thermique selon la revendication 1, caractérisée en ce que la teneur en Cr est comprise entre 20,0% et 23,0%.
  4. Armature (7) de rupteur de pont thermique selon l'une des revendications 1 à 3, caractérisée en ce que la teneur en Ni de l'acier est comprise entre 1,0% et 7,0%, de préférence entre 2,0% et 5,0%.
  5. Armature (7) de rupteur de pont thermique selon l'une des revendications 1 à 4, caractérisée en ce que l'indice ferritique IF de l'acier calculé selon :
    IF = 6,7 Cr + 5,7 Mo + 10,7 Si - 8,6 Ni -2,4 Mn - 0,5 Cu - 110 C - 150 N - 42,7 est ≤ 20.
  6. Armature (7) de rupteur de pont thermique selon l'une des revendications 1 à 4, caractérisée en ce que l'indice ferritique IF de l'acier calculé selon :
    IF = 6,7 Cr + 5,7 Mo + 10,7 Si - 8,6 Ni - 2,4 Mn - 0,5 Cu - 110 C - 150 N - 42,7 est ≥ 40 et ≤ 70.
  7. Armature (7) de rupteur de pont thermique selon l'une des revendications 1 à 6, caractérisée en ce que parmi lesdits autres éléments d'alliage figure l'un au moins parmi Al, Ti, Nb, V, Ca et B, en ce que Al, Ti, Nb et V peuvent être chacun présents à raison d'au plus 0,5% et en ce que Ca et B peuvent être chacun présents à raison d'au plus 0,05%.
  8. Armature (7) de rupteur de pont thermique selon l'une des revendications 1 à 7, caractérisée en ce que la limite d'élasticité Rp0,2 est supérieure ou égale à 600 MPa ou mieux supérieure ou égale à 700 MPa avec un allongement total sous charge maximale Agt supérieur ou égal à 5%.
  9. Armature (7) de rupteur de pont thermique selon l'une des revendications 1 à 8, caractérisée en ce qu'elle est obtenue à partir d'une barre, d'un fil ou d'une tôle
  10. Rupteur de pont thermique pour la construction de bâtiments, comportant une armature (7) et une couche d'isolant (6) traversée par ladite armature(7), caractérisée en ce que ladite armature (7) est réalisée selon l'une des revendications 1 à 9.
EP17717456.2A 2016-04-20 2017-04-19 Armature de rupteur de pont thermique pour la construction de bâtiments, et rupteur de pont thermique la comportant Active EP3445885B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1653480 2016-04-20
PCT/EP2017/059305 WO2017182531A1 (fr) 2016-04-20 2017-04-19 Armature de rupteur de pont thermique pour la construction de bâtiments, et rupteur de pont thermique la comportant

Publications (2)

Publication Number Publication Date
EP3445885A1 EP3445885A1 (fr) 2019-02-27
EP3445885B1 true EP3445885B1 (fr) 2022-10-19

Family

ID=56557729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17717456.2A Active EP3445885B1 (fr) 2016-04-20 2017-04-19 Armature de rupteur de pont thermique pour la construction de bâtiments, et rupteur de pont thermique la comportant

Country Status (6)

Country Link
EP (1) EP3445885B1 (fr)
ES (1) ES2933041T3 (fr)
FI (1) FI3445885T3 (fr)
PL (1) PL3445885T3 (fr)
PT (1) PT3445885T (fr)
WO (1) WO2017182531A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10787809B2 (en) * 2015-03-23 2020-09-29 Jk Worldwide Enterprises Inc. Thermal break for use in construction
CN111101050A (zh) * 2019-12-24 2020-05-05 连云港华乐不锈钢制品有限公司 一种屋面用高氮奥氏体不锈钢新材料及其制备方法
FR3124804B1 (fr) * 2021-06-30 2023-11-10 Association Pour La Rech Et Le Developpement Des Methodes Et Processus Industriels Armines Acier inoxydable austénitique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027056A1 (fr) * 2000-09-27 2002-04-04 Avestapolarit Aktiebolag (Publ) Acier inoxydable ferritique austenitique
WO2014055010A1 (fr) * 2012-10-05 2014-04-10 Sandvik Intellectual Property Ab Câble d'alimentation électrique aérien
WO2015074802A1 (fr) * 2013-11-25 2015-05-28 Exxonmobil Chemical Patents Inc. Acier inoxydable duplex pauvre utilisé en tant que matériau de construction

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814140A (en) 1987-06-16 1989-03-21 Carpenter Technology Corporation Galling resistant austenitic stainless steel alloy
US5340534A (en) 1992-08-24 1994-08-23 Crs Holdings, Inc. Corrosion resistant austenitic stainless steel with improved galling resistance
FR2919639B1 (fr) * 2007-07-30 2009-11-13 Ugitech Fil crante pour armature de structure en beton, en acier inoxydable duplex.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027056A1 (fr) * 2000-09-27 2002-04-04 Avestapolarit Aktiebolag (Publ) Acier inoxydable ferritique austenitique
WO2014055010A1 (fr) * 2012-10-05 2014-04-10 Sandvik Intellectual Property Ab Câble d'alimentation électrique aérien
WO2015074802A1 (fr) * 2013-11-25 2015-05-28 Exxonmobil Chemical Patents Inc. Acier inoxydable duplex pauvre utilisé en tant que matériau de construction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JERALEE ANDERSON ET AL: "A Supplement to Modern Steel Construction, March 2012 Thermal Bridging Solutions: Minimizing Structural Steel's Impact on Building Envelope Energy Transfer SEI / AISC Thermal Steel Bridging Task Committee Members", 1 January 2012 (2012-01-01), XP055319939, Retrieved from the Internet <URL:http://msc.aisc.org/globalassets/modern-steel/archives/2012/03/2012v03_thermal_bridging.pdf> [retrieved on 20161116] *

Also Published As

Publication number Publication date
FI3445885T3 (en) 2023-01-13
PL3445885T3 (pl) 2023-01-30
PT3445885T (pt) 2022-12-13
EP3445885A1 (fr) 2019-02-27
WO2017182531A1 (fr) 2017-10-26
ES2933041T3 (es) 2023-01-31

Similar Documents

Publication Publication Date Title
EP1913169B1 (fr) Procede de fabrication de tôles d&#39;acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites
EP3445885B1 (fr) Armature de rupteur de pont thermique pour la construction de bâtiments, et rupteur de pont thermique la comportant
EP2048255A1 (fr) Joint soudé en acier inoxydable austénitique et matériau de soudure en acier inoxydable austénitique
EP2020451A1 (fr) Procédé de fabrication de tôles d&#39;acier à hautes caractéristiques de résistance et de ductilité, et tôles ainsi produites
EP2194152B1 (fr) Produit d&#39;alliage de cr-ni haute résistance et tuyaux de puits de pétrole sans soudure utilisant celui-ci
KR20130036778A (ko) 용접 열 영향부의 내식성과 인성이 양호한 저합금 2상 스테인리스강
EP1832667A1 (fr) Procédé de fabrication de tôles d&#39;acier à très hautes caractéristiques de résistance, de ductilité et de tenacité, et tôles ainsi produites
EP1896624A1 (fr) Composition d&#39;acier inoxydable martensitique, procede de fabrication d&#39;une piece mecanique a partir de cet acier et piece ainsi obtenue
CA2984131A1 (fr) Acier, produit realise en cet acier, et son procede de fabrication
FR2490680A1 (fr) Acier inoxydable ferritique ayant une tenacite et une soudabilite ameliorees
KR19990036151A (ko) 산화분위기중에서 접합 가능한 Fe기 재료의 액상 확산 접합용 Fe기 합금 박
JP4833611B2 (ja) 溶接性及びガス切断性に優れた溶接構造用490MPa級厚手高張力耐火鋼及びその製造方法
JP5949167B2 (ja) レーザー切断性に優れた鋼板の製造方法およびレーザー切断性に優れた鋼板
EP1051531A1 (fr) Acier et procede pour la fabrication de pieces de mecanique secables
FR3084890A1 (fr) Acier inoxydable duplex ayant une tenacite a basses temperatures superieure
WO2009123195A1 (fr) Procédé pour la production de tôles d&#39;acier épaisses et à haute résistance à la traction
EP0481844B1 (fr) Acier à soudabilité améliorée
FR2631350A1 (fr) Alliage de ni-fe ferromagnetique et procede de fabrication de brames ayant une qualite de surface excellente en cet alliage
JP2004025304A (ja) 鋼構造物用溶接継手及び溶接材料
JP2008184685A (ja) 耐溶融金属脆化割れ性に優れたZn−Al−Mg系めっき鋼板
JP5640823B2 (ja) 液相拡散接合用合金
FR2520384A1 (fr) Alliage fe-ni a 36 % de ni ameliore
EP3757238A1 (fr) Alliage refractaire a base de nickel et a haute teneur en chrome et procede de conception associe
JP5691895B2 (ja) 液相拡散接合用Fe系合金
JP5278348B2 (ja) 接合用の合金

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210802

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E04B 5/32 20060101ALI20220503BHEP

Ipc: E04B 1/76 20060101ALI20220503BHEP

Ipc: E04B 1/00 20060101ALI20220503BHEP

Ipc: C21D 8/08 20060101ALI20220503BHEP

Ipc: C21D 8/06 20060101ALI20220503BHEP

Ipc: C21D 6/00 20060101ALI20220503BHEP

Ipc: E04C 5/00 20060101ALI20220503BHEP

Ipc: C22C 38/58 20060101ALI20220503BHEP

Ipc: C22C 38/38 20060101ALI20220503BHEP

Ipc: C22C 38/30 20060101ALI20220503BHEP

Ipc: C22C 38/22 20060101ALI20220503BHEP

Ipc: C22C 38/20 20060101ALI20220503BHEP

Ipc: C22C 38/18 20060101ALI20220503BHEP

Ipc: C22C 38/12 20060101ALI20220503BHEP

Ipc: C22C 38/08 20060101ALI20220503BHEP

Ipc: C22C 38/04 20060101ALI20220503BHEP

Ipc: C22C 38/02 20060101ALI20220503BHEP

Ipc: C22C 38/00 20060101AFI20220503BHEP

INTG Intention to grant announced

Effective date: 20220531

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017062756

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1525582

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3445885

Country of ref document: PT

Date of ref document: 20221213

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20221206

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20221219

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20221019

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2933041

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230131

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20230400021

Country of ref document: GR

Effective date: 20230210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230324

Year of fee payment: 7

Ref country code: FR

Payment date: 20230309

Year of fee payment: 7

Ref country code: DK

Payment date: 20230327

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230322

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017062756

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230411

Year of fee payment: 7

Ref country code: ES

Payment date: 20230504

Year of fee payment: 7

Ref country code: DE

Payment date: 20230412

Year of fee payment: 7

Ref country code: CH

Payment date: 20230502

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230424

Year of fee payment: 7

Ref country code: AT

Payment date: 20230321

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1525582

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221019

26N No opposition filed

Effective date: 20230720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230424

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230424

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240319

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240325

Year of fee payment: 8

Ref country code: IE

Payment date: 20240320

Year of fee payment: 8

Ref country code: LU

Payment date: 20240325

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240320

Year of fee payment: 8

Ref country code: CZ

Payment date: 20240319

Year of fee payment: 8

Ref country code: PT

Payment date: 20240318

Year of fee payment: 8