EP3445878B1 - A process for manufacturing a martensitic stainless steel part from a sheet - Google Patents

A process for manufacturing a martensitic stainless steel part from a sheet Download PDF

Info

Publication number
EP3445878B1
EP3445878B1 EP17713465.7A EP17713465A EP3445878B1 EP 3445878 B1 EP3445878 B1 EP 3445878B1 EP 17713465 A EP17713465 A EP 17713465A EP 3445878 B1 EP3445878 B1 EP 3445878B1
Authority
EP
European Patent Office
Prior art keywords
sheet
traces
shaping
temperature
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17713465.7A
Other languages
German (de)
French (fr)
Other versions
EP3445878A1 (en
Inventor
Pierre-Olivier Santacreu
Christophe Cazes
Guillaume BADINIER
Jean-Benoit MOREAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam SA
Original Assignee
Aperam SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aperam SA filed Critical Aperam SA
Priority to SI201730319T priority Critical patent/SI3445878T1/en
Publication of EP3445878A1 publication Critical patent/EP3445878A1/en
Application granted granted Critical
Publication of EP3445878B1 publication Critical patent/EP3445878B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to the hot forming of stainless steels from a sheet to give them a complex shape and remarkable mechanical properties, these steels being intended, for example, for the automotive industry.
  • Martensitic steels (or, more generally, with martensitic structure for more than 50%) have such mechanical characteristics, but their cold forming capacity is limited. We therefore have to either form them cold in the ferritic state, then heat treat the part to obtain the martensitic structure, or put them into hot form in the austenitic state by terminating the treatment by quenching. in order to obtain the martensitic structure.
  • the object of the invention is to propose a method for producing a hot-transformed martensitic steel part, making it possible to manufacture parts of complex shape from a sheet, this final part also having high mechanical properties. making it suitable, in particular, for use in the automotive industry.
  • Said sheet may have a martensitic transformation start temperature (Ms) ⁇ 400 ° C.
  • the martensitic transformation start temperature (Ms) of the sheet can be between 390 and 220 ° C.
  • the thickness of the sheet can be between 0.1 and 10 mm.
  • the austenitization temperature can be at least 850 ° C.
  • the austenitization temperature can be between 925 and 1200 ° C.
  • the sheet can be reheated, during at least one of the steps of transferring and / or changing the configuration of the tool or the steps of shaping or cutting the sheet.
  • a surface treatment can be carried out on the final part, intended to increase its roughness or its fatigue properties.
  • the final part can be left between 90 and 500 ° C for 10 s to 1 h, then let it cool naturally in air.
  • This process begins with an austenitization of the sheet, that is to say by an elevation of its temperature above the temperature Ac1 of the steel so as to form austenite in place of ferrite and carbides constituting the starting microstructure, and under conditions which limit as much as possible the surface decarburization and oxidation of the sheet.
  • shaping step includes operations as diverse as deformation or removal of material as, in particular, deep drawing, hot stamping, stamping, cutting , drilling, these steps can take place in any order chosen by the manufacturer.
  • the part obtained is cooled without any particular constraints on cooling.
  • This cooling can be preceded by a cutting or final shaping step carried out between Ms and Mf (end temperature of martensitic transformation), under conditions where the microstructure consists of at least 10% austenite, at most 20% ferrite, the rest being martensite.
  • composition of the martensitic stainless steel used in the process according to the invention is as follows. All percentages are weight percentages.
  • Its C content is between 0.005% and 0.3%.
  • the minimum content of 0.005% is justified by the need to obtain an austenitization of the microstructure during the first stage of the hot forming process, so that the final mechanical properties targeted are obtained. Above 0.3%, the weldability and, above all, the resilience of the sheet become insufficient, in particular for an application in the automotive industry.
  • Mn content is between 0.2 and 2.0%.
  • Si content is between traces (that is to say simple impurities resulting from the production, without Si having been added) and 1.0%.
  • Si can be used as a deoxidizer during production, just like Al, to which it can be added or substituted. Above 1.0%, it is considered that it excessively promotes the formation of ferrite and therefore makes austenitization more difficult, and that it weakens the sheet too much for the shaping of a complex part to be assured. perform satisfactorily.
  • Its Cr content is between 10.5 and 17.0%, preferably between 10.5% and 14.0% to have faster dissolution of the carbides during austenitization.
  • the minimum content of 10.5% is justified to ensure the oxidability of the sheet.
  • a content higher than 17% would make austenitization difficult and unnecessarily increase the cost of steel.
  • Ni content is between traces and 4.0%.
  • Ni is not essential to the invention.
  • the presence of Ni within the prescribed limit of 4.0% maximum may, however, be advantageous for promoting austenitization. Exceeding the 4.0% limit would however lead to an excessive presence of residual austenite and an insufficient presence of martensite in the microstructure after cooling.
  • Mo is not essential. However, it is favorable to good resistance to corrosion. Above 2.0%, austenitization would be hindered and the cost of steel unnecessarily increased.
  • Cu content is between traces and 3.0%, preferably between traces and 0.5%.
  • Cu requirements are classic for this type of steel. In practice, this means that adding Cu is not useful and that the presence of this element is only due to the raw materials used. A content greater than 0.5%, which would correspond to a voluntary addition, is not desired for automotive applications, because it would degrade the weldability. Cu can however aid in austenitization, and if the steel of the invention is applied to a field which does not require welding, the Cu content can range up to 3.0%.
  • Ti is a deoxidizer, like Al and Si, but its cost and its lower efficiency than that of Al makes its use in general not very interesting from this point of view. It may be advantageous in that the formation of nitrides and carbonitrides of Ti can limit the growth of the grains and favorably influence certain mechanical properties and the weldability. However, this formation can be a drawback in the case of the process according to the invention, since Ti tends to hinder austenitization due to the formation of carbides, and TiNs degrade the resilience. A maximum content of 0.5% should therefore not be exceeded.
  • V and Zr are also elements capable of forming nitrides degrading the resilience, and in general, the sum Ti + V + Zr must not exceed 0.5%.
  • Al is used as a deoxidizer during production. After deoxidation, there should not remain in the steel an amount exceeding 0.2%, because there would be a risk of forming an excessive amount of AlN degrading the mechanical properties, and also of having difficulties in obtain the martensitic microstructure.
  • the requirements on the O content are those which are conventional on martensitic stainless steels, depending on the ability to shape them without cracks starting from the inclusions and the quality of the mechanical properties sought after. the final part, and which the excessive presence of oxidized inclusions is likely to alter. Conversely, if a minimum machinability of the sheet is sought, it may be advantageous to have oxidized inclusions in significant number, if their composition makes them sufficiently malleable so that they serve as a lubricant for the cutting tool. This technique for controlling the number and composition of oxidized inclusions is classic in the steel industry. Control of the composition of the oxides can be advantageously obtained by controlled addition of Ca and / or adjustment of the composition of the slag with which the liquid steel is in contact and in chemical equilibrium during the production.
  • Nb content is between 0.05% and 1.0%
  • Nb + Ta content is between 0.05% and 1.0%.
  • Nb and Ta are important elements for obtaining good resilience, and Ta improves the resistance to pitting corrosion. But as they can interfere with austenitization, they must not be present in quantities exceeding what has just been prescribed. Also, Nb and Ta capture C and N by forming carbonitrides which prevent too strong growth of the austenite grains during austenitization. This is favorable for obtaining a very good resilience when cold, between -100 ° C. and 0 ° C. On the other hand, if the content of Nb and / or Ta is too high, C and N will be entirely trapped in the carbonitrides and there will no longer be enough in dissolved form for the targeted mechanical properties to be achieved, in particular the resilience and the mechanical resistance.
  • V content is between traces and 0.3%.
  • V an embrittling element which is capable of forming nitrides, and must not be present in too large an amount.
  • Ti + V + Zr must not exceed 0.5%.
  • the total contents of Cu, Ni and Co must be between traces and 5.0%, so as not to leave too much residual austenite after the martensitic transformation and not to degrade the weldability in the applications which require it.
  • Sn content is between traces and 0.05% (500 ppm). This element is not desired because it is detrimental to the weldability and the ability of the steel to be hot processed.
  • the 0.05% limit is a tolerance.
  • Zr content is between traces and 0.5%, because it reduces the resilience and hinders austenitization. It is also recalled that the total content of Ti + V + Zr must not exceed 0.5%.
  • H content is between traces and 5 ppm, preferably not more than 1 ppm. Excessive H content tends to weaken martensite. It will therefore be necessary to choose a method of production of steel in the liquid state which can ensure this low presence of H. Typically, treatments ensuring a thorough degassing of the liquid steel (by massive injection of argon in the liquid steel, well-known process known as “AOD”, or by a vacuum passage during which the steel is decarbonized by release of CO, process known as “VOD”) are indicated.
  • N content is between traces and 0.2% (2000 ppm). N is an impurity of which the same treatments which make it possible to reduce the H content help to limit the presence, or even to reduce it substantially. It is not always necessary to have a particularly low N content, but for the reasons that have been said it is necessary that its content, considered jointly with those of elements with which it can combine to form nitrides or carbonitrides obeys the relation 8 ⁇ (Nb + Ta) / (C + N) ⁇ 0.25.
  • the rest of the steel is made up of iron and impurities resulting from the production.
  • composition of the steel relate to the temperatures at the start of martensitic transformation Ms and at the end of martensitic transformation Mf.
  • Ms should preferably be at most 400 ° C. If Ms is higher, there is a risk that the different transfer and shaping operations for the part will not follow each other quickly enough and that there will not be time to carry out all of the shaping at a temperature higher than Ms. However, this risk can be limited or avoided by providing that the part undergoes reheating or temperature maintenance between the shapings, and / or during these if using heating tools of known types integrating , for example, electrical resistors. This condition Ms ⁇ 400 ° C is therefore not always imperative, but only recommended for economical and easy application of the process according to the invention under industrial conditions.
  • Ms must be greater than or equal to 200 ° C. to avoid subsistence in the final part of too high a content of residual austenite, which, in particular, would degrade Rp0.2 by bringing it below 800 MPa.
  • Ms is between 390 and 320 ° C.
  • Mf must be greater than or equal to -50 ° C to guarantee that there will not be too much residual austenite in the final part.
  • Ms and Mf are preferably determined experimentally, for example by dilatometric measurements as is well known, see for example the article "Uncertainties in dilatometric determination of martensite start temperature", Yang and Badeshia, Materials Science and Technology, 2007/5, pp 556-560 .
  • thermomechanical treatments which will be described can be carried out either on a bare sheet which may possibly be coated subsequently, or on a sheet already coated, for example with an Al-based alloy and / or Zn.
  • This coating typically 1 to 200 ⁇ m thick and present on one or two faces of the sheet, may have been deposited by any technique conventionally used for this purpose, it is simply necessary that, if it has been deposited before austenitization, it does not evaporate during the stay of the sheet at austenitization and deformation temperatures, and is not deteriorated during deformations.
  • the process according to the invention is as follows, applied to the manufacture and shaping of a sheet.
  • an initial stainless steel sheet bare or coated, having the composition just described and a thickness which is typically from 0.1 to 10 mm, is conventionally prepared.
  • This preparation can include operations of hot and / or cold transformation and cutting of the semi-finished product resulting from the casting and the solidification of the liquid steel.
  • This initial sheet must have a microstructure consisting of ferrite and / or returned martensite and from 0.5% to 5% by volume of carbides.
  • the size of the ferritic grains measured according to standard NF EN ISO 643, is between 1 and 80 ⁇ m, preferably between 5 and 40 ⁇ m. A ferritic grain size of 40 ⁇ m at most is recommended to promote the austenitization which will follow and thus obtain at least the 80% of austenite desired. A ferritic grain size of at least 5 ⁇ m is recommended to obtain good cold forming capacity.
  • the sheet is first austenitized by passing through an oven which brings it to a range of temperatures greater than Ac1 (temperature at the start of the appearance of austenite), therefore typically greater than approximately 850 ° C. for the compositions concerned). It should be understood that this austenitization temperature must relate to the entire volume of the sheet, and that the treatment must be long enough so that, taking into account the thickness of the sheet and the kinetics of the transformation, the austenitization is complete throughout this volume.
  • the maximum temperature of this austenitization is not a characteristic specific to the invention. It must simply be such that the sheet remains in an entirely solid state (the temperature must therefore be lower, in any case, than the solidus temperature of the steel) and is not too soft to support without transfer the transfer between the oven and the shaping tool which will follow the austenitization. Also, the temperature should not be raised to the point of causing significant surface oxidation and / or decarburization of the sheet in the heating atmosphere. A surface oxidation would lead to the need to descaling the sheet mechanically or chemically before it is shaped to avoid encrustation of scale in the surface of the sheet, and would cause a loss of material.
  • the austenitization takes place at a temperature between 925 and 1200 ° C. for a duration tm of 10 s to 1 h (this duration being that which the sheet passes over Ac1), preferably between 2 min and 10 min for heating in a conventional oven and between 30 s and 1 min for an induction oven.
  • An induction furnace has the advantage, known in itself, of providing rapid reheating to the nominal austenitization temperature. It therefore allows a shorter treatment than a conventional oven to achieve the desired result. These temperatures and durations make it possible to ensure that the continuation of the treatments will lead to a sufficient formation of martensite, and this for a reasonable duration allowing good productivity of the process.
  • This austenitization is to pass the metal from the initial ferrite + carbides structure to an austenitic structure containing at most 0.5% carbides by volume fraction, and at most 20% residual ferrite by volume fraction.
  • An object of this austenitization is, in particular, to lead to a dissolution of at least the majority of the carbides initially present, so as to release C atoms to form the austenitic structure then the martensitic structure during the following stages of the process.
  • the maximum residual ferrite content of 20%, which must remain until the final product, is justified by the resilience and the conventional elastic limit which it is desired to obtain.
  • the austenitized sheet is then transferred to a suitable forming tool (such as a stamping or stamping tool) or a cutting tool.
  • a suitable forming tool such as a stamping or stamping tool
  • This transfer has a duration t0 as short as possible, and during this transfer the sheet must remain at a temperature higher than Ms and keep an austenitic microstructure at 0.5% maximum of carbides and 20% maximum of residual ferrite.
  • the sheet is at a temperature TP0, which is as close as possible to the nominal austenitization temperature for obvious reasons of energy saving.
  • a first shaping or cutting step is then carried out, of duration t1 typically between 0.1 and 10 s.
  • duration t1 typically between 0.1 and 10 s.
  • the precise duration of this stage is not in itself a fundamental characteristic of the invention. It must be sufficiently brief so that the temperature of the sheet does not drop below Ms, that there is no decarburization and / or significant oxidation of the sheet surface, and that an austenitic microstructure with 0.5% maximum of carbides and 20% maximum of residual ferrite is always present at the end of the operation. If necessary, one can use a shaping tool provided with sheet heating means so that these temperature and microstructure conditions are met, since the contact of a non-heating shaping tool with the sheet causes sheet cooling which is often greater than 100 ° C / s.
  • the sheet thus formed is then transferred to another tool for a second shaping step in the broad sense of the term.
  • the same tool is used in the two stages but by modifying its configuration in the meantime (for example by replacing the punch in the case where a drawing is made in each of the two stages).
  • the duration t2 of this transfer is typically from 1 to 10 s, the aim being that it is fast enough for the temperature of the sheet to remain above Ms during the transfer and for the microstructure to remain austenitic, at 0.5% maximum. of carbides and 20% maximum of residual ferrite.
  • the second shaping step is then carried out, of duration t3 typically between 0.1 and 10 s.
  • duration t3 typically between 0.1 and 10 s.
  • the temperature of the sheet remains above Ms and the microstructure remains austenitic, at 0.5% maximum of carbides and 20% maximum of residual ferrite.
  • the average cooling rate between TP0 and TPn defined by the quantity (TP0-TPn) / ⁇ ti, ⁇ ti constituting the sum of the durations of transfers and shaping, must be at least 0.5 ° C / s.
  • composition of the steel is precisely chosen so that, compared to the carbon steels which it is the most common to use in the automotive industry for the production of sheets capable of being welded, this nose is shifted towards the durations higher, thus making possible on usual shaping tools the avoidance of the bainitic domain, a fortiori of the ferritic and perlitic domains, and therefore a execution as complete as possible of the transformation of austenite into martensite.
  • each step taken individually must make it possible to maintain an austenitic microstructure with a maximum of 0.5% of carbides and a maximum of 20% of residual ferrite.
  • the duration / cooling rate of each stage must therefore be chosen accordingly, and, if necessary, reheating of the sheet between and / or during shaping or cutting is carried out so that this microstructure can be maintained during all the steps.
  • At least one additional shaping step in the broad sense at a temperature between Ms and Mf, in a field where the microstructure comprises at least 5% by volume of austenite. If this additional step is a cut, the final shape of the part can be reached with less wear of the tools, and if this additional step is a deformation, at least 5% of austenite will provide sufficient ductility for this deformation to be still possible despite the sometimes already significant presence of martensite.
  • the sheet is allowed to cool, for example in the open air, to room temperature, thereby obtaining the final part according to the method of the invention. It is not necessary to impose a minimum speed during this cooling, because the composition of the steel ensures that the sheet will remain anyway in the area where the martensitic transformation can also take place during this cooling down to the ambient, at least if no means are used which significantly slow down cooling compared to natural cooling in the open air, such as a covering of the sheet. Of course, it is not excluded to accelerate this cooling, by means of forced air or a spray of water or another fluid.
  • a surface treatment can be applied to the final part such as shot blasting or sandblasting, with the aim of increasing the roughness of its surface to improve the adhesion of a coating which would be subsequently applied, such as a paint, or to create residual stresses improving the fatigue resistance of the sheet.
  • This type of operation is known in itself.
  • a final heat treatment can be carried out on the final part, therefore after cooling to the ambient, to improve its elongation at break and bring it to a value of more than 8% according to ISO standards, which corresponds substantially more than 10% according to JIS standards.
  • This treatment consists in making the final part stay between 90 and 500 ° C for 10 s to 1 h, then in performing a natural air cooling.
  • the part thus obtained by the process according to the invention has high mechanical properties at room temperature, in particular because of its high martensite content of at least 80%.
  • Rm is at least 1000 MPa
  • Re is at least 800 MPa
  • the elongation at break A measured according to ISO 6892 standard is at least 8%
  • the bending angle capacity for a 1.5 mm thickness is at least 60 °, measured according to VDA 238-100.
  • Table 2 shows the intermediate metallurgical structures (during the processing stages where the steel temperature is above Ms) and final structures of these same examples, with the mechanical properties of the final part: tensile strength Rm, elastic limit Rp0,2, elongation A, resilience KCU, bending angle capacity.
  • MC designates the proportion of carbides.
  • the invention also includes the cases where a sheet having the composition required by the invention is joined to a sheet having another composition, and where the assembly thus obtained is deformed by the process which has just been described.
  • the structures and properties according to the invention will normally only be obtained on the part of the assembly having the composition of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Shearing Machines (AREA)

Description

L'invention concerne la mise en forme à chaud des aciers inoxydables à partir d'une tôle pour leur conférer une forme complexe et des propriétés mécaniques remarquables, ces aciers étant destinés, par exemple, à l'industrie automobile.The invention relates to the hot forming of stainless steels from a sheet to give them a complex shape and remarkable mechanical properties, these steels being intended, for example, for the automotive industry.

Afin d'alléger les véhicules pour limiter leur consommation en carburant et donc limiter leurs émissions de CO2, les constructeurs utilisent aujourd'hui des tôles d'aciers au carbone ou d'aciers inoxydables à très hautes résistances, permettant des réductions d'épaisseur des tôles par rapport aux aciers plus classiquement employés dans le passé.In order to lighten vehicles to limit their fuel consumption and therefore limit their CO 2 emissions, manufacturers today use sheets of carbon steel or very high strength stainless steel, allowing thickness reductions sheets compared to steels more conventionally used in the past.

Les aciers martensitiques (ou, plus généralement, à structure martensitique pour plus de 50%) présentent de telles caractéristiques mécaniques, mais leur capacité de mise en forme à froid est limitée. On est donc amené soit à les mettre en forme à froid à l'état ferritique, puis à traiter thermiquement la pièce pour obtenir la structure martensitique, soit à les mettre en forme à chaud à l'état austénitique en terminant le traitement par une trempe afin d'obtenir la structure martensitique.Martensitic steels (or, more generally, with martensitic structure for more than 50%) have such mechanical characteristics, but their cold forming capacity is limited. We therefore have to either form them cold in the ferritic state, then heat treat the part to obtain the martensitic structure, or put them into hot form in the austenitic state by terminating the treatment by quenching. in order to obtain the martensitic structure.

La réalisation de pièces de géométrie complexe par ce second procédé avec les aciers connus (aciers au carbone contenant du bore, ...) est cependant rendue difficile par les contraintes que constitue leur trempabilité limitée, ou l'existence des transformations métallurgiques à haute température qui rendent difficile une bonne maîtrise du déroulement de la mise en forme et de la trempe. On risque fort d'obtenir une pièce complexe non majoritairement martensitique, donc dont les caractéristiques mécaniques ne correspondent pas à celles visées, soit de devoir se limiter à obtenir une pièce martensitique de géométrie simple, dont on corrigera la forme, par exemple au moyen d'une découpe laser.The production of parts of complex geometry by this second process with known steels (carbon steels containing boron, etc.) is however made difficult by the constraints of their limited quenchability, or the existence of metallurgical transformations at high temperature. which make it difficult to have a good grasp of the shaping and tempering process. There is a strong risk of obtaining a complex part which is not predominantly martensitic, therefore whose mechanical characteristics do not correspond to those targeted, or having to limit itself to obtaining a martensitic part of simple geometry, whose shape will be corrected, for example by means '' laser cutting.

On pourrait penser à réaliser plusieurs étapes de mise en forme à chaud sur presse transferts/outils à suivre en partant des aciers classiquement connus pour ces usages, afin de rendre la mise en forme progressive et de limiter les risques d'apparition de défauts. Mais la pièce obtenue sera constituée de moins de 80% de martensite en volume et ses propriétés mécaniques et sa résilience seront dégradées : au moins une des cibles résistance à la traction Rm, limite élastique Rp0.2, allongement à la rupture A, facilité de pliage ou résilience ne sera pas atteinte. Le temps qu'il est nécessaire de passer au-dessus de la température Mf de fin de transformation martensitique pour réaliser au moins deux étapes de mise en forme, deux étapes de transfert et une étape de trempe est trop long, et l'austénite se transforme alors partiellement en ferrite/carbures/perlite.We could think of carrying out several stages of hot shaping on transfer presses / tools to be followed, starting from steels conventionally known for these uses, in order to make shaping progressive and to limit the risks of appearance of defects. However, the part obtained will be made up of less than 80% martensite by volume and its mechanical properties and its resilience will be degraded: at least one of the target tensile strength Rm, elastic limit Rp0.2, elongation at break A, ease of folding or resilience will not be achieved. The time necessary to pass above the temperature Mf at the end of martensitic transformation to carry out at least two shaping steps, two transfer steps and a quenching step is too long, and the austenite is then partially transforms into ferrite / carbides / perlite.

L'obtention d'une structure composée à 80% en volume de martensite minimum est possible avec les aciers connus, mais la vitesse de refroidissement lors de la trempe doit être supérieure à 30°C/s par seconde en moyenne. Un procédé multi-passes utilisant une presse avec des outils à suivre ou dite transfert, ne pourra pas permettre de réaliser après austénitisation plus qu'une étape de transfert, suivie d'une étape de mise en forme ou de découpe à chaud, avant trempe dans l'outil pour garantir un minimum de 30°C/s pour la vitesse de refroidissement.Obtaining a structure composed of 80% by volume of minimum martensite is possible with known steels, but the cooling rate during quenching must be greater than 30 ° C / s per second on average. A multi-pass process using a press with tools to follow or so-called transfer, will not be able to achieve after austenitization more than a transfer step, followed by a shaping or hot cutting step, before quenching in the tool to guarantee a minimum of 30 ° C / s for the cooling rate.

L'art antérieur représenté par les EP 0 170 598 A1 ou FR 2 920 784 A1 ne semble pas commencer leurs traitements par une tôle composée de ferrite et/ou de martensite revenue riche (0.5 à 5 %vol) en carbures. Normalement, les aciers martensitiques (plus de 50% M) présentent des caractéristiques mécaniques appropriées, mais leur capacité de mise en forme à froid est limitée. Ce qui est connu est de traiter les pièces ou les tôles en forme à froid à l'état ferritique et puis d'obtenir la structure martensitique, ou de les mettre en forme à chaud à l'état austénitique en terminant le traitement par une trempe martensitique avec ou sans revenu. Les procédés de fabrication selon les documents cités ci-dessus ne sont pas une exception. Le but de l'invention est de proposer un procédé de réalisation d'une pièce en acier martensitique transformée à chaud rendant possible la fabrication de pièces de forme complexe à partir d'une tôle, cette pièce finale ayant par ailleurs des propriétés mécaniques élevées la rendant apte, notamment, à être utilisée dans l'industrie automobile.The prior art represented by EP 0 170 598 A1 or FR 2 920 784 A1 does not seem to begin their treatments with a sheet composed of ferrite and / or martensite returned rich (0.5 to 5% vol) in carbides. Normally, martensitic steels (more than 50% M) have appropriate mechanical characteristics, but their cold forming capacity is limited. What is known is to treat the parts or the sheets in cold form in the ferritic state and then to obtain the martensitic structure, or to form them in the hot state in the austenitic state by terminating the treatment by quenching martensitic with or without income. The manufacturing processes according to the documents cited above are not an exception. The object of the invention is to propose a method for producing a hot-transformed martensitic steel part, making it possible to manufacture parts of complex shape from a sheet, this final part also having high mechanical properties. making it suitable, in particular, for use in the automotive industry.

A cet effet, l'invention a pour objet un procédé de fabrication d'une pièce en acier inoxydable martensitique à partir d'une tôle, par mise en forme à chaud, caractérisé en ce que :

  • on prépare une tôle d'acier inoxydable de composition, en pourcentages pondéraux :
    • * 0,005% ≤ C ≤ 0,3% ;
    • * 0,2% ≤ Mn ≤ 2,0% ;
    • * traces ≤ Si ≤ 1,0% ;
    • * traces ≤ S ≤ 0,01% ;
    • * traces ≤ P ≤ 0,04% ;
    • * 10,5% ≤Cr ≤ 17,0% ; de préférence 10,5% ≤ Cr ≤ 14,0% ;
    • * traces ≤ Ni ≤ 4,0% ;
    • * traces ≤ Mo ≤ 2,0% ;
    • * Mo + 2 x W ≤ 2,0% ;
    • * traces ≤ Cu ≤ 3% ; de préférence traces ≤ Cu ≤ 0,5% ;
    • * traces ≤ Ti ≤ 0,5% ;
    • * traces ≤ Al ≤ 0,2% ;
    • * traces ≤ O ≤ 0,04% ;
    • * 0,05% ≤ Nb ≤ 1,0% ;
    • * 0,05% ≤ Nb + Ta ≤ 1,0% ;
    • * 0,25% ≤ (Nb + Ta)/(C + N) ≤ 8 ;
    • * traces ≤ V ≤ 0,3% ;
    • * traces ≤ Co ≤ 0,5% ;
    • * traces ≤ Cu +Ni + Co ≤ 5,0% ;
    • * traces ≤ Sn ≤ 0,05% ;
    • * traces ≤ B ≤ 0,1% ;
    • * traces ≤ Zr ≤ 0,5% ;
    • * Ti + V + Zr ≤ 0,5% ;
    • * traces ≤ H ≤ 5 ppm, de préférence traces ≤ H ≤ 1 ppm ;
    • * traces ≤ N ≤ 0,2% ;
    • * (Mn + Ni) ≥ (Cr -10,3 - 80 x [(C + N)2]) ;
    • * traces ≤ Ca ≤ 0,002% ;
    • * traces ≤ terres rares et/ou Y ≤ 0,06% ;
    • * le reste étant du fer et des impuretés résultant de l'élaboration ;
  • la température de début de transformation martensitique (Ms) de la tôle étant ≥ 200°C ;
  • la température de fin de transformation martensitique (Mf) de la tôle étant ≥-50°C ;
  • la microstructure de la tôle étant composée de ferrite et/ou de martensite revenue et de 0,5% à 5% en volume de carbures ;
  • la taille des grains ferritiques de la tôle étant de 1 à 80 µm, de préférence de 5 à 40 µm ;
  • on procède éventuellement à une ou des transformations à chaud et/ou à froid de ladite tôle ;
  • on réalise une austénitisation de la tôle en la maintenant à une température supérieure à Ac1, de manière à lui conférer une microstructure contenant au maximum 0,5% de carbures en fraction volumique et au maximum 20% de ferrite résiduelle en fraction volumique ;
  • on transfère la tôle austénitisée sur un premier outil de mise en forme ou un outil de découpe, ledit transfert ayant une durée t0, pendant laquelle la tôle reste à une température supérieure à Ms et conserve au maximum 0,5% en volume de carbures et au maximum 20% en volume de ferrite résiduelle, la tôle se trouvant à une température TP0 à l'issue de ce transfert ;
  • on réalise une première étape de mise en forme ou de découpe de la tôle, pendant une durée t1, et pendant laquelle la tôle reste à une température supérieure à Ms et conserve au maximum 0,5% en volume de carbures et au maximum 20% en volume de ferrite résiduelle ;
  • on réalise un transfert de la tôle mise en forme ou découpée sur un deuxième outil de mise en forme ou de découpe, ou on modifie la configuration du premier outil de mise en forme ou de découpe, pendant une durée t2, pendant laquelle la tôle reste à une température supérieure à Ms et conserve au maximum 0,5% en volume de carbures et au maximum 20% en volume de ferrite résiduelle ;
  • on réalise une deuxième étape de mise en forme ou de découpe de la tôle, pendant une durée t3, et pendant laquelle la tôle reste à une température supérieure à Ms et conserve au maximum 0,5% en volume de carbures et au maximum 20% en volume de ferrite résiduelle ;
  • optionnellement, on réalise d'autres étapes de transfert de la tôle découpée ou mise en forme sur d'autres outils de découpe ou de mise en forme, ou de modification de la configuration de l'outil de mise en forme ou de découpe utilisé dans l'étape précédente, chacune étant suivie d'une étape de mise en forme ou de découpe, la tôle restant à une température supérieure à Ms et conservant au maximum 0,5% en volume de carbures et au maximum 20% en volume de ferrite résiduelle pendant chacune desdites étapes de transfert de la tôle ou de modification de la configuration de l'outil et chacune des opérations de mise en forme ou de découpe ;
  • si on désigne par TPn la température atteinte par la tôle mise en forme ou découpée à l'issue de la dernière étape de découpe ou de mise en forme et par Σti la somme des durées des étapes de transfert et/ou de changement de configuration de l'outil et des étapes de mise en forme ou découpe, la grandeur (TP0-TPn)/Σti est d'au moins 0,5°C/s ;
  • optionnellement on effectue une étape supplémentaire de mise en forme ou de découpe à une température comprise entre Ms et Mf, dans un domaine où la microstructure est constituée de martensite, d'au moins 5% d'austénite et d'au plus 20% de ferrite.
  • et on laisse la tôle se refroidir jusqu'à la température ambiante pour obtenir la pièce finale, ladite pièce finale ayant une microstructure contenant au maximum 0,5% de carbures en fraction volumique et au maximum 20% de ferrite résiduelle en fraction volumique.
To this end, the subject of the invention is a method of manufacturing a piece of martensitic stainless steel from a sheet, by hot forming, characterized in that:
  • a stainless steel sheet of composition is prepared, in weight percentages:
    • * 0.005% ≤ C ≤ 0.3%;
    • * 0.2% ≤ Mn ≤ 2.0%;
    • * traces ≤ Si ≤ 1.0%;
    • * traces ≤ S ≤ 0.01%;
    • * traces ≤ P ≤ 0.04%;
    • * 10.5% ≤Cr ≤ 17.0%; preferably 10.5% ≤ Cr ≤ 14.0%;
    • * traces ≤ Ni ≤ 4.0%;
    • * traces ≤ Mo ≤ 2.0%;
    • * Mo + 2 x W ≤ 2.0%;
    • * traces ≤ Cu ≤ 3%; preferably traces ≤ Cu ≤ 0.5%;
    • * traces ≤ Ti ≤ 0.5%;
    • * traces ≤ Al ≤ 0.2%;
    • * traces ≤ O ≤ 0.04%;
    • * 0.05% ≤ Nb ≤ 1.0%;
    • * 0.05% ≤ Nb + Ta ≤ 1.0%;
    • * 0.25% ≤ (Nb + Ta) / (C + N) ≤ 8;
    • * traces ≤ V ≤ 0.3%;
    • * traces ≤ Co ≤ 0.5%;
    • * traces ≤ Cu + Ni + Co ≤ 5.0%;
    • * traces ≤ Sn ≤ 0.05%;
    • * traces ≤ B ≤ 0.1%;
    • * traces ≤ Zr ≤ 0.5%;
    • * Ti + V + Zr ≤ 0.5%;
    • * traces ≤ H ≤ 5 ppm, preferably traces ≤ H ≤ 1 ppm;
    • * traces ≤ N ≤ 0.2%;
    • * (Mn + Ni) ≥ (Cr -10.3 - 80 x [(C + N) 2 ]);
    • * traces ≤ Ca ≤ 0.002%;
    • * traces ≤ rare earths and / or Y ≤ 0.06%;
    • * the rest being iron and impurities resulting from processing;
  • the temperature at the start of martensitic transformation (Ms) of the sheet being ≥ 200 ° C;
  • the temperature at the end of martensitic transformation (Mf) of the sheet being ≥-50 ° C;
  • the microstructure of the sheet being composed of ferrite and / or martensite returned and from 0.5% to 5% by volume of carbides;
  • the size of the ferritic grains of the sheet being from 1 to 80 μm, preferably from 5 to 40 μm;
  • optionally one or more hot and / or cold transformations of said sheet;
  • an austenitization of the sheet is carried out by maintaining it at a temperature higher than Ac1, so as to give it a microstructure containing at most 0.5% of carbides in volume fraction and at most 20% of residual ferrite in volume fraction;
  • the austenitized sheet is transferred to a first forming tool or a cutting tool, said transfer having a duration t0, during which the sheet remains at a temperature above Ms and retains a maximum of 0.5% by volume of carbides and maximum 20% by volume of residual ferrite, the sheet being at a temperature TP0 at the end of this transfer;
  • a first step of shaping or cutting the sheet is carried out, for a duration t1, and during which the sheet remains at a temperature above Ms and retains a maximum of 0.5% by volume of carbides and a maximum of 20% by volume of residual ferrite;
  • transferring the shaped or cut sheet to a second shaping or cutting tool, or modifying the configuration of the first shaping or cutting tool, for a period t2, during which the sheet remains to one temperature higher than Ms and retains a maximum of 0.5% by volume of carbides and a maximum of 20% by volume of residual ferrite;
  • a second step of shaping or cutting the sheet is carried out, for a period t3, and during which the sheet remains at a temperature above Ms and keeps a maximum of 0.5% by volume of carbides and a maximum of 20% by volume of residual ferrite;
  • optionally, other steps are carried out for transferring the cut or shaped sheet onto other cutting or shaping tools, or for modifying the configuration of the shaping or cutting tool used in the previous step, each being followed by a shaping or cutting step, the sheet remaining at a temperature above Ms and retaining at most 0.5% by volume of carbides and at most 20% by volume of ferrite residual during each of said steps of transferring the sheet or modifying the configuration of the tool and each of the shaping or cutting operations;
  • if we designate by TPn the temperature reached by the sheet formed or cut at the end of the last cutting or shaping step and by Σti the sum of the durations of the steps of transfer and / or change of configuration of the tool and steps of shaping or cutting, the quantity (TP0-TPn) / Σti is at least 0.5 ° C / s;
  • optionally, an additional shaping or cutting step is carried out at a temperature between Ms and Mf, in a field where the microstructure consists of martensite, at least 5% austenite and at most 20% ferrite.
  • and the sheet is allowed to cool to room temperature to obtain the final part, said final part having a microstructure containing at most 0.5% of carbides in volume fraction and at most 20% of residual ferrite in volume fraction.

Ladite tôle peut avoir une température de début de transformation martensitique (Ms) ≤ 400°CSaid sheet may have a martensitic transformation start temperature (Ms) ≤ 400 ° C.

La température de début de transformation martensitique (Ms) de la tôle peut être comprise entre 390 et 220°C.The martensitic transformation start temperature (Ms) of the sheet can be between 390 and 220 ° C.

L'épaisseur de la tôle peut être comprise entre 0,1 et 10 mm.The thickness of the sheet can be between 0.1 and 10 mm.

La température d'austénitisation peut être d'au moins 850°C.The austenitization temperature can be at least 850 ° C.

La température d'austénitisation peut être comprise entre 925 et 1200°C.The austenitization temperature can be between 925 and 1200 ° C.

On peut effectuer un réchauffage de la tôle, pendant au moins une des étapes de transfert et/ou de changement de configuration de l'outil ou des étapes de mise en forme ou découpe de la tôle.The sheet can be reheated, during at least one of the steps of transferring and / or changing the configuration of the tool or the steps of shaping or cutting the sheet.

On peut effectuer un traitement superficiel sur la pièce finale, destiné à augmenter sa rugosité ou ses propriétés en fatigue.A surface treatment can be carried out on the final part, intended to increase its roughness or its fatigue properties.

On peut faire séjourner la pièce finale entre 90 et 500°C pendant 10 s à 1 h, puis la laisser se refroidir naturellement à l'air.The final part can be left between 90 and 500 ° C for 10 s to 1 h, then let it cool naturally in air.

Comme on l'aura compris, l'invention repose sur la combinaison :

  • Du choix d'une composition d'acier inoxydable martensitique ;
  • Et de l'application d'un procédé de mise en forme à chaud particulier à une tôle présentant cette composition, ainsi que des caractéristiques structurelles initiales précises qui rendent possible l'utilisation dudit procédé pour l'obtention de la pièce finale, ou d'une pièce intermédiaire qui va ensuite subir des opérations visant à l'optimisation fine de certaines de ses propriétés mécaniques et/ou superficielles.
As will be understood, the invention is based on the combination:
  • From the choice of a martensitic stainless steel composition;
  • And of the application of a particular hot forming process to a sheet having this composition, as well as precise initial structural characteristics which make possible the use of said process for obtaining the final part, or an intermediate part which will then undergo operations aimed at fine-tuning some of its mechanical and / or surface properties.

Ce procédé débute par une austénitisation de la tôle, c'est-à-dire par une élévation de sa température au-dessus de la température Ac1 de l'acier de façon à former de l'austénite à la place de la ferrite et des carbures constituant la microstructure de départ, et dans des conditions qui limitent autant que possible la décarburation et l'oxydation superficielles de la tôle.This process begins with an austenitization of the sheet, that is to say by an elevation of its temperature above the temperature Ac1 of the steel so as to form austenite in place of ferrite and carbides constituting the starting microstructure, and under conditions which limit as much as possible the surface decarburization and oxidation of the sheet.

Puis on exécute successivement plusieurs étapes de mise en forme de la tôle (au moins deux) dans des conditions de température et de durée telles que la structure ferrite + carbures obtenue après l'austénitisation est conservée pendant toute la mise en forme. Au besoin, on peut procéder à des réchauffages ou à des maintiens en température entre les mises en forme, ou pendant celles-ci au moyen d'outils chauffants, de façon à ce que la température de la tôle en cours de mise en forme et entre les mises en forme (pendant les transferts de la tôle d'un outil à l'autre, où si la tôle demeure sur le même outil, pendant les changements de configuration de l'outil) ne descende pas en-dessous de Ms (température de début de transformation martensitique).Then, successively, several steps of shaping the sheet (at least two) are carried out under temperature and duration conditions such that the ferrite + carbide structure obtained after the austenitization is preserved throughout the shaping. If necessary, it is possible to reheat or maintain the temperature between the shapings, or during these by means of heating tools, so that the temperature of the sheet during shaping and between layouts (during transfers of the sheet from one tool to another, where if the sheet remains on the same tool, during changes to the configuration of the tool) does not drop below Ms ( martensitic transformation start temperature).

Il doit être entendu que par le terme d'« étape de mise en forme », on inclut des opérations aussi diverses de déformation ou d'enlèvement de matière que, notamment, des emboutissages profonds, des emboutissages à chaud, des estampages, des découpes, des perçages, ces étapes pouvant avoir lieu dans n'importe quel ordre au choix du fabricant.It should be understood that the term “shaping step” includes operations as diverse as deformation or removal of material as, in particular, deep drawing, hot stamping, stamping, cutting , drilling, these steps can take place in any order chosen by the manufacturer.

Après la mise en forme, la pièce obtenue est refroidie sans contraintes particulières sur le refroidissement. Ce refroidissement peut être précédé par une étape de découpe ou d'ultime mise en forme effectuée entre Ms et Mf (température de fin de transformation martensitique), dans des conditions où la microstructure est constituée d'au moins 10% d'austénite, d'au plus 20% de ferrite, le reste étant de la martensite.After shaping, the part obtained is cooled without any particular constraints on cooling. This cooling can be preceded by a cutting or final shaping step carried out between Ms and Mf (end temperature of martensitic transformation), under conditions where the microstructure consists of at least 10% austenite, at most 20% ferrite, the rest being martensite.

L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence aux figures annexées suivantes :

  • La figure 1 qui montre un schéma de fabrication d'une pièce faisant usage du procédé selon l'invention, utilisant un four à rouleaux classique, ainsi que l'évolution de la température de l'acier durant la fabrication ;
  • La figure 2 qui montre un schéma de fabrication d'une pièce faisant usage du procédé selon l'invention, utilisant un four à induction, ainsi que l'évolution de la température de l'acier durant la fabrication.
The invention will be better understood on reading the description which follows, given with reference to the following appended figures:
  • The figure 1 which shows a diagram of manufacturing a part making use of the method according to the invention, using a conventional roller oven, as well as the evolution of the temperature of the steel during manufacturing;
  • The figure 2 which shows a diagram of manufacturing a part making use of the method according to the invention, using an induction furnace, as well as the evolution of the temperature of the steel during manufacturing.

La composition de l'acier inoxydable martensitique utilisé dans le procédé selon l'invention est la suivante. Tous les pourcentages sont des pourcentages pondéraux.The composition of the martensitic stainless steel used in the process according to the invention is as follows. All percentages are weight percentages.

Sa teneur en C est comprise entre 0,005% et 0,3%.Its C content is between 0.005% and 0.3%.

La teneur minimale de 0,005% est justifiée par la nécessité d'obtenir une austénitisation de la microstructure lors de la première étape du procédé de mise en forme à chaud, de sorte que les propriétés mécaniques finales visées soient obtenues. Au-dessus de 0,3%, la soudabilité et, surtout, la résilience de la tôle deviennent insuffisantes, notamment pour une application dans l'industrie automobile.The minimum content of 0.005% is justified by the need to obtain an austenitization of the microstructure during the first stage of the hot forming process, so that the final mechanical properties targeted are obtained. Above 0.3%, the weldability and, above all, the resilience of the sheet become insufficient, in particular for an application in the automotive industry.

Sa teneur en Mn est comprise entre 0,2 et 2,0%.Its Mn content is between 0.2 and 2.0%.

Un minimum de 0,2% est requis pour obtenir l'austénitisation. Au-dessus de 2,0% des problèmes d'oxydation sont à craindre lors des traitements thermiques si ceux-ci ne sont pas effectués dans des atmosphères neutres ou réductrices, et de plus l'obtention des propriétés mécaniques désirées ne serait plus garantie.A minimum of 0.2% is required to obtain austenitization. Above 2.0% of the oxidation problems are to be feared during heat treatments if these are not carried out in neutral or reducing atmospheres, and moreover obtaining the desired mechanical properties would no longer be guaranteed.

Sa teneur en Si est comprise entre des traces (c'est-à-dire de simples impuretés résultant de l'élaboration, sans que du Si ait été ajouté) et 1,0%.Its Si content is between traces (that is to say simple impurities resulting from the production, without Si having been added) and 1.0%.

Si peut être utilisé comme désoxydant lors de l'élaboration, tout comme Al, auquel il peut s'ajouter ou se substituer. Au-delà de 1,0%, on considère qu'il favorise excessivement la formation de ferrite et rend donc plus difficile l'austénitisation, et qu'il fragilise trop la tôle pour que la mise en forme d'une pièce complexe puisse assurément s'effectuer de façon satisfaisante.Si can be used as a deoxidizer during production, just like Al, to which it can be added or substituted. Above 1.0%, it is considered that it excessively promotes the formation of ferrite and therefore makes austenitization more difficult, and that it weakens the sheet too much for the shaping of a complex part to be assured. perform satisfactorily.

Sa teneur en S est comprise entre des traces et 0,01% (100 ppm), afin de garantir une soudabilité et une résilience convenables au produit final.Its S content is between traces and 0.01% (100 ppm), in order to guarantee suitable weldability and resilience to the final product.

Sa teneur en P est comprise entre des traces et 0,04%, afin de garantir que le produit final ne sera pas excessivement fragile. P est également néfaste pour la soudabilité.Its P content is between traces and 0.04%, in order to guarantee that the final product will not be excessively brittle. P is also harmful to the weldability.

Sa teneur en Cr est comprise entre 10,5 et 17,0%, de préférence entre 10,5% et 14,0% pour avoir une dissolution plus rapide des carbures pendant l'austénitisation.Its Cr content is between 10.5 and 17.0%, preferably between 10.5% and 14.0% to have faster dissolution of the carbides during austenitization.

La teneur minimale de 10,5% se justifie pour assurer l'inoxydabilité de la tôle. Une teneur supéreure à 17% rendrait difficile l'austénitisation et augmenterait inutilement le coût de l'acier.The minimum content of 10.5% is justified to ensure the oxidability of the sheet. A content higher than 17% would make austenitization difficult and unnecessarily increase the cost of steel.

Sa teneur en Ni est comprise entre des traces et 4,0%.Its Ni content is between traces and 4.0%.

Un ajout de Ni n'est pas indispensable à l'invention. La présence de Ni dans la limite prescrite de 4,0% au maximum peut, cependant être avantageuse pour favoriser l'austénitisation. Un dépassement de la limite de 4,0% conduirait cependant à une présence excessive d'austénite résiduelle et à une présence insuffisante de martensite dans la microstructure après le refroidissement.An addition of Ni is not essential to the invention. The presence of Ni within the prescribed limit of 4.0% maximum may, however, be advantageous for promoting austenitization. Exceeding the 4.0% limit would however lead to an excessive presence of residual austenite and an insufficient presence of martensite in the microstructure after cooling.

Sa teneur en Mo est comprise entre des traces et 2,0%.Its Mo content is between traces and 2.0%.

La présence de Mo n'est pas indispensable. Mais elle est favorable à une bonne tenue à la corrosion. Au-dessus de 2,0%, l'austénitisation serait gênée et le coût de l'acier inutilement augmenté.The presence of Mo is not essential. However, it is favorable to good resistance to corrosion. Above 2.0%, austenitization would be hindered and the cost of steel unnecessarily increased.

Une présence de W est, de même, possible, mais comme W est un élément très durcissant, cette présence doit être limitée et mise en relation avec la teneur en Mo . On considère qu'il faut que la somme Mo + 2 x W soit comprise entre des traces et 2,0%.A presence of W is likewise possible, but since W is a very hardening element, this presence must be limited and put in relation to the Mo content. We consider that the sum Mo + 2 x W must be between traces and 2.0%.

Contrairement à ce qui est le plus habituel lorsqu'on considère dans une nuance d'acier le cumul des influences de Mo et W, on prend en compte non la relation Mo + W/2 mais la relation Mo + 2 x W. La relation Mo + W/2 est à prendre en compte lorsqu'on veut maîtriser l'influence de ces deux éléments sur la formation de précipités, pour laquelle W est deux fois plus efficace que Mo à quantité ajoutée égale. Mais dans le cas de l'invention, on privilégie les influences respectives de Mo et W sur la dureté de l'acier. Et comme W est un élément plus durcissant que Mo, à quantités ajoutées égales, c'est la relation Mo + 2 x W qui doit être à prendre en compte selon l'invention. Cette somme Mo + 2 x W doit être comprise entre des traces et 2,0%. Au-delà, la dureté devient excessive et, toutes choses étant égales par ailleurs, les propriétés mécaniques à privilégier dans le cadre de l'invention sont diminuées, en particulier la capacité d'angle de pliage et la résilience.Contrary to what is most usual when we consider in a steel shade the cumulation of the influences of Mo and W, we take into account not the relation Mo + W / 2 but the relation Mo + 2 x W. The relation Mo + W / 2 must be taken into account when we want to control the influence of these two elements on the formation of precipitates, for which W is twice as effective as Mo with equal added amount. However, in the case of the invention, the respective influences of Mo and W are favored on the hardness of the steel. And since W is a more hardening element than Mo, with equal added quantities, it is the relation Mo + 2 x W which must be taken into account according to the invention. This sum Mo + 2 x W must be between traces and 2.0%. Beyond this, the hardness becomes excessive and, all other things being equal, the mechanical properties to be favored in the context of the invention are reduced, in particular the bending angle capacity and the resilience.

Sa teneur en Cu est comprise entre des traces et 3,0%, de préférence entre des traces et 0,5%.Its Cu content is between traces and 3.0%, preferably between traces and 0.5%.

Ces exigences sur Cu sont classiques pour ce type d'aciers. Dans la pratique, cela veut dire qu'un ajout de Cu n'est pas utile et que la présence de cet élément n'est due qu'aux matières premières utilisées. Une teneur supérieure à 0,5%, qui correspondrait à un ajout volontaire, n'est pas désirée pour les applications à l'automobile, car elle dégraderait la soudabilité. Cu peut cependant aider à l'austénitisation, et si on applique l'acier de l'invention à un domaine ne nécessitant pas de soudage, la teneur en Cu peut aller jusqu'à 3,0%.These Cu requirements are classic for this type of steel. In practice, this means that adding Cu is not useful and that the presence of this element is only due to the raw materials used. A content greater than 0.5%, which would correspond to a voluntary addition, is not desired for automotive applications, because it would degrade the weldability. Cu can however aid in austenitization, and if the steel of the invention is applied to a field which does not require welding, the Cu content can range up to 3.0%.

Sa teneur en Ti est comprise entre des traces et 0,5%.Its Ti content is between traces and 0.5%.

Ti est un désoxydant, comme Al et Si, mais son coût et sa moindre efficacité que celle de Al rend son emploi en général peu intéressant de ce point de vue. Il peut avoir un intérêt en ce que la formation de nitrures et carbonitrures de Ti peuvent limiter la croissance des grains et influer favorablement sur certaines propriétés mécaniques et la soudabilité. Toutefois, cette formation peut être un inconvénient dans le cas du procédé selon l'invention, car Ti tend à gêner l'austénitisation du fait de la formation de carbures, et les TiN dégradent la résilience. Une teneur maximale de 0,5% est donc à ne pas dépasser.Ti is a deoxidizer, like Al and Si, but its cost and its lower efficiency than that of Al makes its use in general not very interesting from this point of view. It may be advantageous in that the formation of nitrides and carbonitrides of Ti can limit the growth of the grains and favorably influence certain mechanical properties and the weldability. However, this formation can be a drawback in the case of the process according to the invention, since Ti tends to hinder austenitization due to the formation of carbides, and TiNs degrade the resilience. A maximum content of 0.5% should therefore not be exceeded.

V et Zr sont aussi des éléments susceptibles de former des nitrures dégradant la résilience, et de manière générale, il faut que la somme Ti + V + Zr ne dépasse pas 0,5%.V and Zr are also elements capable of forming nitrides degrading the resilience, and in general, the sum Ti + V + Zr must not exceed 0.5%.

Sa teneur en Al est comprise entre des traces et 0,2%.Its Al content is between traces and 0.2%.

Al est utilisé comme désoxydant lors de l'élaboration. Il ne faut pas qu'après la désoxydation il en subsiste dans l'acier une quantité dépassant 0,2%, car il y aurait un risque de former une quantité excessive de AlN dégradant les propriétés mécaniques, et aussi d'avoir des difficultés à obtenir la microstructure martensitique.Al is used as a deoxidizer during production. After deoxidation, there should not remain in the steel an amount exceeding 0.2%, because there would be a risk of forming an excessive amount of AlN degrading the mechanical properties, and also of having difficulties in obtain the martensitic microstructure.

Sa teneur en O est comprise entre des traces et 0,04% (400 pm).Its O content is between traces and 0.04% (400 µm).

Les exigences sur la teneur en O sont celles qui sont classiques sur les aciers inoxydables martensitiques, en fonction de l'aptitude à leur mise en forme sans que des fissures ne s'amorcent à partir des inclusions et de la qualité des propriétés mécaniques recherchées sur la pièce finale, et que la présence excessive d'inclusions oxydées est susceptible d'altérer. Inversement, si une usinabilité minimale de la tôle est recherchée, il peut être avantageux d'avoir des inclusions oxydées en nombre significatif, si leur composition les rend suffisamment malléables pour qu'elles servent de lubrifiant à l'outil de coupe. Cette technique de contrôle du nombre et de la composition des inclusions oxydées est classique en sidérurgie. Le contrôle de la composition des oxydes peut être avantageusement obtenu par une addition maîtrisée de Ca et/ou un ajustement de la composition du laitier avec lequel l'acier liquide est en contact et en équilibre chimique pendant l'élaboration.The requirements on the O content are those which are conventional on martensitic stainless steels, depending on the ability to shape them without cracks starting from the inclusions and the quality of the mechanical properties sought after. the final part, and which the excessive presence of oxidized inclusions is likely to alter. Conversely, if a minimum machinability of the sheet is sought, it may be advantageous to have oxidized inclusions in significant number, if their composition makes them sufficiently malleable so that they serve as a lubricant for the cutting tool. This technique for controlling the number and composition of oxidized inclusions is classic in the steel industry. Control of the composition of the oxides can be advantageously obtained by controlled addition of Ca and / or adjustment of the composition of the slag with which the liquid steel is in contact and in chemical equilibrium during the production.

C'est essentiellement l'ajout de désoxydants Al, Si, Ti, Zr lors de l'élaboration, le possible ajout de Ca, le soin apporté ensuite à la décantation des inclusions oxydées au sein de l'acier liquide et la subsistance de ces désoxydants dans l'acier solidifié qui déterminent la teneur finale en O. Si chacun de ces éléments, pris isolément, peut être absent ou seulement très faiblement présent, il faut néanmoins que l'un au moins d'entre eux (le plus souvent Al et/ou Si) soit présent dans une quantité suffisante pour garantir que la teneur en O de la tôle finale ne sera pas trop élevée pour une mise en forme sans incidents de la pièce, et pour les applications futures de la pièce. Ces mécanismes régissant la désoxydation des aciers et le contrôle de la composition et de la quantité de leurs inclusions oxydées sont bien connus de l'homme du métier, et s'appliquent dans le cadre de l'invention de façon parfaitement classique.It is essentially the addition of deoxidizers Al, Si, Ti, Zr during the elaboration, the possible addition of Ca, the care then taken in decanting the oxidized inclusions within the liquid steel and the subsistence of these deoxidizers in solidified steel which determine the final O content. If each of these elements, taken in isolation, can be absent or only very slightly present, it is nevertheless necessary that at least one of them (most often Al and / or Si) be present in a sufficient quantity to guarantee that the O content of the final sheet will not be too high for uneven shaping of the part, and for future applications of the part. These mechanisms governing the deoxidation of steels and the control of the composition and the quantity of their oxidized inclusions are well known to those skilled in the art, and apply in the context of the invention in a perfectly conventional manner.

Sa teneur en Nb est comprise entre 0,05% et 1,0%Its Nb content is between 0.05% and 1.0%

Sa teneur totale en Nb + Ta est comprise entre 0,05% et 1,0%.Its total Nb + Ta content is between 0.05% and 1.0%.

Nb et Ta sont des éléments importants pour l'obtention d'une bonne résilience, et Ta améliore la résistance à la corrosion par piqûre. Mais comme ils peuvent gêner l'austénitisation, ils ne doivent pas être présents dans des quantités dépassant ce que l'on vient de prescrire. Egalement, Nb et Ta captent C et N en formant des carbonitrures qui empêchent une trop forte croissance des grains d'austénite lors de l'austénitisation. Cela est favorable à l'obtention d'une très bonne résilience à froid, entre -100°C et et 0°C. En revanche, si la teneur en Nb et/ou Ta est trop élevée, C et N seront entièrement piégés dans les carbonitrures et il n'en restera plus suffisamment sous forme dissoute pour que les propriétés mécaniques visées soient atteintes, notamment la résilience et la résistance mécanique.Nb and Ta are important elements for obtaining good resilience, and Ta improves the resistance to pitting corrosion. But as they can interfere with austenitization, they must not be present in quantities exceeding what has just been prescribed. Also, Nb and Ta capture C and N by forming carbonitrides which prevent too strong growth of the austenite grains during austenitization. This is favorable for obtaining a very good resilience when cold, between -100 ° C. and 0 ° C. On the other hand, if the content of Nb and / or Ta is too high, C and N will be entirely trapped in the carbonitrides and there will no longer be enough in dissolved form for the targeted mechanical properties to be achieved, in particular the resilience and the mechanical resistance.

On exige donc 0,25 ≤ (Nb + Ta)/(C+ N) ≤ 8 pour obtenir une résilience de l'ordre de 50 J/cm2 à 20°C ou davantage.0.25 ≤ (Nb + Ta) / (C + N) ≤ 8 is therefore required to obtain a resilience of the order of 50 J / cm 2 at 20 ° C or more.

Sa teneur en V est comprise entre des traces et 0,3%.Its V content is between traces and 0.3%.

Comme Ti, V un élément fragilisant qui est susceptible de former des nitrures, et ne doit pas être présent en quantité trop importante. Comme dit précédemment, il faut que Ti + V + Zr ne dépasse pas 0,5%.Like Ti, V an embrittling element which is capable of forming nitrides, and must not be present in too large an amount. As said before, Ti + V + Zr must not exceed 0.5%.

Sa teneur en Co est comprise entre des traces et 0,5%. Cet élément est, comme Cu, susceptible d'aider à l'austénitisation. Mais il est inutile d'en mettre davantage que 0,5%, car l'austénitisation peut être assistée par des moyens moins coûteux.Its Co content is between traces and 0.5%. This element is, like Cu, capable of helping austenitization. But it is useless to put more than 0.5%, because the austenitization can be assisted by less expensive means.

Le total des teneurs en Cu, Ni et Co doit être compris entre des traces et 5,0%, pour ne pas laisser subsister trop d'austénite résiduelle après la transformation martensitique et ne pas dégrader la soudabilité dans les applications qui l'exigent.The total contents of Cu, Ni and Co must be between traces and 5.0%, so as not to leave too much residual austenite after the martensitic transformation and not to degrade the weldability in the applications which require it.

Sa teneur en Sn est comprise entre des traces et 0,05% (500 ppm). Cet élément n'est pas désiré car il est néfaste pour la soudabilité et la capacité de l'acier à être transformé à chaud. La limite de 0,05% est une tolérance.Its Sn content is between traces and 0.05% (500 ppm). This element is not desired because it is detrimental to the weldability and the ability of the steel to be hot processed. The 0.05% limit is a tolerance.

Sa teneur en B est comprise entre des traces et 0,1%.Its B content is between traces and 0.1%.

B n'est pas obligatoire, mais sa présence est avantageuse pour la trempabilité et pour la forgeabilité de l'austénite. Il facilite donc les mises en forme. Son addition au-dessus de 0,1% (1000 ppm) n'apporte pas d'amélioration supplémentaire significative.B is not obligatory, but its presence is advantageous for the hardenability and the forgeability of the austenite. It therefore facilitates shaping. Its addition above 0.1% (1000 ppm) does not provide any significant additional improvement.

Sa teneur en Zr est comprise entre des traces et 0,5%, car il diminue la résilience et gêne l'austénitisation. On rappelle aussi que la teneur totale en Ti + V + Zr ne doit pas dépasser 0,5%.Its Zr content is between traces and 0.5%, because it reduces the resilience and hinders austenitization. It is also recalled that the total content of Ti + V + Zr must not exceed 0.5%.

Sa teneur en H est comprise entre des traces et 5 ppm, de préférence pas plus de 1 ppm. Une teneur excessive en H tend à fragiliser la martensite. Il faudra donc choisir un mode d'élaboration de l'acier à l'état liquide qui puisse assurer cette faible présence de H. Typiquement, des traitements assurant un dégazage poussé de l'acier liquide (par injection massive d'argon dans l'acier liquide, procédé bien connu dit « AOD », ou par un passage sous vide au cours duquel l'acier est décarburé par dégagement de CO, procédé dit « VOD ») sont indiqués.Its H content is between traces and 5 ppm, preferably not more than 1 ppm. Excessive H content tends to weaken martensite. It will therefore be necessary to choose a method of production of steel in the liquid state which can ensure this low presence of H. Typically, treatments ensuring a thorough degassing of the liquid steel (by massive injection of argon in the liquid steel, well-known process known as “AOD”, or by a vacuum passage during which the steel is decarbonized by release of CO, process known as “VOD”) are indicated.

Sa teneur en N est comprise entre des traces et 0,2% (2000 ppm). N est une impureté dont les mêmes traitements qui permettent de réduire la teneur en H contribuent à limiter la présence, voire à la réduire sensiblement. Il n'est pas toujours nécessaire d'avoir une teneur en N particulièrement basse, mais pour les raisons que l'on a dites il faut que sa teneur, considérée conjointement à celles d'éléments avec lesquels il peut se combiner pour former des nitrures ou carbonitrures obéisse à la relation 8 ≥ (Nb + Ta)/ (C+ N) ≥ 0,25.Its N content is between traces and 0.2% (2000 ppm). N is an impurity of which the same treatments which make it possible to reduce the H content help to limit the presence, or even to reduce it substantially. It is not always necessary to have a particularly low N content, but for the reasons that have been said it is necessary that its content, considered jointly with those of elements with which it can combine to form nitrides or carbonitrides obeys the relation 8 ≥ (Nb + Ta) / (C + N) ≥ 0.25.

Egalement, une bonne austénitisation de l'acier lors de l'étape initiale du traitement thermomécanique est favorisée si on respecte la relation (Mn + Ni) ≥ (Cr -10,3 - 80 x [(C + N)2]). Une résilience suffisante est obtenue si cette condition est respectée en sus des autres qui ont été définies. Il faut un niveau suffisant d'éléments gammagènes pour contrebalancer l'effet alphagène du Cr et assurer une austénitisation correcte, à savoir d'au moins 80%, et de ce point de vue l'efficacité de la somme C + N n'est pas linéaire.Also, good austenitization of the steel during the initial stage of the thermomechanical treatment is favored if the relation (Mn + Ni) ≥ (Cr -10.3 - 80 x [(C + N) 2 ]) is respected. Sufficient resilience is obtained if this condition is met in addition to the others that have been defined. A sufficient level of gammagene elements is necessary to counterbalance the alphagene effect of Cr and to ensure correct austenitization, namely at least 80%, and from this point of view the effectiveness of the sum C + N is not linear.

Sa teneur en Ca est ≤ 0,002% (20 ppm).Its Ca content is ≤ 0.002% (20 ppm).

Sa teneur totale en terres rares et en Y est comprise entre des traces et 0,06% (600 ppm). Ces éléments peuvent améliorer la résistance à l'oxydation lors des austénitisations à températures très élevées.Its total rare earth and Y content is between traces and 0.06% (600 ppm). These elements can improve the resistance to oxidation during austenitizations at very high temperatures.

Le reste de l'acier est constitué par du fer et des impuretés résultant de l'élaboration.The rest of the steel is made up of iron and impurities resulting from the production.

D'autres exigences sur la composition de l'acier concernent les températures de début de transformation martensitique Ms et de fin de transformation martensitique Mf.Other requirements on the composition of the steel relate to the temperatures at the start of martensitic transformation Ms and at the end of martensitic transformation Mf.

Ms doit être de préférence d'au plus 400°C. Si Ms est plus élevée, il y a un risque que les différentes opérations de transfert et de mise en forme de la pièce ne se succèdent pas assez rapidement et que l'on n'ait pas le temps de réaliser toutes les mises en forme à une température supérieure à Ms. On peut toutefois limiter ou éviter ce risque en prévoyant que la pièce subisse des réchauffages ou des maintiens en température entre les mises en forme, et/ou pendant celles-ci si on utilise des outils chauffants de types connus intégrant, par exemple, des résistances électriques. Cette condition Ms ≤ 400°C n'est donc pas toujours impérative, mais seulement conseillée pour une application économique et aisée du procédé selon l'invention dans des conditions industrielles.Ms should preferably be at most 400 ° C. If Ms is higher, there is a risk that the different transfer and shaping operations for the part will not follow each other quickly enough and that there will not be time to carry out all of the shaping at a temperature higher than Ms. However, this risk can be limited or avoided by providing that the part undergoes reheating or temperature maintenance between the shapings, and / or during these if using heating tools of known types integrating , for example, electrical resistors. This condition Ms ≤ 400 ° C is therefore not always imperative, but only recommended for economical and easy application of the process according to the invention under industrial conditions.

Ms doit être supérieure ou égale à 200°C pour éviter la subsistance dans la pièce finale d'une teneur trop élevée en austénite résiduelle, qui, notamment dégraderait Rp0,2 en la portant en-dessous de 800 MPa.Ms must be greater than or equal to 200 ° C. to avoid subsistence in the final part of too high a content of residual austenite, which, in particular, would degrade Rp0.2 by bringing it below 800 MPa.

De préférence, Ms est comprise entre 390 et 320°C.Preferably, Ms is between 390 and 320 ° C.

Mf doit être supérieure ou égale à -50°C pour garantir qu'il n'y aura pas trop d'austénite résiduelle dans la pièce finale.Mf must be greater than or equal to -50 ° C to guarantee that there will not be too much residual austenite in the final part.

Ms et Mf sont déterminées, de préférence, de façon expérimentale, par exemple par des mesures dilatométriques comme cela est bien connu, voir par exemple l'article « Uncertainties in dilatometric détermination of martensite start temperature », Yang and Badeshia, Materials Science and Technology, 2007/5, pp 556-560 .Ms and Mf are preferably determined experimentally, for example by dilatometric measurements as is well known, see for example the article "Uncertainties in dilatometric determination of martensite start temperature", Yang and Badeshia, Materials Science and Technology, 2007/5, pp 556-560 .

Des formules approximatives permettent aussi de les évaluer à partir de la composition de l'acier, mais une détermination expérimentale est plus sûre.Approximate formulas also make it possible to evaluate them from the composition of the steel, but an experimental determination is more certain.

Il doit être entendu que les traitements thermomécaniques que l'on va décrire peuvent être effectués soit sur une tôle nue qui pourra éventuellement être revêtue par la suite, soit sur une tôle déjà revêtue, par exemple par un alliage à base d'Al et/ou de Zn. Ce revêtement, d'épaisseur typiquement de 1 à 200 µm et présent sur une ou deux faces de la tôle, peut avoir été déposé par toute technique classiquement utilisée à cet effet, il faut simplement que, s'il a été déposé avant l'austénitisation, il ne s'évapore pas lors du séjour de la tôle aux températures d'austénitisation et de déformation, et ne soit pas détérioré lors des déformations.It should be understood that the thermomechanical treatments which will be described can be carried out either on a bare sheet which may possibly be coated subsequently, or on a sheet already coated, for example with an Al-based alloy and / or Zn. This coating, typically 1 to 200 μm thick and present on one or two faces of the sheet, may have been deposited by any technique conventionally used for this purpose, it is simply necessary that, if it has been deposited before austenitization, it does not evaporate during the stay of the sheet at austenitization and deformation temperatures, and is not deteriorated during deformations.

Le choix et l'optimisation des caractéristiques du revêtement et de son mode de dépôt pour que ces conditions soient remplies ne vont pas au-delà de ce que sait faire l'homme du métier, lorsqu'il est amené à mettre en forme de façon classique des tôles d'acier inoxydable déjà revêtues. Si le revêtement a lieu avant l'austénitisation, on pourra, cependant, privilégier les revêtements à base d'Al par rapport à ceux à base de Zn, comme l'Al a moins tendance que Zn à s'évaporer aux températures d'austénitisation.The choice and optimization of the characteristics of the coating and of its mode of deposition so that these conditions are met do not go beyond what a person skilled in the art knows how to do, when he is required to form in a way classic stainless steel sheets already coated. If the coating takes place before austenitization, it may, however, be preferable to coatings based on Al over those based on Zn, as Al is less likely than Zn to evaporate at austenitization temperatures. .

Le procédé selon l'invention est le suivant, appliqué à la fabrication et à la mise en forme d'une tôle.The process according to the invention is as follows, applied to the manufacture and shaping of a sheet.

Dans un premier temps, on prépare de manière classique une tôle d'acier inoxydable initiale, nue ou revêtue, ayant la composition qui vient d'être décrite et une épaisseur qui est typiquement de 0,1 à 10 mm. Cette préparation peut inclure des opérations de transformation à chaud et/ou à froid et de découpage du demi-produit issu de la coulée et de la solidification de l'acier liquide. Il faut que cette tôle initiale présente une microstructure constituée de ferrite et/ou de martensite revenue et de 0.5% à 5% en volume de carbures. La taille des grains ferritiques, mesurée selon la norme NF EN ISO 643, est comprise entre 1 et 80 µm, de préférence entre 5 et 40 µm. Une taille de grain ferritique de 40 µm au plus est conseillée pour favoriser l'austénitisation qui va suivre et obtenir ainsi les 80% au moins d'austénite désirés. Une taille de grain ferritique de 5 µm au moins est conseillée pour obtenir une bonne capacité de mise en forme à froid.Firstly, an initial stainless steel sheet, bare or coated, having the composition just described and a thickness which is typically from 0.1 to 10 mm, is conventionally prepared. This preparation can include operations of hot and / or cold transformation and cutting of the semi-finished product resulting from the casting and the solidification of the liquid steel. This initial sheet must have a microstructure consisting of ferrite and / or returned martensite and from 0.5% to 5% by volume of carbides. The size of the ferritic grains, measured according to standard NF EN ISO 643, is between 1 and 80 μm, preferably between 5 and 40 μm. A ferritic grain size of 40 µm at most is recommended to promote the austenitization which will follow and thus obtain at least the 80% of austenite desired. A ferritic grain size of at least 5 µm is recommended to obtain good cold forming capacity.

On procède d'abord à une austénitisation de la tôle, par passage dans un four qui la porte dans une gamme de températures supérieures à Ac1 (température de début de l'apparition d'austénite), donc typiquement supérieures à environ 850°C pour les compositions concernées). Il doit être entendu que cette température d'austénitisation doit concerner l'ensemble du volume de la tôle, et que le traitement doit être suffisamment long pour que, compte tenu de l'épaisseur de la tôle et de la cinétique de la transformation, l'austénitisation soit complète dans tout ce volume.The sheet is first austenitized by passing through an oven which brings it to a range of temperatures greater than Ac1 (temperature at the start of the appearance of austenite), therefore typically greater than approximately 850 ° C. for the compositions concerned). It should be understood that this austenitization temperature must relate to the entire volume of the sheet, and that the treatment must be long enough so that, taking into account the thickness of the sheet and the kinetics of the transformation, the austenitization is complete throughout this volume.

La température maximale de cette austénitisation n'est pas une caractéristique spécifique à l'invention. Elle doit simplement être telle que la tôle reste dans un état entièrement solide (la température doit donc être inférieure, en tout cas, à la température de solidus de l'acier) et ne soit pas trop ramollie pour supporter sans dommage le transfert entre le four et l'outil de mise en forme qui va suivre l'austénitisation. Egalement, la température ne doit pas être élevée au point de provoquer une oxydation et/ou une décarburation superficielles importantes de la tôle dans l'atmosphère de chauffage. Une oxydation superficielle conduirait à la nécessité de décalaminer la tôle mécaniquement ou chimiquement avant sa mise en forme pour éviter une incrustation de calamine dans la surface de la tôle, et entraînerait une perte de matière. Une décarburation excessive (épaisseur de la surface décarburée ≥ 100 µm) diminuerait la dureté et la résistance à la traction de la tôle. Les risques d'observer une oxydation et/ou une décarburation significatives dépendent, de manière connue, non seulement de la température et de la durée d'austénitisation, mais aussi de l'atmosphère de traitement du four. Une atmosphère non oxydante, donc neutre ou réductrice (typiquement : argon, CO et leurs mélanges...), de préférence à l'air, permet d'augmenter sans dommage la température de traitement, ce qui permet d'assurer une austénitisation complète en un minimum de temps. Si on utilise de l'azote pur ou une atmosphère fortement hydrogénée dans un four nécessitant un temps de séjour élevé pour l'austénitisation, il y a un risque de nitruration superficielle ou de reprise d'hydrogène par l'acier. Il faudra donc en tenir compte dans le choix de l'atmosphère de traitement, et des atmosphères d'azote pur ou contenant une teneur en hydrogène relativement élevée seront parfois à éviter.The maximum temperature of this austenitization is not a characteristic specific to the invention. It must simply be such that the sheet remains in an entirely solid state (the temperature must therefore be lower, in any case, than the solidus temperature of the steel) and is not too soft to support without transfer the transfer between the oven and the shaping tool which will follow the austenitization. Also, the temperature should not be raised to the point of causing significant surface oxidation and / or decarburization of the sheet in the heating atmosphere. A surface oxidation would lead to the need to descaling the sheet mechanically or chemically before it is shaped to avoid encrustation of scale in the surface of the sheet, and would cause a loss of material. Excessive decarburization (thickness of the decarburized surface ≥ 100 µm) would reduce the hardness and the tensile strength of the sheet. The risks of observing significant oxidation and / or decarburization depend, in a known manner, not only on the temperature and the austenitization time, but also on the treatment atmosphere of the furnace. A non-oxidizing, therefore neutral or reducing atmosphere (typically: argon, CO and their mixtures, etc.), preferably in air, allows the temperature of the treatment, which ensures complete austenitization in a minimum of time. If pure nitrogen or a highly hydrogenated atmosphere is used in an oven requiring a long residence time for austenitization, there is a risk of surface nitriding or of hydrogen being taken up by the steel. This should therefore be taken into account in the choice of the treatment atmosphere, and atmospheres of pure nitrogen or containing a relatively high hydrogen content will sometimes be avoided.

Typiquement, l'austénitisation a lieu à une température comprise entre 925 et 1200°C pendant une durée tm de 10 s à 1 h (cette durée étant celle que la tôle passe au-dessus de Ac1), de préférence entre 2 min et 10 min pour un chauffage dans un four classique et entre 30 s et 1 min pour un four à induction. Un four à induction présente l'avantage, connu en lui-même, de procurer un réchauffage rapide jusqu'à la température nominale d'austénitisation. Il autorise donc un traitement plus court qu'un four classique pour parvenir au résultat recherché. Ces températures et durées permettent d'assurer que la suite des traitements conduira à une formation suffisante de martensite, et ce pour une durée raisonnable autorisant une bonne productivité du procédé.Typically, the austenitization takes place at a temperature between 925 and 1200 ° C. for a duration tm of 10 s to 1 h (this duration being that which the sheet passes over Ac1), preferably between 2 min and 10 min for heating in a conventional oven and between 30 s and 1 min for an induction oven. An induction furnace has the advantage, known in itself, of providing rapid reheating to the nominal austenitization temperature. It therefore allows a shorter treatment than a conventional oven to achieve the desired result. These temperatures and durations make it possible to ensure that the continuation of the treatments will lead to a sufficient formation of martensite, and this for a reasonable duration allowing good productivity of the process.

Le but de cette austénitisation est de faire passer le métal de la structure ferrite + carbures initiale à une structure austénitique contenant au maximum 0,5% de carbures en fraction volumique, et au maximum 20% de ferrite résiduelle en fraction volumique. Un but de cette austénitisation est, notamment, de conduire à une dissolution d'au moins la majorité des carbures initialement présents, de façon à libérer des atomes de C pour former la structure austénitique puis la structure martensitique lors des étapes suivantes du procédé. La teneur maximale en ferrite résiduelle de 20%, qui doit subsister jusque sur le produit final, est justifiée par la résilience et la limite élastique conventionnelle que l'on veut obtenir.The purpose of this austenitization is to pass the metal from the initial ferrite + carbides structure to an austenitic structure containing at most 0.5% carbides by volume fraction, and at most 20% residual ferrite by volume fraction. An object of this austenitization is, in particular, to lead to a dissolution of at least the majority of the carbides initially present, so as to release C atoms to form the austenitic structure then the martensitic structure during the following stages of the process. The maximum residual ferrite content of 20%, which must remain until the final product, is justified by the resilience and the conventional elastic limit which it is desired to obtain.

La tôle austénitisée, est ensuite transférée sur un outil de mise en forme adéquat (tel qu'un outil d'emboutissage ou d'estampage) ou un outil de découpe. Ce transfert a une durée t0 aussi brève que possible, et pendant ce transfert la tôle doit demeurer à une température supérieure à Ms et conserver une microstructure austénitique à 0,5% maximum de carbures et 20% maximum de ferrite résiduelle. Après ce transfert, la tôle est à une température TP0, qui est aussi proche que possible de la température nominale d'austénitisation pour des raisons évidentes d'économie d'énergie.The austenitized sheet is then transferred to a suitable forming tool (such as a stamping or stamping tool) or a cutting tool. This transfer has a duration t0 as short as possible, and during this transfer the sheet must remain at a temperature higher than Ms and keep an austenitic microstructure at 0.5% maximum of carbides and 20% maximum of residual ferrite. After this transfer, the sheet is at a temperature TP0, which is as close as possible to the nominal austenitization temperature for obvious reasons of energy saving.

On exécute ensuite une première étape de mise en forme ou de découpe, de duré t1 typiquement comprise entre 0,1 et 10 s. La durée précise de cette étape (comme celles des autres étapes) n'est pas en elle-même une caractéristique fondamentale de l'invention. Il faut qu'elle soit suffisamment brève pour que la température de la tôle ne descende pas en-dessous de Ms, qu'on n'assiste pas à une décarburation et/ou une oxydation significatives de la surface de la tôle, et qu'une microstructure austénitique, à 0,5% maximum de carbures et 20% maximum de ferrite résiduelle soit toujours présente à la fin de l'opération. Si besoin, on peut utiliser un outil de mise en forme muni de moyens de chauffage de la tôle pour que ces conditions de température et de microstructure soient remplies, puisque le contact d'un outil de mise en forme non chauffant de avec la tôle provoque un refroidissement de la tôle qui est souvent supérieur à 100°C/s.A first shaping or cutting step is then carried out, of duration t1 typically between 0.1 and 10 s. The precise duration of this stage (like that of the other stages) is not in itself a fundamental characteristic of the invention. It must be sufficiently brief so that the temperature of the sheet does not drop below Ms, that there is no decarburization and / or significant oxidation of the sheet surface, and that an austenitic microstructure with 0.5% maximum of carbides and 20% maximum of residual ferrite is always present at the end of the operation. If necessary, one can use a shaping tool provided with sheet heating means so that these temperature and microstructure conditions are met, since the contact of a non-heating shaping tool with the sheet causes sheet cooling which is often greater than 100 ° C / s.

L'absence de décarburation et d'oxydation superficielles significatives peuvent être obtenues en ajustant la composition de l'acier si cela s'avère nécessaire au vu de l'expérience et, si cela est possible, par le maintien d'une atmosphère neutre ou réductrice autour de la tôle lors de sa mise en formeThe absence of significant surface decarburization and oxidation can be obtained by adjusting the composition of the steel if necessary in the light of experience and, if possible, by maintaining a neutral or reducing around the sheet during its shaping

Toutes ces conditions relatives à la température de mise en forme et à son évolution, et à l'atmosphère entourant la tôle lors de sa mise en forme, sont aussi valables pour les étapes de mise en forme suivantes.All these conditions relating to the shaping temperature and its evolution, and to the atmosphere surrounding the sheet during its shaping, are also valid for the following shaping steps.

La tôle ainsi mise en forme est ensuite transférée sur un autre outil pour une deuxième étape de mise en forme au sens large du terme. En variante, on utilise le même outil dans les deux étapes mais en modifiant sa configuration dans l'intervalle (par exemple par remplacement du poinçon dans le cas où on procède à un emboutissage dans chacune des deux étapes). La durée t2 de ce transfert est typiquement de 1 à 10 s, le but étant qu'il soit suffisamment rapide pour que la température de la tôle demeure supérieure à Ms pendant le transfert et que la microstructure demeure austénitique, à 0,5% maximum de carbures et 20% maximum de ferrite résiduelle.The sheet thus formed is then transferred to another tool for a second shaping step in the broad sense of the term. As a variant, the same tool is used in the two stages but by modifying its configuration in the meantime (for example by replacing the punch in the case where a drawing is made in each of the two stages). The duration t2 of this transfer is typically from 1 to 10 s, the aim being that it is fast enough for the temperature of the sheet to remain above Ms during the transfer and for the microstructure to remain austenitic, at 0.5% maximum. of carbides and 20% maximum of residual ferrite.

On exécute ensuite la deuxième étape de mise en forme, de durée t3 comprise typiquement entre 0,1 et 10 s. La température de la tôle demeure supérieure à Ms et la microstructure demeure austénitique, à 0,5% maximum de carbures et 20% maximum de ferrite résiduelle.The second shaping step is then carried out, of duration t3 typically between 0.1 and 10 s. The temperature of the sheet remains above Ms and the microstructure remains austenitic, at 0.5% maximum of carbides and 20% maximum of residual ferrite.

D'autres étapes de mise en forme (au sens large défini précédemment), et leurs transferts correspondants, peuvent suivre cette deuxième étape de mise en forme.Other shaping steps (in the broad sense defined above), and their corresponding transfers, can follow this second shaping step.

L'essentiel est que pendant l'exécution de ces transferts et de ces mises en forme/découpes, la température de l'acier ne descende pas non plus en-dessous de Ms, et qu'une microstructure austénitique, à 0,5% maximum de carbures et 20% maximum de ferrite résiduelle soit conservée jusqu'à la fin de la dernière étape n, de température finale TPn. Au besoin, comme on l'a dit, des outils de mise en forme chauffants peuvent être utilisés, de même que des moyens de réchauffage de la tôle entre les mises en forme.The main thing is that during the execution of these transfers and these shaping / cutting, the temperature of the steel does not drop below Ms either, and that an austenitic microstructure, at 0.5% maximum of carbides and maximum 20% of residual ferrite is kept until the end of the last step n, of final temperature TPn. If necessary, as said, heated shaping tools can be used, as well as means for reheating the sheet between the shapings.

La vitesse de refroidissement moyenne entre TP0 et TPn, définie par la grandeur (TP0-TPn)/Σti, Σti constituant la somme des durées des transferts et des mises en forme, doit être d'au moins 0,5°C/s.The average cooling rate between TP0 and TPn, defined by the quantity (TP0-TPn) / Σti, Σti constituting the sum of the durations of transfers and shaping, must be at least 0.5 ° C / s.

La conséquence de cette vitesse de refroidissement entre le début et la fin des opérations de mise en forme qui viennent d'être décrites, combinée à la composition de l'acier et au mode opératoire utilisé lors de la mise en forme, est que lors du refroidissement, l'acier ne pénètre pas dans le « nez » du diagramme TRC qui correspond à la transformation bainitique, mais reste dans le domaine austénitique avant de passer directement dans le domaine où peut s'opérer la transformation martensitique. La composition de l'acier est justement choisie pour que, par rapport aux aciers au carbone qu'il est le plus courant d'employer dans l'industrie automobile pour la réalisation de tôles aptes à être soudées, ce nez soit décalé vers les durées plus élevées, rendant ainsi possible sur des outils de mise en en forme habituels l'évitement du domaine bainitique, a fortiori des domaines ferritique et perlitique, et donc une exécution aussi complète que possible de la transformation de l'austénite en martensite. Mais il doit être rappelé que, comme on l'a dit, chaque étape prise individuellement doit permettre de conserver une microstructure austénitique à 0,5% maximum de carbures et 20% maximum de ferrite résiduelle. Le couple durée/vitesse de refroidissement de chaque étape doit donc être choisi en conséquence, et, si besoin, des réchauffages de la tôle entre et/ou pendant les mises en forme ou découpes sont exécutés pour que cette microstructure puisse être maintenue pendant toutes les étapes.The consequence of this cooling rate between the start and the end of the shaping operations which have just been described, combined with the composition of the steel and with the operating method used during shaping, is that during the cooling, the steel does not enter the "nose" of the TRC diagram which corresponds to the bainitic transformation, but remains in the austenitic domain before passing directly into the domain where the martensitic transformation can take place. The composition of the steel is precisely chosen so that, compared to the carbon steels which it is the most common to use in the automotive industry for the production of sheets capable of being welded, this nose is shifted towards the durations higher, thus making possible on usual shaping tools the avoidance of the bainitic domain, a fortiori of the ferritic and perlitic domains, and therefore a execution as complete as possible of the transformation of austenite into martensite. However, it should be remembered that, as has been said, each step taken individually must make it possible to maintain an austenitic microstructure with a maximum of 0.5% of carbides and a maximum of 20% of residual ferrite. The duration / cooling rate of each stage must therefore be chosen accordingly, and, if necessary, reheating of the sheet between and / or during shaping or cutting is carried out so that this microstructure can be maintained during all the steps.

On peut, optionnellement, réaliser au moins une étape supplémentaire de mise en forme au sens large à une température comprise entre Ms et Mf, dans un domaine où la microstructure comporte au moins 5% en volume d'austénite. Si cette étape supplémentaire est une découpe, la forme finale de la pièce pourra être atteinte avec une moindre usure des outils, et si cette étape supplémentaire est une déformation, les 5% au moins d'austénite procureront une ductilité suffisante pour que cette déformation soit encore possible malgré la présence parfois déjà importante de martensite.It is optionally possible to carry out at least one additional shaping step in the broad sense at a temperature between Ms and Mf, in a field where the microstructure comprises at least 5% by volume of austenite. If this additional step is a cut, the final shape of the part can be reached with less wear of the tools, and if this additional step is a deformation, at least 5% of austenite will provide sufficient ductility for this deformation to be still possible despite the sometimes already significant presence of martensite.

Enfin on laisse la tôle se refroidir, par exemple à l'air libre, jusqu'à la température ambiante, en obtenant ainsi la pièce finale selon le procédé de l'invention. Il n'est pas nécessaire d'imposer une vitesse de minimale lors de ce refroidissement, du fait que la composition de l'acier assure que la tôle restera de toute façon dans le domaine où peut s'opérer la transformation martensitique également lors de ce refroidissement jusqu'à l'ambiante, au moins si on n'utilise pas de moyens ralentissant sensiblement le refroidissement par rapport à un refroidissement naturel à l'air libre, comme un capotage de la tôle. Bien entendu, il n'est pas exclu d'accélérer ce refroidissement, au moyen d'air pulsé ou d'une projection d'eau ou d'un autre fluide.Finally, the sheet is allowed to cool, for example in the open air, to room temperature, thereby obtaining the final part according to the method of the invention. It is not necessary to impose a minimum speed during this cooling, because the composition of the steel ensures that the sheet will remain anyway in the area where the martensitic transformation can also take place during this cooling down to the ambient, at least if no means are used which significantly slow down cooling compared to natural cooling in the open air, such as a covering of the sheet. Of course, it is not excluded to accelerate this cooling, by means of forced air or a spray of water or another fluid.

La possibilité d'utiliser au moins deux étapes pour obtenir la forme finale de la pièce donne accès, grâce à l'utilisation d'un acier ayant la composition précisée et traité selon l'invention, à des formes complexes pour la pièce finale que les procédés connus ne faisant usage que d'une seule mise en forme de la tôle initiale ne permettent pas d'atteindre, en tout cas pas avec une qualité suffisante.The possibility of using at least two stages to obtain the final shape of the part gives access, thanks to the use of a steel having the specified and treated composition according to the invention, to complex shapes for the final part that the known methods making use of only one shaping of the initial sheet do not allow to reach, in any case not with sufficient quality.

Optionnellement, on peut appliquer un traitement superficiel à la pièce finale tel qu'un grenaillage ou un sablage, dans le but d'augmenter la rugosité de sa surface pour améliorer l'adhérence d'un revêtement qui serait ultérieurement appliqué, tel qu'une peinture, ou pour créer des contraintes résiduelles améliorant la tenue en fatigue de la tôle. Ce type d'opération est connu en lui-même.Optionally, a surface treatment can be applied to the final part such as shot blasting or sandblasting, with the aim of increasing the roughness of its surface to improve the adhesion of a coating which would be subsequently applied, such as a paint, or to create residual stresses improving the fatigue resistance of the sheet. This type of operation is known in itself.

Egalement, un dernier traitement thermique peut être effectué sur la pièce finale, donc après le refroidissement à l'ambiante, pour améliorer son allongement à la rupture et le porter à une valeur de plus de 8% selon les normes ISO, ce qui correspond sensiblement à plus de10% selon les normes JIS. Ce traitement consiste à faire séjourner la pièce finale entre 90 et 500°C pendant 10 s à 1 h, puis à effectuer un refroidissement naturel à l'air.Also, a final heat treatment can be carried out on the final part, therefore after cooling to the ambient, to improve its elongation at break and bring it to a value of more than 8% according to ISO standards, which corresponds substantially more than 10% according to JIS standards. This treatment consists in making the final part stay between 90 and 500 ° C for 10 s to 1 h, then in performing a natural air cooling.

La pièce ainsi obtenue par le procédé selon l'invention possède des propriétés mécaniques élevées à température ambiante, du fait notamment de sa teneur élevée en martensite d'au moins 80%. Typiquement, Rm est d'au moins 1000 MPa, Re d'au moins 800 MPa, l'allongement à la rupture A mesuré selon la norme ISO 6892 est d'au moins 8%, et la capacité d'angle de pliage pour une épaisseur de 1,5 mm est d'au moins 60°, mesurée selon la norme VDA 238-100.The part thus obtained by the process according to the invention has high mechanical properties at room temperature, in particular because of its high martensite content of at least 80%. Typically, Rm is at least 1000 MPa, Re is at least 800 MPa, the elongation at break A measured according to ISO 6892 standard is at least 8%, and the bending angle capacity for a 1.5 mm thickness is at least 60 °, measured according to VDA 238-100.

La figure 1 représente schématiquement un exemple de schéma opératoire pour un procédé selon l'invention, exécuté sur un acier de composition conforme à celle de l'exemple 2 du tableau 1 qui va suivre, dont Ms est de 380°C et Mf de 200°C, et comportant les étapes suivantes :

  • Chauffage dans un four à rouleaux 1 classique pendant 2 min d'une tôle 2 d'épaisseur 1,5 mm, entre la température ambiante et une température TPi égale à 950°C ;
  • Maintien dans le four 1 de la tôle 2 à ladite température TPi pendant une durée tm de 3 min ;
  • Transfert de la tôle 2 entre le four 1 et un outil d'emboutissage à chaud 3, pendant une durée t0 de 1 s ; la température de l'acier diminue jusqu'à TP0 = 941°C ;
  • Première étape de mise en forme (déformation), exécutée dans l'outil d'emboutissage à chaud 3 pendant une durée t1 de 0,5 s pour obtenir une tôle mise en forme 4 ; la température de l'acier diminue jusqu'à TP1 = 808°C ;
  • Transfert de la tôle mise en forme 4 entre l'outil d'emboutissage à chaud 3 et un outil de perçage 5, pendant une durée t2 de 0,5 s ; la température de l'acier diminue jusqu'à TP2 = 799°C ;
  • Deuxième étape de mise en forme, consistant en un perçage effectué dans l'outil de perçage 5 pendant une durée t3 de 1 s pour obtenir une tôle mise en forme et percée 6 ; la température de l'acier diminue jusqu'à TP3 = 667°C ;
  • Transfert de la tôle 6 mise en forme et percée vers un outil de découpe 7 pour exécuter une découpe des bords de la tôle 6 afin de leur conférer leurs dimensions définitives pour obtenir un produit 8 ;
  • Exécution d'un grenaillage du produit 8 dans une grenailleuse 9 pour optimiser sa tenue en fatigue ou l'adhérence d'une éventuelle couche de revêtement future.
The figure 1 schematically represents an example of an operating diagram for a method according to the invention, executed on a steel of composition in accordance with that of Example 2 of Table 1 which follows, of which Ms is 380 ° C and Mf is 200 ° C, and comprising the following stages:
  • Heating in a conventional roller oven 1 for 2 min of a sheet 2 of thickness 1.5 mm, between ambient temperature and a temperature TPi equal to 950 ° C;
  • Maintenance in the oven 1 of the sheet 2 at said temperature TPi for a period tm of 3 min;
  • Transfer of the sheet 2 between the oven 1 and a hot stamping tool 3, for a time t0 of 1 s; the temperature of the steel decreases up to TP0 = 941 ° C;
  • First shaping step (deformation), performed in the hot stamping tool 3 for a time t1 of 0.5 s to obtain a shaped sheet 4; the temperature of the steel decreases up to TP1 = 808 ° C;
  • Transfer of the shaped sheet 4 between the hot stamping tool 3 and a drilling tool 5, for a period t2 of 0.5 s; the temperature of the steel decreases up to TP2 = 799 ° C;
  • Second shaping step, consisting of drilling in the drilling tool 5 for a period t3 of 1 s to obtain a shaped and drilled sheet 6; the temperature of the steel decreases up to TP3 = 667 ° C;
  • Transfer of the sheet 6 shaped and drilled to a cutting tool 7 to cut the edges of the sheet 6 to give them their final dimensions to obtain a product 8;
  • Execution of a shot peening of the product 8 in a shot peening machine 9 to optimize its resistance to fatigue or the adhesion of a possible future coating layer.

La figure 2 représente schématiquement un autre exemple de schéma opératoire pour un procédé selon l'invention, exécuté sur une tôle 2 d'un acier de composition conforme à celle de l'exemple 7 du tableau 1 qui va suivre, dont Ms est de 380°C et Ms de 200°C, et comportant les étapes suivantes :

  • Chauffage dans un four à induction 10 classique pendant 20 s d'une tôle 2 d'épaisseur 1,5 mm, entre la température ambiante et une température TPi = 950°C ;
  • Maintien dans le four à induction 10 de la tôle 2 à ladite température TPi pendant une durée tm de 30 s ;
  • Transfert de la tôle 2 entre le four à induction 10 et un outil d'emboutissage à chaud 3, pendant une durée t0 de 1 s ; la température de l'acier diminue jusqu'à TP0 = 941°C ;
  • Première étape de mise en forme (déformation), exécutée dans l'outil d'emboutissage à chaud 3 pendant une durée t1 de 0,5 s pour obtenir une tôle mise en forme 4 ; la température de l'acier diminue jusqu'à TP1 = 808°C ;
  • Transfert de la tôle mise en forme 4 entre l'outil d'emboutissage à chaud 3 et un outil de perçage 5, pendant une durée t2 de 1 s ; la température de l'acier diminue jusqu'à TP2 = 799°C ;
  • Deuxième étape de mise en forme, consistant en un perçage effectué dans l'outil de perçage 5 pendant une durée t3 de 0,5 s pour obtenir une tôle mise en forme et percée 6 ; la température de l'acier diminue jusqu'à TP3 = 667°C ;
  • Transfert de la tôle 6 mise en forme et percée vers un outil de découpe 7 pendant une durée t4 de 1 s, pour exécuter une découpe des bords de la tôle 6 ; la température de la tôle diminue jusqu'à TP4 = 658°C ;
  • Troisième étape de mise en forme consistant en un découpage des bords de la pièce 6 afin de lui conférer ses dimensions définitives et obtenir un produit 8, pendant une durée t5 de 0,5 s ; la température de la pièce diminue jusqu'à TP5 = 525°C ;
  • Exécution d'un grenaillage 9 du produit 8 pour optimiser sa tenue en fatigue ou l'adhérence d'une éventuelle couche de revêtement future.
The figure 2 schematically represents another example of operating diagram for a process according to the invention, carried out on a sheet 2 of a steel of composition in accordance with that of Example 7 of Table 1 which follows, of which Ms is 380 ° C and Ms of 200 ° C, and comprising the following steps:
  • Heating in a conventional induction furnace 10 for 20 s of a sheet 2 of thickness 1.5 mm, between room temperature and a temperature TPi = 950 ° C;
  • Maintenance in the induction furnace 10 of the sheet 2 at said temperature TPi for a period tm of 30 s;
  • Transfer of the sheet 2 between the induction furnace 10 and a hot stamping tool 3, for a time t0 of 1 s; the temperature of the steel decreases up to TP0 = 941 ° C;
  • First shaping step (deformation), performed in the hot stamping tool 3 for a time t1 of 0.5 s to obtain a shaped sheet 4; the temperature of the steel decreases up to TP1 = 808 ° C;
  • Transfer of the shaped sheet 4 between the hot stamping tool 3 and a drilling tool 5, for a period t2 of 1 s; the temperature of the steel decreases up to TP2 = 799 ° C;
  • Second shaping step, consisting of drilling in the drilling tool 5 for a period t3 of 0.5 s to obtain a shaped and drilled sheet 6; the temperature of the steel decreases up to TP3 = 667 ° C;
  • Transfer of the sheet 6 shaped and drilled to a cutting tool 7 for a period t4 of 1 s, to execute a cutting of the edges of the sheet 6; the sheet temperature decreases up to TP4 = 658 ° C;
  • Third shaping step consisting in cutting the edges of the part 6 in order to give it its final dimensions and to obtain a product 8, for a duration t5 of 0.5 s; the room temperature decreases to TP5 = 525 ° C;
  • Execution of shot peening 9 of product 8 to optimize its resistance to fatigue or the adhesion of a possible future coating layer.

Les procédés de la figure 1 et de la figure 2 ne diffèrent donc pas fondamentalement. La seule différence est que le four à induction 10 permet un chauffage plus rapide et à une vitesse plus régulière que le four à rouleaux classique 1. La durée de chauffage et la durée de maintien tm sont donc raccourcies, ce qui est avantageux pour la productivité de l'installation. Le chauffage à induction garantit aussi plus assurément une homogénéité de la température de la tôle dans tout son volume, ce qui est avantageux pour la réussite des étapes de la mise en forme et l'obtention des propriétés finales visées.
Le tableau 1 qui suit montre les compositions d'exemples d'aciers auxquels le procédé selon l'invention tel que décrit précédemment et représenté sur la figure 1 a été appliqué. Les éléments non mentionnés ne sont présents qu'à l'état de traces résultant de l'élaboration.

Figure imgb0001
Figure imgb0002
Figure imgb0003
The processes of the figure 1 and some figure 2 therefore do not differ fundamentally. The only difference is that the induction oven 10 allows faster heating and at a more regular speed than the conventional roller oven 1. The heating time and the holding time tm are therefore shortened, which is advantageous for productivity of the installation. Induction heating also more assuredly guarantees homogeneity of the temperature of the sheet throughout its volume, which is advantageous for the success of the stages of shaping and obtaining the desired final properties.
Table 1 below shows the compositions of example steels to which the process according to the invention as described above and shown in the figure 1 has been applied. Items not mentioned are only present in traces resulting from processing.
Figure imgb0001
Figure imgb0002
Figure imgb0003

Le tableau 2 montre les structures métallurgiques intermédiaires (pendant les étapes du traitement où la température de l'acier est au-dessus de Ms) et finales de ces mêmes exemples, avec les propriétés mécaniques de la pièce finale : résistance à la traction Rm, limite élastique Rp0,2, allongement A, résilience KCU, capacité d'angle de pliage. Dans les colonnes relatives à la structure intermédiaire, MC désigne la proportion de carbures.

Figure imgb0004
Figure imgb0005
Table 2 shows the intermediate metallurgical structures (during the processing stages where the steel temperature is above Ms) and final structures of these same examples, with the mechanical properties of the final part: tensile strength Rm, elastic limit Rp0,2, elongation A, resilience KCU, bending angle capacity. In the columns relating to the intermediate structure, MC designates the proportion of carbides.
Figure imgb0004
Figure imgb0005

On voit sur ce tableau que les exemples selon l'invention sont les seuls qui permettent d'atteindre tous les objectifs visés en termes de propriétés mécaniques.It can be seen from this table that the examples according to the invention are the only ones which make it possible to achieve all the objectives targeted in terms of mechanical properties.

Bien entendu, si une application privilégiée de l'invention est la mise en forme de tôles destinées à l'industrie automobile, celle-ci n'est pas exclusive, et les tôles ainsi mises en forme peuvent avoir toute autre application pour laquelle elles s'avéreraient avantageuses, notamment toutes pièces à fonction structurale relevant des domaines aéronautique, bâtiment, ferroviaire.Of course, if a preferred application of the invention is the shaping of sheets intended for the automobile industry, this is not exclusive, and the sheets thus formed can have any other application for which they are used. '' would prove to be advantageous, in particular all parts with a structural function relating to the aeronautical, building, railway fields.

L'invention inclut aussi les cas où une tôle ayant la composition requise par l'invention est solidarisée avec une tôle ayant une autre composition, et où l'ensemble ainsi obtenu est déformé par le procédé qui vient d'être décrit. Bien entendu, les structures et propriétés selon l'invention ne seront, normalement, obtenues que sur la partie de l'ensemble ayant la composition de l'invention.The invention also includes the cases where a sheet having the composition required by the invention is joined to a sheet having another composition, and where the assembly thus obtained is deformed by the process which has just been described. Of course, the structures and properties according to the invention will normally only be obtained on the part of the assembly having the composition of the invention.

Claims (9)

  1. Method of manufacturing a martensitic stainless steel part from a sheet by hot forming, characterized in that:
    - a stainless steel sheet with the following composition in percentages by weight is prepared:
    * 0.005% ≤ C ≤ 0.3%;
    * 0.2% ≤ Mn ≤ 2.0%;
    * traces ≤ Si ≤ 1.0%;
    * traces ≤ S ≤ 0.01%;
    * traces ≤ P ≤ 0.04%;
    * 10.5% ≤ Cr ≤ 17.0%; preferably 10.5% ≤ Cr ≤ 14.0%;
    * traces ≤ Ni ≤ 4.0%;
    * traces ≤ Mo ≤ 2.0%;
    * Mo + 2 x W ≤ 2.0%;
    * traces ≤ Cu ≤ 3%; preferably traces ≤ Cu ≤ 0.5%;
    * traces ≤ Ti ≤ 0.5%;
    * traces ≤ Al ≤ 0.2%;
    * traces ≤ O ≤ 0.04%;
    * 0.05% ≤ Nb ≤ 1.0%;
    * 0.05% ≤ Nb + Ta ≤ 1.0%;
    * 0.25% ≤ (Nb + Ta)/(C + N) ≤ 8;
    * traces ≤ V ≤ 0.3%;
    * traces ≤ Co ≤ 0.5%;
    * traces ≤ Cu + Ni + Co ≤ 5.0%;
    * traces ≤ Sn ≤ 0.05%;
    * traces ≤ B ≤ 0.1%;
    * traces ≤ Zr ≤ 0.5%;
    * Ti + V + Zr ≤ 0.5%;
    * traces ≤ H ≤ 5 ppm, preferably traces ≤ H ≤ 1 ppm;
    * traces ≤ N ≤ 0.2%;
    * (Mn + Ni) ≥ (Cr -10.3 - 80 x [(C + N) 2]);
    * traces ≤ Ca ≤ 0.002%;
    * traces ≤ rare earths and/or Y ≤ 0.06%;
    * the rest being iron and impurities resulting from the steelmaking;
    - the martensitic transformation start temperature (Ms) of the sheet is ≥ 200°C;
    - the martensitic transformation end temperature (Mf) of the sheet is ≥ -50°C;
    - the microstructure of the sheet is composed of ferrite and/or tempered martensite and 0.5% to 5% by volume of carbides;
    - the size of the ferritic grains of the sheet is from 1 to 80 µm, preferably from 5 to 40 µm;
    - one or more hot and/or cold transformations of the sheet may optionally be carried out;
    - the sheet is austenitized by maintaining it at a temperature greater than Ac1, in order to give it a microstructure containing at most 0.5% of carbides in volume fraction and at most 20% of residual ferrite in volume fraction;
    - the austenitized sheet is transferred to a first shaping tool or a cutting tool, wherein the transfer has a duration t0, during which the sheet remains at a temperature greater than Ms and retains at most 0.5% by volume of carbides and at most 20% by volume of residual ferrite, wherein the sheet is at a temperature TP0 at the end of this transfer;
    - a first shaping or cutting step of the sheet is carried out for a period t1, during which period the sheet remains at a temperature greater than Ms and retains at most 0.5% by volume of carbides and at most 20% by volume of residual ferrite;
    - transfer of the shaped or cut sheet metal is carried out on a second shaping or cutting tool, or the configuration of the first shaping or cutting tool is modified for a period t2 during which period the sheet metal is cut while remaining at a temperature greater than Ms and retaining at most 0.5% by volume of carbides and at most 20% by volume of residual ferrite;
    - a second shaping or cutting step of the sheet is carried out for a period t3, during which period the sheet remains at a temperature greater than Ms and retains at most 0.5% by volume of carbides and at most 20% by volume of residual ferrite;
    - optionally, other steps may be performed for transferring the cut or shaped sheet metal to other cutting or shaping tools, or to modifying the configuration of the shaping or cutting tool used in the preceding step, wherein each operation is followed by a shaping or cutting step, and wherein the sheet remains at a temperature greater than Ms and retains at most 0.5% by volume of carbides and at most 20% by volume of residual ferrite during each of the steps of transferring the sheet or modifying the configuration of the tool and each of the shaping or cutting operations;
    - if TPn denotes the temperature reached by the shaped or cut sheet at the end of the last cutting or shaping step and Σti the sum of the periods of the transfer and/or tool configuration change steps and the shaping or cutting steps, the magnitude (TP0-TPn)/Σti is at least 0.5°C/s;
    - optionally, an additional shaping or cutting step is carried out at a temperature between Ms and Mf, in a domain where the microstructure consists of martensite, at least 5% of austenite and at most 20% of ferrite,
    - and the sheet is allowed to cool to ambient temperature in order to obtain the final part, wherein the final part has a microstructure containing at most 0.5% of carbides in volume fraction and at most 20% of residual ferrite in volume fraction.
  2. Method according to claim 1, characterized in that the sheet has a martensitic transformation start temperature (Ms) ≤ 400°C.
  3. Method according to claim 2, characterized in that the martensitic transformation start temperature (Ms) of the sheet is between 390 and 220°C.
  4. Method according to one of the claims 1 to 3, characterized in that the thickness of the sheet is between 0.1 and 10 mm.
  5. Method according to one of the claims 1 to 4, characterized in that the austenitization temperature is at least 850°C.
  6. Method according to claim 5, characterized in that the austenitization temperature is between 925 and 1200°C.
  7. Method according to one of the claims 1 to 6, characterized in that reheating of the sheet is effected during at least one of the transfer and/or tool configuration change steps or shaping or cutting steps of the sheet.
  8. Method according to one of the claims 1 to 7, characterized in that a surface treatment is performed on the final part that is intended to increase its roughness or its fatigue properties.
  9. Method according to one of the claims 1 to 8, characterized in that the final part is kept between 90 and 500°C for 10 s to 1 h, and then allowed to cool naturally in air.
EP17713465.7A 2016-04-22 2017-03-21 A process for manufacturing a martensitic stainless steel part from a sheet Active EP3445878B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201730319T SI3445878T1 (en) 2016-04-22 2017-03-21 A process for manufacturing a martensitic stainless steel part from a sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IB2016052302 2016-04-22
PCT/IB2017/051636 WO2017182896A1 (en) 2016-04-22 2017-03-21 A process for manufacturing a martensitic stainless steel part from a sheet

Publications (2)

Publication Number Publication Date
EP3445878A1 EP3445878A1 (en) 2019-02-27
EP3445878B1 true EP3445878B1 (en) 2020-04-08

Family

ID=55911018

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17713465.7A Active EP3445878B1 (en) 2016-04-22 2017-03-21 A process for manufacturing a martensitic stainless steel part from a sheet

Country Status (14)

Country Link
US (1) US11001916B2 (en)
EP (1) EP3445878B1 (en)
JP (1) JP6840771B2 (en)
KR (1) KR102395730B1 (en)
CN (1) CN109415776B (en)
AU (1) AU2017252037A1 (en)
BR (1) BR112018071587B1 (en)
CA (1) CA3022115A1 (en)
ES (1) ES2805067T3 (en)
HU (1) HUE051293T2 (en)
MX (1) MX2018012841A (en)
RU (1) RU2724767C2 (en)
SI (1) SI3445878T1 (en)
WO (1) WO2017182896A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109415776B (en) * 2016-04-22 2020-09-08 安普朗公司 Process for manufacturing martensitic stainless steel parts from sheet material
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
US20180216205A1 (en) * 2017-01-27 2018-08-02 GM Global Technology Operations LLC Two-step hot forming of steels
WO2019002924A1 (en) 2017-06-30 2019-01-03 Aperam Method for welding using points of martensitic stainless steel sheets
BR112020008649B1 (en) * 2017-11-03 2023-01-10 Aperam MARTENSITIC STAINLESS STEEL AND METHOD FOR PREPARING A MARTENSITIC STAINLESS STEEL PRODUCT
WO2019222950A1 (en) 2018-05-24 2019-11-28 GM Global Technology Operations LLC A method for improving both strength and ductility of a press-hardening steel
US11612926B2 (en) 2018-06-19 2023-03-28 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
JP6532990B1 (en) * 2018-07-18 2019-06-19 株式会社ソディック Method of manufacturing layered product
CN110076246B (en) * 2019-04-25 2020-11-20 北京航星机器制造有限公司 Heat-treatable strengthened aluminum alloy efficient hot forming equipment and method
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
CN113637924A (en) * 2020-04-27 2021-11-12 靖江市中信特种机械泵阀厂 Novel material for mash pump
CN111471940B (en) * 2020-04-29 2021-09-10 钢铁研究总院 High-strength stainless steel rotor and preparation method thereof
CN112251681B (en) * 2020-09-29 2022-03-18 中国科学院金属研究所 Ultrahigh-strength nanocrystalline 40Cr16Co4W2Mo stainless steel and preparation method thereof
KR20230144607A (en) * 2021-02-18 2023-10-16 닛테츠 스테인레스 가부시키가이샤 Martensitic stainless steel sheet for brake disc rotor, brake disc rotor and martensitic stainless steel sheet for brake disc rotor manufacturing method
WO2024057705A1 (en) * 2022-09-12 2024-03-21 株式会社プロテリアル Stainless steel and manufacturing method therefor, and stainless steel product and manufacturing method therefor

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123822A (en) * 1982-01-18 1983-07-23 Daido Steel Co Ltd Direct hardening method
FR2567151B1 (en) * 1984-07-04 1986-11-21 Ugine Aciers METHOD FOR MANUFACTURING MARTENSITIC STAINLESS STEEL BARS OR MACHINE WIRE AND CORRESPONDING PRODUCTS
JPS6439323A (en) * 1987-08-06 1989-02-09 Sumitomo Metal Ind Working method for high-temperature high-cr ferrite steel
US7235212B2 (en) * 2001-02-09 2007-06-26 Ques Tek Innovations, Llc Nanocarbide precipitation strengthened ultrahigh strength, corrosion resistant, structural steels and method of making said steels
DE19546204C1 (en) * 1995-12-11 1997-03-20 Max Planck Inst Eisenforschung High strength steel object prodn.,esp. leaf spring
FR2823226B1 (en) * 2001-04-04 2004-02-20 V & M France STEEL AND STEEL TUBE FOR HIGH TEMPERATURE USE
JP4144283B2 (en) * 2001-10-18 2008-09-03 住友金属工業株式会社 Martensitic stainless steel
FR2870546B1 (en) * 2004-05-21 2006-09-01 Industeel Creusot STEEL WITH HIGH MECHANICAL RESISTANCE AND WEAR
RU2417272C2 (en) * 2006-10-05 2011-04-27 ДжФЕ СТИЛ КОРПОРЕЙШН Disk brake with perfect resistance to softening and with impact resilience
RU72697U1 (en) * 2007-08-22 2008-04-27 Общество с ограниченной ответственностью "Каури" STAINLESS STEEL HIGH STRENGTH STEEL BAR
FR2920784B1 (en) * 2007-09-10 2010-12-10 Aubert & Duval Sa MARTENSITIC STAINLESS STEEL, PROCESS FOR MANUFACTURING WORKPIECES PRODUCED IN THIS STEEL AND PARTS PRODUCED THEREBY
AR073884A1 (en) * 2008-10-30 2010-12-09 Sumitomo Metal Ind STAINLESS STEEL TUBE OF HIGH RESISTANCE EXCELLENT IN RESISTANCE TO FISURATION UNDER VOLTAGE SULFURS AND CORROSION OF GAS OF CARBONIC ACID IN HIGH TEMPERATURE.
US8480817B2 (en) * 2009-07-10 2013-07-09 Rolls-Royce Corporation Thermal mechanical processing of stainless steel
CN103597107B (en) * 2011-06-10 2016-06-22 株式会社神户制钢所 Hot forming product, its manufacture method and hot forming sheet metal
JP5768663B2 (en) * 2011-11-01 2015-08-26 新日鐵住金株式会社 Hot shearing method
RU2625357C1 (en) * 2013-09-10 2017-07-13 Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) Hot straight thick-gauge plate formed by pumping the product and method of manufacturing formed by stamping the product
JP6002114B2 (en) * 2013-11-13 2016-10-05 日本精工株式会社 Method of manufacturing mechanical parts and method of manufacturing rolling bearing using martensitic stainless steel
AT515157B1 (en) * 2013-11-21 2016-12-15 Böhler Edelstahl GmbH & Co KG Process for producing plastic molds from martensitic chromium steel and plastic mold
KR101884103B1 (en) * 2014-01-30 2018-07-31 신닛테츠스미킨 카부시키카이샤 Steel plate heating method and steel plate heating device
WO2016174500A1 (en) * 2015-04-30 2016-11-03 Aperam Martensitic stainless steel, method for producing a semi-finished product made from said steel and cutting tool produced from said semi-finished product
US20190040506A1 (en) * 2016-03-04 2019-02-07 Hitachi Metals, Ltd. Martensitic stainless steel member and method for manufacturing same, and martensitic stainless steel component and method for manufacturing same
CN109415776B (en) * 2016-04-22 2020-09-08 安普朗公司 Process for manufacturing martensitic stainless steel parts from sheet material
CN108315650A (en) * 2018-03-30 2018-07-24 宝钢不锈钢有限公司 A kind of martensitic stain less steel and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
HUE051293T2 (en) 2021-03-01
JP6840771B2 (en) 2021-03-10
US20190127829A1 (en) 2019-05-02
RU2018136969A (en) 2020-04-22
RU2724767C2 (en) 2020-06-25
KR20180136455A (en) 2018-12-24
US11001916B2 (en) 2021-05-11
JP2019518609A (en) 2019-07-04
KR102395730B1 (en) 2022-05-09
WO2017182896A1 (en) 2017-10-26
BR112018071587B1 (en) 2022-03-29
MX2018012841A (en) 2019-03-28
ES2805067T3 (en) 2021-02-10
AU2017252037A1 (en) 2018-11-22
EP3445878A1 (en) 2019-02-27
SI3445878T1 (en) 2020-08-31
RU2018136969A3 (en) 2020-05-15
CA3022115A1 (en) 2017-10-26
BR112018071587A2 (en) 2019-02-12
CN109415776A (en) 2019-03-01
CN109415776B (en) 2020-09-08

Similar Documents

Publication Publication Date Title
EP3445878B1 (en) A process for manufacturing a martensitic stainless steel part from a sheet
EP3175006B1 (en) Process for manufacturing steel sheets for press hardening and parts obtained by means of this process
EP0971044B1 (en) Clad hot-rolled and cold-rolled steel sheet, presenting a very high resistance after thermal treatment
EP2137327B1 (en) Steel for tool-less hot forming or quenching with improved ductility
EP3783116B1 (en) Pre-coated sheets allowing the production of press-hardened and coated steel parts
CA2847809C (en) Rolled steel that hardens by means of precipitation after hot-forming and/or quenching with a tool having very high strength and ductility, and method for manufacturing same
EP3146083B1 (en) Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets
EP1979583B1 (en) Method for making a combustion engine valve, and valve thus obtained
EP3704280B1 (en) Martensitic stainless steel and method for producing same
EP2957643A1 (en) Steel for surface-treated parts having high properties, and mechanical parts made out of that steel and their manufacturing method
FR2778672A1 (en) PROCESS FOR MANUFACTURING STEEL TEMPERED PARTS
CA2559562C (en) Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts
EP3645764B1 (en) Spot welding method for martensitic stainless steel
EP0922777A1 (en) Flat product, such as sheet, made from ductile high-yield steel and process for manufacturing the same
WO2000003041A1 (en) Flat product, such as sheet metal, made of steel with high yield strength having good ductility and method for making same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1254459

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017014425

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200808

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200709

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1254459

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017014425

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2805067

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210210

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E051293

Country of ref document: HU

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230209

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230313

Year of fee payment: 7

Ref country code: SE

Payment date: 20230316

Year of fee payment: 7

Ref country code: IT

Payment date: 20230309

Year of fee payment: 7

Ref country code: BE

Payment date: 20230316

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230405

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240226

Year of fee payment: 8

Ref country code: FI

Payment date: 20240222

Year of fee payment: 8

Ref country code: DE

Payment date: 20240307

Year of fee payment: 8

Ref country code: GB

Payment date: 20240325

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20240221

Year of fee payment: 8