EP3440846B1 - Système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil et procédé de commande du système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil - Google Patents

Système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil et procédé de commande du système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil Download PDF

Info

Publication number
EP3440846B1
EP3440846B1 EP17716491.0A EP17716491A EP3440846B1 EP 3440846 B1 EP3440846 B1 EP 3440846B1 EP 17716491 A EP17716491 A EP 17716491A EP 3440846 B1 EP3440846 B1 EP 3440846B1
Authority
EP
European Patent Office
Prior art keywords
master
slave
clock
phase
audio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17716491.0A
Other languages
German (de)
English (en)
Other versions
EP3440846A1 (fr
Inventor
Sebastian Georgi
Jan Watermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sennheiser Electronic GmbH and Co KG
Original Assignee
Sennheiser Electronic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sennheiser Electronic GmbH and Co KG filed Critical Sennheiser Electronic GmbH and Co KG
Publication of EP3440846A1 publication Critical patent/EP3440846A1/fr
Application granted granted Critical
Publication of EP3440846B1 publication Critical patent/EP3440846B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones

Definitions

  • the present invention relates to a wireless microphone and / or in-ear monitoring system and a method for controlling a wireless microphone and / or in-ear monitoring system.
  • a so-called word clock is typically used as a base clock, which is required to enable audio data streams to be transmitted between digital audio devices.
  • a word clock is used to synchronize all devices or units involved in digital audio processing with regard to the sampling times of the processed audio signals.
  • the various digital audio devices that are to be synchronized by means of the word clock can represent, for example, AD converters, effect devices, mixing desks, DA converters, etc.
  • these audio devices have digital interfaces such as AES3 / SPDIF, AES10 / MADI. Based on the word clock synchronization, a continuous transfer of audio samples can be guaranteed, which prevents an empty or overflowing of a buffer.
  • a synchronous phase relationship of the audio signals can be achieved by the word clock synchronization.
  • the devices used in digital audio processing typically have an internal clock generator which provides a basic clock with which the digital samples of the audio data are processed.
  • a word clock is specified as the master clock and adopted as slaves by the devices involved.
  • the word clock master provides a signal via a cable which cyclically contains an excitation for each individual sampling time, and the slave device can use this signal to continuously adapt its own clock generator to the sampling clock coming from the word clock master.
  • the invention relates to the task of enabling synchronization of the word clock of different audio processing units in a wireless microphone and / or in-ear monitoring system.
  • a wireless microphone and / or in-ear monitor system which has at least one clock master for specifying a word clock and at least one clock slave which is to be synchronized with the word clock specified by the clock master.
  • a digital wireless transmission link is present between the clock master and the at least one clock slave, which digitally transmits both synchronization signals and audio signals.
  • the clock master has a clock reference in order to specify a first sample clock.
  • the clock master also has a synchronization interface for wireless transmission of a synchronization word.
  • the clock master has a first timer. A first phase of the first clock signal is detected after the first timer has expired and the first phase is transmitted wirelessly to the at least one clock slave.
  • the at least one first clock slave has a second timer.
  • a second phase of the second clock signal of the clock slave is recorded and compared with the wirelessly transmitted first phase.
  • the deviation between the first and second phases is used as an input variable as a control unit in the at least one clock slave.
  • the control unit adjusts an adjustable sample clock of the at least one clock slave in such a way that it corresponds to the first clock of the clock master.
  • a wireless microphone and / or in-ear monitoring system which has a wireless digital transmission.
  • the audio signal For the wireless digital transmission of an audio signal, the audio signal must be subjected to a digital / analog conversion.
  • the analog / digital conversion is carried out at fixed time intervals, based on a sample clock.
  • Another device that receives the audio signal sent over the wireless digital transmission link should use the same sample clock if possible.
  • the sample clock is generated in the further device itself, it can be based on tolerances of the electronic components used and / or temperature differences differ slightly from the sampling clock of the sending device.
  • a meaningful transmission of room-related multichannel signals can only function to a limited extent; acoustic room location is therefore very imprecise, sometimes impossible. Synchronization of the sample clock in frequency and in phase is therefore required.
  • the wireless microphone and / or in-ear monitoring system enables wireless word clock synchronization for synchronous analog / digital and digital / analog conversion in wireless audio devices such as wireless microphones and wireless in-ear monitoring systems.
  • Receiver can be used.
  • the advantage of a wireless word clock synchronization is present in particular in the case of a microphone and stereo-compatible microphone with several wireless microphones and / or wireless in-ear monitoring receivers. This also avoids a sample rate conversion, which is otherwise necessary to output several incoming channels (e.g. from several microphones) on a common sum channel.
  • the problem to be dealt with is based on the fact that when digitally recording, processing and outputting audio data, sample values are generated at certain points in time generated by the analog audio signals. This can be done with a frequency of 48 kHz, for example. If the devices run at different sampling rates, a sample rate conversion is necessary when the audio data is passed on to another device, in which sample values between the actual sampling times have to be estimated, which leads to artifacts which are noticeable as so-called "phase noise" do. The same problem occurs if several devices for digital audio processing nominally work at the same sampling rate, but each independently generate the nominal clock rate independently of one another.
  • the word clock synchronization described above is known for wired devices.
  • the sampling times ie the times at which a digital sample value is generated, processed or output for an analog audio signal. synchronized between all connected devices.
  • the well-known wired transmission of the word clock signal is based on the fact that the cable provides a delay-free, always available connection between the .Wordclock master and the respective word clock slave, via which the signal, which contains an excitation cyclically for each individual sampling time, provided.
  • the slave device can use this signal to continuously adapt its own clock generator to the sampling clock coming from the word clock master.
  • the invention relates to a method and associated devices that enable a word clock synchronization of the audio sampling times in a wireless transmission of digital audio data.
  • a wireless microphone and / or in-ear monitoring system is provided.
  • wireless microphones can wirelessly transmit an audio signal detected by them to a receiver.
  • an audio signal can be transmitted wirelessly to an in-ear monitoring unit, so that this audio signal can be output, for example, via an in-ear earphone to a wearer of the in-ear monitoring system.
  • At least one clock master TM and at least one clock slave TS are present in the wireless microphone and / or in-ear monitoring system.
  • the at least one clock slave must then adjust to the clock specified by the clock master, for example the word clock, both in terms of frequency and in terms of phase.
  • Fig. 1 shows a time course of signals that are used in a clock master and a clock slave according to a first embodiment for sampling time synchronization.
  • the master audio sample clock 100 of the clock master is shown over time t.
  • the master audio sample clock 100 itself can already be matched to a word clock signal from an external clock generator.
  • the master audio sample clock 100 is the master clock to which the audio sampling times of the slave device (s) are to be adapted.
  • a rising edge of the master audio sample clock 100 is assigned an audio sampling time, at which a sample value of an analog audio signal is to be determined, processed or output.
  • the master sampling times 101, 102 and 103 are shown.
  • the master device also contains a master fine clock, which drives a master phase counter.
  • Fig. 1 the counter reading 110 of the master phase counter is shown over the time t.
  • the counter reading 110 of the master phase counter is reset to zero by a reset command ResM.
  • the master phase counter counts up with the clock of the master fine clock on each tic of the master fine clock.
  • the counter reading 110 therefore indicates, with the temporal resolution of the master fine clock, how much time has elapsed since the last master sampling time.
  • the master fine clock has a clock frequency that is much larger than the audio sampling frequency.
  • a master fine clock with a frequency of 160 MHz can be used, so that the master phase counter approximately from one audio sampling time to the next audio sampling time (depending on the exact audio sampling rate desired) reached a value of 3333.
  • the counter reading 110 of the master phase counter here represents phase information about the phase of the master audio sample clock 100 that has passed since the last audio sample.
  • the clock of the master fine clock is selected so that there are at least 500 tics of the master fine clock in the time period from an audio sampling time to the immediately following audio sampling time, so that the counter reading 110 of the master phase counter is at least in each audio sampling step counts up to 500.
  • an audio sample clock and a phase detection are set up corresponding to the master device.
  • the slave audio sample clock 150 of the clock slave is shown over time t.
  • a slave audio sampling instant 151, 152, 153 is assigned to a rising edge of the slave audio sample clock 150.
  • the slave audio sample clock 150 is adjustable and it is the object of the present invention to set the slave audio sample clock 150 such that the slave audio sampling times 151, 152, 153 correspond to the master audio sampling times 101, 102, 103 correspond.
  • the slave device contains a slave fine clock, which drives a slave phase counter.
  • Fig. 1 the counter reading 160 of the slave phase counter is shown over the time t.
  • the counter state 160 of the slave phase counter is reset to zero by a reset command ResS at each slave sampling time, that is to say every time the slave audio sample clock 150 has a positive edge.
  • the slave phase counter then counts up with the clock of the slave fine clock on each tic of the slave fine clock.
  • the counter reading 160 thus indicates, with the temporal resolution of the slave fine clock, how much time has elapsed since the last slave sampling time.
  • the slave fine clock generator preferably has nominally the same clock frequency as the master fine clock generator.
  • the counter reading 160 of the slave phase counter here represents phase information about the phase of the slave audio sample clock 150 that has passed since the last slave audio sample.
  • Fig. 1 a state is shown in which the slave audio sampling times 151, 152, 153 do not yet correspond to the master audio sampling times 101, 102, 103.
  • the slave audio sample clock 150 is compared to the master audio sample clock 100 with the aid of a synchronization event that defines a synchronization time 130.
  • the synchronization event which defines the synchronization time 130, can preferably be obtained from the data synchronization between a transmitter and a receiver.
  • a separate data synchronization is provided for the wireless transmission of data between a transmitter and a receiver, which enables the bits contained to be transmitted correctly, but which is independent of the audio sampling rate.
  • times can be specified for wireless data transmission at which the data transmission protocol used in each case establishes a fixed temporal relationship between the master and the slave device. This can be, for example, a time slot in the context of a TDMA method in which a control code is transmitted.
  • such an event which creates a fixed temporal relationship between the master and the slave device, is used to cause the master device and the slave device to simultaneously display the current counter reading 110 of the master phase counter and the current one Counter reading 160 of the slave phase counter.
  • “simultaneously” means that the time offset of the acquisition of the counter value between the master and slave device corresponds at most to the duration of one tic of the master fine clock and thus also of the slave fine clock.
  • the master device detects the master phase 120 at time 130 by reading out the counter reading 110 of the master phase counter and the slave device detects the slave phase 170 at time 130 by reading out the counter reading 160 of the slave phase counter.
  • synchronization time 130 In addition to the generation of the synchronization time 130 on the basis of the data synchronization, another event can alternatively also be used to determine the synchronization time 130. It is only important that a fixed temporal relationship between the master and the slave device is guaranteed at this point in time, on which a simultaneous detection of the master phase 120 and the slave phase 170 (according to the explained definition of "simultaneously” ) can be carried out.
  • the detected value of the master phase 120 is transmitted wirelessly from the master device to the slave device. It does not matter whether this transmission has a specific temporal relationship to the synchronization time 130.
  • the slave device receives the measured value of the master phase 120 and compares it with the value of the slave phase 170 measured at the same time 130.
  • the result of this comparison is the control deviation of the phase of the slave audio sample clock 150 the desired phase of the master audio sample clock 100.
  • this comparison result is fed as a phase deviation to a controller in a "phase-locked loop" (PLL).
  • PLL phase-locked loop
  • the controller can influence the clock rate of the slave audio sample clock 150.
  • this clock rate is then influenced in such a way that after multiple execution of the control loop, the slave phase 170 corresponds to the master phase 120.
  • the regulation provides for a cyclical repetition of the entire measurement and processing of the master phase (120) and the slave phase (170).
  • the adjustment of the clock rate of the slave audio sample clock 150 to the clock rate of the master audio sample clock 100 results inevitably as a secondary result when regulating the phase deviation as a target variable.
  • a particular advantage of the described method according to the invention for matching the slave audio sample clock 150 to the master audio sample clock 100 is that the master fine clock and the slave fine clock are used only for a short time.
  • the fine clock generators each generate their own clock, and since they are separate Components - once in the master device and once in the slave device - do not run at exactly the same speed. Because the counter reading 110 of the master phase counter and the counter reading 160 of the slave phase counter are reset to zero at each audio sampling time, the time period during which a different speed of the two fine clocks has an effect on the phase measurement result, so short that there is a deviation of less than one tic of the fine clock between the measured master phase 120 and the measured slave phase 170 with the generally available clocks.
  • an audio sampling frequency of 48 kHz and a fine clock frequency of 160 MHz can be used, so that the phase counters reach a value of 3333 from one audio sampling time to the next audio sampling time. If the speed of the two fine clocks differ so much that a tic difference already occurs between the two fine clocks within this period, this would correspond to a clock accuracy of 300 ppm (parts per million), i.e. an error of 300 steps over a period of 1 Million tics. With standard clocks, an accuracy of approx. 20 ppm is currently common and 2.5 ppm is also available, for example.
  • the short-term use of the fine clocks according to the invention advantageously avoids the problems from separately running fine clocks.
  • the method according to the invention thus offers an advantage over an alternative approach that would otherwise be possible, in which an overall time period between the synchronization times 130 is determined with the aid of the fine clock and transmitted together with the amount of the sampling times that occurred during this time period.
  • Fig. 2 shows a block diagram of a master device TM and a slave device TS according to the first embodiment.
  • the master device TM contains a master audio sample clock generator ASPGM for generating the master audio sample clock 100.
  • the master device TM itself can have a word clock input WRDCLK and a master word clock synchronization unit WSUM have the master audio sample clock 100 itself can be adjusted to a word clock signal from an external clock.
  • the master audio sample clock 100 specifies the clock for a digital master audio input / output unit AIOM.
  • the AIOM master audio input / output unit serves as an external interface for the master device and can be used to receive and send digital audio data.
  • the master device TM also contains a master fine clock FPGM, which drives a master phase counter PCM.
  • the master phase counter PCM generates continuously the counter reading 110. At every sampling instant, that is to say every time the master audio sample clock 100 has a positive edge, the counter reading 110 of the master phase counter PCM is reset to zero by a reset command ResM. Thereafter, the master phase counter PCM counts up with the clock of the master fine clock FPGM on each tic of the master fine clock.
  • the counter reading 110 therefore indicates, with the temporal resolution of the master fine clock, how much time has elapsed since the last master sampling time.
  • the slave device TS contains a slave audio sample clock generator ASPGS for generating the slave audio sample clock 150.
  • the slave audio sample clock generator ASPGS is designed in such a way that its clock rate is within certain limits is adjustable.
  • the slave audio sample clock 150 specifies the clock for a digital slave audio input / output unit AIOS.
  • the slave audio input-output unit AIOS serves as an interface of the slave device to the outside and can be used to receive and send digital audio data. If the slave device TS is designed as a microphone, an A / D converter can be connected to the slave audio input / output unit AIOS and provide a digital audio signal as an input. If the slave device TS is designed as an in-ear monitoring system, a D / A converter can be connected to the slave audio input / output unit AIOS and a digital audio signal can be output as an output.
  • the slave device TS also contains a slave fine clock FPGS, which drives a slave phase counter PCS.
  • the slave phase counter PCS continuously generates the counter reading 160.
  • the counter reading 160 of the slave phase counter PCS is opened by a reset command ResS Zero reset.
  • the slave phase counter PCS counts up with the clock of the slave fine clock FPGS on each tic of the slave fine clock.
  • the counter reading 160 thus indicates, with the temporal resolution of the slave fine clock, how much time has elapsed since the last slave sampling time.
  • the slave audio sample clock 150 is compared to the master audio sample clock 100 with the aid of a synchronization event that defines a synchronization time 130.
  • a synchronization event can be generated by a phase measurement trigger PMT.
  • the phase measurement trigger PMT can synchronize the synchronization event from the data synchronization gain a transmitter and a receiver, in particular from the wireless transmission between the master device TM and the slave device TS.
  • the synchronization event can be transmitted wirelessly to a measurement trigger receiver MTR in the slave device TS via a phase measurement trigger transmitter PMTT, a fixed temporal relationship being generated between the master and the slave device.
  • the master device TM can contain a timer T1, which is started by the phase measurement trigger PMT.
  • the timer T1 can be clocked by the master fine clock FPGM.
  • the slave device TS can contain a timer T2, which is started when the measurement trigger receiver MTR receives the synchronization event.
  • the timer T2 can be clocked by the slave fine clock FPGS.
  • the two timers T1 and T2 can serve to take into account the transmission time that is required for the transmission of the synchronization event.
  • the two timers T1 and T2 are then controlled so that they both run simultaneously and thus generate the synchronization time 130 simultaneously in the master device TM and in the slave device TS.
  • "simultaneously" means that the time offset of the acquisition of the phase counter value between the master and slave device corresponds at most to the duration of one tic of the master fine clock FPGM and thus also of the slave fine clock FPGS.
  • the master device TM also contains a master phase value transducer PVM, which reads out the current counter reading 110 of the master phase counter PCM at the synchronization time 130 and stores it as the master phase 120.
  • the slave device TS accordingly contains a slave phase value pickup PVS, which reads out the current counter reading 160 of the slave phase counter PCS at synchronization time 130 and stores it as a slave phase 170.
  • the detected value of the master phase 120 is transmitted wirelessly from the master device TM to the slave device TS.
  • the master device TM contains a phase transmitter PT and the slave device a phase receiver PR. It does not matter whether this transmission has a specific temporal relationship to the synchronization time 130.
  • the slave device TS receives the measured value of the master phase 120 and compares it in a comparator C with the value of the slave phase 170 measured at the same time 130.
  • the result of this comparison is the control deviation of the phase of the slave audio Sample clocks 150 versus the desired Phase of the master audio sample clock 100.
  • this comparison result is fed as a phase deviation to a controller R in a "phase-locked loop" (PLL).
  • the controller R can influence the clock rate of the slave audio sample clock encoder ASPGS and thus of the slave audio sample clock 150 as a manipulated variable.
  • this clock rate is then influenced in such a way that after multiple execution of the control loop, the slave phase 170 corresponds to the master phase 120.
  • the adjustment of the clock rate of the slave audio sample clock 150 to the clock rate of the master audio sample clock 100 inevitably arises as a secondary result.
  • the master device TM also contains a master audio transmitter receiver ATRM, via which it can wirelessly send and / or receive digital audio data, the master audio sample clock 100 of the master audio sample clock transmitter ASPGM are assigned, and the slave device TS also contains a slave audio transmitter receiver ATRS, via which it can wirelessly send and / or receive digital audio data that corresponds to the slave audio sample clock 150 of the slave audio Sample clock encoder ASPGS are assigned.
  • the master audio transmitter receiver ATRM is connected to the master audio input output unit AIOM and the slave audio transmitter receiver ATRS is connected to the slave audio input output unit AIOS.
  • the master audio transmitter receiver ATRM, the phase transmitter PT and the phase measurement trigger transmitter PMTT can be combined in a common wireless transmission unit TRUM in the master device TM.
  • the slave audio transmitter receiver ATRS, the phase receiver PR and the measurement trigger receiver MTR can optionally be combined in a common wireless transmission unit TRUS in the slave device TS.
  • Fig. 3 shows a schematic representation of a time course of a word clock synchronization in a wireless microphone and / or in-ear monitoring system according to a second embodiment.
  • the second embodiment according to 3 and 4 largely corresponds to the first embodiment.
  • the second exemplary embodiment deals more closely with how the audio sample clocks are generated and a possible consideration of a known time period for transmitting a synchronization event is explained in more detail.
  • a clock master TM can transmit a synchronization word S over a bidirectional wireless transmission link, preferably at regular intervals.
  • the clock master TM can have a clock generator (for example 49.152 MHz).
  • the output of the clock generator can be divided with a clock divider (for example 1024) to a sample clock of for example 48 kHz.
  • the in Fig. 3 The temporal sequence shown shows the conditions in the steady state, ie the synchronization has already taken place, so that the sample clock of the slave has already been matched in frequency and phase to the sample clock of the master.
  • the synchronization process is described based on the steady state.
  • the clock master TM starts a first timer T1 when the synchronization word S is sent. After the first timer T has expired, the phase P1 of the sample clock S1 is measured. The measured phase P1 is transmitted to one or more clock slaves TS (e.g. via a broadcast channel BC). The clock slave TS receives the synchronization word S and starts a second timer T2. After the second timer T2 has elapsed, the phase P2 of the sample clock S2 of the clock slave TS is measured. When the clock slave TS receives the first phase P1 via the broadcast BC, the first and second phases P1, P2 are compared in a comparison unit C and the deviation determined by the comparison represents the control deviation of the adjustable clock generator of the clock slave TS. This process can can optionally be carried out when each synchronization word S is transmitted. Alternatively, this can also be carried out after a number of synchronization words S have been transmitted.
  • clock S1 can be provided in the master and clock S2 can be provided in the slave.
  • the timer T2 can run in the slave.
  • Fig. 3 is symbolically represented as the width of the block S. In practice, it is very short.
  • the setting of timers T1 and T2 in such a way that both timers run at the same time can only be done with a limited accuracy, since these timers are subject to certain slight fluctuations due to different clocks in the master and slave.
  • the time shown as the width of the block S likewise shows slight fluctuations. In practice, however, all of these three changes are extremely small, so that they have no significance for the control of the analog / digital converters in the master / slave compared to the clock fluctuations.
  • the shift of the sample clocks is orders of magnitude stronger, so that the slight time fluctuations of S, T1 and T2 are irrelevant in practice.
  • Fig. 4 shows a block diagram of a synchronization in a wireless microphone and / or in-ear monitoring system according to the second embodiment.
  • a clock slave TS has an adjustable clock generator (for example a VCXO with a clock divider D).
  • a clock generator can be implemented, for example, as a voltage control crystal oscillator VCXO or as a digitally controlled crystal oscillator DCXO.
  • the first and / or second timer T1, T2 is set so that it runs at the same time.
  • the phase measured by the clock master TM and transmitted to the clock slave TS coincides with the phase of the clock slave. If there is a deviation, then this deviation is to be regulated to zero by means of a controller R in the clock slave TS.
  • a control variable of the controller can be the control signal of the adjustable clock generator VCXO in the clock slave TS.
  • the clock master TM can have a digital / analog converter DAC, a clock divider D, an oscillator XO, a first sample-and-hold unit SHP1 for storing the first phase P1.
  • the first phase P1 can be broadcast via a data transmission interface DT.
  • the clock master TM can have an audio transmission interface A, which transmits the audio data picked up by the microphone M and processed by the analog / digital converter ADC from the clock slave TS to the clock master TM.
  • the clock master TM can have a synchronization interface SY.
  • the clock slave TS can for example be coupled to a microphone M and receives the output signal of the microphone M.
  • the output signal of the microphone can be digitized in an analog / digital converter DAC.
  • the clock slave TS has an adjustable oscillator VCXO, a clock division unit D, a second sample-and-hold unit SHP2, a comparison unit C, a second timer T2 and a controller R.
  • the clock master TM transmits the synchronization word RXS, which is received by the clock slave TS, via the synchronization interface SY.
  • the second timer T2 is started.
  • the second sample-and-hold unit SHP2 is used to store the second measured phase P2 of the clock slave TS. If data through the data transfer interface DT are transmitted, then the first and second phases P1, P2 are compared in the comparison unit C.
  • the output of the comparison unit C is an input signal of the control unit R.
  • the output signal of the control unit R controls an adjustable clock generator VCXO.
  • the output signal of the adjustable clock generator VCXO is divided by the clock divider unit D and fed to the analog / digital converter ADC, which uses this clock as a sampling clock for sampling the output signal of the microphone M.
  • the correspondingly digitized output signal of the microphone M is transmitted via the audio interface A to the clock master TM, which performs a digital / analog conversion in the digital / analog converter DAC and can then output the analog output signal to a loudspeaker L, for example.
  • the invention thus relates to a bidirectional wireless transmission link with regular time synchronization of at least one clock slave to the clock master.
  • a transmission process of the clock master and a reception process of the clock slave each start a timer in order to ensure the same measurement time on all devices.
  • the clock master measures a sample clock phase at the time of measurement, which is transmitted to all clock slaves.
  • a clock slave measures a sample clock phase at the time of measurement. This sample clock phase is compared with the received sample clock phase of the clock master.
  • a deviation is used to control an adjustable clock generator in the clock slave so that this deviation is regulated to zero.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Transmitters (AREA)
  • Circuit For Audible Band Transducer (AREA)

Claims (7)

  1. Procédé pour commander un système de contrôle à microphone sans fil et/ou par écouteur intraauriculaire, lequel présente en tant que maître de cadence (TM) un appareil maître et en tant qu'esclave de cadence (TS) au moins un appareil esclave, dans lequel une liaison de transmission numérique sans fil est présente entre le maître de cadence (TM) et l'au moins un esclave de cadence (TS), par l'intermédiaire de laquelle à la fois des signaux de synchronisation et des signaux audio peuvent être transmis de manière numérique, avec les étapes :
    de spécification d'une cadence d'échantillonnage audio maître (100, S1), laquelle spécifie des moments de balayage audio maîtres (101, 102, 103), dans le maître de cadence (TM),
    de réinitialisation d'un compteur de phases maître (PCM), chaque fois que la cadence d'échantillonnage audio maître (100, S1) spécifie un moment de balayage audio maître,
    de comptage en avant du compteur de phases maître (PCM, 110) avec la cadence d'une horloge précise maître (FPGM),
    de spécification d'une cadence d'échantillonnage audio esclave (150, S2) réglable, laquelle spécifie des moments de balayage audio esclaves (151, 152, 153), dans l'esclave de cadence (TS),
    de réinitialisation d'un compteur de phases esclave (PCS) chaque fois que la cadence d'échantillonnage audio esclave (150, S2) spécifie un moment de balayage audio esclave,
    de comptage en avant du compteur de phases esclave (PCS, 160) avec la cadence d'une horloge précise esclave (FPGS),
    de génération d'un événement de synchronisation, qui génère une relation dans le temps fixe entre le maître de cadence et l'esclave de cadence,
    de fixation d'un moment de synchronisation (130) sur la base de l'événement de synchronisation si bien que le maître de cadence (TM) et l'esclave de cadence (TS) atteignent simultanément le moment de synchronisation (130),
    de détection d'une phase maître (120) à partir du compteur de phases maître (PCM, 110) au moment de synchronisation (130),
    de détection d'une phase esclave (170) à partir du compteur de phases esclave (PCS, 160) au moment de synchronisation (130),
    de transmission sans fil de la phase maître (120) détectée à l'au moins un esclave de cadence (TS),
    de comparaison de la phase maître (120) transmise sans fil à la phase esclave détectée (170),
    d'utilisation de l'écart entre la phase maître (120) et la phase esclave (170) en tant que grandeur d'entrée pour un régulateur (R) de l'esclave de cadence (TS), et
    de réglage de la cadence d'échantillonnage audio esclave (150, S2) réglable par le régulateur (R) de sorte qu'après répétition de l'exécution de la détection simultanée de la phase maître (120) et de la phase esclave (170) et du traitement consécutif, la phase esclave (170) correspond à la phase maître (120) si bien que les moments de balayage audio esclaves (151, 152, 153) correspondent aux moments de balayage audio maîtres (101, 102, 103).
  2. Procédé pour commander un système de contrôle à microphone sans fil et/ou par écouteur intraauriculaire selon la revendication 1, dans lequel l'événement de synchronisation est obtenu à partir d'une transmission de données sans fil entre l'appareil maître (TM) et l'appareil esclave (TS) et dans lequel l'événement de synchronisation est indépendant de la cadence d'échantillonnage audio.
  3. Appareil maître (TM) pour un système de contrôle à microphone sans fil et/ou par écouteur intraauriculaire, dont font partie l'appareil maître (TM) en tant que maître de cadence et au moins un appareil esclave (TS) en tant qu'esclave de cadence, avec
    une sonde de cadence d'échantillonnage audio maître (ASPGM) pour générer une cadence d'échantillonnage audio maître (100, S1), laquelle spécifie des moments de balayage audio maîtres (101, 102, 103),
    une sonde de cadence précise maître (FPGM) pour spécifier une cadence précise maître,
    un compteur de phases maître (PCM), qui compte en avant avec la cadence précise maître et génère ce faisant en continu une valeur de compteur maître (110), dans lequel le compteur de phases maître (PCM) est réinitialisé chaque fois que la cadence d'échantillonnage audio maître (100, S1) spécifie un moment de balayage audio maître (ResM),
    un déclencheur de mesure de phases (PMT) pour générer un événement de synchronisation, dans lequel l'appareil maître conclut de l'événement de synchronisation un moment de synchronisation (130),
    un émetteur déclencheur de mesure de phases (PMTT) pour transmettre sans fil l'événement de synchronisation à l'appareil esclave (TS), dans lequel une relation dans le temps fixe est générée entre l'appareil maître (TM) et l'appareil esclave (TS),
    un capteur de valeur de phases maître (PVM), qui lit au moment de synchronisation (130) la valeur de compteur maître instantanée (110) du compteur de phases maître (PCM) et la mémorise en tant que phase maître (120),
    un émetteur de phases (PT) pour transmettre sans fil la phase maître lue (120) à l'appareil esclave (TS), et
    un émetteur-récepteur audio maître (ATRM), par l'intermédiaire duquel l'appareil maître (TM) peut envoyer et/ou recevoir des données audio numériques sans fil, qui sont attribuées à la cadence d'échantillonnage audio maître (100).
  4. Appareil maître (TM) pour un système de contrôle à microphone sans fil et/ou par écouteur intraauriculaire selon la revendication 3, avec en supplément une entrée Wordclock (WRDCLK) et une unité de synchronisation Wordclock maître (WSUM), par l'intermédiaire desquelles la cadence d'échantillonnage audio maître (100) peut être ajustée sur un signal Wordclock d'une horloge externe.
  5. Appareil esclave (TS) pour un système de contrôle à microphone sans fil et/ou par écouteur intraauriculaire, dont font partie un appareil maître (TM) en tant que maître de cadence et au moins l'appareil esclave (TS) en tant qu'esclave de cadence, avec
    une sonde de cadence d'échantillonnage audio esclave (ASPGS) pour générer une cadence d'échantillonnage audio esclave (150, S2), lequel spécifie des moments de balayage audio esclave (151, 152, 153),
    une horloge précise esclave (FPGS) pour spécifier une cadence précise esclave,
    un compteur de phases esclave (PCS), qui compte en avant avec la cadence précise esclave et génère ce faisant en continu une valeur de compteur esclave (160), dans lequel le compteur de phases esclave (PCS) est réinitialisé chaque fois que la cadence d'échantillonnage audio esclave (150, S2) spécifie un moment de balayage audio esclave (ResS),
    un récepteur déclencheur de mesure (MTR) pour recevoir un événement de synchronisation de l'appareil maître (TM), dans lequel une relation dans le temps fixe est générée entre l'appareil maître (TM) et l'appareil esclave (TS), et dans lequel l'appareil esclave (TM) conclut de l'événement de synchronisation un moment de synchronisation (130), qui correspond à un moment de synchronisation (130) de l'appareil maître (TM),
    un capteur de valeur de phase esclave (PVS), qui lit au moment de synchronisation (130) la valeur de compteur instantanée (160) du compteur de phases esclave (PCS) et la mémorise en tant que phase esclave (170),
    un récepteur de phases (PR) pour recevoir sans fil une phase maître (120) de l'appareil maître (TM),
    un comparateur (C) pour comparer la phase maître (120) transmise sans fil à la phase esclave (170) détectée,
    un régulateur (R), lequel utilise l'écart entre la phase maître (120) et la phase esclave (170) en tant que grandeur d'entrée, et
    un émetteur-récepteur audio esclave (ATRS), par l'intermédiaire duquel l'appareil esclave (TS) peut envoyer et/ou recevoir des données audio numériques sans fil, qui sont attribuées à la cadence d'échantillonnage audio esclave (100),
    dans lequel le régulateur (R) règle la cadence d'échantillonnage audio esclave (150, S2) réglable en tant que grandeur de réglage dans un circuit de régulation de sorte qu'après maintes exécutions du circuit de régulation, la phase esclave (170) correspond à la phase maître (120) si bien que les moments de balayage audio esclave (151, 152, 153) correspondent aux moments de balayage audio maître (101, 102, 103).
  6. Appareil esclave (TS) pour un système de contrôle à microphone sans fil et/ou par écouteur intraauriculaire selon la revendication 5, dans lequel le circuit de régulation est réalisé en tant que boucle à phase asservie (Phase-Locked Loop, PLL).
  7. Système de contrôle à microphone sans fil et/ou par écouteur intraauriculaire avec un appareil maître (TM) selon la revendication 3 et au moins un appareil esclave (TS) selon la revendication 5.
EP17716491.0A 2016-04-04 2017-04-04 Système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil et procédé de commande du système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil Active EP3440846B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016106105.0A DE102016106105A1 (de) 2016-04-04 2016-04-04 Drahtlos-Mikrofon- und/oder In-Ear-Monitoring-System und Verfahren zum Steuern eines Drahtlos-Mikrofon- und/oder In-Ear-Monitoring-Systems
PCT/EP2017/058003 WO2017174589A1 (fr) 2016-04-04 2017-04-04 Système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil et procédé de commande du système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil

Publications (2)

Publication Number Publication Date
EP3440846A1 EP3440846A1 (fr) 2019-02-13
EP3440846B1 true EP3440846B1 (fr) 2020-06-10

Family

ID=58530524

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17716491.0A Active EP3440846B1 (fr) 2016-04-04 2017-04-04 Système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil et procédé de commande du système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil

Country Status (4)

Country Link
US (1) US10499148B2 (fr)
EP (1) EP3440846B1 (fr)
DE (1) DE102016106105A1 (fr)
WO (1) WO2017174589A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10602257B1 (en) * 2018-08-30 2020-03-24 Semiconductor Components Industries, Llc Methods and systems for wireless audio
CN113613148B (zh) * 2021-04-26 2023-02-17 珠海市杰理科技股份有限公司 音频叠加控制方法、装置及音频设备、系统
CN113613124B (zh) * 2021-04-26 2024-06-25 珠海市杰理科技股份有限公司 Tws主、从设备及音频设备、系统
US20230259323A1 (en) * 2022-02-16 2023-08-17 Shure Acquisition Holdings, Inc. Wireless microphone system and methods for synchronizing a wireless transmitter and a wireless receiver
CN115987478A (zh) * 2022-12-08 2023-04-18 广州安凯微电子股份有限公司 频率调整方法、装置、蓝牙耳机、存储介质和程序产品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456614B1 (en) * 1999-11-19 2002-09-24 Siemens Information And Communication Mobile, Llc Method and system for wireless communication incorporating distinct system identifier bytes to preserve multi-frame synchronizaton for systems with limited control channel bandwidth
EP1316240B1 (fr) * 2000-07-14 2005-11-09 GN ReSound as Systeme auditif biauriculaire synchronise
GB2399722A (en) * 2003-03-21 2004-09-22 Sony Uk Ltd Data communication synchronisation
ES2745045T3 (es) * 2005-04-22 2020-02-27 Audinate Pty Ltd Red, dispositivo y método para transportar medios digitales
EP2255541B1 (fr) * 2008-02-29 2012-11-28 Audinate Pty Ltd Systèmes, procédés et/ou dispositifs de réseau destinés à être utilisés dans un réseau multimédia
DE102009032300B4 (de) * 2009-07-09 2012-02-23 Hochschule RheinMain University of Applied Sciences Wiesbaden Rüsselsheim Geisenheim Serielles Multi-Clock Interface System
US8208500B2 (en) * 2009-12-30 2012-06-26 Nxp B.V. Low-jitter end-to-end latency control scheme for isochronous communications based on transmitter timestamp information
US9471090B2 (en) * 2012-11-21 2016-10-18 Starkey Laboratories, Inc. Method and apparatus for synchronizing hearing instruments via wireless communication
US10263720B2 (en) * 2013-09-11 2019-04-16 Audio-Technica U.S., Inc. Maintaining clock synchronization in a digital network without continuous transmission
GB201318802D0 (en) * 2013-10-24 2013-12-11 Linn Prod Ltd Linn Exakt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102016106105A1 (de) 2017-10-05
US20190141440A1 (en) 2019-05-09
US10499148B2 (en) 2019-12-03
WO2017174589A1 (fr) 2017-10-12
EP3440846A1 (fr) 2019-02-13

Similar Documents

Publication Publication Date Title
EP3440846B1 (fr) Système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil et procédé de commande du système de microphone et/ou de contrôle par écouteur intraauriculaire sans fil
EP0570557B1 (fr) Procede de generation d'une base de temps commune dans un systeme a unites informatiques decentralisees
EP1720022B1 (fr) Dispositif de mesure synchronisé dans le temps et méthode pour la synchronisation dans le temps d'au moins un dispositif maître/esclave
EP2013995B1 (fr) Procede pour la synchronisation de modules d'une station de base
DE102018002309B4 (de) Slave-gerät, system für serielle kommunikation und kommunikationsverfahren für system für serielle kommunikation
DE102006052437B4 (de) Magnetresonanzanlage mit Komponenten
DE102006012466A1 (de) Systeme und Verfahren zum Synchronisieren einer Zeit über Netze hinweg
EP1217771A2 (fr) Procédé et dispositif d'alimentation d'horloge et module récepteur de synchronisation
EP2664087B1 (fr) Procédé de synchronisation d'horloge d'une pluralité de modules
DE112015003343B4 (de) Netzwerksystem, Zeit-Master-Station und Zeit-Slave-Station
WO2002027990A2 (fr) Procede de synchronisation commandee sur un systeme d'horloge non stable et unite de reception correspondante
EP2544388A1 (fr) Procédé de synchronisation de la cadence de travail et du rythme dans un réseau d'automatisation
EP1346505B1 (fr) Procede pour synchroniser plusieurs systemes de bus et systeme de bus hierarchique correspondant
EP0318689B1 (fr) Procédé et circuit de correction d'accord d'une source de fréquence
EP1223698B1 (fr) Procédé et module de compensation de phase des signaux d'horloge
EP1079559A2 (fr) Procédé et dispositif de synchronisation d'unités de système
DE19932635B4 (de) Synchronisierverfahren für eine Empfangseinheit und hiermit korrespondierende Empfangseinheit
DE102014109471B4 (de) Takt-Wiederherstellung mit Frequenzsynchronisation
EP1024618B1 (fr) Dispositif pour la synchronisation d'au moins un ensemble électronique à distance par un ensemble électronique central
EP2171490A2 (fr) Procédé pour la synchronisation de plusieurs modules de voies de mesure et/ou instruments de mesure et instrument de mesure correspondant
DE102022116367B3 (de) Verfahren zur Erzeugung eines Hochfrequenztakts
EP2476029B1 (fr) Synchronisation temporelle dans des appareils d'automatisation
DE102013220420A1 (de) Verfahren und Vorrichtung zum Überwachen des Zustands einer Maschine
EP1903681B1 (fr) Procédé pour synchronisation de l'horloge d'un appareil électrique ave une horloge de référence et appareil électrique
DE2106406C3 (de) MeOptatz zum Messen frequenzabhängiger Kenngrößen eines elektrischen Prüflings mit unterschiedlichen Senderund Empfänger-Abstimmfrequenzen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GEORGI, SEBASTIAN

Inventor name: WATERMANN, JAN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1280120

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005650

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201012

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005650

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

26N No opposition filed

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210404

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1280120

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170404

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 7

Ref country code: DE

Payment date: 20230419

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230413

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017005650

Country of ref document: DE

Owner name: SENNHEISER ELECTRONIC SE & CO. KG, DE

Free format text: FORMER OWNER: SENNHEISER ELECTRONIC GMBH & CO. KG, 30900 WEDEMARK, DE