EP3436681B1 - Procédé et dispositif permettant de faire fonctionner un moteur à combustion interne avec un profil d'injection variable - Google Patents

Procédé et dispositif permettant de faire fonctionner un moteur à combustion interne avec un profil d'injection variable Download PDF

Info

Publication number
EP3436681B1
EP3436681B1 EP17710200.1A EP17710200A EP3436681B1 EP 3436681 B1 EP3436681 B1 EP 3436681B1 EP 17710200 A EP17710200 A EP 17710200A EP 3436681 B1 EP3436681 B1 EP 3436681B1
Authority
EP
European Patent Office
Prior art keywords
injection
model
injection parameters
internal combustion
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17710200.1A
Other languages
German (de)
English (en)
Other versions
EP3436681A1 (fr
Inventor
Wolfgang Fischer
Matthias Bitzer
Stefan Grodde
Philipp KOTMAN
Thomas MAKOWICKI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3436681A1 publication Critical patent/EP3436681A1/fr
Application granted granted Critical
Publication of EP3436681B1 publication Critical patent/EP3436681B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • F02D2041/1434Inverse model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque

Definitions

  • the invention relates to internal combustion engines, in particular internal combustion engines, in which fuel can be operated according to a predetermined injection profile with one or more pilot injections and one or more main injections.
  • the present invention relates to measures for adapting the injection profile in transient engine operation.
  • the injection of fuel into the cylinder of an internal combustion engine can be carried out in one or more pilot injections and one or more main injections in accordance with a predefinable injection profile.
  • the injection profile can be specified by maps depending, for example, on the current engine speed and the required load of the internal combustion engine.
  • the state variables of the air system of the internal combustion engine usually only follow the corresponding setpoint values of the air system control with a delay. Since the injection profile is usually changed directly depending on the required load of the internal combustion engine, the injection profile is therefore not ideally adapted to the delayed changing air system conditions and the resulting cylinder charge. This can lead to increased pollutant emissions
  • DE 10 2008 001081 A1 relates to a device for controlling an internal combustion engine with self-ignition of the air / fuel mixture and metering of fuel via a fuel injection valve, at least one injection parameter relating to fuel metering being determined as a function of at least one operating variable of the internal combustion engine assuming a steady operating state. Furthermore, when the transient operating state is present, an actual combustion chamber temperature is determined as a function of a physical model for transient operation of the internal combustion engine as a function of the target combustion chamber temperature and at least one of the operating variables of the internal combustion engine.
  • a method for operating an internal combustion engine with at least one pre-injection and at least one main injection of fuel during a combustion cycle according to claim 1 and a device and an engine system according to the independent claims are provided.
  • the adaptation of the injection profile for the operation of an internal combustion engine as a function of the changing state variables of the air system in dynamic operation is generally not carried out or is carried out only for individual injection parameters of an injection profile.
  • One idea of the above method is to improve the behavior of the internal combustion engine in dynamic operating situations by specifying adapted injection parameters, whereby it is inherently ensured that the torque generated by the internal combustion engine or the indicated mean effective pressure or the "internal" engine torque generated by the combustion remains unchanged remains.
  • the above method provides for the combustion process during a work cycle of the internal combustion engine (gas exchange, compression and combustion) to model, to determine a correction of one or more of the injection parameters of the injection profile depending on the engine output variables predicted with the model (emissions, generated engine torque, ,,,) and to adapt the injection profile assigned in the steady-state operating state according to the correction.
  • the correction of the injection parameters is carried out by means of a correction injection parameter model, which can be formed by an optimization-based inversion of a combustion cycle model, taking into account the dynamic behavior of the air system.
  • a torque-neutral adjustment of the injection parameters can be achieved in particular.
  • the torque-neutral adaptation of the injection parameters is achieved by a secondary equation condition when formulating the optimization problem.
  • the correction injection parameters are determined by inverting a predetermined combustion cycle model as the correction injection parameter model with the aid of an optimization method, wherein the combustion cycle model can correspond to a combined physical / data-based model for describing physical processes in a cylinder of the internal combustion engine.
  • the combined physical / data-based model can include a crank angle-resolved description of the gas exchange and compression phase as well as a data-based approximation of the combustion, e.g. by means of a data-based non-parametric model, in particular a Gaussian process model, or a neural network.
  • the optimization method for optimizing one or more pollutant emissions (soot, NOx,%) Or a fuel consumption is carried out with weightings that can be individually adapted in each case.
  • the correction injection parameter model can be specified with the aid of a predetermined data-based non-parametric model learned offline, in particular a Gaussian process model, or a neural network.
  • the described optimization method for optimization is solved offline in the same way for a representative variation of the input variables not linked to the injection system (air system input variables, rail pressure and engine speed).
  • the result of the optimization, the correction injection parameters is stored in the above-mentioned data-based non-parametric model as a function of the previously varied input variables.
  • one or more of the input variables of the correction injection parameter model can be corrected as a function of a difference between one or more actual, i.e. measured, combustion characteristics of a combustion in the cylinder of the internal combustion engine from one or more modeled combustion characteristics of a combustion in the cylinder of the internal combustion engine.
  • the input variables for the correction injection parameter model can be corrected on the basis of the comparison of predicted and measured combustion features.
  • the one or more modeled combustion features can be determined based on at least some of the input variables for the correction injection parameter model and additionally the adapted injection parameters according to a combustion cycle model, which in particular with the aid of a data-based non-parametric model, in particular a Gaussian process model, is specified.
  • the core of the combustion cycle model for calculating the combustion characteristics can in principle be identical to that of the correction injection parameter model, i. H. physical / data-based model structure to describe the gas exchange, compression and combustion phase.
  • the models of the combustion phase are inverted based on optimization with regard to the correction injection parameters on the basis of a quality function that is formed from the corresponding prediction values for emissions etc.
  • the boundary conditions of this inversion by optimization are provided by the models of the gas exchange and compression phase.
  • the only difference with regard to the model structure is that certain combustion characteristics are estimated and the underlying model is not inverted.
  • the gas exchange and compression phase must also be calculated.
  • FIG. 1 an engine system with an internal combustion engine 1 with a number of cylinders 2 (in the present exemplary embodiment four cylinders) is shown schematically.
  • the internal combustion engine 1 can be designed as a diesel or Otto engine and is accordingly driven in four-stroke operation.
  • Fresh air is supplied to the cylinders 2 of the internal combustion engine 1 via an air supply system 3.
  • Fresh air is supplied via an intake manifold 6 to the injection valve 7 in each of the cylinders 2.
  • a charging device such as a turbocharger, a throttle valve and an exhaust gas recirculation system, can optionally be provided, which in each case increases the amount of fluid flowing into the cylinder 2 Fresh air and its composition, e.g. B. the oxygen concentration can be adjusted.
  • Combustion exhaust gases are discharged from the cylinders 2 with the aid of an exhaust gas discharge system 4.
  • the combustion exhaust gases are fed into the cylinder 2 via an exhaust manifold 9 via corresponding exhaust valves 8
  • Exhaust gas discharge system 4 discharged.
  • the air supply system 3 and the exhaust gas discharge system 4 together form the so-called air system of the engine system 1.
  • today's internal combustion engines also have exhaust gas recirculation and charging, for example by an exhaust gas turbocharger (not shown).
  • the cylinders 2 are assigned injection valves 5, which can be controlled in a suitable manner for opening or closing in order to inject fuel into the combustion chambers of the cylinders 2.
  • the operation of the internal combustion engine 2 is controlled with the aid of a control unit 10.
  • the control unit 10 detects a specification of a setpoint torque which, for example, can be derived from an accelerator pedal position or the like during operation in a motor vehicle and corresponds to a requested load.
  • a specification of a setpoint torque which, for example, can be derived from an accelerator pedal position or the like during operation in a motor vehicle and corresponds to a requested load.
  • the operating behavior of the can be determined by setting suitable actuators, such as a throttle valve, an exhaust gas recirculation valve, a charge generator (wastegate valve, VTG actuator, etc.) or the like
  • Engine system 1 can be set to achieve the predetermined target torque.
  • the amount of fuel injected into a cylinder per work cycle is essential for providing the requested target torque.
  • control unit 10 controls the engine system in such a way that the control interventions also achieve an engine operation that is as low-emission as possible, within both stationary and transient operating situations.
  • fuel can be injected in successive one or more pilot injections, one or more main injections, which can be predetermined according to an injection profile.
  • an injection profile is specified with corresponding injection parameters.
  • the injection profile of the Figure 2 shows the opening and closing times or opening and closing angles of a pre-injection and a Main injection.
  • the opening times or angles are specified as an injection parameter in each case by the time or angle difference to a top dead center of a piston movement in the relevant cylinder 2.
  • the fuel quantities for each of the injections can be specified as further injection parameters.
  • the injection valve opening time can also be used, the effective amount of injected fuel still being dependent on the injection pressure of the fuel provided, which must be taken into account when determining the correct injection valve opening time.
  • u e , k ⁇ k PI m k PI ⁇ k MI m k MI in which ⁇ k PI the relative starting time or starting angle of the pilot injection (PI), ⁇ k MI the relative starting time or starting angle of the main injection (MI), m k PI the injection amount of fuel of the pilot injection and m k MI the injection quantity of fuel correspond to the main injection for the respective work cycle k.
  • the starting times can, for example, be specified independently of the rotational speed in the form of a crankshaft angle, in particular relative to a fixed predetermined crankshaft angle of a crankshaft of the internal combustion engine 1, such as a top dead center of the crankshaft movement.
  • Figure 2 correspond m k PI and m k MI the areas under the injection rate curve shown and thus the amount of fuel injected in each case.
  • the number of preinjections and the number of main injections can, however, each be more than one and can be specified in particular as a function of the operating point, in particular indicated by the engine speed and the engine load. The number of injection parameters would increase accordingly.
  • FIG. 13 is a functional diagram for a function for providing adapted injection parameters u e , k ⁇ shown in the form of a control variable for an injection valve 5 of a cylinder 2.
  • the injection valve 5 assigned to the cylinder 2 is to be activated become.
  • the corresponding adjusted injection parameters u e , k ⁇ are fed to the injection block 15, in which the adjusted injection parameters u e , k ⁇ be converted into timing control signals for the relevant injection valve 5 for opening and closing, in particular as a function of a crankshaft angle and an engine speed.
  • the injection parameters of the control variable correspond to stationary injection parameters u e, k , which are corrected with correction injection parameters ⁇ u e , k.
  • the injection parameters of the control variable of the injection profile relevant for the operating point can be adapted or corrected.
  • the operating point ie dependent on an engine speed n of the internal combustion engine 1 and the setpoint torque M soll (corresponds to the individual working cycle M. should Work cycle ), ie the requested load, stationary injection parameters u e, k of a stationary injection profile in accordance with a predetermined injection profile map which is provided in a stationary injection profile block 11.
  • the injection profile map is usually determined offline, for example on a test stand, and is stored in a suitable manner and made available in a manner that can be called up by specifying the engine speed n for the setpoint torque M setpoint.
  • the injection profile map can be made available as a look-up table or as a functional model, such as a Gaussian process model.
  • the stationary injection parameters u e, k of the stationary injection profile have the correction injection parameters ⁇ u ek applied to them, in particular added.
  • the stationary injection parameters u e, k of the stationary injection profile can be multiplied by the correction injection parameters ⁇ u ek or linked in some other way.
  • the correction injection parameters ⁇ u e, k are determined in an adaptation block 12.
  • the correction injection parameters ⁇ u e, k can be calculated using a predefined correction injection parameter model.
  • the correction injection parameter model can, for example, correspond to a cylinder model ⁇ C -1 inverted by online optimization, which is based on a combustion cycle model ⁇ C.
  • the combustion cycle model ⁇ C depicts the physical processes in the cylinders.
  • the result of a comparable, but offline optimization can be stored in characteristic diagrams that are described, for example, by Gaussian process regression.
  • Bayesian regression is a data-based method that is based on a model.
  • To create the model measurement points of training data and associated output data of an output variable to be modeled are required.
  • the model is created on the basis of the use of interpolation point data which correspond in whole or in part to the training data or are generated from them.
  • abstract hyperparameters are determined, which parameterize the space of the model functions and effectively weight the influence of the individual measurement points of the training data on the later model prediction.
  • the correction injection parameter model supplies the correction injection parameters ⁇ u e, k as output variables.
  • the injection parameters adapted for the working cycle k result from the stationary injection parameters u e, k of the injection profile and the correction injection parameters ⁇ u e, k u e , k ⁇ .
  • characteristic values for correcting one or more of the above input variables that are used for the adaptation block 12 are determined.
  • the one or more input variables are determined in a correction application block 19 by applying one or more correction variables K.
  • correction values K for one or more input variables are selected in a simple manner, which have sufficient sensitivity to the relevant combustion feature.
  • ⁇ C e.g. B. within a model block 14 or in an inverted form within an adaptation block 12 are used as boundary conditions of the air system p IN THE t T IN THE t X IN THE O 2 t p EM T T EM t X EM O 2 t , the injection pressure p r ( t ), the engine speed n and the corresponding corrected injection parameters u e , k ⁇ given.
  • the output variables of the combustion cycle model ⁇ C can, in addition to the combustion features ⁇ k , as shown in the model block 14, for example also the pollutant emissions ⁇ NO x (Nitrogen oxide emissions), ⁇ PM (soot emissions) or the indicated mean effective pressure p mi , k Work cycle of the entire working cycle as used in adaptation block 12 (not in Figure 2 shown).
  • a data-based approximation of the combustion phase using a Gaussian process regression can be used to describe the output variables, such as pollutant emissions ⁇ NO x , ⁇ PM and the indicated mean effective pressure p mi , k combustion , depending on the cylinder filling level x t k PI or.
  • x ⁇ k PI (as a result of the model parts of the gas exchange phase and the compression phase), the injection parameters, whereby these can assume any values within the model validity range, e.g. B. the stationary
  • the determination of the correction injection parameters ⁇ u e, k in adaptation block 12 can be achieved by an optimization-based inversion of the combustion cycle model ⁇ C in order to obtain the correction injection parameter model and thus to determine the correction injection parameters ⁇ u e, k.
  • the combustion cycle model ⁇ C is inverted with regard to the injection parameters in order to obtain an inverted combustion cycle model ⁇ C -1 .
  • the inversion of a Gaussian process model is known from the prior art and can be carried out, for example, with the aid of a Newton method.
  • the part of the combustion cycle model linked to the injection parameters is described by means of one or more Gaussian process models, especially the emissions, then their forecast values can be summarized within a quality function.
  • a quality function Based on this quality function, according to the prior art, for example using a Newton method, an optimization-based inversion of the GPR models can be carried out, ie the determination of the correction injection parameters ⁇ u e, k which minimize the quality function (local / global). This represents the optimization-based inversion of the combustion cycle model. Other optimization-based methods can also be used.
  • the aim of the optimization is on the one hand the pollutant emissions ⁇ NO through the correction injection parameters ⁇ u e, k x , ⁇ PM , to optimize fuel consumption or the like and, on the other hand, to optimize the setpoint torque desired for the work cycle M.
  • should Work cycle or the correlated indicated mean effective pressure p pmi should Work cycle taking into account the gas exchange and the compression.
  • the Gaussian process models valid for the combustion phase (with regard to nitrogen oxide emissions ⁇ NO x , Soot emissions ⁇ PM or the indicated mean effective pressure p mi combustion the combustion phase, ...) is inverted according to an optimization, so that depending on freely formulable optimization goals for the pollutant emissions ⁇ NO x , ⁇ PM and the indicated mean pressure to be maintained for the work cycle p pmi , should Work cycle the corresponding correction injection parameters ⁇ u le, k of the injection profile can be obtained.
  • the optimization which can be carried out by minimizing a quality function taking into account given boundary conditions, can have the following mathematical structure: min ⁇ u e , k ⁇ ⁇ U e , k J ⁇ NO x , ⁇ PM , m k PI + m k MI ⁇
  • General Quality function w NO x ⁇ NO x + w PM ⁇ PM + w fuel m k PI + m k MI ⁇ structure one Quality function exemplary
  • the Gaussian process models taken into account for the combustion phase which are used in the described exemplary embodiment for the optimization in adaptation block 12, can also be modified in such a way that the information about the speed / load-dependent stationary injection parameters u e, k can already be taken into account or learned directly.
  • the setting limits of the injection parameters that depend on the engine operating point e.g.
  • the optimization limits can be formulated as simple box constraints and the result of the optimization also provides the output values from block 12 directly
  • direct analytical derivation can be calculated with regard to the correction injection parameters ⁇ u e, k to be determined by the optimization.
  • the boundary conditions of the optimization are determined by the cylinder model of the gas exchange phase and the cylinder model of the compression phase. This includes the cylinder filling condition x t k PI or. x ⁇ k PI at the beginning of the combustion (or the combustion cycle) and the target torque to be generated by the combustion phase M.
  • V H gives ( V H - stroke volume of the cylinder).
  • M should Work cycle describes the torque requirement derived from the driver's request and the requirements of the auxiliary units (air conditioning, ...), which must be generated integrally within a work cycle.
  • the optimization variables are the correction injection parameters ⁇ u e, k , which represent the correction values sought for the stationary injection parameters u e, k determined by engine speed n and setpoint torque M should .
  • the combustion center of gravity ⁇ 50 (describes the crankshaft angle at which 50% of the fuel introduced was chemically converted) and / or other combustion features z k (e.g. ⁇ 10 , ⁇ 90 , crank angle position and value of the cylinder peak pressure, crank angle position and value of the maximum pressure gradient etc.) can be determined based on state variables of the internal combustion engine 1.
  • the center of combustion and the other combustion features can be detected directly by a cylinder pressure sensor or, alternatively, can be derived from an analysis of a course of the engine speed.
  • a correction of the combustion cycle model used for the optimization can also be provided.
  • the correction can be made by adapting their input variables.
  • one or more combustion features ⁇ k such as a combustion center of gravity ⁇ 50 , as well as ⁇ 10 , ⁇ 90 (crank angle positions after 10% or 90% combustion of the fuel), the crank angle position and the value of the cylinder peak pressure or the crank angle position and the value of the maximum pressure gradient, the input variables being at least partially model-identical to those of the optimization in the adaptation block 12.
  • the error in a certain input variable for example the error in the estimated oxygen mass after the relevant inlet valve has been closed, is then determined on the basis of a model in a correction model block 17, which describes its sensitivity to the deviation ⁇ z k of the combustion feature.
  • the correction model block 17 supplies one or more correction values K for applying corresponding input variables in order to use the error of the input variable estimated in this way in the next working cycle k + 1 for the correction of the relevant input variable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (10)

  1. Procédé permettant de faire fonctionner un moteur à combustion interne (1) par spécification d'un profil d'injection qui est défini par des paramètres d'injection adaptés u e , k ,
    Figure imgb0089
    comprenant les étapes suivantes consistant à
    - établir des paramètres d'injection stationnaires (ue,k) à l'aide d'un diagramme caractéristique de profil d'injection stationnaire spécifié ;
    - établir des paramètres d'injection de correction (Δue,k) à l'aide d'un modèle paramétrique d'injection de correction spécifié qui fournit des paramètres d'injection de correction (Δue,k) en fonction d'une ou de plusieurs grandeurs d'état d'un système d'alimentation en air (3) et/ou d'un système d'évacuation de gaz d'échappement (4) du moteur à combustion interne (1) ;
    - appliquer aux paramètres d'injection stationnaires (ue,k) des paramètres d'injection de correction (Δue,k) afin d'obtenir les paramètres d'injection adaptés u e , k ,
    Figure imgb0090
    les paramètres d'injection de correction (Δue,k) étant déterminés en inversant un modèle de cycle de combustion spécifié en tant que modèle paramétrique d'injection de correction à l'aide d'un procédé d'optimisation, le modèle de cycle de combustion correspondant à un modèle combiné basé sur des données et physique pour décrire des processus physiques dans un cylindre (2) du moteur à combustion interne (1), dans lequel le procédé d'optimisation est effectué avec une pondération pouvant respectivement être adaptée individuellement pour l'optimisation d'une ou de plusieurs émissions de polluants ou d'une consommation de carburant.
  2. Procédé selon la revendication 1, dans lequel une contrainte du procédé d'optimisation pour l'optimisation est sélectionnée de telle sorte qu'un couple moteur généré ou une pression moyenne indexée p mi , k cycle de travail
    Figure imgb0091
    de la combustion reste constant (e).
  3. Procédé selon la revendication 1, dans lequel le modèle paramétrique d'injection de correction est spécifié à l'aide d'un modèle non paramétrique, basé sur des données, spécifié, appris hors ligne, en particulier d'un modèle de processus de Gauss.
  4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel des grandeurs d'entrée pertinentes pour le modèle paramétrique d'injection de correction comprennent une ou plusieurs des grandeurs suivantes :
    - une pression de gaz (pIM(t)), une température de gaz (TIM(t)) et une concentration en oxygène X IM O 2 t
    Figure imgb0092
    dans un collecteur d'admission du moteur à combustion interne (1),
    - une pression de gaz (pEM(t)), une température de gaz (TEM(t)) et une concentration en oxygène X EM O 2 t
    Figure imgb0093
    dans un collecteur d'échappement du moteur à combustion interne (1),
    - une pression de carburant (pr(t)),
    - un régime du moteur (n),
    - un couple théorique M mi , théorique cycle de travail
    Figure imgb0094
    ou une pression moyenne théorique indexée p mi , théorique cycle de travail
    Figure imgb0095
    du cycle de travail.
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel une ou plusieurs des grandeurs d'entrée du modèle paramétrique d'injection de correction sont corrigées en fonction d'une différence entre une ou plusieurs caractéristiques de combustion réelles d'une combustion dans le cylindre (2) du moteur à combustion interne (1) et une ou plusieurs caractéristiques de combustion modélisées de la combustion dans le cylindre (2) du moteur à combustion interne (1).
  6. Procédé selon la revendication 5, dans lequel ladite une ou les plusieurs caractéristiques de combustion modélisées sont établies sur la base d'au moins une partie des grandeurs d'entrée pour le modèle paramétrique d'injection de correction et des paramètres d'injection adaptés u e , k
    Figure imgb0096
    selon un modèle de cycle de combustion qui est spécifié en particulier à l'aide d'un modèle non paramétrique basé sur des données, en particulier d'un modèle de processus de Gauss.
  7. Dispositif, en particulier unité de commande (10), permettant de faire fonctionner un moteur à combustion interne (1) dans un système de moteur par spécification d'un profil d'injection qui est défini par des paramètres d'injection adaptés u e , k ,
    Figure imgb0097
    le dispositif étant réalisé pour :
    - établir des paramètres d'injection stationnaires (ue,k) à l'aide d'un diagramme caractéristique de profil d'injection stationnaire spécifié ;
    - établir des paramètres d'injection de correction (Δue,k) à l'aide d'un modèle paramétrique d'injection de correction spécifié qui fournit des paramètres d'injection de correction (Δue,k) en fonction d'une ou de plusieurs grandeurs d'état d'un système d'alimentation en air et/ou d'un système d'évacuation de gaz d'échappement (3, 4) du moteur à combustion interne (1) ; et
    - appliquer aux paramètres d'injection stationnaires (ue,k) des paramètres d'injection de correction (Δue,k) afin d'obtenir les paramètres d'injection adaptés u e , k ,
    Figure imgb0098
    les paramètres d'injection de correction (Δue,k) étant déterminés en inversant un modèle de cycle de combustion spécifié en tant que modèle paramétrique d'injection de correction à l'aide d'un procédé d'optimisation, le modèle de cycle de combustion correspondant à un modèle combiné basé sur des données et physique pour décrire des processus physiques dans un cylindre (2) du moteur à combustion interne (1), dans lequel le procédé d'optimisation est effectué avec une pondération pouvant respectivement être adaptée individuellement pour l'optimisation d'une ou de plusieurs émissions de polluants ou d'une consommation de carburant.
  8. Système de moteur, comprenant :
    - un moteur à combustion interne (1),
    - un dispositif selon la revendication 7.
  9. Programme informatique qui est aménagé pour exécuter toutes les étapes d'un procédé selon l'une quelconque des revendications 1 à 6 sur un dispositif selon la revendication 7.
  10. Support de stockage lisible par machine sur lequel est stocké un programme informatique selon la revendication 9.
EP17710200.1A 2016-03-30 2017-03-09 Procédé et dispositif permettant de faire fonctionner un moteur à combustion interne avec un profil d'injection variable Active EP3436681B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016205241.1A DE102016205241A1 (de) 2016-03-30 2016-03-30 Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors mit einem variablen Einspritzprofil
PCT/EP2017/055515 WO2017167561A1 (fr) 2016-03-30 2017-03-09 Procédé et dispositif permettant de faire fonctionner un moteur à combustion interne avec un profil d'injection variable

Publications (2)

Publication Number Publication Date
EP3436681A1 EP3436681A1 (fr) 2019-02-06
EP3436681B1 true EP3436681B1 (fr) 2021-06-02

Family

ID=58266607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17710200.1A Active EP3436681B1 (fr) 2016-03-30 2017-03-09 Procédé et dispositif permettant de faire fonctionner un moteur à combustion interne avec un profil d'injection variable

Country Status (4)

Country Link
EP (1) EP3436681B1 (fr)
CN (1) CN108884772B (fr)
DE (1) DE102016205241A1 (fr)
WO (1) WO2017167561A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018001727B4 (de) 2018-03-05 2021-02-11 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102018120975A1 (de) * 2018-08-28 2020-03-05 Technische Universität Darmstadt Verfahren zur Steuerung und Regelung der dieselmotorischen Verbrennung eines Dieselmotors
DE102018120974A1 (de) * 2018-08-28 2020-03-05 Technische Universität Darmstadt Verfahren zur Ermittlung eines Sollverbrennungsgaszustands für einen Dieselmotor
DE102023202730A1 (de) 2023-03-27 2024-10-02 Volkswagen Aktiengesellschaft Verfahren zum Erzeugen eines Einspritzmengenkorrektur-Modells für einen Ottomotor, Verwendung des Einspritzmengenkorrektur-Modells, Steuergerät und Fahrzeug

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061659B4 (de) * 2006-12-27 2010-04-08 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102008001081B4 (de) * 2008-04-09 2021-11-04 Robert Bosch Gmbh Verfahren und Motorsteuergerät zum Steuern eines Verbrennungsmotors
DE102013200932B4 (de) * 2013-01-22 2015-04-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung einer Funktion eines Motorsteuergeräts zum Einsatz in einem Motorsystem mit einem Verbrennungsmotor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3436681A1 (fr) 2019-02-06
CN108884772A (zh) 2018-11-23
DE102016205241A1 (de) 2017-10-05
WO2017167561A1 (fr) 2017-10-05
CN108884772B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
DE102015219684B4 (de) Steuervorrichtung und Steuerverfahren für einen Innenverbrennungsmotor
EP2029872B1 (fr) Procédé d'exploitation d'un moteur à combustion
EP3436681B1 (fr) Procédé et dispositif permettant de faire fonctionner un moteur à combustion interne avec un profil d'injection variable
DE102011052224B4 (de) Verfahren zum Kompensieren einer Ventilhubabweichung eines Motors, der mit CVVL-Mechanismus ausgestattet ist
EP3308007B1 (fr) Détermination du remplissage d'air, dispositif de commande de moteur et moteur à combustion interne
DE102016215610B4 (de) Steuerung für eine mit einem Superlader ausgestattete Verbrennungskraftmaschine
WO2006069853A1 (fr) Procede de fonctionnement d'un moteur a combustion interne
DE102011100291A1 (de) Verfahren zur Steuerung der Zeiteinstellung einer Mehrfacheinspritzung
WO2009074400A2 (fr) Procédé de détermination de valeurs de mesure et/ou paramètres de modèles adaptés pour la commande de la trajectoire du débit d'air de moteurs à combustion interne
DE102007012604A1 (de) Verfahren zum Regeln einer Einspritzung eines Injektors einer direkteinspritzenden Verbrennungskraftmaschine und direkteinspritzende Verbrennungskraftmaschine
EP0966600B1 (fr) Procede et dispositif de regulation du melange dans un moteur a combustion interne
DE102007039691A1 (de) Modellierungsverfahren und Steuergerät für einen Verbrennungsmotor
WO2004033880A1 (fr) Procede pour determiner la quantite de gaz d'echappement a recycler pour un moteur a combustion interne a recyclage des gaz d'echappement
DE102012212479B4 (de) System und Verfahren zum Schätzen einer Einlassladungstemperatur für Verbrennungsmotoren
DE102016208980A1 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors
WO1998037321A9 (fr) Procede et dispositif de regulation du melange dans un moteur a combustion interne
WO2002020967A1 (fr) Procede permettant de determiner le debit massique de nox a partir des donnees caracteristiques pour une temperature d'entree d'air et du moteur variable
EP3499011A1 (fr) Procédé et dispositif de commande permettant de déterminer une pression de consigne du collecteur d'admission d'un moteur à combustion interne
DE102008043315A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Steuer- und/oder Regeleinrichtung für eine Brennkraftmaschine
DE10356713B4 (de) Verfahren zur Regelung bzw. Steuerung einer in einem Kreisprozess arbeitenden Brennkraftmaschine
WO2015189256A1 (fr) Procédé et unité de commande pour réaliser un échange gazeux dans un cylindre d'un moteur à combustion interne et moteur à combustion interne équipé d'une telle unité de commande
DE102016200782A1 (de) Verfahren und Vorrichtung zum Bestimmen einer Gasführungssystemgröße in einem Motorsystem mit einem Verbrennungsmotor
DE102018132188A1 (de) Motorbetriebssystem und -verfahren
DE102010043966A1 (de) Verfahren und Vorrichtung zur Regelung eines Ottomotors im Selbstzündungsbetrieb
DE102017212280A1 (de) Verfahren und Vorrichtung zum Betreiben eines Motorsystems mit einem Verbrennungsmotor und einer Aufladeeinrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1398653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010534

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210903

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010534

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

26N No opposition filed

Effective date: 20220303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220309

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220309

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220309

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220309

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1398653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230524

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210602