EP3431069B1 - Dispositif de compression thoracique automatisé pour augmenter l'efficacité de la réanimation cardio-respiratoire au moyen de phases alternées pendant lesquelles les caractéristiques physiques de compression thoracique sont modifiées de façon à augmenter le flux sanguin avant global - Google Patents

Dispositif de compression thoracique automatisé pour augmenter l'efficacité de la réanimation cardio-respiratoire au moyen de phases alternées pendant lesquelles les caractéristiques physiques de compression thoracique sont modifiées de façon à augmenter le flux sanguin avant global Download PDF

Info

Publication number
EP3431069B1
EP3431069B1 EP18000048.1A EP18000048A EP3431069B1 EP 3431069 B1 EP3431069 B1 EP 3431069B1 EP 18000048 A EP18000048 A EP 18000048A EP 3431069 B1 EP3431069 B1 EP 3431069B1
Authority
EP
European Patent Office
Prior art keywords
ccdcs
optimized
chest compression
compression device
cardiac output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18000048.1A
Other languages
German (de)
English (en)
Other versions
EP3431069A1 (fr
Inventor
Norman Paradis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/657,078 external-priority patent/US11684542B2/en
Application filed by Individual filed Critical Individual
Publication of EP3431069A1 publication Critical patent/EP3431069A1/fr
Application granted granted Critical
Publication of EP3431069B1 publication Critical patent/EP3431069B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation, e.g. heart massage
    • A61H31/004Heart stimulation
    • A61H31/006Power driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H11/00Belts, strips or combs for massage purposes
    • A61H2011/005Belts, strips or combs for massage purposes with belt or strap expanding and contracting around an encircled body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5005Control means thereof for controlling frequency distribution, modulation or interference of a driving signal

Definitions

  • the present invention relates to automated chest compression.
  • Devices performing automated mechanical cardiopulmonary resuscitation (CPR) have been developed for inducing blood flow by application of external force to the thorax.
  • CPR cardiopulmonary resuscitation
  • Circumferential and partial circumferential constrictions may incorporate a band around the front and sides of the patient, or a pneumatic bladder with a constricting outer circumference.
  • a circumferential device for applying chest compressions using a bladder is described, for instance, in US2007/0010765 A1 .
  • anteroposterior compression decompression may be provided by a piston mechanism attached to a gantry above the patient.
  • Circumferential constriction may be achieved by inflation pneumatic bladders or shortening of a band.
  • the mechanical devices may perform chest compressions under control of a processer.
  • the processor controls operation of the mechanical application of force to the patient.
  • Hemodynamics is the forward movement of blood. As such, it is required for the maintenance of life in any organism with a separate vascular system.
  • the vascular system is composed of a pumping mechanism - the heart - and a closed circuit of arteries and veins. Arteries deliver freshly oxygenated blood to the tissues and veins return blood to the heart and lungs for replenishment of oxygen.
  • the circulatory system is considered to have four components: 1) a pump, 2) an arterial compartment, 3) an organ and tissue compartment, and 4) a venous compartment. Forward blood flow is achieved through a combination of cardiac output and venous return. Additionally:
  • each heart beat is similar to any other and incorporates components intended to achieve cardiac output and venous return.
  • mammals respond to the need for greater cardiac output by means of increasing stroke volume and heart rate.
  • CPR cardiopulmonary resuscitation
  • Normal cardiac output in a healthy adult is in the range of 4.7 liters per minute. This output maintains a mean arterial compartment blood pressure of approximately 90 mm Hg.
  • the human heart responds to greater needs for blood flow by increasing rate and the force of contraction.
  • cardiac outputs, ventricular stroke volumes, tissue flows, and venous return are generally in equilibrium.
  • one of the vascular compartments does not expand significantly with respect to the other compartments over time frames of minutes. This may not be the case under the extreme low-flow of cardiac arrest and CPR.
  • the relative expansion of the venous compartment may result in inadequate volume on the arterial side of the circulation. This, in turn, may result in impaired cardiac output.
  • CCDCs CPR chest compression decompression cycles
  • cardiopulmonary resuscitation based on manipulation of the external chest and/or abdomen may be considered to fall into two broad categories: 1) those that directly create or enhance arterial forward flow (cardiac output), and 2)those that create or enhance venous return.
  • components/devices of the CPR cycle that create or enhance cardiac output act to pressurize the arterial compartment. This will increase flow from the arterial compartment into the tissue compartment. Subsequent increased flow in the tissue compartment will result in increased flow into the venous compartment. The expansion and increased pressure of the venous compartment will enhance flow back to the heart, which is venous return. And finally, enhanced venous return may prime the CPR pump for increased cardiac output and forward-flow on the next cycle.
  • CPR hemodynamics The mechanistic understanding of CPR hemodynamics is limited by a general lack of agreement as to the actual pump. (Haas et al. 2003) Some authorities believe that the heart continues to function as a pump mechanism, (Bircher, Safar, and Stezoski 1982) while others believe that the thorax becomes functionally the pump during CPR. (Niemann et al. 1980; Weisfeldt, Chandra, and Tsitlik 1981) It is possible that the mechanism of CPR is a combination of cardiac and thoracic pumps, and that the proportional contribution of each mechanism is variable patient to patient. Alteration of device CCDC s between arterial optimized and venous optimized is independent of the CPR pump mechanism.
  • Devices applying methods intended to increase arterial cardiac output during CPR include, but are not limited to ( Figure 3 ):
  • Devices applying methods intended to increase venous return during cardiopulmonary resuscitation include, but are not limited to ( Figure 4 ):
  • Examples of forward flow cardiac output enhancing techniques include, but are not limited to, standard anteroposterior chest compression and circumferential constriction.(Kouwenhoven, Jude, and Knickerbocker 1960; Halperin et al. 1993)
  • Examples of techniques that may enhance venous return include, but are not limited to, active decompression of the chest (Cohen, Tucker, Lurie, et al. 1992), abdominal counterpulsation (Voorhees, Niebauer, and Babbs 1983), and partial airway obstruction during inhalation - the so called impedance threshold device. (Wolcke et al. 2003)
  • the improvement in hemodynamics associated with active decompression may be mechanistically mediated by creation of increased negative intrathoracic pressure during the decompression phase of CPR 10,3 , with resulting enhancement of venous return. Additional enhancement of negative intrathoracic pressure and venous return may be achieved by briefly obstructing the airway during the decompression release phase.(Plaisance et al. 1999) Typically, this is achieved through utilization of a cracking valve mechanism called an impedance threshold device.
  • the invention disclosed here relates in general to the field of cardiopulmonary resuscitation (CPR), and more particularly, to an automated chest compression or constriction device for improving hemodynamics and clinical outcome.
  • CPR cardiopulmonary resuscitation
  • US 2017/035650 A1 discloses an example of a chest compression system.
  • an automated chest compression device according to claim 1.
  • each CCDC will have a duration of 600ms and standard compression and relaxation phases durations of 300ms.
  • the major compartments of the circulatory system may not be in continuous equilibrium. Rather, during the phase of the cycle in which the device CCDCs are optimized for cardiac output, the arterial compartment may become pressurized relative to the tissue and venous compartments. If this pressure differential moves blood from the arterial compartment to the tissue compartment and then into the venous compartment, the venous compartment may then become relatively pressurized. Subsequently, during the phase in which the CCDCs are optimized for venous return, the venous compartment would be drained with increased returned blood flow to the heart.
  • a pattern may be established in which there is sequential volume expansion and pressurization of first the arterial compartment, then the tissue compartment and finally the venous compartment.
  • the arterial and venous compartments may be considered components of a systemic pumping mechanism rather than simply conduits. Flow within the tissues may take on a more sinusoidal pattern.
  • the overall hemodynamic efficacy for example the minute-volume of blood flow through an organ of interest, is improved relative to what could be achieved by either of the two types of CCDCs alone.
  • CCDCs optimized for cardiac output would include, but are not limited to CCDCs of:
  • alterations in the abdomen and/or ventilations may adjunctively augment overall hemodynamics during CCDCs optimized for cardiac output. These alterations may be synchronized with specific alterations in the cardiac output or venous return optimized CCDCs.
  • CCDCs optimized for venous return would include, but are not limited to CCDCs of:
  • alterations in the abdomen and/or ventilations may adjunctively augment overall hemodynamics during CCDCs optimized for venous return. These alterations may be synchronized with specific alterations in the venous return optimized CCDCs.
  • a practitioner of ordinary skill would produce a method for controlling an automated chest compression device in which there are alternating pairs of CCDCs, one cycle optimized for cardiac output, a second cycle optimized for venous return ( Figure 5 ).
  • a practitioner of ordinary skill would produce a method for controlling an automated chest compression device in which there are alternating time intervals composed of multiple CCDCs, one interval composed of multiple cycles optimized for cardiac output, a second phase composed of multiple cycles optimized for venous return ( Figures 6 , 7 ).
  • a practitioner of ordinary skill would produce a method for controlling an automated chest compression device in which there are repeating time intervals composed of multiple CCDCs, each repeating interval composed of CCDCs that transition from cycles optimized for cardiac output to cycles optimized for venous return.
  • a practitioner of ordinary skill would produce a method for controlling an automated chest compression device in which there are repeating intervals composed of multiple CCDCs, each repeating interval composed of multiple CCDCs cycles that transition from cycles optimized for venous return to cycles optimized for cardiac output.
  • a practitioner of ordinary skill would produce a method for controlling an automated chest compression device in which the CCDCs are optimized for cardiac output through incorporation of one or more selected from the group consisting of: greater compressive force, greater compressive speed, greater depth of compression, more frequent compressions, prolonged compression phase relative to relaxation, lessened active decompression, decreased force of decompression, decreased speed of decompression, shortened decompression phase.
  • a practitioner of ordinary skill would produce a method for controlling an automated chest compression device in which the CCDCs are optimized for venous return through incorporation of one or more selected from the group consisting of: greater active decompression, increased force of decompression, increased speed of decompression, lengthened decompression phase, lessened compressive force, lessened compressive speed, lessened depth of compression, prolonged decompression phase.
  • CCDCs may be provided that transition incrementally from ones that are solely intended to enhance venous return through CCDCs that blend venous return and cardiac output enhancing characteristics to CCDCs that are solely intended to enhance cardiac output.
  • the oscillation through this cycle would be alternated with a time period that is itself optimized empirically or through feedback to enhance overall system forward flow.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Percussion Or Vibration Massage (AREA)

Claims (14)

  1. Dispositif automatisé de compression thoracique pour réaliser des compressions thoraciques au cours d'une réanimation cardiopulmonaire sur un patient, le dispositif étant configuré pour appliquer deux cycles de compression-décompression thoraciques CCDC différents ou plus au patient, dans lequel les deux CCDC ou plus incluent un premier ensemble de CCDC optimisés pour le débit cardiaque et un second ensemble de CCDC optimisés pour le retour veineux ; caractérisé en ce que
    l'ensemble de CCDC optimisés pour le débit cardiaque sont caractérisés par une phase de relaxation allant de 1 à 300 millisecondes ; et
    l'ensemble de CCDC optimisés pour le retour veineux sont caractérisés par une décompression forcée activée et/ou une phase de relaxation allant de 400 à 1500 millisecondes ; et
    dans lequel l'ensemble de CCDC optimisés pour le débit cardiaque est réalisé en alternance avec l'ensemble de CCDC optimisés pour le retour veineux pour amplifier l'efficacité hémodynamique globale.
  2. Dispositif automatisé de compression thoracique selon la revendication 1, dans lequel au moins un des premier et second ensembles de CCDC comprend des CCDC ayant tous les mêmes paramètres.
  3. Dispositif automatisé de compression thoracique selon la revendication 1 ou 2, dans lequel au moins un des premier et second ensembles de CCDC comprend au moins cinq cycles de CCDC.
  4. Dispositif automatisé de compression thoracique selon l'une quelconque des revendications 1 à 2, dans lequel au moins un des premier et second ensembles de CCDC comprend une durée d'au moins 5 secondes.
  5. Dispositif automatisé de compression thoracique selon l'une quelconque des revendications 1 à 4, dans lequel un rapport d'intervalles de temps des premier et second ensembles de CCDC est d'un sur un.
  6. Dispositif automatisé de compression thoracique selon l'une quelconque des revendications 1 à 4, dans lequel un rapport d'intervalles de temps des premier et second ensembles de CCDC n'est pas d'un sur un.
  7. Dispositif automatisé de compression thoracique selon l'une quelconque des revendications 1 à 6, dans lequel le premier ensemble de CCDC optimisés pour le débit cardiaque comprend un premier intervalle de multiples CCDC et le second ensemble de CCDC optimisés pour le retour veineux comprend un second intervalle de multiples CCDC.
  8. Dispositif automatisé de compression thoracique selon l'une quelconque des revendications 1 à 7, dans lequel une transition incrémentale se produit du premier ensemble de CCDC optimisés pour le débit cardiaque au second ensemble de CCDC optimisés pour le retour veineux.
  9. Dispositif automatisé de compression thoracique selon l'une quelconque des revendications 1 à 8, dans lequel appliquer le premier ensemble de CCDC optimisés pour le débit cardiaque et appliquer le second ensemble de CCDC optimisés pour le retour veineux comprend appliquer les premier et second ensembles de CCDC à un intervalle et selon un schéma répétitifs.
  10. Dispositif automatisé de compression thoracique selon l'une quelconque des revendications 1 à 9, dans lequel une durée ou un rapport de schémas d'au moins un des premier et second CCDC est ajusté(e) en fonction d'une mesure de biomarqueur obtenue du patient.
  11. Dispositif automatisé de compression thoracique selon l'une quelconque des revendications 1 à 10, dans lequel un schéma de transition du premier ensemble de CCDC optimisés pour le débit cardiaque au second ensemble de CCDC optimisés pour le retour veineux est ajusté en fonction d'une mesure de biomarqueur obtenue du patient.
  12. Dispositif automatisé de compression thoracique selon l'une quelconque des revendications 1 à 11, dans lequel la réanimation cardiopulmonaire est fournie par constriction circonférentielle ou circonférentielle partielle et relaxation du thorax.
  13. Dispositif automatisé de compression thoracique selon l'une quelconque des revendications 1 à 12, dans lequel un rapport d'intervalles de temps des premier et second ensembles de CCDC est de 3 sur 2.
  14. Dispositif automatisé de compression thoracique selon l'une quelconque des revendications 1 à 13, dans lequel un signal est émis du dispositif pour activer la synchronisation pour amplifier davantage des CCDC ou leurs phases respectives par manipulation automatique phasique de l'abdomen ou altération de schéma ou pressions de ventilation,
EP18000048.1A 2017-07-21 2018-01-19 Dispositif de compression thoracique automatisé pour augmenter l'efficacité de la réanimation cardio-respiratoire au moyen de phases alternées pendant lesquelles les caractéristiques physiques de compression thoracique sont modifiées de façon à augmenter le flux sanguin avant global Active EP3431069B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/657,078 US11684542B2 (en) 2016-07-22 2017-07-21 Method to increase the efficacy of cardiopulmonary resuscitation by means of alternating phases during which the physical characteristics of chest compression are varied so as to increase overall forward blood flow

Publications (2)

Publication Number Publication Date
EP3431069A1 EP3431069A1 (fr) 2019-01-23
EP3431069B1 true EP3431069B1 (fr) 2024-04-24

Family

ID=61024557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18000048.1A Active EP3431069B1 (fr) 2017-07-21 2018-01-19 Dispositif de compression thoracique automatisé pour augmenter l'efficacité de la réanimation cardio-respiratoire au moyen de phases alternées pendant lesquelles les caractéristiques physiques de compression thoracique sont modifiées de façon à augmenter le flux sanguin avant global

Country Status (1)

Country Link
EP (1) EP3431069B1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060094991A1 (en) * 2004-11-03 2006-05-04 Rob Walker Mechanical CPR device with variable resuscitation protocol

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769800A (en) 1995-03-15 1998-06-23 The Johns Hopkins University Inc. Vest design for a cardiopulmonary resuscitation system
US7645247B2 (en) * 2004-10-25 2010-01-12 Norman A. Paradis Non-invasive device for synchronizing chest compression and ventilation parameters to residual myocardial activity during cardiopulmonary resuscitation
EP2709581B1 (fr) * 2011-05-15 2017-07-12 All India Institute of Medical Sciences Dispositif de réanimation cardiopulmonaire et son système de réanimation intégré
US10143619B2 (en) * 2013-05-10 2018-12-04 Physio-Control, Inc. CPR chest compression machine performing prolonged chest compression
US10596064B2 (en) * 2014-03-18 2020-03-24 Zoll Medical Corporation CPR chest compression system with tonometric input and feedback
US10695264B2 (en) * 2014-05-07 2020-06-30 Jolife Ab CPR chest compression system with rate-based patient tranquility mode
US10772793B2 (en) 2015-06-12 2020-09-15 Norman A. Paradis Mechanical cardiopulmonary resuscitation combining circumferential constriction and anteroposterior compression of the chest

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060094991A1 (en) * 2004-11-03 2006-05-04 Rob Walker Mechanical CPR device with variable resuscitation protocol

Also Published As

Publication number Publication date
EP3431069A1 (fr) 2019-01-23

Similar Documents

Publication Publication Date Title
US11684542B2 (en) Method to increase the efficacy of cardiopulmonary resuscitation by means of alternating phases during which the physical characteristics of chest compression are varied so as to increase overall forward blood flow
US6179793B1 (en) Cardiac assist method using an inflatable vest
US4397306A (en) Integrated system for cardiopulmonary resuscitation and circulation support
US5487722A (en) Apparatus and method for interposed abdominal counterpulsation CPR
US5192314A (en) Synthetic intraventricular implants and method of inserting
US3303841A (en) Process and apparatus for pressurizing lower extremities of a patient during ventricular diastole
US7229402B2 (en) Minimally invasive ventricular assist technology and method
JP2003047656A (ja) 心室補助装置及び心室補助方法
US20220218360A1 (en) Devices and methods for treating edema
EP0688201A1 (fr) Dispositif et procede d'assistance/soutien cardiaque a compression/decompression active
WO2012123366A1 (fr) Procédé thérapeutique et chirurgical d'assistance respiratoire
US20110196189A1 (en) Extra-cardiac differential ventricular actuation by inertial and baric partitioning
JPH0550296B2 (fr)
CN115624665B (zh) 一种仿生型体外膜肺氧合系统
JP2020501637A (ja) 脳血流のための頭蓋内容積アダプタ
JP2012511364A (ja) 体外手術において使用されるように設計された拍動型医療デバイス
US8142372B2 (en) External left ventricular assist device for treatment of congestive heart failure
Kung et al. Heart booster: a pericardial support device
US11684541B2 (en) Devices and methods for active decompression of the chest during circumferential constriction cardiopulmonary resuscitation
JP7057925B2 (ja) 心拍出支援装置
EP3431069B1 (fr) Dispositif de compression thoracique automatisé pour augmenter l'efficacité de la réanimation cardio-respiratoire au moyen de phases alternées pendant lesquelles les caractéristiques physiques de compression thoracique sont modifiées de façon à augmenter le flux sanguin avant global
US20230338233A1 (en) Method to Increase The Efficacy of Cardiopulmonary Resuscitation By Means of Alternating Phases During Which The Physical Characteristics of Chest Compression Are Varied So As to Increase Overall Forward Blood Flow
US20080242916A1 (en) Eecp Device and an Image System Comprising the Same
US20110282126A1 (en) Pulsatile medical device designed to be used in extracorporeal surgery
Babbs et al. Abdominal binding and counterpulsation in cardiopulmonary resuscitation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210326

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018068436

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D