EP3423863A1 - Système de radar, comportant un ensemble d'antennes pour émettre et recevoir un rayonnement électromagnétique - Google Patents

Système de radar, comportant un ensemble d'antennes pour émettre et recevoir un rayonnement électromagnétique

Info

Publication number
EP3423863A1
EP3423863A1 EP16820305.7A EP16820305A EP3423863A1 EP 3423863 A1 EP3423863 A1 EP 3423863A1 EP 16820305 A EP16820305 A EP 16820305A EP 3423863 A1 EP3423863 A1 EP 3423863A1
Authority
EP
European Patent Office
Prior art keywords
antennas
transmitting
receiving
radar system
receiving antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP16820305.7A
Other languages
German (de)
English (en)
Inventor
Benedikt Loesch
Michael Schoor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3423863A1 publication Critical patent/EP3423863A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • Radar system comprising an antenna arrangement for transmitting
  • the present invention relates to a radar system comprising an antenna arrangement provided for transmitting and receiving electromagnetic radiation, wherein N first antennas for transmitting and M second antennas for receiving are provided and with the N first transmitting antennas and with the M second receiving antennas objects in Detection range of the antennas are detected according to the MIMO principle. Furthermore, it is provided that the N first transmission antennas are mutually orthogonal in a transmission cycle
  • adaptive cruise control also called Adaptive Cruise Control, used, which allow speed control in the sense of a distance control and make a convoy comfortable.
  • radar sensors are usually used, which have antenna arrangements for the detection of the preceding objects and other surrounding objects.
  • adaptive cruise control is known for example in the publication "Adaptive cruise control ACC”, published in April 2002 by the Robert Bosch GmbH, Stuttgart, with the ISBN number ISBN-3-7782-2034-9.
  • An antenna arrangement coming close to the invention is known, for example, from DE 10 2009 032 114 A1, which shows a radar system for detecting the surroundings of a motor vehicle with means for detecting over or underpassable reflection points and has the patch antenna for emitting and receiving electromagnetic radiation.
  • the core of the present invention is to provide a radar system with a
  • Specify antenna arrangement that, together with the time-division Ml MO method, permits both a good azimuth angle estimation and a large aperture elevation angle estimation that is unambiguous over the relevant angle range, ie. H. high accuracy and high separation ability to achieve.
  • the high-frequency chip which contains the transmitting and receiving components and can be implemented as MMIC (Monolithic Microwave Integrated Circuit)
  • MMIC Monitoring Microwave Integrated Circuit
  • the n transmission antennas which are offset in relation to the N-n horizontally adjacent transmitting antennas, are exactly one transmission antenna.
  • the m receiving antennas which are arranged offset from the M-m horizontally adjacent reception antennas, is exactly one receiving antenna.
  • the receiving antennas are arranged horizontally next to each other, whereby an accurate determination of the azimuth angle of the detected objects is achieved, as well as simultaneously
  • Elevation angle estimation of the received signals is made possible. Again, the determination of an elevation angle is made possible, however, the measurement of the azimuth angle is more accurate than that of the elevation angle, since this for
  • the m receiving antennas which are arranged offset with respect to the M-m horizontally juxtaposed receiving antennas, each having a different vertical offset relative to the M-m horizontally adjacent receiving antennas.
  • Receiving antennas are designed as patch antennas.
  • Patch antennas are rectangular antenna fields that can be etched out of the copper layer of a printed circuit board. This makes it possible, by means of structuring and etching a copper layer complicated antenna arrangements make, without this the production cost is more complex with increasing complexity of the structures.
  • Such patch antennas are particularly inexpensive and easy to produce.
  • the mutually orthogonal transmission signals is advantageous for the mutually orthogonal transmission signals to be realized by time-division multiplexing, code division multiplexing or frequency division multiplexing.
  • To transmit orthogonal transmit signals it is necessary to generate signals that do not interfere with each other, which makes particularly the listed methods time division multiplexing, code division or frequency division multiplexing particularly suitable.
  • MMIC Microwave circuit
  • Receiving antennas is arranged. This will allow the
  • Feed lines from the monolithically integrated microwave circuit to the antenna terminals can be made approximately the same length, resulting in approximately the same phase relationships between the individual transmission signals or between the individual reception signals and the leads can be kept as short as possible, so that the attenuation of the transmission signals simultaneously can be minimized.
  • Microwave circuit both signal processing means for transmission channels and signal processing means for receiving channels. This makes it possible to produce a particularly small antenna, which can still be produced inexpensively, since a large part of the circuit parts of the radar system is mitintegriert in the monolithic microwave integrated circuit and outside of this IC, inter alia, only the antenna structures must be provided on a circuit board.
  • FIG. 1 shows a schematic block diagram of an embodiment of the invention
  • Figure 2 shows a first embodiment of an antenna arrangement according to the present invention
  • Figure 3 shows another embodiment of an inventive
  • FIG. 1 shows a schematic block diagram of a radar system according to the invention.
  • the transmitting and receiving device 1 which forms the radar system.
  • This consists of a monolithic microwave integrated circuit 2, often referred to as MMIC (Monolithic Microwave Integrated Circuit) and is an integrated circuit, the MMIC (Monolithic Microwave Integrated Circuit)
  • High frequency circuit components includes the signals in the
  • Components may be, for example, frequency dividers, frequency multipliers, mixers, amplifiers or other transmitting and receiving components.
  • This monolithic microwave integrated circuit 2 is called
  • the output signal of an oscillator 3 is supplied.
  • This Oscillator 3 generates a frequency which is passed as an output signal to downstream circuit elements and thus ensures the generation of a carrier frequency of a microwave signal.
  • a series of transmitting antennas (Tx) 4 is connected to the monolithically integrated microwave circuit 2, to which the monolithically integrated microwave circuit 2 emits transmit signals and which are emitted by the transmitting antennas (Tx) 4.
  • a number of receiving antennas (Rx) 5 are connected to receive the microwave signals from the environment and the circuit 2 supply.
  • the signals received by the receiving antennas (Rx) 5 are preferably signals that were previously emitted by the transmitting antennas (Tx) 4 and partially reflected on objects to be detected and by the
  • Reception antennas (Rx) 5 are converted back into electrical signals.
  • the number of transmit antennas (Tx) 4 and the receive antennas (Rx) 5 need not be identical. So it is conceivable that an inventive
  • Radar system 1 has a larger number of transmitting antennas 4 or a smaller number of transmitting antennas 4, are provided as receiving antennas 5.
  • the reception signals supplied by the receiving antennas 5 to the monolithically integrated microwave circuit 2 are processed in the MMIC and the output signals are fed via the MMIC output 6 to an evaluation circuit 7.
  • mixers, demodulators and analog-digital converters are also integrated on the MMIC 2, so that the down-conversion, the demodulation and the digital conversion of the received signals from the receiving antennas 5 on the MMIC 2 are carried out and digitized object data via the MMIC output 6 to the
  • Evaluation circuit 7 are passed. However, it is also possible that only some of the enumerated components are integrated on the monolithic integrated circuit 2 and therefore no already digitized data can be output at the MMIC output 6. In this case, it is possible to accommodate the analog-to-digital converter in the evaluation circuit 7 and to transmit an intermediate frequency signal from the MMIC 2 via the MMIC output 6. In the evaluation circuit 7, the signal reflections in terms of their distance, their azimuthal angle, their elevation angle and, where appropriate evaluated in terms of their signal strength and another
  • the evaluation of the azimuthal angle of the respectively detected objects is of great importance since it can be used to determine whether or not the preceding vehicle is in its own driving corridor.
  • FIG. 2 shows a possible arrangement of the transmitting antennas (Tx) 4 and the receiving antennas (Rx) 5, with which in a particularly advantageous manner both the azimuthal angle and the elevation angle of the
  • the patch antennas 10, 11 shown in the lower half of the figure and the patch antenna 12 shown at the top left are intended for transmission transmitting antennas (Tx) 4.
  • the patch antennas 14, 15, 16 and 19 are each by 2-column
  • MMIC monolithically integrated microwave circuit 2
  • Front side of the high-frequency circuit board be arranged on the
  • Antenna arrays 10 to 19 are applied. Under the front of the
  • Printed circuit board on which the transmitting and receiving antennas are arranged This embodiment has the advantage that plated-through holes through the printed circuit board are eliminated. Positioning the MMIC or the MMICs on the back of the radio-frequency circuit board offers the advantages that one has greater freedom with regard to the positioning of the MMIC, the MMIC short
  • Microwave circuit 2 has approximately the same length of leads between the patch antennas and the MMIC, resulting in advantages in terms of
  • Phase position of the transmit and receive signals leads and makes itself noticeable in a low attenuation of the transmit and receive signals.
  • the respective phase centers 8 are shown, which result for the sum of the signals received or radiated by the respective antenna patches.
  • the transmitting antenna 12 is offset vertically to the other two transmitting antennas 10 and 11 and one, several or optionally all transmit antennas simultaneously Can emit a transmission signal.
  • the vertical offset of the transmitting antenna 12 with respect to the horizontally juxtaposed antennas 10, 11 is in the embodiment shown in Figure 2 a in the vertical direction.
  • the receive antennas 14 to 16 may have their phase centers
  • the additional receiving antenna 19 is offset by the offset b vertically to the horizontally juxtaposed receiving antennas (Rx) 14 to 16, whereby a determination of the elevation angle of the objects to be detected is made possible.
  • FIG. 3 shows a further embodiment of the invention
  • Radar system 1 shown. Again, they are antenna arrays of Illustrated patch antennas, which are advantageously applied to the top of a high-frequency circuit board. It is also conceivable that in the case of a particularly powerful radar sensor two MMICs can be cascaded, whereby a larger number of transmit and receive channels is available. For example, it is conceivable that four transmit antennas (Tx) 10 to 12 and eight receive channels with receive antennas (Rx) 14-21 are available. It should be noted that the send and / or
  • Receive channels are phase synchronous only within an MMIC, but not necessarily between the two. Thus, it is advantageous to have a coherent one
  • the azimuth angle estimation may use the four receiving channels of the first MMIC, while the four receiving channels of the second MMIC may be used for the angle estimation.
  • the azimuth angle estimation may use the four receiving channels of the first MMIC, while the four receiving channels of the second MMIC may be used for the angle estimation.
  • the MIMO principle can also be used in this embodiment.
  • Elevation direction are used to determine the elevation angle of the object to be detected even better.
  • Tx transmitting antennas 10 and 11 are provided according to Figure 3, each having a large number of patch columns and patch lines and are arranged horizontally next to each other. There are two more transmitting antennas (Tx) 10 and 11 are provided according to Figure 3, each having a large number of patch columns and patch lines and are arranged horizontally next to each other. There are two more transmitting antennas (Tx) 10 and 11 are provided according to Figure 3, each having a large number of patch columns and patch lines and are arranged horizontally next to each other. There are two more
  • Tx Transmitting antennas 12, 13 arranged in the lower part of Figure 3, which are also mutually only horizontally shifted.
  • Phase centers of the two transmitting antennas 10, 11 and the other two transmitting antennas 12, 13 vertically shifted from each other, since they are shifted at a distance a. For the elevation angle estimation, then this vertical distance of the transmitting antennas in addition to the vertical offsets of
  • Receiv antennas 18, 19, 20, 21 exploited. Furthermore, receiving antennas (Rx) are provided, in turn, the
  • Receiving antennas (Rx) 14, 15, 16, 17, 18 are arranged horizontally next to each other and the additional receiving antennas (Rx) 19, 20 and 21 with respect to their phase centers over the horizontally shifted
  • Receive antennas (Rx) 14 to 18 are also shifted vertically.
  • the receiving antenna (Rx) 19 has a vertical offset bl of the phase center; the opposite to the vertically shifted
  • Receiving antenna 19 also only vertically shifted receiving antenna 20 an offset b2 with respect to the horizontally juxtaposed antennas 14 to 18 and an exemplary receiving antenna 21 a vertical offset of the phase center of b3 relative to the horizontally disposed receiving antennas 12 to 18.
  • an area 2 is shown, in which the MMIC, or in the case of two cascaded MMICs both MMICs, either on the back or the front of the antenna assembly supporting
  • Printed circuit board can be arranged, since in this central region, the leads to the individual transmitting and receiving antennas are about the same length and thus a coherent emission of the transmitted signals and a coherent processing of the received signals is made possible because the respective channels can be designed to synchronize phase.
  • the characteristics of the transmitting and / or receiving antennas and their exact positioning can be adapted to the particular application, in particular, the vertical offsets of the transmit and
  • Reception antennas are designed accordingly.
  • a front sensor with a higher range and only one viewing area can be realized by realizing a vertically offset transmitting antenna as a focusing antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

L'invention concerne un système de radar qui comporte un ensemble d'antennes (1) qui permet l'émission et la réception d'un rayonnement électromagnétique et comprend N premières antennes d'émission (4) pour l'émission et M secondes antennes de réception (5) pour la réception, des objets dans la plage de détection des antennes (4, 5) étant détectés selon le principe MIMO avec les N premières antennes d'émission (4) et avec les M secondes antennes de réception (5). Selon l'invention, les N premières antennes d'émission (4) émettent des signaux d'émission orthogonaux les uns par rapport aux autres dans un cycle d'émission, N-n des N premières antennes d'émission (10, 11) sont disposées horizontalement les unes à côté des autres et au moins n des N premières antennes d'émission (12, 13) sont disposées de manière décalée verticalement, avec chacune le même écart, par rapport aux N-n antennes d'émission (10, 11) disposées horizontalement les unes à côté des autres et M-m des M secondes antennes de réception (14, 15, 16, 17) sont disposées horizontalement les unes à côté des autres et au moins m de M secondes antennes de réception (19, 20, 21) sont disposées de manière décalée verticalement, avec chacune le même écart, par rapport aux M-m antennes de réception (14, 15, 16, 17) disposées horizontalement les unes à côté des autres.
EP16820305.7A 2016-02-29 2016-12-29 Système de radar, comportant un ensemble d'antennes pour émettre et recevoir un rayonnement électromagnétique Pending EP3423863A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016203160.0A DE102016203160A1 (de) 2016-02-29 2016-02-29 Radarsystem, umfassend eine Antennenanordnung zum Senden und Empfangen elektromagnetischer Strahlung
PCT/EP2016/082808 WO2017148561A1 (fr) 2016-02-29 2016-12-29 Système de radar, comportant un ensemble d'antennes pour émettre et recevoir un rayonnement électromagnétique

Publications (1)

Publication Number Publication Date
EP3423863A1 true EP3423863A1 (fr) 2019-01-09

Family

ID=57708600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16820305.7A Pending EP3423863A1 (fr) 2016-02-29 2016-12-29 Système de radar, comportant un ensemble d'antennes pour émettre et recevoir un rayonnement électromagnétique

Country Status (8)

Country Link
US (1) US10823819B2 (fr)
EP (1) EP3423863A1 (fr)
JP (1) JP6770079B2 (fr)
KR (1) KR20180116325A (fr)
CN (1) CN108780147B (fr)
DE (1) DE102016203160A1 (fr)
MX (1) MX2018010155A (fr)
WO (1) WO2017148561A1 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6846437B2 (ja) * 2016-12-01 2021-03-24 日立Astemo株式会社 レーダ装置
DE102017120368A1 (de) * 2017-09-05 2019-03-07 HELLA GmbH & Co. KGaA Verfahren und Vorrichtung zur Erzeugung eines modulierten Dauerstrichradarsignals
US10935650B2 (en) * 2017-12-22 2021-03-02 Waymo Llc Radar based three dimensional point cloud for autonomous vehicles
DE102018202544A1 (de) 2018-02-20 2019-08-22 Audi Ag Systeme zum Übermitteln von Signalen
US11187795B2 (en) * 2018-03-19 2021-11-30 Panasonic Intellectual Property Management Co., Ltd. Radar device
KR102167097B1 (ko) * 2018-04-09 2020-10-16 주식회사 만도 레이더 장치 및 그를 위한 안테나 장치
KR102167084B1 (ko) * 2018-04-09 2020-10-16 주식회사 만도 레이더 장치 및 그를 위한 안테나 장치
DE102018206535A1 (de) * 2018-04-27 2019-10-31 Robert Bosch Gmbh Radarsensoreinrichtung
DE102018207686A1 (de) * 2018-05-17 2019-11-21 Robert Bosch Gmbh MIMO-Radarsensor für Kraftfahrzeuge
CN109358322B (zh) * 2018-10-25 2020-10-16 森思泰克河北科技有限公司 前向目标检测雷达和方法
US11011063B2 (en) * 2018-11-16 2021-05-18 Toyota Motor North America, Inc. Distributed data collection and processing among vehicle convoy members
US11454720B2 (en) * 2018-11-28 2022-09-27 Magna Electronics Inc. Vehicle radar system with enhanced wave guide antenna system
KR102539927B1 (ko) * 2018-12-20 2023-06-08 주식회사 에이치엘클레무브 자동차 레이더용 어레이 안테나 구조 및 그 배치 방법
US11087115B2 (en) 2019-01-22 2021-08-10 Infineon Technologies Ag User authentication using mm-Wave sensor for automotive radar systems
KR20200097101A (ko) 2019-02-07 2020-08-18 현대모비스 주식회사 차량용 레이더 장치 및 그 제어 방법
KR20200108540A (ko) * 2019-03-11 2020-09-21 주식회사 만도 레이더 장치, 레이더 장치용 안테나 장치 및 레이더 장치의 제어 방법
US11262434B2 (en) * 2019-04-01 2022-03-01 GM Global Technology Operations LLC Antenna array design and processing to eliminate false detections in a radar system
EP3951428A4 (fr) * 2019-04-22 2023-01-11 Bitsensing Inc. Dispositif radar et dispositif d'antenne utilisé dans un dispositif radar
US11181614B2 (en) * 2019-06-06 2021-11-23 GM Global Technology Operations LLC Antenna array tilt and processing to eliminate false detections in a radar system
CN111239738A (zh) * 2019-07-26 2020-06-05 北京理工大学 一种四维度信息高精度探测汽车前向防撞雷达
EP3780274B1 (fr) * 2019-08-13 2023-03-29 Arriver Software AB Agencement d'antenne réseau
CN112698298A (zh) * 2019-10-22 2021-04-23 广州极飞科技有限公司 一种雷达天线、雷达、无人机和设备
KR102279302B1 (ko) * 2019-11-07 2021-07-20 현대모비스 주식회사 차량용 레이더 장치 및 그 제어 방법
DE102019134303A1 (de) * 2019-12-13 2021-06-17 Valeo Schalter Und Sensoren Gmbh Radarsystem und Verfahren zum Betreiben eines Radarsystems
DE102019134304A1 (de) * 2019-12-13 2021-06-17 Valeo Schalter Und Sensoren Gmbh Radarsystem und Verfahren zum Betreiben eines Radarsystems
DE102019135473A1 (de) * 2019-12-20 2021-06-24 Infineon Technologies Ag Fmcw-radar mit frequenzspringen
US11435438B2 (en) * 2019-12-30 2022-09-06 Woven Planet North America, Inc. Dynamic sparse radar array for scenarios
EP3862772A1 (fr) * 2020-02-04 2021-08-11 Aptiv Technologies Limited Dispositif de radar
US11693107B2 (en) * 2020-09-29 2023-07-04 Steradian Semiconductors Private Limited System, device and method for efficient MIMO radar
US11619705B2 (en) 2020-10-20 2023-04-04 Aptiv Technologies Limited Radar system with modified orthogonal linear antenna subarrays
WO2022139844A1 (fr) * 2020-12-24 2022-06-30 Intel Corporation Procédé, système et appareil radar
DE102021201073A1 (de) 2021-02-05 2022-08-11 Robert Bosch Gesellschaft mit beschränkter Haftung MIMO-Radarsensor

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766435A (en) * 1986-05-27 1988-08-23 Hughes Aircraft Company Adaptive radar for reducing background clutter
JPH05218736A (ja) * 1992-01-31 1993-08-27 Sumitomo Electric Ind Ltd 平面アンテナ
FR2699008B1 (fr) * 1992-12-04 1994-12-30 Alcatel Espace Antenne active à synthèse de polarisation variable.
JP3433417B2 (ja) * 1998-04-02 2003-08-04 トヨタ自動車株式会社 レーダ装置
FR2802303B1 (fr) * 1999-12-14 2002-03-08 Centre Nat Rech Scient Procede d'obtention d'une imagerie du sous-sol utilisant un radar a penetration de sol
US6750810B2 (en) * 2001-12-18 2004-06-15 Hitachi, Ltd. Monopulse radar system
JP2003248055A (ja) * 2001-12-18 2003-09-05 Hitachi Ltd モノパルスレーダシステム
JP4665590B2 (ja) * 2005-03-31 2011-04-06 日本電気株式会社 干渉型レーダ
US7355546B2 (en) * 2006-01-03 2008-04-08 Advanced Radar Corporation Polarization and frequency diverse radar system for complete polarimetric characterization of scatterers with increased scanning speed
DE102008038365A1 (de) * 2008-07-02 2010-01-07 Adc Automotive Distance Control Systems Gmbh Fahrzeug-Radarsystem und Verfahren zur Bestimmung einer Position zumindest eines Objekts relativ zu einem Fahrzeug
US8289203B2 (en) * 2009-06-26 2012-10-16 Src, Inc. Radar architecture
FR2950147B1 (fr) * 2009-09-15 2012-07-13 Thales Sa Radar a agilite de faisceau, notamment pour la fonction de detection et d'evitement d'obstacles
KR101137088B1 (ko) * 2010-01-06 2012-04-19 주식회사 만도 통합 레이더 장치 및 통합 안테나 장치
JP5638827B2 (ja) * 2010-04-02 2014-12-10 古河電気工業株式会社 内蔵型レーダ用送受一体アンテナ
DE102010064348A1 (de) * 2010-12-29 2012-07-05 Robert Bosch Gmbh Radarsensor für Kraftfahrzeuge
DE102011113015A1 (de) * 2011-09-09 2013-03-14 Astyx Gmbh Abbildender Radarsensor mit synthetischer Vergrößerung der Antennenaperatur und zweidimensionaler Strahlschwenkung
IL221596A (en) * 2012-08-23 2017-12-31 Beeri Amir METHOD AND DEVICE FOR VOLUME VISUALIZATION IN A WIDE RADAR IMAGING SYSTEM
JP5980636B2 (ja) * 2012-09-20 2016-08-31 日本無線株式会社 物標検出装置
DE102013102424A1 (de) * 2013-03-11 2014-09-11 Stefan Trummer Polarimetrisches Radar zur Objektklassifikation sowie geeignetes Verfahren und Verwendung hierfür
DE102013105809B4 (de) * 2013-06-05 2015-01-22 Airbus Defence and Space GmbH Multifunktionale Radaranordnung
DE102013212090A1 (de) * 2013-06-25 2015-01-08 Robert Bosch Gmbh Winkelauflösender FMCW-Radarsensor
US10379217B2 (en) * 2013-11-21 2019-08-13 Sony Corporation Surveillance apparatus having an optical camera and a radar sensor
DE102014200692A1 (de) * 2014-01-16 2015-07-16 Robert Bosch Gmbh Verfahren, antennenanordnung, radarsystem und fahrzeug
DE102014201026A1 (de) * 2014-01-21 2015-07-23 Robert Bosch Gmbh Verfahren zur Winkelschätzung und Radarsensor für Kraftfahrzeuge
US20150253419A1 (en) * 2014-03-05 2015-09-10 Delphi Technologies, Inc. Mimo antenna with improved grating lobe characteristics
US9568600B2 (en) * 2014-03-05 2017-02-14 Delphi Technologies, Inc. MIMO antenna with elevation detection
US9541639B2 (en) * 2014-03-05 2017-01-10 Delphi Technologies, Inc. MIMO antenna with elevation detection
JP2015172491A (ja) * 2014-03-11 2015-10-01 富士通テン株式会社 アンテナ、レーダ装置、および、車両制御システム
EP2963442B1 (fr) 2014-07-04 2016-11-30 Denso Corporation Appareil radar

Also Published As

Publication number Publication date
WO2017148561A1 (fr) 2017-09-08
US20190011532A1 (en) 2019-01-10
DE102016203160A1 (de) 2017-08-31
CN108780147A (zh) 2018-11-09
MX2018010155A (es) 2018-11-09
CN108780147B (zh) 2023-05-12
JP2019512081A (ja) 2019-05-09
JP6770079B2 (ja) 2020-10-14
KR20180116325A (ko) 2018-10-24
US10823819B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
EP3423863A1 (fr) Système de radar, comportant un ensemble d'antennes pour émettre et recevoir un rayonnement électromagnétique
WO2019219263A1 (fr) Procédé pour l'étalonnage de phases de composants haute fréquence d'un capteur radar
EP1792203B1 (fr) Capteur radar multifaisceaux planaire monostatique
EP1340097B1 (fr) Dispositif radar et son procede de fonctionnement
EP1570291B1 (fr) Procede et dispositif pour des mesures radar de distance proche multistatiques
EP3467450B1 (fr) Appareil de mesure de niveau de remplissage à radar pourvu d'un système radar sur puce
DE112006003644T5 (de) Radarvorrichtung
DE102014200692A1 (de) Verfahren, antennenanordnung, radarsystem und fahrzeug
DE10354872A1 (de) Einrichtung zur Erfassung einer Richtung eines Ziels unter Verwendung einer Phasendifferenz von über mehrere Kanäle empfangenen Radiowellensignalen
DE102014200690A1 (de) Antennenanordnung, radarsystem, fahrzeug und verfahren
DE102015208901A1 (de) Radarsensor für Kraftfahrzeuge
DE102018118863A1 (de) Radarvorrichtung und Verfahren zum Erzeugen unterschiedlicher Richtcharakteristika
DE102020008040A1 (de) Radarempfangssystem und verfahren zur kompensation eines phasenfehlers zwischen radarempfangsschaltungen
DE102011086202A1 (de) Radarvorrichtung mit Mehrkanalempfänger
DE10205379A1 (de) Vorrichtung zum Senden und Empfangen elektromagnetischer Strahlung
EP1969394A1 (fr) Dispositif radar
DE102016124108A1 (de) Öffnungskodierung für sende- und empfangssysteme mit einer einzelnen öffnung
WO2019242907A1 (fr) Procédé et dispositif d'évaluation de signaux radar
DE102018010369A1 (de) Mimo fmcw radarsystem
EP3966593A1 (fr) Système de radar multistatique cohérent, en particulier pour une utilisation dans un véhicule
DE102010041755A1 (de) Radarsystem
EP3811101A1 (fr) Dispositif et procédé d'évaluation de signaux radar
EP4139706A1 (fr) Procédé associé à un radar et système radar d'analyse à cohérence de phase
DE102021201073A1 (de) MIMO-Radarsensor
DE102021131175A1 (de) Übertragungsschema zum Implementieren eines Codemultiplex-Vielfachzugriffs in einem Radarsystem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181001

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210503

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS