EP3423779A1 - Ammunition assembly apparatus - Google Patents

Ammunition assembly apparatus

Info

Publication number
EP3423779A1
EP3423779A1 EP17710496.5A EP17710496A EP3423779A1 EP 3423779 A1 EP3423779 A1 EP 3423779A1 EP 17710496 A EP17710496 A EP 17710496A EP 3423779 A1 EP3423779 A1 EP 3423779A1
Authority
EP
European Patent Office
Prior art keywords
assembly
ammunition
working stations
mounting
mounting plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17710496.5A
Other languages
German (de)
French (fr)
Inventor
Leonid ABEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Werner Industrie-Ausruestungen GmbH
Original Assignee
Fritz Werner Industrie-Ausruestungen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fritz Werner Industrie-Ausruestungen GmbH filed Critical Fritz Werner Industrie-Ausruestungen GmbH
Publication of EP3423779A1 publication Critical patent/EP3423779A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
    • F42B33/001Devices or processes for assembling ammunition, cartridges or cartridge elements from parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
    • F42B33/005Crimping cartridge cases on projectiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
    • F42B33/02Filling cartridges, missiles, or fuzes; Inserting propellant or explosive charges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
    • F42B33/02Filling cartridges, missiles, or fuzes; Inserting propellant or explosive charges
    • F42B33/0285Measuring explosive-charge levels in containers or cartridge cases; Methods or devices for controlling the quantity of material fed or filled

Definitions

  • the invention relates to ammunition assembly apparatus and in particular to an apparatus for the automated and progressive assembly of cartridges for firearms such as rifles, guns, revolvers and pistols.
  • a rotary progressive apparatus comprises several drums which rotate about their vertical axis. Each drum performs a different assembly step for the ammunition while continuously transporting the ammunition from the previous drum and the previous assembly step to the next drum and the next assembly step. Each drum comprises several almost identical working stations which, during the rotation of the drum, each perform in parallel the same assembly step on the various cartridges currently on the drum.
  • EP 1 12 193 B1 discloses an example of such an apparatus.
  • ammunition assembly apparatus known in the state of the art suffer from a risk of ammunition powder entering sensitive machinery. While filling the shells with ammunition powder a portion of the ammunition powder may fall accidentally into the lower machine parts, in which for instance cam drives operate at high speeds. Due to the explosiveness of ammunition powder this poses a severe security risk. It may not only lead to a damage of the ammunition assembly apparatus, but may also harm the working personal.
  • the objective is achieved by an ammunition assembly apparatus according to the independent claim.
  • the dependent claims present preferred embodiments of an ammunition assembly apparatus according to the invention.
  • the invention relates to an ammunition, in particular cartridge, assembly apparatus comprising a conveyor subsystem and working stations, the conveyor subsystem being adapted to transport ammunition past the working stations in an assembly direction, wherein the assembly apparatus comprises a mounting plane onto which the working stations and the conveyor subsystem are mounted such that the conveyor subsystem extends linearly at least sectionwise through the ammunition assembly apparatus and the working stations are arranged rectilinearly along the assembly direction.
  • the ammunition assembly apparatus is thus characterized by a progressive, linear arrangement of the working stations.
  • the apparatus uses shells, such as brass metal shells, in order to produce ammunition in particular cartridges.
  • a single working station works upon a particular cartridge.
  • a powder filling station may fill in one assembly step the shells with powder.
  • the apparatus comprises a conveyor subsystem.
  • the conveyor subsystem may comprise a linear section, along which the working stations are arranged one behind the other in the assembly direction, preferably in a straight line. Such a linearly arranged assembly line is more easily maintained and adapted than a tightly packed rotary system.
  • the conveyor subsystem may comprise a conveyor belt and a drive, the drive being adapted to intermittently move the conveyor past a series of working stations.
  • the conveyor subsystem transports the shells intermittently by alternating between a working cycle, where the shells are not moved and being worked upon, and a transport cycle, in which the shells are transported.
  • the length of the working cycle and the transport cycle remains preferably constant at least for the same type of cartridges.
  • the working stations of the ammunition assembly apparatus are preferably stationary and do not move with the ammunition which is transported through the apparatus.
  • Each working station completes preferably one working step in the assembly of the ammunition.
  • the working stations may perform a particular assembly step e.g. by adding a component, such as a propellant or powder or a projectile, to a shell.
  • a working station may preferably also refer to a functional unit that carries out a measurement step and/or a sorting step of the cartridges. Therefore a sorting station or a measurement apparatus are also preferably referred to as working stations.
  • the working stations as well as the conveyor system are mounted to a mounting plane of the apparatus.
  • the mounting plane preferably refers to a vertically upward standing wall.
  • the mounting plane may be single standing wall or part of a support frame for the assembly apparatus.
  • the mounting plane may form together with a bulkhead an L-shaped support frame for the conveyor subsystem and the working stations.
  • the mounting plane may be manufactured of metal and adapted to receive the weight of the working stations and the conveyor subsystem.
  • the manufacturing components of the apparatus are thus hanging off said mounting plane.
  • the ammunition assembly apparatus according to the invention represents therefore an upside down design.
  • the working stations as well as the conveyor subsystem are hanging in an upper manufacturing space above the ground or a horizontal bulkhead.
  • an ammunition assembly apparatus may comprise two working stations, which are a powder filling station and a projectile injection station. This may constitute a minimal ammunition assembly apparatus station. If for instance for certain applications a crimp station is necessary, the crimp station may be readily mounted onto the mounting plane behind the projectile injection station in a direction along the assembly line.
  • the powder filling station may be upgraded by equipping the powder filling station with a weighing apparatus for the shells prior to and after the dosing of the powder.
  • a projectile insertion station may be removed in case blank cartridges are to be removed. It was surprising that such a flexibility can be gained by attaching the working stations together with the conveyor system to the mounting plane of the apparatus.
  • the mounting plane allows for rectilinear setup with all working stations being arranged serially in the assembly direction, preferably without any overlap.
  • the ammunition assembly apparatus comprises a horizontal bulkhead and the working stations and the conveyor subsystem are mounted to the mounting plane such that an empty space remains between the surface of the horizontal bulkhead with respect to the working stations and the conveyor subsystem.
  • the horizontal bulkhead serves preferably as the base frame for the apparatus, wherein both parts of the base frame form preferably an L-shape.
  • a base frame allows for a particular stable support for operating an assembly line.
  • the horizontal bulkhead serves preferably as a dust-tight barrier to prevent the propellant or powder from falling into lower parts of the apparatus.
  • the horizontal bulkhead thus divides the apparatus into a, preferably upper, manufacturing space in which the conveyor subsystem and the working stations as well as reservoirs for the components are located, and a, preferably lower, bottom space.
  • the bottom space may be adapted to receive supply equipment, such as electric supply units, or left empty.
  • the horizontal bulkhead forms preferably a massive seal between the manufacturing space and the bottom space beneath the horizontal bulkhead.
  • the bulkhead is preferably located below the transport plane. By mounting the working stations and the conveyor subsystem to the mounting plane preferably all machinery is located in a distance above the bulkhead. Any propellant falling down from the subsystem falls onto the bulkhead, where it is clearly visible.
  • the horizontal bulkhead may be made from metal to avoid static discharges. Preferably, there are no unsealed openings in the horizontal bulkhead which connect the manufacturing volume to the at least one bottom space. It is however particularly preferred to leave the bottom space empty in order to avoid the risk of electromagnetic fields interfering with ammunition powder situated on top of the bulkhead surface.
  • the conveyor subsystem and each working station are preferably located above the horizontal bulkhead such that an empty space remains between them and the bulkhead.
  • the empty space allows for a good accessibility and in particular for a fast and efficient cleaning of the bulkhead surface, enabling an easy removal of misplaced ammunition powder from the apparatus.
  • the formed empty space minimizes vibrations between the conveyor belt and the working stations, thereby augmenting the stability of the apparatus while operating.
  • the empty space preferably refers to a gap between at least the conveyor belt and one more of the working stations.
  • the empty space may be discontinuous.
  • a weighing apparatus may be installed to weigh the shells and be provided with a base separate from the base of the remaining apparatus and the bulkhead to decouple any vibrations from the conveyor subsystem.
  • the bulkhead may be discontinuous along the assembly direction and the weighing apparatus is standing on the ground in such a gap. Between the weighing cells and the transport plane for the shells no substantial empty space is kept. However the weighing cells are preferably sealed to avoid the falling of ammunition into the weighing apparatus.
  • the apparatus according to the invention is especially suited to process shells which may have already been provided with a primer, and need to be provided with a propellant, such as powder, and/or a projectile.
  • one of the working stations is a powder filling station.
  • the powder filling station preferably comprises an actuator subsystem adapted to fill the powder provided for instance from a powder reservoir into the shell.
  • an actuator subsystem may comprise a dosing mechanism which is adapted to separate a portioned dose of propellant from a propellant reservoir and to move the apportioned amount into the shell.
  • the dosing may comprise a threaded arbor. The number of revolutions of the arbor determines the amount of powder moved into the shell.
  • the dosing mechanism is preferably operated intermittently in synchronization with the transport and/or working cycle of the conveyor subsystem.
  • the working station in this case the powder filling station, may also be provided with a control subsystem which is adapted to control the actuator subsystem.
  • the control subsystem of the powder filling station may control the operation of the dosing mechanism. This can be done by controlling the number of revolutions of the arbor. If the amount of powder in a shell needs to be changed, the amount of revolutions of the arbor is changed accordingly.
  • the operation of the dosing mechanism can be controlled in dependence of the actual powder weight in the shell, or a signal representative of the actual powder weight, as determined by the joint operation of the net and the gross weighing apparatus, which may weigh the shell prior and after the filling.
  • the projectile filling station may comprise two hollow concentric tubes, which are brought into abutment with the shell currently underneath the projectile filling station in the working cycle.
  • An outer hollow tube may be a centering tube with an inner bevel.
  • the centering tube respectively its inner bevel, is preferably brought into mechanical contact with the shell, either a shoulder at the outer periphery of the shell or, preferably, with the upper rim of the shell.
  • the bevel is dimensioned so that its peripheral surface comes to rest against the shell and thereby automatically centers the shell.
  • An inner tube may be a feeder tube through which the propellant is guided into the shell.
  • the feeder tube may be rigidly connected to the centering tube or may be driven independently of the feeder tube along the common axis.
  • one of the working stations is a projectile insertion station.
  • the projectile insertion station is located along the assembly direction behind a powder filling station.
  • the projectile may be pressed into the shell using a press-in tool that may be moved from above onto the projectile of the standing shell.
  • the length of the cartridge is determined by the end position of the press-in tool, preferably after applying a determined press-in force acting in the longitudinal direction of the shell against the projectile.
  • the apparatus may comprise a cartridge length measurement apparatus as a working station in order to measure the length of the cartridge with the inserted projectile.
  • the length measurement apparatus may comprise a guiding tube with a measurement pin and a pneumatic cylinder to lower the guiding tube.
  • a pneumatic cylinder to lower the guiding tube.
  • the length of the cartridge may be determined by measuring the translation of the guiding tube e.g. by measuring the distance of a measurement plate attached to the measurement pin with respect to a stationary inductive sensor.
  • detection means such as optical detectors are possible.
  • the length measurement apparatus is preferably mounted to the mounting plane behind the projectile insertion station along the assembly direction.
  • a control subsystem may be adapted to compare the actual length of the cartridge thus determined to a target length stored within the control subsystem. Depending on a deviation of the actual length from the target length, a maximum stroke and/or a maximum insertion force of the actuator subsystem, which is adapted to press the projectile into the shell, may be adjusted automatically during operation of the apparatus.
  • one of the working stations is a crimp station.
  • the shell is preferably crimped onto the projectile.
  • the crimp station is preferably mounted to the mounting plane behind the projectile insertion station.
  • the apparatus may comprise a sorting station.
  • the sorting station is mounted to the mounting plane at the end of the assembly line.
  • the sorting station is preferably used to select the manufactured cartridges based upon previous measurements of physical parameters such as the propellant weight or length of the cartridges. As described above the weight of the ammunition powder in the shells can be preferably measured by a weighing apparatus, while the length of the cartridge by a cartridge length measurement apparatus.
  • the measured parameters are preferably stored and tolerances ranges are set for each of the physical parameters.
  • Suited cartridges i.e. cartridges for which the physical parameter are within the preset tolerance range are preferably placed by the sorting station into a collector container, while unsuited cartridges are preferably sorted towards a waste container.
  • the conveyor subsystem comprises a conveyor belt, comprising compartments, which are separated by vertical ribs and the conveyor belt is assembled as a loop around two pulleys, which lie on an axis and are rotated by means of a driver.
  • the conveyor belt may be an endless belt which comprises niche-like compartments for receiving the shells.
  • each compartment receives a single round of ammunition.
  • the conveyor belt may have the shape of a toothed belt, the space between two adjacent teeth being used as a compartment.
  • the conveyor belt may be preferably made of an elastic material such as rubber and/or resin. However it may also be preferred to use other materials or elements to transport the ammunition as for instance a transport chain made of metal.
  • the conveyor belt may transport each round of ammunition in a standing position.
  • each cartridge or shell may slide on a stationary transport plane of the apparatus.
  • the transport plane may be made of polished and, in particular, hardened steel.
  • the transport plane may be formed by a metal strip which is adapted to be removed if worn out.
  • the metal strip may have a L- or U-shaped cross-section to provide lateral support with its legs for the belt and/or the shells within the compartments, while the shells may rest on its bottom.
  • a transport guide may be formed through which the shells are moved by the belt.
  • each compartment may be larger than the outer width, in particular the maximum outer width, of the shells which are currently manufactured.
  • the shells is not clamped or in any other way restricted or fixed by the compartment, but simply received in the compartment and being pushed for transportation by the compartment.
  • the shells are received loosely within their respective compartment.
  • the shells may be fed into a compartment and removed from a compartment simply by gravitation, e.g. by falling into and/or out of a compartment.
  • the compartments of the conveyor belt may surround the respective shell on only three sides and may be open laterally, i.e. in a direction perpendicular to the assembly direction and parallel to the transport plane.
  • the open side of the compartments may be covered by a stationary retainer bar which runs parallel to the conveyor belt at least in that section of the conveyor belt, where the rounds of ammunition are being worked on.
  • the retainer bar keeps the shells in the compartments.
  • the retainer bar Preferably, there is no physical contact between the conveyor belt and the retainer bar to keep the friction low.
  • the retainer bar should not exert any pressure on the shells in the compartments to keep the friction during transport low.
  • the retainer bar may be combined with the slider bar to a U- or L-shaped bar.
  • the retainer bar, slider bar and transport plane preferably form a stationary transport guide through which the shells can be pushed by means of the conveyor belt. In a return section of the conveyor belt, neither a strip for the transport plane nor a retainer bar is needed.
  • the conveyor belt is preferably endless and wound about at least two pulleys, the axes of which are preferably perpendicular to the transport plane, i.e. the axes of the pulleys may be aligned with the axis of the rounds of the standing up shells. Said pulleys are preferably rotated by the driver in order to operate the conveyor subsystem.
  • the ammunition assembly apparatus comprises a stationary transport guide through which the shells are moved by means of the conveyor belt and wherein preferably the transport guide comprises powder releases slots. While the shells are worked upon by the working stations the shells are preferably transported by means of the conveyor belt within a transport guide.
  • Said transport guide comprises preferably a bottom transport plane upon which the shells are sliding.
  • a retainer bar may be used to keep the shells laterally within in the compartments.
  • the transport guide has a L- oder U-shaped cross-section. In case of spilling of ammunition powder ammunition powder may accumulate within the transport guide. In particular during operation the ammunition can be pushed by the moving belt along the assembly direction.
  • powder release slots may be provided.
  • the powder release slots are preferably located in the bottom of the transport guide thus within the transport plane.
  • the powder release slots have a preferred width such that the shells may traverse the powder release slots, while ammunition powder within the transport guide can fall through.
  • the powder release slots have a width between 1 to 3 mm.
  • the controlled release of ammunition powder within the transport guide does not impose any security thread.
  • the apparatus comprises a horizontal bulkhead the powder typically falls onto said bulkhead and can be easily removed.
  • the working stations and the conveyor subsystem are mounted to a mounting plane by means of mounting frames.
  • the mounting frames are preferably a mounting aid for the attachment of the working stations and the conveyor subsystem to the mounting plane.
  • the mounting frames exhibit preferably an outer rectangular shape. Thereby one side of the mounting frame is suited for a simple attachment to the mounting plane.
  • the mounting frames are preferably characterized by a closed configuration, i.e. the circumference of the cross-section of the mounting frames is not disrupted. Thereby reciprocal forces exerted by the working stations or subunits thereof, while working upon the shells, may be advantageously contained within the mounting frames.
  • the projectile insertion station preferably comprise a press-in subsystem for the assembly of the projectiles onto the shells.
  • the press- in subsystem exerts two reciprocal forces to press the projectiles into the shells.
  • a vertical upward force is established onto the bottom of the shells, while a vertical downward force presses onto the tip of the projectiles.
  • the mounting frames allow to diminishes strains and stresses within the mounting plane.
  • the mounting frames facilitate the mounting and demounting of the working stations considerably.
  • the mounting frames are preferably used to mount functional subunits of the assembly line to the mounting plane.
  • a press-in subsystem of a projectile insertion station may be mounted by a first mounting frame to the mounting plane, while a measurement apparatus for the measuring the length of the cartridges may be mounted by a second mounting frame.
  • the length measurement apparatus can be removed in a simple manner, without interfering with the installation of the projectile press-in subsystem.
  • a functional unit such as a crimp station, a sorting station, a powder filling station or a measurement apparatus are mounted within a separate mounting frame. Thereby a particular working station or subunit thereof can be simply attached or detached using the mounting frames.
  • the mounting frame may contain an entire working station or functional subunit of a working station depending on the desired functional units that are preferably exchangeable in the modular design of the apparatus.
  • a mounting frame comprises a bottom support plane, a top support plane and a middle support plane, wherein the conveyor subsystem is supported by the middle support plane.
  • a three-layered support frame has proven particular advantageous in terms of a functional and compact design. Since the shells are transported on top of the middle support planes, parts of the working stations (e.g.
  • the mounting plane comprises a horizontal support edge onto which the mounting frames are mounted.
  • the support edge extends preferably horizontally along the assembly direction and is adapted to receive a bottom edge of the mounting frames. The horizontal support edge allows for a precise vertical alignment of all mounting frames and thus of the working stations and the conveyor subsystem.
  • the horizontal support edge may be generated by shaping the mounting plane accordingly or by installing a separate strip that serves as the horizontal support edge.
  • the mounting plane comprises fixing aids that can be fixable translated along the assembly direction and the mounting frames comprise corresponding grooves.
  • the combination of this embodiment in addition to installing a horizontal support edge is particularly preferred. Due to the horizontal support edge the mounting frames are fixed in a vertical position, but can be translated along the assembly direction horizontally. In order to facilitate the mounting procedure between different configurations the fixing aids allow for a precise memory of the horizontal position of the mounting frames.
  • the powder filling station has to be position within a mounting frame such that a powder release tube is exactly above the center of a compartment of the conveyor belt.
  • other components of the working stations need to be precisely calibrated along the assembly direction to be able to work upon the shells.
  • the position of the mounting frames correspond to the position of the working stations or functional subunits thereof, said position may be stored using fixing aids which are attached to the mounting plane.
  • a practical solution to this end represent positioning pins that communicate with grooves within the mounting frames and that can be fixably translated along the assembly direction.
  • the apparatus comprises at least two assembly lines comprising working stations and a conveyor subsystem and wherein the assembly lines are attached to the same side of the mounting plane on the same side and arranged parallel and side-by-side.
  • An assembly line preferably refers to an arrangement of working stations as well as the conveyor subsystem that allows for all assembly steps to produce the cartridges. Two assembly lines thus allow to double the production of cartridges.
  • the arrangement of the apparatus is particular space efficient and allows for an optimization of the productivity of the system with respect to its size. Moreover the attachment of the apparatus to the same mounting plane augments the stability of the two assembly lines and ensures that a high precision for the manufacturing of the ammunition is maintained. Furthermore it may be preferred that the assembly lines share at least one reservoir, for instance for the ammunition powder or the shells, thereby allowing for a cost efficient use of the construction elements.
  • the assembly apparatus comprises at least two assembly lines comprising working stations and a conveyor subsystem, wherein a first of the two of the assembly lines is attached on one side of the mounting plane, while a second of the two assembly lines is attached on the opposite side of the mounting plane.
  • the mounting plane and the horizontal bulkhead form a T-shaped support for the assembly system.
  • the preferred embodiment allows for a particular high flexibility. For instance different working stations may be mounted on each side of the mounting plane for the manufacturing of different ammunitions. Advantageously it is thus possible to manufacture different types of ammunition and/or caliber using the same apparatus.
  • each assembly line can be preferably controlled and adapted independently.
  • the mounting plane serves as a security barrier, it is possible to repair, clean and/or reassemble one assembly line, which is on one side of the mounting plane, while another assembly line, which is on the other side of the mounting plane, is continuing to produce ammunition. Production downtimes are therefore reduced.
  • the ammunition assembly apparatus comprises at least four assembly lines comprising working stations and a conveyor subsystem, wherein a first pair of the assembly lines is attached on one side of the mounting plane, while a second pair of the assembly lines is attached on the opposite side of the mounting plane.
  • productions can be doubled leading to a four-fold increase of the production rate in comparison to a single assembly line.
  • the preferred embodiment is characterized by a particular compact design that allows for very high production rates while ensuring an easy accessibility of all components and a high modular flexibility.
  • the design allows the production of different calibers on each side of the mounting plane with a production rate that is double to in comparison to that of a single assembly line.
  • it may also be preferred to produce different calibers on each of the single assembly lines allowing for a particular high production flexibility.
  • the linear design plan of the ammunition assembly apparatus allows for a particular easy scale up and adaptation according to the desired production specifications. By attaching multiple assembly lines on one and/or both sides of the mounting plane productions rate can be increased integer-wise. Moreover since the assembly lines can also be controlled independently a number of different specifications for the produced ammunition may be assigned to each of the assembly lines.
  • the ammunition assembly apparatus therefore comprises at least six assembly lines comprising working stations and a conveyor subsystem, wherein at least three of the assembly lines are attached on one side of the mounting plane, while another at least three of the assembly lines are attached on the opposite side of the mounting plane.
  • the ammunition assembly apparatus comprises at least six assembly lines comprises at least eight assembly lines comprising working stations and a conveyor subsystem, wherein at least four of the assembly lines are attached on one side of the mounting plane, while another at least four of the assembly lines are attached on the opposite side of the mounting plane.
  • the ammunition assembly apparatus comprises at least four assembly lines comprising working stations and a conveyor subsystem, wherein a first pair of the assembly lines is attached on one side of the mounting plane, while a second pair of the assembly lines is attached on the opposite side of the mounting plane.
  • Fig. 1 shows a schematic representation of a preferred embodiment of an apparatus according to the invention.
  • Fig. 2 shows a schematic representation of a preferred embodiment of an apparatus according to the invention in which two assembly lines are attached to the same side of the mounting plane.
  • Fig. 3 shows a sectional view of the preferred embodiment of the system of Fig. 2.
  • Fig. 4 shows a schematic representation of a preferred embodiment of an apparatus according to the invention in which a first pair of assembly lines is attached to one side of the mounting plane, while a second pair of assembly lines is attached to the opposite side of the mounting plane
  • Fig. 5 shows a schematic representation of a preferred embodiment of an apparatus according to the invention in which the working stations and the conveyor subsystem are mounted to the mounting plane by means of mounting frames.
  • Fig. 6 shows a schematic representation of a preferred embodiment of an apparatus according to the invention in which two assembly lines are attached to the same side of the mounting plane using mounting frames.
  • Fig. 7 shows a schematic representation of a preferred embodiment of an apparatus according to the invention in which two assembly lines are attached to the opposite sides of the mounting plane using mounting frames.
  • Fig. 8 shows a schematic representation of a preferred embodiment of an apparatus according to the invention comprising four assembly lines attached by means of mounting frames, in which one pair of assembly lines is attached to one side of the mounting plane, while a second pair of assembly lines is attached to the opposite side of the mounting plane
  • Fig. 1 depicts a preferred embodiment of the apparatus 1 according to invention for the manufacturing of ammunition.
  • the general principal of working function of the apparatus shall be illustrated with respect to the Fig. 1.
  • the apparatus 1 uses shells 2 to produce cartridges 3.
  • the shells 2 are filled with a propellant, i.e. ammunition powder, and a projectile 1 1 .
  • the end products i.e. shells 2 comprising the propellant and the projectile 1 1
  • cartridges 3 may however be used synonymously, except where a clear differentiation seems to be more appropriate.
  • the conveyor subsystem 4 is adapted to move linearly, i.e. in a straight line from one working station 5 to the next.
  • the working stations 5 are lined up linearly in an assembly direction 6, in which the shells 2 are transported.
  • the conveyor subsystem 4 is adapted to move intermittently between the stations by switching between a transport cycle, in which the shells 2 are moved, and a working cycle, in which the shells 2 rest and are being worked upon.
  • the transport and the working cycle are constant throughout the manufacturing process of at least one variant or type of cartridge 3.
  • Each working station 5 completes one step during the assembly. For instance a component, such as a propellant or powder or a projectile 1 1 , may be added to a shell 2 or a particular measurement or control step may be performed.
  • the conveyor subsystem 4 comprises a conveyor belt 41 which extends at least sectionwise rectilinearly in the assembly direction 6 through the apparatus 1 .
  • Each compartment 42 is adapted to receive loosely a single shell 2 in a standing position. The bottom of the shell 2 slides on a transport plane of the transport guide 48. Thus, the shells 2 are simply pushed by the conveyor belt 41 in the assembly direction 6.
  • compartment 42 is separated from the neighboring compartments 42 in the assembly direction 6 by a vertical rib 45.
  • the conveyor belt 41 and the ribs 45 are preferably made from rubber and/or resin material.
  • the compartments 42 are open, preferably such that a shell 2 may fall through a compartment 42.
  • Each compartment 42 defines a niche-shaped receptacle for a shell 2.
  • the conveyor belt 41 is looped around two pulleys (not shown in Fig. 1 ) of which the axes are oriented vertically, i.e. parallel to the longitudinal axis of the upright shells 2 in the conveyor belt 41 .
  • the loop of the conveyor belt 41 defines a plane which extends parallel to the transport plane.
  • a drive (not shown in Fig.
  • a feeder tube 59 may be extended from a shell reservoir 40 downwards to the location where a compartment 42 comes to rest between two subsequent transport cycles of the conveyor subsystem 4.
  • the shells 2 may be fed through the feeder tube 59 passively by the force of gravity, and simply fall into the compartment 42.
  • the inner width of a compartment 42 should be larger than the largest outer width of the shell 2.
  • the feeding rhythm of the shell feeding station is synchronized with the intermittent motion of the conveyor subsystem 4.
  • the shells 2 are then transported in the assembly direction 6 along a straight path to the powder filling station 18.
  • the ammunition powder is filled from a powder reservoir 40 into the shells 2.
  • the amount of powder may be controlled by means of a feedback control mechanism that is based on the weight measurements of the shell 2 prior to (net weight WN) and after the powder dosing (gross weight WG) using the weighing apparatus 20a and 20b.
  • the weighing apparatus 20a, 20b are preferably not attached to the mounting plane 62 in order to decouple the weighing process from vibrations.
  • the weighing apparatus 20a, 20b are situated on the bulkhead 66. However it may also be preferred to position the weighing apparatus on to the ground in a gap of the horizontal bulkhead 66 to decouple the weighing apparatus completely from the base frame.
  • the projectile insertion station 27 serves to press the projectiles 1 1 into the shells 2.
  • the projectiles 1 1 are provided by a projectile reservoir 60 and preset into the shell 2.
  • the projectiles 1 1 are pressed-in using a press-in subsystem.
  • the projectile insertion may be monitored and adapted by a feedback control.
  • a crimp station 65 may be provided, where the shell 2 is crimped onto the projectile 1 1.
  • the crimp station 65 may be located as shown between the projectile insertion station 27 and the length measurement apparatus 28. In case a crimp station 65 is present it is thus preferred to measure the length of the cartridges 3 after said crimp station 65.
  • the working stations 5 as well as the conveyor system 4 are mounted to the mounting plane 62 of the apparatus 1.
  • the means for a control and energy supply (not shown) of working stations 5 may also be supplied via the mounting plane 62. Due to the mounting of the stations to the mounting plane 62 the working stations 5 and conveying system 4 are hanging above the bulkhead 66 surface. In particular an empty space 63 is formed between these components of the apparatus 1 and the upper surface of the horizontal bulkhead 66.
  • the working stations 5 and the conveyor system 4 are therefore situated in a manufacturing space 67 above the bottom space of the apparatus 68.
  • the horizontal bulkhead 66 may be made for instance of metal and is preferably constructed in a dust-tight manner:
  • the bottom space 68 may be adapted to receive supply equipment, such as electric supply units. It is however preferred to leave the bottom space empty. Thereby it can be avoided that electrical or magnetically fields have an impact on ammunition powder situated on top of the surface of the bulkhead 66. Leaving the bottom space 68 underneath the bulkhead 66 surface void thus additionally enhances the security of apparatus.
  • a weighing apparatus 20a and 20b may extend into the bottom space 68.
  • the weighting cells 69 are also concealed in a dust-tight manner.
  • the machinery for the assembly is located in a bottom space underneath the working stations and connected by breaches through a cover.
  • a particular safe assembly apparatus 1 can be provided in which the manufacturing space 67 is separated from a bottom space 68 in a dust tight manner. In this embodiment the risk of ammunition powder entering sensitive machinery is minimized.
  • the attachment of the working stations 5 to the mounting plane 62 allows for a fast mounting and demounting of the working stations 5.
  • the embodiment is therefore also characterized by a modular design allowing for a high degree of functional flexibility.
  • Fig. 2 depicts a preferred embodiment of an ammunition assembly apparatus 1 according to invention that comprises two assembly lines 1 1 1 , comprising working stations 5 and conveyor subsystems 4, which are attached to a single mounting plane 62 on the same side.
  • the working stations 5 and the conveyor system 4 of the two assembly lines 1 1 1 depicted in Fig. 2 correspond to the assembly line 1 1 1 of the apparatus 1 depicted in Fig. 1.
  • the assembly lines 1 1 1 exhibit identical arrangements of the working stations 5.
  • the working stations 5 are mounted to the mounting plane 62 in a parallel fashion side-by-side.
  • the two assembly lines 1 1 1 possesses different working stations 5 and/or one of the assembly lines 1 1 1 possesses an additional working station 5.
  • the transport planes 44 of the two assembly lines 1 1 1 exhibit an similar empty space 63 to the upper surface of the bulkhead 66.
  • Fig. 3 shows the side view of the apparatus 1 depicted in Fig. 2.
  • the empty space 63 is particularly visible.
  • the weighting apparatus 20a and 20b may extend into the bottom space 68 of the apparatus 1 .
  • Components such as the working stations 5 and the conveyor system 4 are situated in the manufacturing space 67 allowing for a modularity of the apparatus 1 and accessibility for cleaning and/or repair.
  • Fig. 4 depicts a preferred embodiment of an ammunition assembly apparatus 1 according to the invention that comprises four assembly lines 1 1 1.
  • two assembly lines 1 1 1 are mounted on one side of the mounting plane 62, while two other assembly lines are mounted on the other side of the mounting plane 62.
  • the preferred apparatus 1 depicted in Fig. 4 corresponds to a scale-up of the preferred apparatus 1 depicted in Fig. 2 and 3.
  • a doubling of the producible ammunition can be achieved.
  • this arrangement constitutes a particularly compact construction that allows for a flexible use.
  • ammunition of a first caliber can be produced on one side of the apparatus 1 using two assembly lines 1 1 1 , while on the other side of the mounting plane 62 the apparatus 1 produces ammunition of a different, second caliber using the two other assembly lines.
  • the mounting plane 62 forms a security barrier between the two pairs of assembly lines 1 1 1. Therefore it is possible to repair and/or clean a pair of assembly lines on one side of the mounting plane 62, while the other pair is operating
  • Fig. 5 depicts another preferred embodiment of an ammunition assembly apparatus 1.
  • the working principle of the apparatus 1 depicted in Fig. 5 is identical to the one described for the apparatus 1 shown in Fig. 1 .
  • the apparatus 1 uses shells 2 to produce cartridges 3 by means of different assembly steps accomplished by the working stations 5. Between the assembly steps the shells 2 are transported by means of a conveyor system 4.
  • the conveyor subsystem 4 comprises a conveyor belt 41 , which extends rectilinearly in the assembly direction 6 through the apparatus 1.
  • Each compartment 42 is adapted to receive loosely a single shell 2 in a standing position. The bottom of the shell 2 slides on a transport plane of the transport guide 48. Thus, the shells 2 are simply pushed by the conveyor belt 41 in the assembly direction 6.
  • Each compartment 42 is separated from the neighboring
  • the conveyor belt 41 is looped around two pulleys 50.
  • the loop of the conveyor belt 41 defines a plane which extends parallel to the transport plane 44 respectively.
  • a drive 57 of the conveyor subsystem 4 is located above the transport plane 44.
  • shells 2 are fed and placed into the compartments 42 of the conveyor belt 41 .
  • a feeder tuber 59 extends from a shell reservoir 40 to the compartments 42.
  • the shells 2 are then transported in the assembly direction 6 along a straight path to the powder filling station 18.
  • the ammunition powder is filled from a powder reservoir 40 into the shells 2.
  • the amount of powder may be controlled by means of a feedback control mechanism that is based on the weight measurements of the shell 2 prior to (net weight WN) and after the powder dosing (gross weight WG) using weighing apparatus (not shown in Fig. 5).
  • the projectile insertion station 27 serves to press the projectiles 1 1 into the shells 2. Furthermore a crimp station 65 may be provided, where the shell 2 is crimped onto the projectile 1 1 .
  • a cartridge length measurement apparatus 28 which is preferably installed after the crimp station 65, the correct projectile insertion may be monitored and adapted by a feedback control.
  • a sorting station 104 may be provided at the end of the assembly line 1 1 1 .
  • Said sorting station 104 may be installed.
  • Said sorting stations 104 can be used to select the produced cartridges 3 based upon previous measurements of physical parameters such as the powder weight or length of the cartridges 3.
  • the weight of the added powder can be preferably measured using weighing apparatus before and after the filling of a powder, while a cartridge length measurement apparatus 28 can be used to determine the length of the cartridges 3.
  • the measured parameters are preferably stored and tolerances ranges are set for each of the physical parameters. Suited cartridges 3, i.e.
  • a storage and control subsystem 24 can be used to operate and control the apparatus 1 as well as for data analysis of measured and/or set parameters. It is noted that the depicted storage and control subsystem 24 can be attached to the apparatus 1 as shown in Fig. 5, but can also be installed in a different location and/or in a place away from the apparatus 1 depending on the preference of the user.
  • the working stations 5 and the conveyor subsystem 4 are mounted to the mounting plane 62 of the apparatus 1.
  • the mounting is achieved by means of mounting frames 94.
  • the cross section of the mounting frame 94 exhibits preferably an outer rectangular shape. However other shapes may be preferred as for instance a round or elliptical shape.
  • the mounting frame 94 comprise a bottom support plane 95, a middle support plane 96, and a top support plane 97.
  • functional subunits of the working stations 5 or each working station 5 is installed into separate mounting frames 94.
  • the mounting frames 94 are preferably arranged rectilinearly along the assembly direction 6.
  • the conveyor subsystem 4 comprising the conveyor belt 41 and the transport guide 48 are preferably mounted sectionwise onto the middle support planes 96.
  • the working stations 5 may be installed with the mounting frames 94 by different means. Means of the components of the working stations 5 such actuators are preferably attached to the top or bottom support planes 95, 97.
  • the mounting frames 94 exhibit a closed configuration.
  • the projectile insertion station 27 preferably comprise a press-in subsystem for the assembly of the projectiles 1 1 onto the shells 2. After presetting the projectiles 1 1 on top of the shells 2 the press-in subsystem exerts two reciprocal forces to press the projectiles 1 1 into the shells 2. A vertical upward force is established onto the bottom of the shell 2, while a vertical downward force presses onto the tip of the projectiles 1 1 .
  • the respective actuators of the subsystem are mounted to the bottom and top support planes 95, 97 of the mounting frame 94, such that respective counter forces are taken up by the top and bottom support plane 95, 97, respectively.
  • the configuration of a closed mounting frame 94 therefore allows to contain reciprocal forces exerted during the assembly steps.
  • the mounting of the projectile insertion station 27 by means of a mounting frame 94 considerably diminishes possible strains onto the mounting plane 62. This allows for a particular stable operating conditions and a reduction of wear.
  • mounting frames 94 the mounting and demounting of the working stations 5 is facilitated.
  • the mounting frame 94 may be mounted to the mounting plane 62 by different fixation means. It is however particularly preferred that to this end the mounting plane 62 exhibits a horizontal support edge 102.
  • the support edge 102 extend horizontally along the length of the mounting plane 62 and is adapted to receive a bottom edge of the mounting frame 94 such that the vertical position of all mounting frame 94 are aligned with respect to each other.
  • the mounting frames 94 are preferably attached to the mounting plane 62 for instance by means of screws.
  • all mounting frames 94 exhibit an identical system dimension for the distance between the bottom edge of the mounting frames 94 and the middle support planes 96 on which the transport guide 48 is installed.
  • the mounting frames 94 can be mounted at different locations on to the horizontal support edge 102.
  • fixing aids 103 are installed at the mounting plane 62 and are configured to communicate with corresponding grooves of the mounting frames 94. It is preferred that the fixing aids 103 can be fixable translated along the assembly direction 6. Thereby after demounting a mounting frame 94, i.e. in case the particular working station 5 is not necessary, the fixing aid 103 may remain and allow for a fast and precise remounting of the mounting frame 94 and the working station 5 at the previous position. Similar to the embodiment shown in Fig. 1 , the apparatus 1 depicted in Fig.
  • the empty space 63 remains preferably between the bottom of the mounting frame 94 and the upper surface of the horizontal bulkhead 66.
  • the working stations 5 and the conveyor system 4 are therefore situated in a manufacturing space 67 above the bottom space of the apparatus 68. Due to the hanging of the working stations 5 onto the mounting plane 62 the ammunition powder will remain on the upper surface of the bulkhead 66 and can be easily removed. Thereby a safe operating condition can be provided in which the manufacturing space 67 is separated from a bottom space 68 in a dust tight manner. The risk of ammunition powder entering sensitive machinery is minimized.
  • the transport guide 48 may comprise powder release slots 98.
  • the powder release slots 98 are preferably located in the bottom of the transport guide 48 thus within the transport plane.
  • the powder slots 98 have a width, such that the shells 2 may traverse the powder release slots 98, while ammunition powder within the transport guide 48 can fall onto the bulkhead 68. Thereby an accumulation of ammunition powder within the transport guide 48 can be impeded.
  • the powder release slots 98 have to this end a width between 1 to 3 mm.
  • the powder release slots 98 are oriented within the transport plane 44 with an angle that is not perpendicular to the transport direction of the shells 2. Instead an angle of the powder release slots 98 between 30° and 60°, most preferably about 45° is preferred to yield a smooth transport of the shells 2 within the conveyor subsystem 4.
  • Fig. 6 depicts a preferred embodiment of an ammunition assembly apparatus 1 according to invention that comprises two assembly lines 1 1 1 , comprising working stations 5 and conveyor subsystems 4, which are mounted to single mounting plane 62 by means of mounting frames 94 on the same side.
  • the working stations 5 and the conveyor system 4 of the two assembly lines 1 1 1 depicted in Fig. 6 correspond to the assembly line 1 1 1 of the apparatus 1 depicted in Fig. 5.
  • the two assembly lines 1 1 1 exhibit identical arrangements of the working stations 5.
  • two working stations 5, one of each assembly line 1 1 1 are mounted in a parallel fashion side-by-side within the same mounting frame 94.
  • the mounting procedure for the mounting frames 94 in which two working stations 5 are mounted is identical to the procedure described for the embodiment of Fig. 5.
  • the mounting frame 94 is mounted on to the mounting plane 62 by means of a support edge 102.
  • Fixing aids 103 facilitate the mounting and demounting of the mounting frames 94 at determined positions along the assembly direction 6.
  • Fig. 7 depicts a preferred embodiment of an ammunition assembly apparatus 1 according to the invention that comprises two assembly lines 1 1 1.
  • an assembly lines 1 1 1 is mounted on one side of the mounting plane 62, while the other assembly line 1 1 1 is mounted on the other side of the mounting plane 62.
  • the preferred apparatus 1 depicted in Fig. 7 corresponds to a scale-up of the preferred apparatus 1 depicted in Fig. 5.
  • a doubling of the producible ammunition can be achieved.
  • this arrangement constitutes a particularly compact construction that allows for a flexible use.
  • ammunition of a first caliber can be produced on one side of the apparatus 1 using the one assembly line 1 1 1 , while on the other side of the mounting plane 62 the apparatus 1 produces ammunition of a different, second caliber using the other assembly lines 1 1 1.
  • the mounting plane 62 forms a security barrier between the assembly lines 1 1 1. Therefore it is possible to repair and/or clean an assembly line 1 1 1 on one side of the mounting plane 62, while the other assembly line 1 1 1 is operating.
  • Fig. 8 depicts a preferred embodiment of an ammunition assembly apparatus 1 according to the invention that comprises four assembly lines 1 1 1.
  • a pair of assembly lines 1 1 1 is mounted on one side of the mounting plane 62, while a second pair of assembly lines 1 1 1 is mounted on the other side of the mounting plane 62.
  • Fig. 8 corresponds to a scale up of the preferred embodiment of an apparatus 1 according to Fig. 6.
  • a similar configuration of two assembly lines 1 1 1 1 is mounted on the other side of the mounting plane 62.
  • the separation of the two pair of assembly lines 1 1 1 by means of the mounting plane 62 allows for a particular flexible operation as described for the embodiment of the apparatus 1 depicted in Fig. 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Basic Packing Technique (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

The invention relates to ammunition assembly apparatus and in particular to an apparatus for the automated and progressive assembly of cartridges for firearms such as rifles, guns, revolvers and pistols. The apparatus comprises a conveyor subsystem to transport ammunition past the working stations, wherein the working stations and the conveyor subsystem are mounted to a mounting plane such that the conveyor subsystem extends linearly at least sectionwise through the ammunition assembly apparatus and the working stations are arranged rectilinearly along the assembly direction.

Description

Ammunition Assembly Apparatus
DESCRIPTION
The invention relates to ammunition assembly apparatus and in particular to an apparatus for the automated and progressive assembly of cartridges for firearms such as rifles, guns, revolvers and pistols.
BACKGROUND AND STATE OF THE ART
For the automated assembly of ammunition, rotatory progressive apparatus are widespread. A rotary progressive apparatus comprises several drums which rotate about their vertical axis. Each drum performs a different assembly step for the ammunition while continuously transporting the ammunition from the previous drum and the previous assembly step to the next drum and the next assembly step. Each drum comprises several almost identical working stations which, during the rotation of the drum, each perform in parallel the same assembly step on the various cartridges currently on the drum. EP 1 12 193 B1 discloses an example of such an apparatus. Although these rotatory apparatus are able to produce ammunition at a very high output rate due to their continuous assembly motion, they are cumbersome to adapt to different variants of a cartridge, e.g. to variants which use a different propellant or shell, and even more cumbersome to be adapted to the production of different calibers. In particular, the calibration of the various working stations with their many identical substations is very time-consuming. A different design for an ammunition loading machine has been proposed in US8683906B2. Here, the working stations are arranged along a line and the shells are indexed from station to station by means of a rake assembly. While the apparatus exhibits a more simple construction design the output rate of the single assembly line is limited.
Moreover ammunition assembly apparatus known in the state of the art suffer from a risk of ammunition powder entering sensitive machinery. While filling the shells with ammunition powder a portion of the ammunition powder may fall accidentally into the lower machine parts, in which for instance cam drives operate at high speeds. Due to the explosiveness of ammunition powder this poses a severe security risk. It may not only lead to a damage of the ammunition assembly apparatus, but may also harm the working personal. OBJECTIVE OF THE INVENTION
It is therefore an objective of the present invention to provide an ammunition assembly apparatus that overcomes the disadvantages of the prior art. In particular it is an objective of the invention to enhance the security of the ammunition assembly apparatus and allow for a flexible adaptation of the apparatus for the manufacture of different variants of ammunition.
SUMMARY OF THE INVENTION
The objective is achieved by an ammunition assembly apparatus according to the independent claim. The dependent claims present preferred embodiments of an ammunition assembly apparatus according to the invention.
In a preferred embodiment the invention relates to an ammunition, in particular cartridge, assembly apparatus comprising a conveyor subsystem and working stations, the conveyor subsystem being adapted to transport ammunition past the working stations in an assembly direction, wherein the assembly apparatus comprises a mounting plane onto which the working stations and the conveyor subsystem are mounted such that the conveyor subsystem extends linearly at least sectionwise through the ammunition assembly apparatus and the working stations are arranged rectilinearly along the assembly direction. The ammunition assembly apparatus is thus characterized by a progressive, linear arrangement of the working stations. During operation the apparatus uses shells, such as brass metal shells, in order to produce ammunition in particular cartridges. To this end different assembly steps such as the filling of ammunition powder into the shells and a subsequent insertion of a projectile, in case of the manufacturing of live ammunition, are carried out. Preferably during an assembly step a single working station works upon a particular cartridge. For instance a powder filling station may fill in one assembly step the shells with powder. In order to move the shells or cartridges from one working station to the next working station the apparatus comprises a conveyor subsystem.
For example, the conveyor subsystem may comprise a linear section, along which the working stations are arranged one behind the other in the assembly direction, preferably in a straight line. Such a linearly arranged assembly line is more easily maintained and adapted than a tightly packed rotary system. Further, the conveyor subsystem may comprise a conveyor belt and a drive, the drive being adapted to intermittently move the conveyor past a series of working stations. Preferably, the conveyor subsystem transports the shells intermittently by alternating between a working cycle, where the shells are not moved and being worked upon, and a transport cycle, in which the shells are transported. The length of the working cycle and the transport cycle remains preferably constant at least for the same type of cartridges. In contrast to a rotatory ammunition assembly apparatus, the working stations of the ammunition assembly apparatus according to the invention are preferably stationary and do not move with the ammunition which is transported through the apparatus. Each working station completes preferably one working step in the assembly of the ammunition. For instance the working stations may perform a particular assembly step e.g. by adding a component, such as a propellant or powder or a projectile, to a shell. A working station may preferably also refer to a functional unit that carries out a measurement step and/or a sorting step of the cartridges. Therefore a sorting station or a measurement apparatus are also preferably referred to as working stations. According to the invention the working stations as well as the conveyor system are mounted to a mounting plane of the apparatus. The mounting plane preferably refers to a vertically upward standing wall. The mounting plane may be single standing wall or part of a support frame for the assembly apparatus. For instance the mounting plane may form together with a bulkhead an L-shaped support frame for the conveyor subsystem and the working stations. The mounting plane may be manufactured of metal and adapted to receive the weight of the working stations and the conveyor subsystem.
By mounting the conveyor subsystem and the working stations to the mounting plane the manufacturing components of the apparatus are thus hanging off said mounting plane. In comparison to the prior art the ammunition assembly apparatus according to the invention represents therefore an upside down design. Whereas in the prior art part of the working stations are situated in a lower installation space, in the apparatus of the present invention the working stations as well as the conveyor subsystem are hanging in an upper manufacturing space above the ground or a horizontal bulkhead.
Advantageously due to the mounting of the working stations and the conveyor subsystem to a mounting plane it can be avoided that sensitive machinery of an installation space is situated below the manufacturing space. In the prior art the working stations have been typically standing on the ground with the installation machinery separated from the manufacturing space by means of partial plates. However in such a configuration breaches from the lower installation space through the plates are necessary and pose an intrinsic security risk as ammunition powder may fall from the manufacturing space into a lower installation space. By mounting the working stations and the conveyor subsystem onto the mounting plane this can be efficiently avoided. In the design of the apparatus according to the invention ammunition powder may simply fall down onto the ground or a horizontal bulkhead without imposing a thread. Moreover the attachment of the working stations to the mounting plane allows for a particular modular design of the ammunition assembly apparatus. In particular the working stations may be easily added, removed or exchanged. For instance an ammunition assembly apparatus may comprise two working stations, which are a powder filling station and a projectile injection station. This may constitute a minimal ammunition assembly apparatus station. If for instance for certain applications a crimp station is necessary, the crimp station may be readily mounted onto the mounting plane behind the projectile injection station in a direction along the assembly line. Likewise certain elements of working stations may be easily exchanged. For instance the powder filling station may be upgraded by equipping the powder filling station with a weighing apparatus for the shells prior to and after the dosing of the powder. Also a projectile insertion station may be removed in case blank cartridges are to be removed. It was surprising that such a flexibility can be gained by attaching the working stations together with the conveyor system to the mounting plane of the apparatus.
Furthermore the mounting plane allows for rectilinear setup with all working stations being arranged serially in the assembly direction, preferably without any overlap. Preferably, there is only a single instance of each particular working station comprised in the apparatus. This single instance performs its assembly step on each shell in the apparatus. Not using a plurality of parallel working stations for each particular assembly step, such as in rotatory assembly apparatuses, reduces the costs both for retooling and for maintenance of the apparatus.
Moreover the arrangement of the working stations in a linear line allows for an increased scalability of the apparatus. For example, two assembly lines can be placed side-by-side on a common machine to double the production rate.
According to another preferred embodiment of the invention the ammunition assembly apparatus comprises a horizontal bulkhead and the working stations and the conveyor subsystem are mounted to the mounting plane such that an empty space remains between the surface of the horizontal bulkhead with respect to the working stations and the conveyor subsystem.
Together with the mounting plane the horizontal bulkhead serves preferably as the base frame for the apparatus, wherein both parts of the base frame form preferably an L-shape. Such a base frame allows for a particular stable support for operating an assembly line. Furthermore the horizontal bulkhead serves preferably as a dust-tight barrier to prevent the propellant or powder from falling into lower parts of the apparatus. The horizontal bulkhead thus divides the apparatus into a, preferably upper, manufacturing space in which the conveyor subsystem and the working stations as well as reservoirs for the components are located, and a, preferably lower, bottom space. The bottom space may be adapted to receive supply equipment, such as electric supply units, or left empty. The horizontal bulkhead forms preferably a massive seal between the manufacturing space and the bottom space beneath the horizontal bulkhead. The bulkhead is preferably located below the transport plane. By mounting the working stations and the conveyor subsystem to the mounting plane preferably all machinery is located in a distance above the bulkhead. Any propellant falling down from the subsystem falls onto the bulkhead, where it is clearly visible. The horizontal bulkhead may be made from metal to avoid static discharges. Preferably, there are no unsealed openings in the horizontal bulkhead which connect the manufacturing volume to the at least one bottom space. It is however particularly preferred to leave the bottom space empty in order to avoid the risk of electromagnetic fields interfering with ammunition powder situated on top of the bulkhead surface.
The conveyor subsystem and each working station are preferably located above the horizontal bulkhead such that an empty space remains between them and the bulkhead. The empty space allows for a good accessibility and in particular for a fast and efficient cleaning of the bulkhead surface, enabling an easy removal of misplaced ammunition powder from the apparatus. Moreover the formed empty space minimizes vibrations between the conveyor belt and the working stations, thereby augmenting the stability of the apparatus while operating.
The empty space preferably refers to a gap between at least the conveyor belt and one more of the working stations. However the empty space may be discontinuous. For instance a weighing apparatus, may be installed to weigh the shells and be provided with a base separate from the base of the remaining apparatus and the bulkhead to decouple any vibrations from the conveyor subsystem. In this case the bulkhead may be discontinuous along the assembly direction and the weighing apparatus is standing on the ground in such a gap. Between the weighing cells and the transport plane for the shells no substantial empty space is kept. However the weighing cells are preferably sealed to avoid the falling of ammunition into the weighing apparatus.
The apparatus according to the invention is especially suited to process shells which may have already been provided with a primer, and need to be provided with a propellant, such as powder, and/or a projectile.
In a preferred embodiment of the invention one of the working stations is a powder filling station.
The powder filling station preferably comprises an actuator subsystem adapted to fill the powder provided for instance from a powder reservoir into the shell. To this end, an actuator subsystem may comprise a dosing mechanism which is adapted to separate a portioned dose of propellant from a propellant reservoir and to move the apportioned amount into the shell. In particular, the dosing may comprise a threaded arbor. The number of revolutions of the arbor determines the amount of powder moved into the shell. The dosing mechanism is preferably operated intermittently in synchronization with the transport and/or working cycle of the conveyor subsystem.
The working station, in this case the powder filling station, may also be provided with a control subsystem which is adapted to control the actuator subsystem. For example, the control subsystem of the powder filling station may control the operation of the dosing mechanism. This can be done by controlling the number of revolutions of the arbor. If the amount of powder in a shell needs to be changed, the amount of revolutions of the arbor is changed accordingly.
According to one embodiment of the invention, the operation of the dosing mechanism can be controlled in dependence of the actual powder weight in the shell, or a signal representative of the actual powder weight, as determined by the joint operation of the net and the gross weighing apparatus, which may weigh the shell prior and after the filling.
The loose reception of the shell within a compartment and the upright transport of the shell may require a special configuration of the powder filling station to avoid the spilling of powder. For example, the projectile filling station may comprise two hollow concentric tubes, which are brought into abutment with the shell currently underneath the projectile filling station in the working cycle. An outer hollow tube may be a centering tube with an inner bevel. The centering tube, respectively its inner bevel, is preferably brought into mechanical contact with the shell, either a shoulder at the outer periphery of the shell or, preferably, with the upper rim of the shell. The bevel is dimensioned so that its peripheral surface comes to rest against the shell and thereby automatically centers the shell. An inner tube may be a feeder tube through which the propellant is guided into the shell. The feeder tube may be rigidly connected to the centering tube or may be driven independently of the feeder tube along the common axis.
In a further preferred embodiment of the invention one of the working stations is a projectile insertion station. Preferably the projectile insertion station is located along the assembly direction behind a powder filling station. At the projectile insertion station, the projectile may be pressed into the shell using a press-in tool that may be moved from above onto the projectile of the standing shell. The length of the cartridge is determined by the end position of the press-in tool, preferably after applying a determined press-in force acting in the longitudinal direction of the shell against the projectile. In addition the apparatus may comprise a cartridge length measurement apparatus as a working station in order to measure the length of the cartridge with the inserted projectile. For instance the length measurement apparatus may comprise a guiding tube with a measurement pin and a pneumatic cylinder to lower the guiding tube. To measure the length of the cartridge the cartridge positioned underneath the guiding tube, which is lowered until the tip of the cartridge contacts the measurement pin. The length of the cartridge may be determined by measuring the translation of the guiding tube e.g. by measuring the distance of a measurement plate attached to the measurement pin with respect to a stationary inductive sensor. However other detection means such as optical detectors are possible. The length measurement apparatus is preferably mounted to the mounting plane behind the projectile insertion station along the assembly direction.
A control subsystem may be adapted to compare the actual length of the cartridge thus determined to a target length stored within the control subsystem. Depending on a deviation of the actual length from the target length, a maximum stroke and/or a maximum insertion force of the actuator subsystem, which is adapted to press the projectile into the shell, may be adjusted automatically during operation of the apparatus.
In a further preferred embodiment one of the working stations is a crimp station. By means of the crimp station the shell is preferably crimped onto the projectile. The crimp station is preferably mounted to the mounting plane behind the projectile insertion station. In a further preferred embodiment the apparatus may comprise a sorting station. Preferably the sorting station is mounted to the mounting plane at the end of the assembly line. The sorting station is preferably used to select the manufactured cartridges based upon previous measurements of physical parameters such as the propellant weight or length of the cartridges. As described above the weight of the ammunition powder in the shells can be preferably measured by a weighing apparatus, while the length of the cartridge by a cartridge length measurement apparatus. The measured parameters are preferably stored and tolerances ranges are set for each of the physical parameters. Suited cartridges, i.e. cartridges for which the physical parameter are within the preset tolerance range are preferably placed by the sorting station into a collector container, while unsuited cartridges are preferably sorted towards a waste container.
In a further preferred embodiment of the invention the conveyor subsystem comprises a conveyor belt, comprising compartments, which are separated by vertical ribs and the conveyor belt is assembled as a loop around two pulleys, which lie on an axis and are rotated by means of a driver. In order to keep the conveyor subsystem cost-efficient and simple to maintain, the conveyor belt may be an endless belt which comprises niche-like compartments for receiving the shells. Preferably, each compartment receives a single round of ammunition. The conveyor belt may have the shape of a toothed belt, the space between two adjacent teeth being used as a compartment. The conveyor belt may be preferably made of an elastic material such as rubber and/or resin. However it may also be preferred to use other materials or elements to transport the ammunition as for instance a transport chain made of metal.
The conveyor belt may transport each round of ammunition in a standing position. In particular, each cartridge or shell may slide on a stationary transport plane of the apparatus. The transport plane may be made of polished and, in particular, hardened steel. The transport plane may be formed by a metal strip which is adapted to be removed if worn out. The metal strip may have a L- or U-shaped cross-section to provide lateral support with its legs for the belt and/or the shells within the compartments, while the shells may rest on its bottom. Thus a transport guide may be formed through which the shells are moved by the belt.
The inner width of each compartment may be larger than the outer width, in particular the maximum outer width, of the shells which are currently manufactured. Thus, the shells is not clamped or in any other way restricted or fixed by the compartment, but simply received in the compartment and being pushed for transportation by the compartment. In this configuration, the shells are received loosely within their respective compartment. In particular, the shells may be fed into a compartment and removed from a compartment simply by gravitation, e.g. by falling into and/or out of a compartment. However it may also be preferred to use let a shell fall into a supply device situated next to the conveyor belt and subsequently push the shell into a compartment. According to another embodiment, the compartments of the conveyor belt may surround the respective shell on only three sides and may be open laterally, i.e. in a direction perpendicular to the assembly direction and parallel to the transport plane.
The open side of the compartments may be covered by a stationary retainer bar which runs parallel to the conveyor belt at least in that section of the conveyor belt, where the rounds of ammunition are being worked on. The retainer bar keeps the shells in the compartments.
Preferably, there is no physical contact between the conveyor belt and the retainer bar to keep the friction low. The retainer bar should not exert any pressure on the shells in the compartments to keep the friction during transport low. The retainer bar may be combined with the slider bar to a U- or L-shaped bar. The retainer bar, slider bar and transport plane preferably form a stationary transport guide through which the shells can be pushed by means of the conveyor belt. In a return section of the conveyor belt, neither a strip for the transport plane nor a retainer bar is needed.
The conveyor belt is preferably endless and wound about at least two pulleys, the axes of which are preferably perpendicular to the transport plane, i.e. the axes of the pulleys may be aligned with the axis of the rounds of the standing up shells. Said pulleys are preferably rotated by the driver in order to operate the conveyor subsystem.
In a preferred embodiment of the invention the ammunition assembly apparatus comprises a stationary transport guide through which the shells are moved by means of the conveyor belt and wherein preferably the transport guide comprises powder releases slots. While the shells are worked upon by the working stations the shells are preferably transported by means of the conveyor belt within a transport guide. Said transport guide comprises preferably a bottom transport plane upon which the shells are sliding. A retainer bar may be used to keep the shells laterally within in the compartments. As described above preferably the transport guide has a L- oder U-shaped cross-section. In case of spilling of ammunition powder ammunition powder may accumulate within the transport guide. In particular during operation the ammunition can be pushed by the moving belt along the assembly direction. To avoid the risk of an accumulation of ammunition powder within the transport guide, powder release slots may be provided. The powder release slots are preferably located in the bottom of the transport guide thus within the transport plane. Furthermore the powder release slots have a preferred width such that the shells may traverse the powder release slots, while ammunition powder within the transport guide can fall through. To this end it is preferred that the powder release slots have a width between 1 to 3 mm. Moreover it may be further preferred to arrange the powder release slots within the transport plane with an angle that is not perpendicular to the transport direction of the shells, but for instance with an angle between 30° and 60°, most preferably about 45°. This allows for a particular smooth running of the shells within the conveyor subsystem.
Due to the mounting of the working stations to a mounting plane advantageously the controlled release of ammunition powder within the transport guide does not impose any security thread. For instance in case the apparatus comprises a horizontal bulkhead the powder typically falls onto said bulkhead and can be easily removed.
In a preferred embodiment of the invention the working stations and the conveyor subsystem are mounted to a mounting plane by means of mounting frames. The mounting frames are preferably a mounting aid for the attachment of the working stations and the conveyor subsystem to the mounting plane. In the cross section along the assembly direction the mounting frames exhibit preferably an outer rectangular shape. Thereby one side of the mounting frame is suited for a simple attachment to the mounting plane. Moreover the mounting frames are preferably characterized by a closed configuration, i.e. the circumference of the cross-section of the mounting frames is not disrupted. Thereby reciprocal forces exerted by the working stations or subunits thereof, while working upon the shells, may be advantageously contained within the mounting frames. For instance the projectile insertion station preferably comprise a press-in subsystem for the assembly of the projectiles onto the shells. After presetting the projectiles on top of the shells the press- in subsystem exerts two reciprocal forces to press the projectiles into the shells. A vertical upward force is established onto the bottom of the shells, while a vertical downward force presses onto the tip of the projectiles. In this case it may be preferred to install the press-in subsystem of the projectile insertion station such that the counter forces during the processing are balanced by the top and bottom support plane of the mounting frame, respectively. Due to the closed circumference forces are balanced with the mounting frames and transmitted to the mounting plane. In comparison to an embodiment in which the actuators for pressing the projectile are installed directed onto the mounting plane, the mounting frames allow to diminishes strains and stresses within the mounting plane.
Furthermore the mounting frames facilitate the mounting and demounting of the working stations considerably. To this end the mounting frames are preferably used to mount functional subunits of the assembly line to the mounting plane. For instance a press-in subsystem of a projectile insertion station may be mounted by a first mounting frame to the mounting plane, while a measurement apparatus for the measuring the length of the cartridges may be mounted by a second mounting frame. Depending on the preferred use the length measurement apparatus can be removed in a simple manner, without interfering with the installation of the projectile press-in subsystem. By mounting subunits of the working stations or entire working stations using mounting frames to the mounting plane, a particular effective modular design of the apparatus is achieved. Each module of the assembly line, i.e. a functional unit such as a crimp station, a sorting station, a powder filling station or a measurement apparatus are mounted within a separate mounting frame. Thereby a particular working station or subunit thereof can be simply attached or detached using the mounting frames. The mounting frame may contain an entire working station or functional subunit of a working station depending on the desired functional units that are preferably exchangeable in the modular design of the apparatus.
In a preferred embodiment of the invention a mounting frame comprises a bottom support plane, a top support plane and a middle support plane, wherein the conveyor subsystem is supported by the middle support plane. Such a three-layered support frame has proven particular advantageous in terms of a functional and compact design. Since the shells are transported on top of the middle support planes, parts of the working stations (e.g.
actuators, pneumatic cylinders, etc.) that are to work upon the shells can be attached to the mounting frame above and below the shells. For instance in the projectile insertion station an actuator for pressing the projectiles into to the shells may be attached on the top support plane, while on the bottom support plane a counter holding or lifting device for the shells is installed. In a further preferred embodiment of the invention the mounting plane comprises a horizontal support edge onto which the mounting frames are mounted. The support edge extends preferably horizontally along the assembly direction and is adapted to receive a bottom edge of the mounting frames. The horizontal support edge allows for a precise vertical alignment of all mounting frames and thus of the working stations and the conveyor subsystem. This results in a reduced effort for mounting and demounting of the support frames, since a vertical calibration of the mounting frames and thus the working stations with respect to each other is not necessary. The horizontal support edge may be generated by shaping the mounting plane accordingly or by installing a separate strip that serves as the horizontal support edge. In a further preferred embodiment of the invention the mounting plane comprises fixing aids that can be fixable translated along the assembly direction and the mounting frames comprise corresponding grooves. The combination of this embodiment in addition to installing a horizontal support edge is particularly preferred. Due to the horizontal support edge the mounting frames are fixed in a vertical position, but can be translated along the assembly direction horizontally. In order to facilitate the mounting procedure between different configurations the fixing aids allow for a precise memory of the horizontal position of the mounting frames. When the assembly apparatus is first installed all mounting frames, and thus the functional units of the working stations have to be precisely positioned with respect to each other. For instance the powder filling station has to be position within a mounting frame such that a powder release tube is exactly above the center of a compartment of the conveyor belt. Likewise other components of the working stations need to be precisely calibrated along the assembly direction to be able to work upon the shells. Since the position of the mounting frames correspond to the position of the working stations or functional subunits thereof, said position may be stored using fixing aids which are attached to the mounting plane. A practical solution to this end represent positioning pins that communicate with grooves within the mounting frames and that can be fixably translated along the assembly direction. During the operation of the assembly apparatus it may become necessary to repair or control some of the working stations and thus the corresponding mounting frames need to be detached. In this case the corresponding fixing aid stay in place, such that when the mounting frame is reinstalled no further horizontal calibration is necessary. In a further preferred embodiment of the invention the apparatus comprises at least two assembly lines comprising working stations and a conveyor subsystem and wherein the assembly lines are attached to the same side of the mounting plane on the same side and arranged parallel and side-by-side. An assembly line preferably refers to an arrangement of working stations as well as the conveyor subsystem that allows for all assembly steps to produce the cartridges. Two assembly lines thus allow to double the production of cartridges. Due to the rectilinear design of the apparatus such a doubling may be easily achieved by installing two assembly lines side-by-side on one side of the mounting plane. To this end it may be preferred that two parallel working stations or subunits of the working stations are mounted to the mounting plane by means of the same mounting frame.
The arrangement of the apparatus is particular space efficient and allows for an optimization of the productivity of the system with respect to its size. Moreover the attachment of the apparatus to the same mounting plane augments the stability of the two assembly lines and ensures that a high precision for the manufacturing of the ammunition is maintained. Furthermore it may be preferred that the assembly lines share at least one reservoir, for instance for the ammunition powder or the shells, thereby allowing for a cost efficient use of the construction elements.
In a further preferred embodiment of the invention the assembly apparatus comprises at least two assembly lines comprising working stations and a conveyor subsystem, wherein a first of the two of the assembly lines is attached on one side of the mounting plane, while a second of the two assembly lines is attached on the opposite side of the mounting plane. To this end it is preferred that the mounting plane and the horizontal bulkhead form a T-shaped support for the assembly system.
Due to the modular design that arises from the attachment of the working stations to the mounting plane, the preferred embodiment allows for a particular high flexibility. For instance different working stations may be mounted on each side of the mounting plane for the manufacturing of different ammunitions. Advantageously it is thus possible to manufacture different types of ammunition and/or caliber using the same apparatus. In the preferred embodiment each assembly line can be preferably controlled and adapted independently. Moreover since the mounting plane serves as a security barrier, it is possible to repair, clean and/or reassemble one assembly line, which is on one side of the mounting plane, while another assembly line, which is on the other side of the mounting plane, is continuing to produce ammunition. Production downtimes are therefore reduced.
In a further preferred embodiment of the invention the ammunition assembly apparatus comprises at least four assembly lines comprising working stations and a conveyor subsystem, wherein a first pair of the assembly lines is attached on one side of the mounting plane, while a second pair of the assembly lines is attached on the opposite side of the mounting plane. In this embodiment on each side of the mounting plane productions can be doubled leading to a four-fold increase of the production rate in comparison to a single assembly line. The preferred embodiment is characterized by a particular compact design that allows for very high production rates while ensuring an easy accessibility of all components and a high modular flexibility. In particular the design allows the production of different calibers on each side of the mounting plane with a production rate that is double to in comparison to that of a single assembly line. Moreover it may also be preferred to produce different calibers on each of the single assembly lines allowing for a particular high production flexibility.
The linear design plan of the ammunition assembly apparatus allows for a particular easy scale up and adaptation according to the desired production specifications. By attaching multiple assembly lines on one and/or both sides of the mounting plane productions rate can be increased integer-wise. Moreover since the assembly lines can also be controlled independently a number of different specifications for the produced ammunition may be assigned to each of the assembly lines.
In a further preferred embodiment of the invention the ammunition assembly apparatus therefore comprises at least six assembly lines comprising working stations and a conveyor subsystem, wherein at least three of the assembly lines are attached on one side of the mounting plane, while another at least three of the assembly lines are attached on the opposite side of the mounting plane.
In a further preferred embodiment of the invention the ammunition assembly apparatus comprises at least six assembly lines comprises at least eight assembly lines comprising working stations and a conveyor subsystem, wherein at least four of the assembly lines are attached on one side of the mounting plane, while another at least four of the assembly lines are attached on the opposite side of the mounting plane.
In a further preferred embodiment of the invention the ammunition assembly apparatus comprises at least four assembly lines comprising working stations and a conveyor subsystem, wherein a first pair of the assembly lines is attached on one side of the mounting plane, while a second pair of the assembly lines is attached on the opposite side of the mounting plane.
It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the claims of the invention define the scope of the invention and that the method and apparatus within the scope of these claims and their equivalents be covered thereby. In the following, the invention is exemplarily described with reference to the drawings. In the drawings, the same reference numeral is used for elements which correspond to each other in their design and/or their function.
Moreover, it is clear from the above description of the various advantageous embodiments, that the combination of features shown in the drawings and explained below may be changed depending on the specific application at hand. For example, a feature not shown in the drawings but mentioned above may be added if the technical effect of this feature is required for the specific application. Conversely, a feature shown in the drawings may be omitted, if its technical effect is not needed for the specific application.
In the drawings:
Fig. 1 shows a schematic representation of a preferred embodiment of an apparatus according to the invention.
Fig. 2 shows a schematic representation of a preferred embodiment of an apparatus according to the invention in which two assembly lines are attached to the same side of the mounting plane.
Fig. 3 shows a sectional view of the preferred embodiment of the system of Fig. 2.
Fig. 4 shows a schematic representation of a preferred embodiment of an apparatus according to the invention in which a first pair of assembly lines is attached to one side of the mounting plane, while a second pair of assembly lines is attached to the opposite side of the mounting plane
Fig. 5 shows a schematic representation of a preferred embodiment of an apparatus according to the invention in which the working stations and the conveyor subsystem are mounted to the mounting plane by means of mounting frames.
Fig. 6 shows a schematic representation of a preferred embodiment of an apparatus according to the invention in which two assembly lines are attached to the same side of the mounting plane using mounting frames.
Fig. 7 shows a schematic representation of a preferred embodiment of an apparatus according to the invention in which two assembly lines are attached to the opposite sides of the mounting plane using mounting frames.
Fig. 8 shows a schematic representation of a preferred embodiment of an apparatus according to the invention comprising four assembly lines attached by means of mounting frames, in which one pair of assembly lines is attached to one side of the mounting plane, while a second pair of assembly lines is attached to the opposite side of the mounting plane
Fig. 1 depicts a preferred embodiment of the apparatus 1 according to invention for the manufacturing of ammunition. The general principal of working function of the apparatus shall be illustrated with respect to the Fig. 1. The apparatus 1 uses shells 2 to produce cartridges 3. To this end the shells 2 are filled with a propellant, i.e. ammunition powder, and a projectile 1 1 . Commonly the end products, i.e. shells 2 comprising the propellant and the projectile 1 1 , are referred to as cartridges 3. For the sake of simplicity the terms shells 2 and cartridges 3 may however be used synonymously, except where a clear differentiation seems to be more appropriate.
The conveyor subsystem 4 is adapted to move linearly, i.e. in a straight line from one working station 5 to the next. Thus, the working stations 5 are lined up linearly in an assembly direction 6, in which the shells 2 are transported. The conveyor subsystem 4 is adapted to move intermittently between the stations by switching between a transport cycle, in which the shells 2 are moved, and a working cycle, in which the shells 2 rest and are being worked upon. The transport and the working cycle are constant throughout the manufacturing process of at least one variant or type of cartridge 3. Each working station 5 completes one step during the assembly. For instance a component, such as a propellant or powder or a projectile 1 1 , may be added to a shell 2 or a particular measurement or control step may be performed.
Between the assembly steps the shells 2 are transported by means of a conveyor subsystem 4. The conveyor subsystem 4 comprises a conveyor belt 41 which extends at least sectionwise rectilinearly in the assembly direction 6 through the apparatus 1 . Each compartment 42 is adapted to receive loosely a single shell 2 in a standing position. The bottom of the shell 2 slides on a transport plane of the transport guide 48. Thus, the shells 2 are simply pushed by the conveyor belt 41 in the assembly direction 6. Each
compartment 42 is separated from the neighboring compartments 42 in the assembly direction 6 by a vertical rib 45. The conveyor belt 41 and the ribs 45 are preferably made from rubber and/or resin material. Vertically, the compartments 42 are open, preferably such that a shell 2 may fall through a compartment 42. Each compartment 42 defines a niche-shaped receptacle for a shell 2. In the conveyor subsystem 4, the conveyor belt 41 is looped around two pulleys (not shown in Fig. 1 ) of which the axes are oriented vertically, i.e. parallel to the longitudinal axis of the upright shells 2 in the conveyor belt 41 . The loop of the conveyor belt 41 defines a plane which extends parallel to the transport plane. A drive (not shown in Fig. 1 ) of the conveyor subsystem 4 is preferably located above the transport plane 44. As shown in Fig. 1 preferably in a first step shells 2, which already may have been provided with a primer are fed and placed into the compartments 42 of the conveyor belt 41. This is done in a shell-feeding station. There, a feeder tube 59 may be extended from a shell reservoir 40 downwards to the location where a compartment 42 comes to rest between two subsequent transport cycles of the conveyor subsystem 4. The shells 2 may be fed through the feeder tube 59 passively by the force of gravity, and simply fall into the compartment 42. However it is also possible to use let shells 2 fall into a supply device situated next to the conveyor belt 41 and subsequently push the shells 2 into a compartment 42. To allow the feeding, the inner width of a compartment 42 should be larger than the largest outer width of the shell 2. The feeding rhythm of the shell feeding station is synchronized with the intermittent motion of the conveyor subsystem 4.
The shells 2 are then transported in the assembly direction 6 along a straight path to the powder filling station 18. In the powder filling station 18 the ammunition powder is filled from a powder reservoir 40 into the shells 2. The amount of powder may be controlled by means of a feedback control mechanism that is based on the weight measurements of the shell 2 prior to (net weight WN) and after the powder dosing (gross weight WG) using the weighing apparatus 20a and 20b. Unlike the other units of the working stations 5 the weighing apparatus 20a, 20b are preferably not attached to the mounting plane 62 in order to decouple the weighing process from vibrations. In the example the weighing apparatus 20a, 20b are situated on the bulkhead 66. However it may also be preferred to position the weighing apparatus on to the ground in a gap of the horizontal bulkhead 66 to decouple the weighing apparatus completely from the base frame.
Subsequently the shells 2 are moved along the sectionwise linear conveyor belt 41 and are worked upon by additional working stations 5 that are arranged in a rectilinear manner along the assembly direction 6. The projectile insertion station 27 serves to press the projectiles 1 1 into the shells 2. To this end the projectiles 1 1 are provided by a projectile reservoir 60 and preset into the shell 2. Subsequently the projectiles 1 1 are pressed-in using a press-in subsystem. By means of a cartridge length measurement apparatus 28 the projectile insertion may be monitored and adapted by a feedback control. A crimp station 65 may be provided, where the shell 2 is crimped onto the projectile 1 1. The crimp station 65 may be located as shown between the projectile insertion station 27 and the length measurement apparatus 28. In case a crimp station 65 is present it is thus preferred to measure the length of the cartridges 3 after said crimp station 65.
As shown in Fig. 1 the working stations 5 as well as the conveyor system 4 are mounted to the mounting plane 62 of the apparatus 1. The means for a control and energy supply (not shown) of working stations 5 may also be supplied via the mounting plane 62. Due to the mounting of the stations to the mounting plane 62 the working stations 5 and conveying system 4 are hanging above the bulkhead 66 surface. In particular an empty space 63 is formed between these components of the apparatus 1 and the upper surface of the horizontal bulkhead 66. The working stations 5 and the conveyor system 4 are therefore situated in a manufacturing space 67 above the bottom space of the apparatus 68. The horizontal bulkhead 66 may be made for instance of metal and is preferably constructed in a dust-tight manner: The bottom space 68 may be adapted to receive supply equipment, such as electric supply units. It is however preferred to leave the bottom space empty. Thereby it can be avoided that electrical or magnetically fields have an impact on ammunition powder situated on top of the surface of the bulkhead 66. Leaving the bottom space 68 underneath the bulkhead 66 surface void thus additionally enhances the security of apparatus.
As shown in the particular embodiment of Fig. 1 a weighing apparatus 20a and 20b may extend into the bottom space 68. However the weighting cells 69 are also concealed in a dust-tight manner.
Due to the mounting of the working stations 5 and the ammunition powder will remain on the upper surface of the bulkhead 66 and can be easily removed due to the empty space 63. In the prior art the machinery for the assembly is located in a bottom space underneath the working stations and connected by breaches through a cover. By mounting the working stations 5 to the mounting plane 62 advantageously, no such breaches occur. Due to the mounting of the working stations 5 onto the mounting plane 62 a particular safe assembly apparatus 1 can be provided in which the manufacturing space 67 is separated from a bottom space 68 in a dust tight manner. In this embodiment the risk of ammunition powder entering sensitive machinery is minimized. Furthermore the attachment of the working stations 5 to the mounting plane 62 allows for a fast mounting and demounting of the working stations 5. The embodiment is therefore also characterized by a modular design allowing for a high degree of functional flexibility.
Fig. 2 depicts a preferred embodiment of an ammunition assembly apparatus 1 according to invention that comprises two assembly lines 1 1 1 , comprising working stations 5 and conveyor subsystems 4, which are attached to a single mounting plane 62 on the same side. The working stations 5 and the conveyor system 4 of the two assembly lines 1 1 1 depicted in Fig. 2 correspond to the assembly line 1 1 1 of the apparatus 1 depicted in Fig. 1. In the preferred embodiment the assembly lines 1 1 1 exhibit identical arrangements of the working stations 5. In particular the working stations 5 are mounted to the mounting plane 62 in a parallel fashion side-by-side. However it may also be preferred that the two assembly lines 1 1 1 possesses different working stations 5 and/or one of the assembly lines 1 1 1 possesses an additional working station 5. It is however preferred that the transport planes 44 of the two assembly lines 1 1 1 exhibit an similar empty space 63 to the upper surface of the bulkhead 66. By scaling up the apparatus 1 depicted in Fig. 1 to an apparatus 1 comprising two assembly lines 1 1 1 as depicted in Fig. 2 productivity can be doubled, while a compact construction of the apparatus 1 is maintained. For instance if an apparatus with a single assembly line is set to assemble 125 ammunitions per minute an apparatus comprising two assembly lines will be advantageously capable of assembling 250 ammunitions per minute.
Fig. 3 shows the side view of the apparatus 1 depicted in Fig. 2. In this perspective the empty space 63 is particularly visible. In this case only the weighting apparatus 20a and 20b may extend into the bottom space 68 of the apparatus 1 . Components such as the working stations 5 and the conveyor system 4 are situated in the manufacturing space 67 allowing for a modularity of the apparatus 1 and accessibility for cleaning and/or repair.
Fig. 4 depicts a preferred embodiment of an ammunition assembly apparatus 1 according to the invention that comprises four assembly lines 1 1 1. In the preferred embodiment two assembly lines 1 1 1 are mounted on one side of the mounting plane 62, while two other assembly lines are mounted on the other side of the mounting plane 62. The preferred apparatus 1 depicted in Fig. 4 corresponds to a scale-up of the preferred apparatus 1 depicted in Fig. 2 and 3. By symmetrically extending the system depicted in Fig. 2 along the symmetry axis of the mounting plane 62 a doubling of the producible ammunition can be achieved. Moreover this arrangement constitutes a particularly compact construction that allows for a flexible use. For instance ammunition of a first caliber can be produced on one side of the apparatus 1 using two assembly lines 1 1 1 , while on the other side of the mounting plane 62 the apparatus 1 produces ammunition of a different, second caliber using the two other assembly lines. Moreover the mounting plane 62 forms a security barrier between the two pairs of assembly lines 1 1 1. Therefore it is possible to repair and/or clean a pair of assembly lines on one side of the mounting plane 62, while the other pair is operating
Fig. 5 depicts another preferred embodiment of an ammunition assembly apparatus 1. The working principle of the apparatus 1 depicted in Fig. 5 is identical to the one described for the apparatus 1 shown in Fig. 1 .
Briefly, the apparatus 1 uses shells 2 to produce cartridges 3 by means of different assembly steps accomplished by the working stations 5. Between the assembly steps the shells 2 are transported by means of a conveyor system 4. The conveyor subsystem 4 comprises a conveyor belt 41 , which extends rectilinearly in the assembly direction 6 through the apparatus 1. Each compartment 42 is adapted to receive loosely a single shell 2 in a standing position. The bottom of the shell 2 slides on a transport plane of the transport guide 48. Thus, the shells 2 are simply pushed by the conveyor belt 41 in the assembly direction 6. Each compartment 42 is separated from the neighboring
compartments 42 in the assembly direction 6 by a vertical rib 45. In the conveyor subsystem 4, the conveyor belt 41 is looped around two pulleys 50. The loop of the conveyor belt 41 defines a plane which extends parallel to the transport plane 44 respectively. A drive 57 of the conveyor subsystem 4 is located above the transport plane 44.
Preferably in a first step shells 2, are fed and placed into the compartments 42 of the conveyor belt 41 . To this end a feeder tuber 59 extends from a shell reservoir 40 to the compartments 42. The shells 2 are then transported in the assembly direction 6 along a straight path to the powder filling station 18. In the powder filling station 18 the ammunition powder is filled from a powder reservoir 40 into the shells 2. The amount of powder may be controlled by means of a feedback control mechanism that is based on the weight measurements of the shell 2 prior to (net weight WN) and after the powder dosing (gross weight WG) using weighing apparatus (not shown in Fig. 5).
Subsequently the shells 2 are moved along the sectionwise linear conveyor belt 41 and are worked upon by additional working stations 5 that are arranged in a rectilinear manner along the assembly direction 6. The projectile insertion station 27 serves to press the projectiles 1 1 into the shells 2. Furthermore a crimp station 65 may be provided, where the shell 2 is crimped onto the projectile 1 1 . By means of a cartridge length measurement apparatus 28, which is preferably installed after the crimp station 65, the correct projectile insertion may be monitored and adapted by a feedback control.
In addition as shown in Fig. 5 at the end of the assembly line 1 1 1 a sorting station 104 may be provided. Said sorting station 104 may be installed. Said sorting stations 104 can be used to select the produced cartridges 3 based upon previous measurements of physical parameters such as the powder weight or length of the cartridges 3. As described above the weight of the added powder can be preferably measured using weighing apparatus before and after the filling of a powder, while a cartridge length measurement apparatus 28 can be used to determine the length of the cartridges 3. The measured parameters are preferably stored and tolerances ranges are set for each of the physical parameters. Suited cartridges 3, i.e. cartridges 3 for which a physical parameter within the preset tolerance range has been measured, are placed into a collector container 101 , while unsuited cartridges 3 are sorted towards a waste container 99. A storage and control subsystem 24 can be used to operate and control the apparatus 1 as well as for data analysis of measured and/or set parameters. It is noted that the depicted storage and control subsystem 24 can be attached to the apparatus 1 as shown in Fig. 5, but can also be installed in a different location and/or in a place away from the apparatus 1 depending on the preference of the user.
Similar to the embodiment shown in Fig. 1 also the working stations 5 and the conveyor subsystem 4 are mounted to the mounting plane 62 of the apparatus 1. However in case of the embodiment of Fig. 5 the mounting is achieved by means of mounting frames 94. The cross section of the mounting frame 94 exhibits preferably an outer rectangular shape. However other shapes may be preferred as for instance a round or elliptical shape.
Furthermore the mounting frame 94 comprise a bottom support plane 95, a middle support plane 96, and a top support plane 97. As shown preferably functional subunits of the working stations 5 or each working station 5 is installed into separate mounting frames 94. Like the working stations 5 the mounting frames 94 are preferably arranged rectilinearly along the assembly direction 6. The conveyor subsystem 4 comprising the conveyor belt 41 and the transport guide 48 are preferably mounted sectionwise onto the middle support planes 96. The working stations 5 may be installed with the mounting frames 94 by different means. Means of the components of the working stations 5 such actuators are preferably attached to the top or bottom support planes 95, 97. Preferably the mounting frames 94 exhibit a closed configuration. Therefore reciprocal forces exerted by the working stations 5, while working upon the shells 2, may be advantageously contained within the mounting frames 94. For instance the projectile insertion station 27 preferably comprise a press-in subsystem for the assembly of the projectiles 1 1 onto the shells 2. After presetting the projectiles 1 1 on top of the shells 2 the press-in subsystem exerts two reciprocal forces to press the projectiles 1 1 into the shells 2. A vertical upward force is established onto the bottom of the shell 2, while a vertical downward force presses onto the tip of the projectiles 1 1 . The respective actuators of the subsystem are mounted to the bottom and top support planes 95, 97 of the mounting frame 94, such that respective counter forces are taken up by the top and bottom support plane 95, 97, respectively. The configuration of a closed mounting frame 94 therefore allows to contain reciprocal forces exerted during the assembly steps. In comparison to a configuration in which the reciprocal actuators for the projectile insertion station 27 are mounted directly to a mounting plane 62, the mounting of the projectile insertion station 27 by means of a mounting frame 94, considerably diminishes possible strains onto the mounting plane 62. This allows for a particular stable operating conditions and a reduction of wear. Moreover using mounting frames 94 the mounting and demounting of the working stations 5 is facilitated. The mounting frame 94 may be mounted to the mounting plane 62 by different fixation means. It is however particularly preferred that to this end the mounting plane 62 exhibits a horizontal support edge 102. The support edge 102 extend horizontally along the length of the mounting plane 62 and is adapted to receive a bottom edge of the mounting frame 94 such that the vertical position of all mounting frame 94 are aligned with respect to each other. After setting the mounting frames 94 onto the horizontal support edge 102 the mounting frames 94 are preferably attached to the mounting plane 62 for instance by means of screws. Furthermore, it is particularly preferred that all mounting frames 94 exhibit an identical system dimension for the distance between the bottom edge of the mounting frames 94 and the middle support planes 96 on which the transport guide 48 is installed.
Along the assembly direction 6 the mounting frames 94 can be mounted at different locations on to the horizontal support edge 102. In order to facilitate the mounting procedure between different configurations of the assembly apparatus 1 fixing aids 103 are installed at the mounting plane 62 and are configured to communicate with corresponding grooves of the mounting frames 94. It is preferred that the fixing aids 103 can be fixable translated along the assembly direction 6. Thereby after demounting a mounting frame 94, i.e. in case the particular working station 5 is not necessary, the fixing aid 103 may remain and allow for a fast and precise remounting of the mounting frame 94 and the working station 5 at the previous position. Similar to the embodiment shown in Fig. 1 , the apparatus 1 depicted in Fig. 5 exhibits an empty space 63 between the surface of a bulkhead 66 and the manufacturing space 67 in which the working stations 5 and the conveyor subsystem 4 are present. In the preferred embodiment the empty space 63 remains preferably between the bottom of the mounting frame 94 and the upper surface of the horizontal bulkhead 66. The working stations 5 and the conveyor system 4 are therefore situated in a manufacturing space 67 above the bottom space of the apparatus 68. Due to the hanging of the working stations 5 onto the mounting plane 62 the ammunition powder will remain on the upper surface of the bulkhead 66 and can be easily removed. Thereby a safe operating condition can be provided in which the manufacturing space 67 is separated from a bottom space 68 in a dust tight manner. The risk of ammunition powder entering sensitive machinery is minimized.
Since ammunition powder is allowed to fall downwards onto the upper surface of the horizontal bulkhead 66 the transport guide 48 may comprise powder release slots 98. The powder release slots 98 are preferably located in the bottom of the transport guide 48 thus within the transport plane. Furthermore the powder slots 98 have a width, such that the shells 2 may traverse the powder release slots 98, while ammunition powder within the transport guide 48 can fall onto the bulkhead 68. Thereby an accumulation of ammunition powder within the transport guide 48 can be impeded. It is preferred that the powder release slots 98 have to this end a width between 1 to 3 mm. Moreover it is particularly preferred that the powder release slots 98 are oriented within the transport plane 44 with an angle that is not perpendicular to the transport direction of the shells 2. Instead an angle of the powder release slots 98 between 30° and 60°, most preferably about 45° is preferred to yield a smooth transport of the shells 2 within the conveyor subsystem 4.
Fig. 6 depicts a preferred embodiment of an ammunition assembly apparatus 1 according to invention that comprises two assembly lines 1 1 1 , comprising working stations 5 and conveyor subsystems 4, which are mounted to single mounting plane 62 by means of mounting frames 94 on the same side. The working stations 5 and the conveyor system 4 of the two assembly lines 1 1 1 depicted in Fig. 6 correspond to the assembly line 1 1 1 of the apparatus 1 depicted in Fig. 5. In the preferred embodiment the two assembly lines 1 1 1 exhibit identical arrangements of the working stations 5. In particular two working stations 5, one of each assembly line 1 1 1 , are mounted in a parallel fashion side-by-side within the same mounting frame 94. The mounting procedure for the mounting frames 94 in which two working stations 5 are mounted is identical to the procedure described for the embodiment of Fig. 5. Also in this case it is preferred that the mounting frame 94 is mounted on to the mounting plane 62 by means of a support edge 102. Fixing aids 103 facilitate the mounting and demounting of the mounting frames 94 at determined positions along the assembly direction 6.
By scaling up the apparatus 1 depicted in Fig. 5 to an apparatus 1 comprising two assembly lines 1 1 1 as depicted in Fig. 6 productivity can be doubled, while a compact construction of the apparatus 1 is maintained. For instance if an apparatus with a single assembly line is set to assemble 125 ammunitions per minute an apparatus comprising two assembly lines will be advantageously capable of assembling 250 ammunitions per minute.
Fig. 7 depicts a preferred embodiment of an ammunition assembly apparatus 1 according to the invention that comprises two assembly lines 1 1 1. In the preferred embodiment an assembly lines 1 1 1 is mounted on one side of the mounting plane 62, while the other assembly line 1 1 1 is mounted on the other side of the mounting plane 62. The preferred apparatus 1 depicted in Fig. 7 corresponds to a scale-up of the preferred apparatus 1 depicted in Fig. 5. By symmetrically extending the apparatus 1 depicted in Fig. 5 along the symmetry axis of the mounting plane 62 a doubling of the producible ammunition can be achieved. Moreover this arrangement constitutes a particularly compact construction that allows for a flexible use. For instance ammunition of a first caliber can be produced on one side of the apparatus 1 using the one assembly line 1 1 1 , while on the other side of the mounting plane 62 the apparatus 1 produces ammunition of a different, second caliber using the other assembly lines 1 1 1. Moreover the mounting plane 62 forms a security barrier between the assembly lines 1 1 1. Therefore it is possible to repair and/or clean an assembly line 1 1 1 on one side of the mounting plane 62, while the other assembly line 1 1 1 is operating.
Fig. 8 depicts a preferred embodiment of an ammunition assembly apparatus 1 according to the invention that comprises four assembly lines 1 1 1. In the preferred embodiment a pair of assembly lines 1 1 1 is mounted on one side of the mounting plane 62, while a second pair of assembly lines 1 1 1 is mounted on the other side of the mounting plane 62. Fig. 8 corresponds to a scale up of the preferred embodiment of an apparatus 1 according to Fig. 6. Instead of having two assembly lines 1 1 1 mounted within mounting frames 94 on one side of the mounting plane 62, a similar configuration of two assembly lines 1 1 1 is mounted on the other side of the mounting plane 62. The separation of the two pair of assembly lines 1 1 1 by means of the mounting plane 62 allows for a particular flexible operation as described for the embodiment of the apparatus 1 depicted in Fig. 7.
REFERENCE SIGNS
1 ammunition assembly apparatus
2 shell
3 cartridge
4 conveyor subsystem
5 working station
6 assembly direction
1 1 projectile
18 powder filling station
20a net weighing apparatus
20b gross weighing apparatus
24 storage and control subsystem
27 projectile insertion station
28 cartridge length measurement apparatus
39 powder reservoir
40 shell reservoir
41 conveyor belt
42 compartment of conveyor belt
43 bottom of cartridge or shell
44 transport plane an which cartridges or shells stand upright during transport
45 ribs between compartments
46 longitudinal axis of cartridge or shell
48 transport guide
50 pulley for conveyor belt
57 drive of conveyor subsystem
59 feeder tube
60 projectile reservoir
62 mounting plane
63 empty space
65 crimp station
66 bulkhead
67 manufacturing space of apparatus
68 bottom space of apparatus
94 mounting frame
95 bottom support plane
96 middle support plane
97 top support plane 98 powder release slots
99 waste container for unsuited cartridges
101 collector container for suited cartridges
102 horizontal support edge
103 fixing aids
104 sorting station
1 1 1 assembly line

Claims

1. Ammunition, in particular cartridge, assembly apparatus (1 ) comprising a conveyor subsystem (4) and working stations (5), the conveyor subsystem (4) being adapted to transport ammunition (2, 3) past the working stations (5),
characterized in that
the assembly apparatus (1 ) comprises a mounting plane (62) onto which the working stations (5) and the conveyor subsystem (4) are mounted such that the conveyor subsystem (4) extends linearly at least sectionwise through the ammunition assembly apparatus (1 ) and the working stations (5) are arranged rectilinearly along the assembly direction (6).
2. Ammunition assembly apparatus (1 ) according to the previous claim,
characterized in that
the ammunition assembly apparatus (1 ) comprises a horizontal bulkhead (66) and the working stations (5) and the conveyor subsystem (4) are mounted to the mounting plane (62) such that an empty space (63) remains between the surface of the horizontal bulkhead (66) and the working stations (5) and the conveyor subsystem (4).
3. Ammunition assembly apparatus (1 ) according to the previous claim,
characterized in that
one of the working stations (5) is a powder filling station (18).
4. Ammunition assembly apparatus (1 ) according any one of the previous claims, characterized in that
one of the working stations (5) is a projectile insertion station (27).
5. Ammunition assembly apparatus (1 ) according to any one of the previous claims, characterized in that
one of the working stations (5) is a crimp station (65).
6. Ammunition assembly apparatus (1 ) according to any one of the previous claims, characterized in that
the conveyor subsystem (4) comprises a conveyor belt (41 ), comprising
compartments (42), which are separated by vertical ribs (45) and the conveyor belt (41 ) is assembled as a loop (55) around two pulleys (50), which lie on an axis and are rotated by means of a driver (57).
7. Ammunition assembly apparatus (1 ) according the previous claims,
characterized in that
the apparatus (1 ) comprises a stationary transport guide (48) through which shells (2) are moved by the conveyor belt (41 ) and wherein said transport guide (48) comprises powder release slots (98).
8. Ammunition assembly apparatus (1 ) according to any one of the previous claims, characterized in that
the working stations (5) and the conveyor subsystem (4) are mounted to a mounting plane (62) by means of mounting frames (94).
9. Ammunition assembly apparatus (1 ) according to the previous claim,
characterized in that
the mounting frame (94) comprises a bottom support plane (95), a top support plane (97) and a middle support plane (96), wherein the conveyor subsystem (4) is supported by the middle support plane (96).
10. Ammunition assembly apparatus (1 ) according to any one of the previous claims 8 or 9,
characterized in that
the mounting plane 62 comprises a horizontal support edge (102) onto which the mounting frames (94) are mounted.
1 1 . Ammunition assembly apparatus (1 ) according to any one of the previous claims, characterized in that
the mounting plane (62) comprises fixing aids (103) that can be fixable translated along the assembly direction (6) and the mounting frames (94) comprise corresponding grooves.
12. Ammunition assembly apparatus (1 ) according to any one of the previously claims characterized in that
the apparatus (1 ) comprises at least two assembly lines (1 1 1 ) comprising working stations (5) and a conveyor subsystem (4) and where the assembly lines (1 1 1 ) are attached to the same side of the mounting plane (62) on the same side and arranged parallel and side-by-side.
13. Ammunition assembly apparatus (1 ) according to any one of the previously claims characterized in that
the apparatus (1 ) comprises at least two assembly lines (1 1 1 ) comprising working stations 5 and a conveyor subsystem 4, wherein a first of the two of the assembly lines (1 1 1 ) is attached on one side of the mounting plane (62), while a second of the two assembly lines (1 1 1 ) is attached on the opposite side of the mounting plane (62).
14. Ammunition assembly apparatus (1 ) according to any one of the previously claims characterized in that
the apparatus (1 ) comprises at least four assembly lines (1 1 1 ) comprising working stations 5 and a conveyor subsystem 4, wherein a first pair of the assembly lines (1 1 1 ) is attached on one side of the mounting plane (62), while a second pair of the assembly lines (1 1 1 ) is attached on the opposite side of the mounting plane (62).
15. Ammunition assembly apparatus (1 ) according to any one of the previously claims characterized in that
the apparatus (1 ) comprises at least six assembly lines (1 1 1 ) comprising working stations 5 and a conveyor subsystem 4, wherein at least three of the assembly lines (1 1 1 ) are attached on one side of the mounting plane (62), while another at least three of the assembly lines (1 1 1 ) are attached on the opposite side of the mounting plane (62).
16. Ammunition assembly apparatus (1 ) according to any one of the previously claims characterized in that
the apparatus (1 ) comprises at least eight assembly lines (1 1 1 ) comprising working stations 5 and a conveyor subsystem 4, wherein at least four of the assembly lines (1 1 1 ) are attached on one side of the mounting plane (62), while another at least four of the assembly lines (1 1 1 ) are attached on the opposite side of the mounting plane (62).
EP17710496.5A 2016-03-03 2017-03-03 Ammunition assembly apparatus Withdrawn EP3423779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016103869 2016-03-03
PCT/EP2017/055000 WO2017149115A1 (en) 2016-03-03 2017-03-03 Ammunition assembly apparatus

Publications (1)

Publication Number Publication Date
EP3423779A1 true EP3423779A1 (en) 2019-01-09

Family

ID=58213088

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17708504.0A Withdrawn EP3423778A1 (en) 2016-03-03 2017-03-03 Automated progressive ammunition, in particular cartridge, assembly apparatus and method with feedback assembly control
EP17710496.5A Withdrawn EP3423779A1 (en) 2016-03-03 2017-03-03 Ammunition assembly apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17708504.0A Withdrawn EP3423778A1 (en) 2016-03-03 2017-03-03 Automated progressive ammunition, in particular cartridge, assembly apparatus and method with feedback assembly control

Country Status (4)

Country Link
US (2) US20190094000A1 (en)
EP (2) EP3423778A1 (en)
KR (2) KR20180125153A (en)
WO (2) WO2017149115A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085746B2 (en) 2018-05-30 2021-08-10 Dillon Precision Products, Inc. Rotary-drive ammunition reloading systems with discontinuous stroke speed
US9664488B2 (en) * 2014-09-22 2017-05-30 Ammobot, Llc Ammunition reloading systems and methods
US11085747B2 (en) 2014-09-22 2021-08-10 Dillon Precision Products, Inc. Ammunition reloading systems and methods
KR20180125153A (en) * 2016-03-03 2018-11-22 프리츠 베르너 인더스트리에-아우스뤼스툰겐 게엠바하 Ammunition assembly device
US11118884B2 (en) 2018-08-21 2021-09-14 Aob Products Company Dispenser for firearm ammunition powder
KR102552020B1 (en) 2018-10-19 2023-07-05 현대자동차 주식회사 Tensioner for hybrid electric vehicle
US11566878B2 (en) 2019-06-17 2023-01-31 Aob Products Company Dispenser for firearm ammunition powder
CN110823017B (en) * 2019-10-24 2022-03-25 湖南军成科技有限公司 Big bullet booster charge assembling system
CN111168097A (en) * 2020-01-15 2020-05-19 长沙凯泽工程设计有限公司 Drilling machine
CN111795618A (en) * 2020-07-13 2020-10-20 湖北帅力化工有限公司 Explosive loading device
CN112361900B (en) * 2020-11-02 2022-09-27 中国兵器装备集团自动化研究所有限公司 Energy-containing medicament filling device
CN114518059B (en) * 2022-03-09 2023-08-15 轻工业西安机械设计研究院有限公司 Automatic lifting charging device and method
CN115111974B (en) * 2022-06-30 2023-07-21 湖南摩铠智能科技有限公司 Automatic change delay pipe and press medicine line
DE102022119659A1 (en) 2022-08-04 2024-02-15 Ruag Ammotec Ag System and method for the automated production of ammunition and conveyor device
DE102022119670A1 (en) 2022-08-04 2024-02-15 Ruag Ammotec Ag System for the automated production of ammunition
CN115451758B (en) * 2022-09-08 2023-06-20 中国兵器装备集团自动化研究所有限公司 Spring assembling device
CN116147434B (en) * 2023-03-10 2024-05-14 中国兵器装备集团自动化研究所有限公司 Spring assembly system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US561029A (en) * 1896-05-26 Cartridge-loading machine
US505423A (en) * 1893-09-19 X c cartrid
BE717211A (en) * 1968-06-27 1968-12-27
FR2094479A5 (en) * 1970-06-23 1972-02-04 Sauvage Jean Claude Filling and closing shot gun cartridges - in machine with conveyor for the cases linked with reciprocating processing sta
US4228724A (en) * 1979-05-29 1980-10-21 Leich Robert A Ammunition loader
FR2534889A1 (en) 1982-10-25 1984-04-27 Manurhin MACHINE FOR DOUBLE PROCESSING OF CONTINUOUS PARTS BY RECYCLING ON AN OPERATIONAL BARREL, IN PARTICULAR OF SUCCESSIVE VARNISHINGS OF BODY OF REVOLUTION
US4475435A (en) * 1983-02-25 1984-10-09 Mantel Machine Products, Inc. In line bullet feeder
US4920853A (en) * 1989-04-13 1990-05-01 Odom Joel M Shot measure for shell reloader accessory
US6772668B2 (en) 2002-08-07 2004-08-10 Alliant Techsystems, Inc. Ammunition reloading apparatus with feed mechanism
ITBO20040008U1 (en) * 2004-02-03 2004-05-03 Tonazzi S R L MACHINE FOR FILLING AND CLOSING TUBES
US20050226489A1 (en) * 2004-03-04 2005-10-13 Glenn Beach Machine vision system for identifying and sorting projectiles and other objects
US7331156B2 (en) * 2004-06-29 2008-02-19 Hartness International, Inc. System for securely conveying articles and related components
US9697596B2 (en) * 2011-05-17 2017-07-04 Gii Acquisition, Llc Method and system for optically inspecting parts
US8683906B2 (en) * 2011-12-06 2014-04-01 Dixon Automatic Tool, Inc. Ammunition loader
US10907943B2 (en) 2013-03-15 2021-02-02 Cybernet Systems Corp. Integrated polymer and metal case ammunition manufacturing system and method
ITUB20155750A1 (en) * 2015-11-19 2017-05-19 E M G Srl CARICATING MACHINE FOR CARTRIDGES IN METALLIC CARTRIDGE
KR101638033B1 (en) * 2015-12-28 2016-07-11 주식회사 풍산 Testing machine that performs ammunition gauging and fixing while transporting
KR20180125153A (en) * 2016-03-03 2018-11-22 프리츠 베르너 인더스트리에-아우스뤼스툰겐 게엠바하 Ammunition assembly device

Also Published As

Publication number Publication date
EP3423778A1 (en) 2019-01-09
WO2017149115A1 (en) 2017-09-08
US20190094000A1 (en) 2019-03-28
WO2017149114A1 (en) 2017-09-08
KR20180125153A (en) 2018-11-22
US20190063890A1 (en) 2019-02-28
KR20180125152A (en) 2018-11-22

Similar Documents

Publication Publication Date Title
US20190063890A1 (en) Ammunition assembly apparatus
US8683906B2 (en) Ammunition loader
CN103978367B (en) expansion bolt assembly machine
CN108032053A (en) A kind of feed mechanism of electromagnetic core assembling equipment
US20240043220A1 (en) Vibratory conveyor for conveying items and related filling machine and methods
US20200113786A1 (en) Intermittent rotary machine and related method for filling capsules with pharmaceutical or nutraceutical products
CN107225401A (en) Electronic product intellectuality assembling outfit
CN211404197U (en) Full-automatic sign indicating number inspection adds gasket equipment of magnetizing
CN113428638A (en) Feeding device and production equipment with same
CN203887513U (en) Expansion bolt assembling machine
CN210653870U (en) Packaging equipment for production and processing of test needles
CN105692134A (en) Detectable stepped feeding mechanism
CN109904704A (en) A kind of the Jia Zhen mechanism and its folder needle method of the production of power distribution cabinet connection terminal
CN203983701U (en) The automatic inserted sheet assembly machine of commutator segment
GB1329784A (en) Machine guns
CN106112508B (en) Automatic assembly equipment for watch parts
CN210592867U (en) Straight-falling type labeling device
CN110745530A (en) Automatic material conveying line and automatic feeding and discharging method thereof
CN109677878A (en) A kind of conveying mechanism and Full-automatic pin equipment of power distribution cabinet connection terminal
US3796324A (en) Apparatus for separating annular work pieces
KR20160094701A (en) A Lens Feeder for Suppling a Plural Lens
KR101770578B1 (en) O-ring inspection device
CN112607307A (en) Packing method for holder cover
CN219475360U (en) Positioning and clamping device for non-magnetic MIM product thread detection
CN115823967B (en) Small particle propellant powder charging device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190913

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20200217

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200630