EP3417035B1 - Method for desulfurizing a hydrocarbon mixture - Google Patents
Method for desulfurizing a hydrocarbon mixture Download PDFInfo
- Publication number
- EP3417035B1 EP3417035B1 EP17720561.4A EP17720561A EP3417035B1 EP 3417035 B1 EP3417035 B1 EP 3417035B1 EP 17720561 A EP17720561 A EP 17720561A EP 3417035 B1 EP3417035 B1 EP 3417035B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sodium
- reactor
- hydrocarbon mixture
- dispersion
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims description 70
- 239000000203 mixture Substances 0.000 title claims description 47
- 229930195733 hydrocarbon Natural products 0.000 title claims description 46
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 46
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 40
- 230000003009 desulfurizing effect Effects 0.000 title 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 55
- 239000011734 sodium Substances 0.000 claims description 55
- 229910052708 sodium Inorganic materials 0.000 claims description 55
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical class [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 34
- 239000006185 dispersion Substances 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 239000003921 oil Substances 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 12
- 239000007791 liquid phase Substances 0.000 claims description 9
- 239000002480 mineral oil Substances 0.000 claims description 6
- 235000010446 mineral oil Nutrition 0.000 claims description 6
- 239000000446 fuel Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 230000003068 static effect Effects 0.000 claims description 2
- 239000002699 waste material Substances 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 description 30
- 239000011593 sulfur Substances 0.000 description 30
- 238000006477 desulfuration reaction Methods 0.000 description 23
- 230000023556 desulfurization Effects 0.000 description 23
- 150000002898 organic sulfur compounds Chemical class 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- VDQVEACBQKUUSU-UHFFFAOYSA-M disodium;sulfanide Chemical compound [Na+].[Na+].[SH-] VDQVEACBQKUUSU-UHFFFAOYSA-M 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052979 sodium sulfide Inorganic materials 0.000 description 3
- 150000003464 sulfur compounds Chemical class 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 125000004436 sodium atom Chemical group 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G19/00—Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment
- C10G19/073—Refining hydrocarbon oils in the absence of hydrogen, by alkaline treatment with solid alkaline material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G29/00—Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
- C10G29/04—Metals, or metals deposited on a carrier
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/10—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including alkaline treatment as the refining step in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
Definitions
- the invention relates to a process for the desulfurization of a hydrocarbon mixture containing organic sulfur compounds according to the preamble of claim 1.
- a disadvantage of this process is that as the sulfur content decreases, the hydrogen requirement for removing the sulfur increases disproportionately to the amount of sulfur removed. This is because some sulfur compounds are less reactive than others in terms of the chemical reactions that play a role in hydrodesulfurization. At the same time, however, other side reactions occur in which hydrogen is consumed. Examples can be the conversion of unsaturated to saturated hydrocarbons or the splitting of hydrocarbons to form hydrocarbons with a higher hydrogen / carbon ratio. Accordingly, the cost of hydrodesulfurization trying to keep the lowest possible To reach residual sulfur levels in the hydrocarbon mixture disproportionately.
- the invention is therefore based on the object of demonstrating a desulfurization process of the type mentioned at the outset which can be sensibly implemented on an industrial scale.
- the object is achieved by a generic method for the desulfurization of a hydrocarbon mixture containing organic sulfur compounds with the characterizing features of claim 1.
- the object is achieved in that the reactor in which the reaction takes place is a turbulent-flow reactor, preferably a tubular reactor.
- a plug reactor with an internal oscillating is preferred driven transport screw are used, in which it is ensured by appropriate technical devices that a turbulent flow arises and the design ensures a sufficient residence time of the hydrocarbon mixture to be desulfurized.
- the reaction parameters can be set in a reactor, preferably a tubular reactor or a plug reactor, with turbulent flow such that an extremely low residual sulfur content can be achieved when a mixture of a sodium dispersion and a hydrocarbon mixture is passed through this reactor.
- residual sulfur content refers to the sulfur which is still present in the form of organic sulfur compounds after the reaction has been carried out. It is understood that for the final removal of the sulfur by sodium, in particular inorganic, preferably in the form of Na2S, bound sulfur still has to be separated from the mixture with the sodium. A number of separation processes known from the prior art are available for this.
- the tubular reactor Due to the turbulent flow in the reactor, preferably in the tubular reactor or in the plug reactor, sufficient mixing of the reaction mixture can be generated in order to be able to carry out the reaction until low residual sulfur contents are reached, in order to ensure economical desulfurization.
- the tubular reactor has a corresponding length for this. This is preferably at least 100 m, more preferably at least 200 m. It has been shown that with these very long pipe lengths, suitable flow conditions can be realized with a corresponding sufficient dwell time in order to successfully carry out the process on an industrial scale.
- the tube of the tubular reactor does not have to be straight, it can rather have a meandering, coiled or similar course, in particular in order to enable a space-saving construction of the reactor.
- the reaction tube of the tube reactor can of course also be composed of a plurality of tubes.
- the length of the tube reactor therefore means the effective length of the flow path through the tube reactor, which in the present case the medium flowing through the mixture of sodium dispersion and hydrocarbon mixture under reaction conditions.
- Appropriate technical devices such as the oscillating drive, the turbulent flow and the dwell time are used in the plug reactor guaranteed, and can be regulated if necessary by the speed control of the screw conveyor and / or the duration of the oscillations.
- the reactor can advantageously have internals to promote mixing. Such internals are helpful in order to ensure turbulent flow and the associated mixing, which promotes the reaction rate.
- the reactor can particularly preferably have so-called static mixers, that is to say immovable internals which, due to their geometry, influence the flow accordingly.
- the temperature in the reactor is at least 250 ° C. It is also advantageous if the temperature in the reactor does not exceed 310 ° C. It has been shown that there are particularly favorable conditions for the desired chemical reactions in this temperature range.
- the volume-equivalent spherical diameter of at least 80%, preferably at least 90% of the sodium particles in the dispersion is at most 25 ⁇ m, preferably at most 12 ⁇ m and particularly preferably at most 5 ⁇ m. It has been shown that a sodium dispersion which is both very fine and has the narrowest possible spectrum of particle distribution is particularly advantageous with regard to the reaction rate.
- the volume-equivalent spherical diameter of a sodium particle is the diameter that a spherical sodium particle of the same volume would have. Due to the low melting point of sodium, this is regularly in liquid form under reaction conditions, as a result of which the sodium particles actually form a spherical shape.
- the volume-equivalent sphere diameter is ideal for clearly characterizing the particle size in the suspension. It is also particularly advantageous if at least 90%, preferably at least 95%, of the sodium particles have a volume-equivalent spherical diameter that is less than 5 ⁇ m.
- the production of the sodium dispersion according to the rotor-stator principle has proven to be particularly advantageous with regard to the method according to the invention.
- dispersing devices are used in which the dispersion is generated by a relative movement between a rotor and a stator at a high peripheral speed. It has been found that sodium dispersions produced by such a dispersion process in particular have very narrow particle size distributions and are particularly suitable for the process according to the invention.
- the sodium for the preparation of the sodium dispersion is dispersed in an oil, which can be a paraffinic white oil in a particularly advantageous manner. It has been shown that dispersions of sodium in such liquid phases are particularly advantageous for the process according to the invention.
- Particularly high levels of desulfurization can be achieved in particular if the proportion of sodium in the dispersion is 1 to 40% by weight, preferably 10 to 33% by weight, based on the total weight of the dispersion. It is particularly advantageous for desulfurization if 1 to 40% by weight of sodium is dispersed in oil and preferably at least 80% of the sodium particles have a volume-equivalent spherical diameter which is less than 25 ⁇ m. It is further preferred if 10 to 33% by weight of sodium is dispersed in white oil and preferably at least 90% of the sodium particles have a volume-equivalent spherical diameter which is less than 12 ⁇ m, preferably less than 5 ⁇ m. The best results for desulfurization can be achieved under the aforementioned conditions.
- the liquid phase which is used for dispersing the sodium preferably has a viscosity of at least 4 mm 2 / s, particularly preferably at least 12 mm 2 / s, and / or at most 20 mm 2 / s, particularly preferably at most 17 mm 2 / s s.
- the density of the liquid phase used for the dispersion is preferably at least 0.84 kg / l and or at most 0.89 kg / l.
- the liquid phase used to disperse the sodium has a flash point of at least 150 ° C., preferably at least 200 ° C.
- the hydrocarbon mixture to be desulfurized is first treated with a further desulfurization process for the pre-desulfurization. Desulphurization then takes place later by treatment with a desulphurization process according to the invention.
- This procedure has the advantage that the advantages of conventional desulfurization processes, in particular hydrogenating desulfurization processes, can be combined with the advantages of desulfurization with a sodium dispersion. It makes sense to first remove that part of the sulfur that can still be removed comparatively easily with a hydrogenating desulfurization process. This will remove most of the sulfur. The process based on the sodium dispersion is then used to further reduce the residual sulfur content.
- the desulfurization by means of the sodium dispersion does not have to directly and directly follow the preferably hydrodesulfurization. It is entirely possible in the meantime to subject the resulting hydrocarbon mixture to further process steps, to separate parts of the hydrocarbon mixture or to mix the hydrocarbon mixture with other substances, in particular other hydrocarbon mixtures. This also applies accordingly to the sequence between the preparation of the dispersion and the addition of the sodium dispersion to the hydrocarbon mixture to be desulfurized.
- the process variants described above for producing the sodium dispersion have the advantage that the sodium dispersion is correspondingly stable, ie it can easily stored or transported between production sites before it is added to the hydrocarbon mixture.
- the hydrocarbon mixture to be desulfurized is a fuel or a fraction of a hydrocarbon mixture intended for further processing into a fuel.
- mineral oil fractions for specific later uses for example the production of diesel fuels - are separated from each other at an early stage and processed further using different process routes.
- the fractions used for the use of diesel and / or petrol have a certain proportion of low boilers.
- the pressure in the reactor is at least 6 bar, preferably at least 8 bar. In this way, a reliable conversion can also be carried out, in particular, of low-boiling constituents in the liquid phase.
- Another advantageous process variant provides that the pressure in the reactor is at most 3 bar, preferably at most 1.5 bar.
- This process variant is particularly advantageous when the proportion of low boilers in the hydrocarbon mixture is low. Such operation is particularly advantageous when comparatively small and compact systems can be used. Due to the low pressure, the material stresses decrease, in particular the comparatively long tubular reactors can be designed much thinner, which has an extremely positive effect with regard to the size and weight of the plant.
- the process according to the invention can be used particularly advantageously, in particular in comparatively compact plants, for the desulfurization of hydrocarbon mixtures which originate from a liquefaction process for the recovery of liquid hydrocarbons from solids.
- Such methods are used in particular when liquid hydrocarbon mixtures for use as fuels are to be obtained from waste.
- Low-boiling components often play a subordinate role in these mixtures, whereas the possibility of constructing inexpensive and / or compact plants often represents a considerable economic advantage.
- Slop oil is a contaminated mixture containing mineral oil, which occurs, for example, and especially when rinsing tanks on ships.
- mineral oil which occurs, for example, and especially when rinsing tanks on ships.
- These can be, for example, the tanks of mineral oil tankers, but also fuel tanks of ships operated in particular with heavy oil. Cooling circuits and the like on ships of this type, in particular in the area of ship engines, are regularly not completely sealed, so that sea water and other contaminants, including marine life and the like, penetrate into the tanks in question and in the tanks to form the so-called slop oil as residue that is difficult to recover.
- slop oil and / or products which are obtained from a process for the preparation of slop oil in particular a process in which the first constituents of the slop oil are already separated off, can be treated particularly well using the desulfurization process according to the invention.
- the invention is described below with reference to Fig. 1 exemplified schematically.
- a hydrocarbon mixture 1 is provided, which originates, for example, from a liquefaction process for the extraction of liquid hydrocarbons or a processing process of slop oil (or a mixture thereof). Furthermore, sodium 2 is dispersed with an oil 3 in the example shown in a process step S1. Dispersion based on the rotor-stator principle is preferably used for this. A paraffinic white oil is preferably used as the oil 1. In a further step S2, the sodium dispersion that was produced in step S1 and the hydrocarbon mixture 1 are mixed.
- the reaction step S3 is preferably carried out in a tubular reactor with a turbulent flow, the tubular reactor preferably having a length of at least 200 m.
- the reactor can, for example, be designed in a meandering shape.
- the use of an oscillating plug reactor with an internal transport screw is advantageous.
- the process according to the invention occurs in process step S3 underlying chemical reactions, in which the sulfur is dissolved out of the organic sulfur compounds and reacts to inorganic sulfur compounds, in particular to Na2S.
- step S4 the inorganic sulfur-containing constituents, in particular Na2S 5, formed from the desulfurized hydrocarbon product 4 are separated off.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Entschwefelung eines organische Schwefelverbindungen enthaltenden Kohlenwasserstoffgemisches nach dem Oberbegriff des Anspruchs 1.The invention relates to a process for the desulfurization of a hydrocarbon mixture containing organic sulfur compounds according to the preamble of claim 1.
Die Entschwefelung von Kohlenwasserstoffgemischen spielt in der Technik vor allem deswegen eine bedeutende Rolle, da es sich bei Schwefel um ein sogenanntes "Katalysatorgift" handelt und die Überschreitung eines gewissen Grenzwertes durch den Schwefelgehalt ein Kohlenwasserstoffgemisch so für eine Vielzahl möglicher Verwendungen unbrauchbar macht. Hinzu kommen immer strengere gesetzliche Vorschriften, welche Höchstwerte für den Schwefelgehalt auch bei Anwendungen vorsehen, bei denen die Kohlenwasserstoffe regelmäßig lediglich verbrannt werden, insbesondere um den Gehalt an Schwefelverbindungen in den entstehenden Abgasen zu reduzieren.The desulphurization of hydrocarbon mixtures plays an important role in technology primarily because sulfur is a so-called "catalyst poison" and the exceeding of a certain limit value by the sulfur content renders a hydrocarbon mixture unusable for a large number of possible uses. In addition, there are ever stricter legal regulations, which provide maximum values for the sulfur content even in applications in which the hydrocarbons are regularly only burned, in particular to reduce the content of sulfur compounds in the resulting exhaust gases.
Nach dem Stand der Technik kommt daher eine Vielzahl von Entschwefelungsverfahren zum Einsatz. Häufig werden diese Verfahren im Rahmen der Raffination von Mineralöl durchgeführt, wobei entsprechend große technische Maßstäbe erreicht werden. Es kommen hierbei vor allem sogenannte hydrierende Entschwefelungsverfahren zum Einsatz. Bei diesen wird der Schwefel im Rahmen einer chemischen Reaktion aus den organischen Schwefelverbindungen herausgelöst und mit Wasserstoff zu Schwefelwasserstoff kombiniert. Der Schwefelwasserstoff wird vom Kohlenwasserstoffgemisch abgetrennt und regelmäßig im Rahmen eines sogenannten Claus-Verfahrens weiterverarbeitet.According to the state of the art, a large number of desulfurization processes are used. These processes are often carried out as part of the refining of mineral oil, with correspondingly large technical standards being achieved. So-called hydrogenating desulfurization processes are primarily used. In these, the sulfur is released from the organic sulfur compounds in a chemical reaction and combined with hydrogen to form hydrogen sulfide. The hydrogen sulfide is separated from the hydrocarbon mixture and processed regularly in a Claus process.
Nachteilig an diesen Verfahren ist jedoch, dass mit sinkendem Schwefelgehalt der Wasserstoffbedarf für die Entfernung des Schwefels überproportional zur entfernten Schwefelmenge ansteigt. Dies liegt daran, dass einige Schwefelverbindungen reaktionsträger als andere im Hinblick auf die chemischen Reaktionen, die bei der hydrierenden Entschwefelung eine Rolle spielen, sind. Gleichzeitig treten jedoch andere Nebenreaktionen auf, bei denen Wasserstoff verbraucht wird. Beispiele können die Umwandlung ungesättigter in gesättigte Kohlenwasserstoffe oder die Spaltung von Kohlenwasserstoffen unter Bildung von Kohlenwasserstoffen mit einem höheren Wasserstoff/Kohlenstoffverhältnis sein. Entsprechend steigen die Kosten für die hydrierende Entschwefelung bei dem Versuch, möglichst niedrige Restschwefelgehalte im Kohlenwasserstoffgemisch zu erreichen, überproportional an.A disadvantage of this process, however, is that as the sulfur content decreases, the hydrogen requirement for removing the sulfur increases disproportionately to the amount of sulfur removed. This is because some sulfur compounds are less reactive than others in terms of the chemical reactions that play a role in hydrodesulfurization. At the same time, however, other side reactions occur in which hydrogen is consumed. Examples can be the conversion of unsaturated to saturated hydrocarbons or the splitting of hydrocarbons to form hydrocarbons with a higher hydrogen / carbon ratio. Accordingly, the cost of hydrodesulfurization trying to keep the lowest possible To reach residual sulfur levels in the hydrocarbon mixture disproportionately.
Mit den steigenden Anforderungen an niedrige Schwefelgehalte steigt daher das Interesse an alternativen Entschwefelungsverfahren.With the increasing requirements for low sulfur contents, the interest in alternative desulfurization processes is increasing.
Aus der Grundlagenforschung ist bekannt, dass es einige Entschwefelungsmöglichkeiten für Kohlenwasserstoffgemische gibt, die sich zumindest im Labormaßstab realisieren lassen. So offenbart beispielsweise die gattungsbildende Schrift
Aus der Schrift
Der Erfindung liegt daher die Aufgabe zugrunde, ein Entschwefelungsverfahren der eingangs genannten Art aufzuzeigen, welches sich im technischen Maßstab sinnvoll realisieren lässt.The invention is therefore based on the object of demonstrating a desulfurization process of the type mentioned at the outset which can be sensibly implemented on an industrial scale.
Die Aufgabe wird gelöst durch ein gattungsgemäßes Verfahren zur Entschwefelung eines organische Schwefelverbindungen enthaltenden Kohlenwasserstoffgemisches mit den kennzeichnenden Merkmalen des Anspruchs 1.The object is achieved by a generic method for the desulfurization of a hydrocarbon mixture containing organic sulfur compounds with the characterizing features of claim 1.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass der Reaktor, in dem die Reaktion stattfindet, ein turbulent durchströmter Reaktor, bevorzugt ein Rohrreaktor, ist. Alternativ kann bevorzugt ein Propfenreaktor mit innenliegender oszillierend angetriebener Transportschnecke eingesetzt werden, in dem durch entsprechende technische Vorrichtungen sichergestellt ist, dass eine turbulente Strömung entsteht und durch die Bauform eine ausreichende Verweilzeit des zu entschwefelnden Kohlenwasserstoffgemisches gewährleistet ist. Es hat sich gezeigt, dass sich in einem Reaktor, bevorzugt ein Rohrreaktor oder ein Propfenreaktor, bei turbulenter Durchströmung die Reaktionsparameter so einstellen lassen, dass beim Durchleiten einer Mischung aus einer Natriumdispersion und einem Kohlenwasserstoffgemisch durch diesen Reaktor ein äußerst niedriger Restschwefelgehalt erzielt werden kann. Der Begriff "Restschwefelgehalt" ist dabei auf den Schwefel bezogen, der nach dem Durchführen der Reaktion immer noch in Form organischer Schwefelverbindungen vorliegt, es versteht sich, dass zur endgültigen Entfernung des Schwefels der durch das Natrium, insbesondere anorganisch, vorzugsweise in Form von Na2S, gebundene Schwefel noch mit dem Natrium aus der Mischung abgetrennt werden muss. Hierfür stehen eine Reihe aus dem Stand der Technik bekannte Trennverfahren zur Verfügung.According to the invention, the object is achieved in that the reactor in which the reaction takes place is a turbulent-flow reactor, preferably a tubular reactor. Alternatively, a plug reactor with an internal oscillating is preferred driven transport screw are used, in which it is ensured by appropriate technical devices that a turbulent flow arises and the design ensures a sufficient residence time of the hydrocarbon mixture to be desulfurized. It has been shown that the reaction parameters can be set in a reactor, preferably a tubular reactor or a plug reactor, with turbulent flow such that an extremely low residual sulfur content can be achieved when a mixture of a sodium dispersion and a hydrocarbon mixture is passed through this reactor. The term "residual sulfur content" refers to the sulfur which is still present in the form of organic sulfur compounds after the reaction has been carried out. It is understood that for the final removal of the sulfur by sodium, in particular inorganic, preferably in the form of Na2S, bound sulfur still has to be separated from the mixture with the sodium. A number of separation processes known from the prior art are available for this.
Durch die turbulente Durchströmung im Reaktor, bevorzugt im Rohrreaktor bzw. im Pfropfenreaktor, lässt sich eine hinreichende Durchmischung des Reaktionsgemisches erzeugen, um die Reaktion bis zum Erreichen niedriger Restschwefelgehalte durchführen zu können, um so eine wirtschaftliche Entschwefelung zu gewährleisten. Besonders vorteilhaft ist es in diesem Zusammenhang, wenn der Rohrreaktor hierfür eine entsprechende Länge aufweist. Diese beträgt vorzugsweise wenigstens 100 m, weiter vorzugsweise wenigstens 200 m. Es hat sich gezeigt, dass sich bei diesen sehr hohen Rohrlängen geeignete Strömungsbedingungen bei einer entsprechenden ausreichenden Verweilzeit realisieren lassen, um das Verfahren erfolgreich im technischen Maßstab durchzuführen. In diesem Zusammenhang ist zu erwähnen, dass das Rohr des Rohrreaktors keinesfalls gerade sein muss, es kann vielmehr einen mäanderförmigen, aufgewickelten oder ähnlichen Verlauf aufweisen, insbesondere um eine raumsparende Bauweise des Reaktors zu ermöglichen. Auch kann das Reaktionsrohr des Rohrreaktors selbstverständlich aus einer Mehrzahl Rohre zusammengesetzt sein. Unter der Länge des Rohrreaktors ist von daher die effektive Länge des Strömungswegs durch den Rohrreaktor anzusehen, die von dem durchströmenden Medium vorliegend der Mischung aus Natriumdispersion und Kohlenwasserstoffgemisch bei Reaktionsbedingungen zurückgelegt wird. Im Propfenreaktor wird durch entsprechende technische Vorrichtungen, wie z.B. dem oszillierender Antrieb, die turbulente Durchströmung und die Verweilzeit gewährleistet, und ist bedarfsweise durch die Geschwindigkeitssteuerung der Transportschnecke und/oder die Dauer der Oszillationen regelbar.
Der Reaktor kann in vorteilhafter Weise Einbauten zur Förderung der Durchmischung aufweisen. Solche Einbauten sind hilfreich, um eine turbulente Durchströmung und die damit einhergehende der Reaktionsgeschwindigkeit förderliche Durchmischung sicherzustellen. Besonders bevorzugt kann der Reaktor hierfür sogenannte statische Mischer, also unbewegte Einbauten, die aufgrund ihrer Geometrie die Strömung entsprechend beeinflussen, aufweisen.Due to the turbulent flow in the reactor, preferably in the tubular reactor or in the plug reactor, sufficient mixing of the reaction mixture can be generated in order to be able to carry out the reaction until low residual sulfur contents are reached, in order to ensure economical desulfurization. In this context, it is particularly advantageous if the tubular reactor has a corresponding length for this. This is preferably at least 100 m, more preferably at least 200 m. It has been shown that with these very long pipe lengths, suitable flow conditions can be realized with a corresponding sufficient dwell time in order to successfully carry out the process on an industrial scale. In this context, it should be mentioned that the tube of the tubular reactor does not have to be straight, it can rather have a meandering, coiled or similar course, in particular in order to enable a space-saving construction of the reactor. The reaction tube of the tube reactor can of course also be composed of a plurality of tubes. The length of the tube reactor therefore means the effective length of the flow path through the tube reactor, which in the present case the medium flowing through the mixture of sodium dispersion and hydrocarbon mixture under reaction conditions. Appropriate technical devices such as the oscillating drive, the turbulent flow and the dwell time are used in the plug reactor guaranteed, and can be regulated if necessary by the speed control of the screw conveyor and / or the duration of the oscillations.
The reactor can advantageously have internals to promote mixing. Such internals are helpful in order to ensure turbulent flow and the associated mixing, which promotes the reaction rate. For this purpose, the reactor can particularly preferably have so-called static mixers, that is to say immovable internals which, due to their geometry, influence the flow accordingly.
Es hat sich gezeigt, dass es vorteilhaft ist, wenn die Temperatur im Reaktor wenigstens 250°Cbeträgt. Weiterhin ist es vorteilhaft, wenn die Temperatur im Reaktor 310°C nicht überschreitet. Es hat sich gezeigt, dass in diesem Temperaturbereich besonders günstige Bedingungen für die gewünschten chemischen Reaktionen vorliegen.It has been found to be advantageous if the temperature in the reactor is at least 250 ° C. It is also advantageous if the temperature in the reactor does not exceed 310 ° C. It has been shown that there are particularly favorable conditions for the desired chemical reactions in this temperature range.
Weiterhin hat sich gezeigt, dass es für die Reaktion förderlich ist, wenn der volumenäquivalente Kugeldurchmesser von wenigstens 80 %, bevorzugt von wenigstens 90 % der Natriumpartikel in der Dispersion höchstens 25 µm, bevorzugt höchstens 12 µm und besonders bevorzugt höchstens 5 µm beträgt. Es hat sich gezeigt, dass eine Natriumdispersion, die sowohl sehr fein ist als auch ein möglichst enges Spektrum der Partikelverteilung aufweist, besonders vorteilhaft in Bezug auf die Reaktionsgeschwindigkeit ist. Der volumenäquivalente Kugeldurchmesser eines Natriumpartikels ist dabei der Durchmesser, den ein kugelförmiges Natriumpartikel gleichen Volumens haben würde. Aufgrund des niedrigen Schmelzpunktes von Natrium liegt dieses bei Reaktionsbedingungen regelmäßig in flüssiger Form vor, wodurch die Natriumpartikel tatsächlich Kugelform ausbilden. Von daher bietet sich im Fall des Natriums der volumenäquivalente Kugeldurchmesser zur eindeutigen Charakterisierung der Partikelgröße in der Suspension an. Es ist darüber hinaus besonders vorteilhaft, wenn wenigstens 90 %, bevorzugt wenigstens 95% der Natriumpartikel einen volumenäquivalenten Kugeldurchmesser aufweisen, der kleiner als 5 µm ist.Furthermore, it has been shown that it is beneficial for the reaction if the volume-equivalent spherical diameter of at least 80%, preferably at least 90% of the sodium particles in the dispersion is at most 25 μm, preferably at most 12 μm and particularly preferably at most 5 μm. It has been shown that a sodium dispersion which is both very fine and has the narrowest possible spectrum of particle distribution is particularly advantageous with regard to the reaction rate. The volume-equivalent spherical diameter of a sodium particle is the diameter that a spherical sodium particle of the same volume would have. Due to the low melting point of sodium, this is regularly in liquid form under reaction conditions, as a result of which the sodium particles actually form a spherical shape. Therefore, in the case of sodium, the volume-equivalent sphere diameter is ideal for clearly characterizing the particle size in the suspension. It is also particularly advantageous if at least 90%, preferably at least 95%, of the sodium particles have a volume-equivalent spherical diameter that is less than 5 μm.
Bevorzugt werden in dem Verfahren zur Entschwefelung mindestens 0,05 Gew.-% Natrium, besonders bevorzugt mindestens 0,1 Gew.-% Natrium und insbesondere bevorzugt mindestens 1,5 Gew.-% Natrium, bezogen auf das Gesamtgewicht des zu entschwefelnden Kohlenwasserstoffgemisches, eingesetzt.In the desulphurization process, preference is given to at least 0.05% by weight of sodium, particularly preferably at least 0.1% by weight of sodium and particularly preferably at least 1.5% by weight of sodium, based on the total weight of the hydrocarbon mixture to be desulfurized, used.
Als besonders vorteilhaft im Hinblick auf das erfindungsgemäße Verfahren hat sich die Herstellung der Natriumdispersion nach dem Rotor-Stator-Prinzip herausgestellt. Hierbei werden Dispergiergeräte verwendet, bei dem durch eine Relativbewegung zwischen einem Rotor und einem Stator mit einer hohen Umfangsgeschwindigkeit die Dispersion erzeugt wird. Es hat sich herausgestellt, dass nach einem derartigen Dispersionsverfahren hergestellte Natriumdispersionen insbesondere sehr schmale Partikelgrößenverteilungen aufweisen und sich besonders gut für das erfindungsgemäße Verfahren eignen.The production of the sodium dispersion according to the rotor-stator principle has proven to be particularly advantageous with regard to the method according to the invention. Here, dispersing devices are used in which the dispersion is generated by a relative movement between a rotor and a stator at a high peripheral speed. It has been found that sodium dispersions produced by such a dispersion process in particular have very narrow particle size distributions and are particularly suitable for the process according to the invention.
Als besonders vorteilhaft hat sich herausgestellt, wenn das Natrium zur Herstellung der Natriumdispersion in einem Öl dispergiert wird, bei diesem kann es sich in besonders vorteilhafter Weise um ein paraffinisches Weißöl handeln. Es hat sich gezeigt, dass Dispersionen vom Natrium in solchen flüssigen Phasen besonders vorteilhaft für das erfindungsgemäße Verfahren sind.It has turned out to be particularly advantageous if the sodium for the preparation of the sodium dispersion is dispersed in an oil, which can be a paraffinic white oil in a particularly advantageous manner. It has been shown that dispersions of sodium in such liquid phases are particularly advantageous for the process according to the invention.
Besonders hohe Entschwefelungsgrade können insbesondere erreicht werden, wenn der Anteil an Natrium in der Dispersion 1 bis 40 Gew.-%, bevorzugt 10 bis 33 Gew.-%, bezogen auf das Gesamtgewicht der Dispersion, beträgt. Besonders Vorteilhaft für die Entschwefelung ist es, wenn 1 bis 40 Gew.-% Natrium in ÖI dispergiert werden und bevorzugt wenigstens 80 % der Natriumpartikel einen volumenäquivalenten Kugeldurchmesser aufweisen, der kleiner als 25 µm ist. Weiter bevorzugt ist es, wenn 10 bis 33 Gew.-% Natrium in Weißöl dispergiert werden und bevorzugt wenigstens 90 % der Natriumpartikel einen volumenäquivalenten Kugeldurchmesser aufweisen, der kleiner als 12 µm, bevorzugt kleiner als 5 µm ist. Unter vorbenannten Bedingungen können die besten Ergebnisse bei der Entschwefelung erzielt werden.Particularly high levels of desulfurization can be achieved in particular if the proportion of sodium in the dispersion is 1 to 40% by weight, preferably 10 to 33% by weight, based on the total weight of the dispersion. It is particularly advantageous for desulfurization if 1 to 40% by weight of sodium is dispersed in oil and preferably at least 80% of the sodium particles have a volume-equivalent spherical diameter which is less than 25 μm. It is further preferred if 10 to 33% by weight of sodium is dispersed in white oil and preferably at least 90% of the sodium particles have a volume-equivalent spherical diameter which is less than 12 μm, preferably less than 5 μm. The best results for desulfurization can be achieved under the aforementioned conditions.
Bevorzugt hat die flüssige Phase, die zum Dispergieren des Natriums verwendet wird, eine Viskosität von wenigstens 4 mm2/s, besonders bevorzugt wenigstens 12 mm2/s, und/oder höchstens 20 mm2/s, besonders bevorzugt höchstens 17 mm2/s. Die Dichte der für das Dispergieren verwendeten flüssigen Phase beträgt dabei vorzugsweise wenigstens 0,84 kg/l und oder höchstens 0,89 kg/l. Weiterhin hat es sich als vorteilhaft herausgestellt, wenn die zum Dispergieren des Natriums verwendete flüssige Phase einen Flammpunkt von wenigstens 150°C, vorzugsweise wenigstens 200°C, aufweist.The liquid phase which is used for dispersing the sodium preferably has a viscosity of at least 4 mm 2 / s, particularly preferably at least 12 mm 2 / s, and / or at most 20 mm 2 / s, particularly preferably at most 17 mm 2 / s s. The density of the liquid phase used for the dispersion is preferably at least 0.84 kg / l and or at most 0.89 kg / l. Furthermore, it has proven to be advantageous if the liquid phase used to disperse the sodium has a flash point of at least 150 ° C., preferably at least 200 ° C.
Es ist im Hinblick auf das vorliegende Verfahren vorteilhaft, wenn das zu entschwefelnde Kohlenwasserstoffgemisch zunächst zur Vorentschwefelung mit einem weiteren Entschwefelungsverfahren behandelt wird. Später erfolgt dann eine Entschwefelung durch eine Behandlung mit einem erfindungsgemäßen Entschwefelungsverfahren.With regard to the present process, it is advantageous if the hydrocarbon mixture to be desulfurized is first treated with a further desulfurization process for the pre-desulfurization. Desulphurization then takes place later by treatment with a desulphurization process according to the invention.
Diese Verfahrensführung hat den Vorteil, dass sich die Vorteile konventioneller Entschwefelungsverfahren, insbesondere hydrierender Entschwefelungsverfahren, mit den Vorteilen der Entschwefelung mit einer Natriumdispersion kombinieren lassen. Sinnvollerweise findet zunächst eine Entfernung desjenigen Teils des Schwefels statt, der sich mit einem hydrierenden Entschwefelungsverfahren noch vergleichsweise gut entfernen lässt. Hierdurch wird der größte Teil des Schwefels bereits entfernt. Das auf der Natriumdispersion basierende Verfahren wird dann eingesetzt, um den Restschwefelgehalt noch weiter abzusenken. Dabei wird der Teil des Schwefels entfernt, der sich mit dem hydrierenden Entschwefelungsverfahren nur sehr schwer entfernen lässt, obwohl bei einer derartigen Verfahrensführung insgesamt nur ein sehr kleiner Teil des gesamten Schwefels mittels der Natriumdispersion entfernt wird, wird so die Gesamteffizienz des kombinierten Prozesses deutlich gesteigert, da die Entschwefelung mittels der Natriumdispersion genau dort eingesetzt wird, wo es der hydrierenden Entschwefelung wirtschaftlich überlegen ist, nämlich beim Erreichen sehr niedriger Schwefelrestgehalte. Gleichzeitig können die Vorteile des hydrierenden Entschwefelungsverfahrens beim Entfernen vergleichsweise großer Schwefelmengen bis zu einem moderaten Schwefelrestgehalt genutzt werden.This procedure has the advantage that the advantages of conventional desulfurization processes, in particular hydrogenating desulfurization processes, can be combined with the advantages of desulfurization with a sodium dispersion. It makes sense to first remove that part of the sulfur that can still be removed comparatively easily with a hydrogenating desulfurization process. This will remove most of the sulfur. The process based on the sodium dispersion is then used to further reduce the residual sulfur content. This removes the part of the sulfur that is very difficult to remove with the hydrodesulfurization process, although with such a procedure only a very small part of the total sulfur is removed by means of the sodium dispersion, the overall efficiency of the combined process is significantly increased, since desulfurization using sodium dispersion is used exactly where it is economically superior to hydrodesulfurization, namely when very low residual sulfur levels are reached. At the same time, the advantages of the hydrodesulfurization process can be used to remove comparatively large amounts of sulfur up to a moderate residual sulfur content.
In diesem Zusammenhang ist es selbstverständlich möglich, dass sich die Entschwefelung mittels der Natriumdispersion nicht unmittelbar und direkt an die vorzugsweise hydrierende Vorentschwefelung anschließen muss. Es ist durchaus möglich, das entstehende Kohlenwasserstoffgemisch zwischenzeitlich weiteren Prozessschritten zu unterwerfen, Teile des Kohlenwasserstoffgemisches abzutrennen oder das Kohlenwasserstoffgemisch mit anderen Substanzen, insbesondere anderen Kohlenwasserstoffgemischen, zu vermischen. Dies gilt entsprechend im Übrigen auch für die Abfolge zwischen der Dispersionsherstellung und der Zugabe der Natriumdispersion zu dem zu entschwefelnden Kohlenwasserstoffgemisch. Insbesondere die vorstehend als vorteilhaft beschriebenen Verfahrensvarianten zur Herstellung der Natriumdispersion bringen den Vorteil mit sich, dass die Natriumdispersion entsprechend stabil ist, d.h. sie kann problemlos gelagert bzw. zwischen Produktionsstätten transportiert werden, bevor sie dem Kohlenwasserstoffgemisch zugegeben wird.In this context it is of course possible that the desulfurization by means of the sodium dispersion does not have to directly and directly follow the preferably hydrodesulfurization. It is entirely possible in the meantime to subject the resulting hydrocarbon mixture to further process steps, to separate parts of the hydrocarbon mixture or to mix the hydrocarbon mixture with other substances, in particular other hydrocarbon mixtures. This also applies accordingly to the sequence between the preparation of the dispersion and the addition of the sodium dispersion to the hydrocarbon mixture to be desulfurized. In particular, the process variants described above for producing the sodium dispersion have the advantage that the sodium dispersion is correspondingly stable, ie it can easily stored or transported between production sites before it is added to the hydrocarbon mixture.
Eine weitere besonders vorteilhafte Verfahrensführung sieht vor, dass das zu entschwefelnde Kohlenwasserstoffgemisch ein Kraftstoff oder eine zur Weiterverarbeitung zu einem Kraftstoff bestimmte Fraktion eines Kohlenwasserstoffgemisches ist. Insbesondere innerhalb von Raffineriebetrieben werden Mineralölfraktionen für konkrete spätere Verwendungen - beispielsweise die Herstellung von Dieselkraftstoffen - frühzeitig voneinander getrennt und auf unterschiedlichen Prozesswegen weiterverarbeitet. Insbesondere die für eine Verwendung von Diesel- und/oder Ottokraftstoffen verwendeten Fraktionen weisen hierbei einen gewissen Anteil an Leichtsiedern auf. Im Hinblick auf diese ist es vorteilhaft, wenn der Druck im Reaktor wenigstens 6 bar, vorzugsweise wenigstens 8 bar, beträgt. Auf diese Weise kann eine sichere Umsetzung auch und insbesondere leichter siedender Bestandteile in der Flüssigphase erfolgen.
Eine andere vorteilhafte Verfahrensvariante hingegen sieht vor, dass der Druck im Reaktor höchstens 3 bar, vorzugsweise höchstens 1,5 bar, beträgt. Diese Verfahrensvariante ist insbesondere dann vorteilhaft, wenn der Anteil an Leichtsiedern im Kohlenwasserstoffgemisch gering ist. Ein solcher Betrieb ist besonders dann vorteilhaft, wenn vergleichsweise kleine und kompakte Anlagen zum Einsatz kommen können. Durch den niedrigen Druck sinken die Materialbeanspruchungen, insbesondere die vergleichsweise langen Rohrreaktoren können wesentlich dünner ausgelegt werden, was sich äußerst positiv im Hinblick auf Größe und Gewicht der Anlage auswirkt.Another particularly advantageous method provides that the hydrocarbon mixture to be desulfurized is a fuel or a fraction of a hydrocarbon mixture intended for further processing into a fuel. Within refineries in particular, mineral oil fractions for specific later uses - for example the production of diesel fuels - are separated from each other at an early stage and processed further using different process routes. In particular, the fractions used for the use of diesel and / or petrol have a certain proportion of low boilers. In view of this, it is advantageous if the pressure in the reactor is at least 6 bar, preferably at least 8 bar. In this way, a reliable conversion can also be carried out, in particular, of low-boiling constituents in the liquid phase.
Another advantageous process variant, on the other hand, provides that the pressure in the reactor is at most 3 bar, preferably at most 1.5 bar. This process variant is particularly advantageous when the proportion of low boilers in the hydrocarbon mixture is low. Such operation is particularly advantageous when comparatively small and compact systems can be used. Due to the low pressure, the material stresses decrease, in particular the comparatively long tubular reactors can be designed much thinner, which has an extremely positive effect with regard to the size and weight of the plant.
Besonders vorteilhaft lässt sich das erfindungsgemäße Verfahren, insbesondere in vergleichsweise kompakten Anlagen, bei der Entschwefelung von Kohlenwasserstoffgemischen einsetzen, die aus einem Verflüssigungsverfahren zur Gewinnung flüssiger Kohlenwasserstoffe aus Feststoffen stammen. Derartige Verfahren finden insbesondere dann Verwendung, wenn aus Abfällen flüssige Kohlenwasserstoffgemische zur Verwendung als Brenn- oder Kraftstoffe gewonnen werden sollen. Niedrigsiedende Bestandteile spielen bei diesen Gemischen oft eine untergeordnete Rolle, wohingegen die Möglichkeit des Baus kostengünstiger und/oder kompakter Anlagen häufig einen beträchtlichen wirtschaftlichen Vorteil darstellt.The process according to the invention can be used particularly advantageously, in particular in comparatively compact plants, for the desulfurization of hydrocarbon mixtures which originate from a liquefaction process for the recovery of liquid hydrocarbons from solids. Such methods are used in particular when liquid hydrocarbon mixtures for use as fuels are to be obtained from waste. Low-boiling components often play a subordinate role in these mixtures, whereas the possibility of constructing inexpensive and / or compact plants often represents a considerable economic advantage.
Ebenfalls besonders vorteilhaft lässt sich das erfindungsgemäße Verfahren zur Entschwefelung von Kohlenwasserstoffgemischen einsetzen, die aus einem Verfahren zur Aufbereitung von sogenanntem Slop Oil stammen. Bei Slop Oil handelt es sich um ein verunreinigtes, mineralölhaltiges Gemisch, welches beispielsweise und insbesondere beim Ausspülen von Tanks auf Schiffen anfällt. Dabei kann es sich beispielsweise um die Tanks von Mineralöltankern handeln aber auch um Kraftstofftanks von insbesondere mit Schweröl betriebenen Schiffen. Regelmäßig sind Kühlkreisläufe und ähnliches auf derartigen Schiffen, insbesondere im Bereich der Schiffsmaschinen, nicht vollständig dicht, so dass Meerwasser und andere Verunreinigungen bis hin zur Meereslebewesen und ähnlichem in die in Rede stehenden Tanks eindringen und in den Tanks so zur Bildung des sogenannten Slop Oils als schwer zu verwertender Rückstand führen. Insbesondere die Bestandteile Mineralöl, Wasser und Sand im Slop Oil bilden eine schwer aufzutrennende und bisher schwer zu verwertende Mischung. Es hat sich nun gezeigt, dass Slop Oil und/oder Produkte, die aus einem Verfahren zur Aufbereitung von Slop Oil, insbesondere einem Verfahren, bei dem bereits erste Bestandteile des Slop Oils abgetrennt werden, besonders gut mit dem erfindungsgemäßen Entschwefelungsverfahren behandelt werden können.
Die Erfindung wird im Folgenden anhand der
The invention is described below with reference to
Es wird ein Kohlenwasserstoffgemisch 1 bereitgestellt, welches beispielsweise aus einem Verflüssigungsverfahren zur Gewinnung flüssiger Kohlenwasserstoffe oder einem Aufbereitungsverfahren von Slop Oil (oder einer Mischung daraus) stammt. Des Weiteren wird Natrium 2 mit einem ÖI 3 im gezeigten Beispiel in einem Verfahrensschritt S1 dispergiert. Hierfür kommt vorzugsweise eine Dispergierung nach dem Rotor-Stator-Prinzip zum Einsatz. Bevorzugt wird als ÖI 1 ein paraffinisches Weißöl verwendet. In einem weiteren Schritt S2 werden die Natriumdispersion, die im Schritt S1 hergestellt worden ist und das Kohlenwasserstoffgemisch 1 vermischt. Der Reaktionsschritt S3 wird bevorzugt in einem Rohrreaktor bei turbulenter Durchströmung durchgeführt, wobei der Rohrreaktor vorzugsweise eine Länge von wenigstens 200m aufweist. Um eine kompakte Bauweise zu ermöglichen, kann der Reaktor beispielsweise mänderförmig gestaltet sein. Alternativ ist die Verwendung eines oszillierenden Pfropfenreaktors mit innenliegender Transportschnecke vorteilhaft. Bei einer vorteilhaften Reaktionstemperatur zwischen 280°C und 310 °C kommt es im Reaktor während des Verfahrensschritts S3 zu den dem erfindungsgemäßen Verfahren zugrundeliegenden chemischen Reaktionen, bei denen der Schwefel aus den organischen Schwefelverbindungen herausgelöst wird und zu anorganischen Schwefelverbindungen, insbesondere zu Na2S reagiert.A hydrocarbon mixture 1 is provided, which originates, for example, from a liquefaction process for the extraction of liquid hydrocarbons or a processing process of slop oil (or a mixture thereof). Furthermore, sodium 2 is dispersed with an
In einem weiteren Verfahrensschritt S4 werden von dem entschwefelten Kohlenwasserstoffprodukt 4 die durch das erfindungsgemäße Verfahren gebildeten anorganischen schwefelhaltigen Bestandteile, insbesondere das Na2S 5 abgetrennt.In a further process step S4, the inorganic sulfur-containing constituents, in
Claims (14)
- Method for desulphurising a hydrocarbon mixture containing organic sulphur compounds, comprising the following steps:a) producing a sodium dispersion,b) adding the sodium dispersion to the hydrocarbon mixture to be desulphurised,characterized in that the mixture of sodium dispersion and hydrocarbon mixture is passed through a reactor, wherein the reaction conditions, in particular pressure and temperature, are selected such as to bring about a reaction of the sodium with the organic sulphur compounds, during which sulphur atoms are leached out of the organic sulphur compounds and bond with the sodium, the reactor is a turbulent flow reactor, preferably a tubular reactor or an oscillating plug flow reactor having an internal screw conveyor, and the temperature in the reactor is at least 250°C and at most 310°C.
- Method according to claim 1, characterized in that the reactor is a tubular reactor and preferably has a length of at least 100 m, more preferably at least 200 m.
- Method according to claim 1 or 2, characterized in that the reactor has internals for aiding the mixing, in particular static mixers.
- Method according to any one of the preceding claims, characterized in that the volume equivalent spherical diameter of 90% of the sodium particles in the sodium dispersion, in particular of 95% of the sodium particles in the sodium dispersion, is less than 25 µm, preferably less than 5 µm.
- Method according to any one of the preceding claims, characterized in that the sodium dispersion is produced according to the rotor-stator principle.
- Method according to any one of the preceding claims, characterized in that the sodium for producing the sodium dispersion is dispersed in an oil as liquid phase, in particular in a paraffinic white oil.
- Method according to any one of the preceding claims, characterized in that the liquid phase used for dispersing has a viscosity of at least 4 mm2/s, preferably at least 12 mm2/s, and/or at most 20 mm2/s, preferably at most 17 mm2/s.
- Method according to any one of the preceding claims, characterized in that the liquid phase used for dispersing has a density of at least 0.84 kg/l and/or at most 0.89 kg/1.
- Method according to any one of the preceding claims, characterized in that the liquid phase used for dispersing has a flash point of at least 150°C, preferably at least 200°C.
- Method according to any one of the preceding claims, characterized in that the hydrocarbon mixture to be desulphurised is treated first by another, preferably hydrogenating, desulphurisation method for the purpose of pre-desulphurisation and subsequently by a desulphurisation method according to any one of the preceding claims.
- Method according to any one of the preceding claims, characterized in that the hydrocarbon mixture to be desulphurised originates from a liquefaction process for obtaining liquid hydrocarbons from solids, in particular from waste, and/or is slop oil, and/or originates from a process for treating slop oil, in particular from cleaning processes for ships' tanks.
- Method according to any one of the preceding claims, characterized in that at least 0.05 wt% sodium, preferably at least 0.1 wt% sodium and particularly preferably at least 1.5 wt% sodium are used, based on the total weight of the hydrocarbon mixture to be desulphurised.
- Method according to any one of the preceding claims, characterized in that the pressure in the reactor is at most 3 bar, preferably at most 1.5 bar.
- Method according to any one of claims 1 to 11, characterized in that the hydrocarbon mixture to be desulphurised is a fuel or a fraction of a hydrocarbon mixture, in particular of a mineral oil, that is intended to be further processed to form a fuel, and the pressure in the reactor is at least 6 bar, preferably at least 8 bar.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL17720561T PL3417035T3 (en) | 2016-02-19 | 2017-02-13 | Method for desulfurizing a hydrocarbon mixture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016102933.5A DE102016102933A1 (en) | 2016-02-19 | 2016-02-19 | Process for the desulphurisation of a hydrocarbon mixture |
PCT/IB2017/000101 WO2017141097A1 (en) | 2016-02-19 | 2017-02-13 | Method for desulfurizing a hydrocarbon mixture |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3417035A1 EP3417035A1 (en) | 2018-12-26 |
EP3417035B1 true EP3417035B1 (en) | 2020-07-29 |
Family
ID=58645325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17720561.4A Not-in-force EP3417035B1 (en) | 2016-02-19 | 2017-02-13 | Method for desulfurizing a hydrocarbon mixture |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3417035B1 (en) |
DE (1) | DE102016102933A1 (en) |
DK (1) | DK3417035T3 (en) |
PL (1) | PL3417035T3 (en) |
WO (1) | WO2017141097A1 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB759283A (en) | 1952-12-24 | 1956-10-17 | British Petroleum Co | Improvements relating to the refining of petroleum hydrocarbons |
US8574428B2 (en) * | 2004-04-16 | 2013-11-05 | Trans Ionics Corporation | Desulfurization of petroleum streams using metallic sodium |
US7527724B1 (en) * | 2005-11-17 | 2009-05-05 | Trans Ionics Corporation | Process for desulfurization of hydrocarbons |
-
2016
- 2016-02-19 DE DE102016102933.5A patent/DE102016102933A1/en not_active Withdrawn
-
2017
- 2017-02-13 EP EP17720561.4A patent/EP3417035B1/en not_active Not-in-force
- 2017-02-13 WO PCT/IB2017/000101 patent/WO2017141097A1/en active Application Filing
- 2017-02-13 PL PL17720561T patent/PL3417035T3/en unknown
- 2017-02-13 DK DK17720561.4T patent/DK3417035T3/en active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
PL3417035T3 (en) | 2021-01-25 |
WO2017141097A1 (en) | 2017-08-24 |
DK3417035T3 (en) | 2020-10-12 |
EP3417035A1 (en) | 2018-12-26 |
DE102016102933A1 (en) | 2017-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69524848T2 (en) | Process and device for obtaining organic sulfur compounds from heating oil | |
DE60204009T2 (en) | DEMULATOR CONSISTING OF AN AROMATIC SULPHONIC ACID FOR RAW OIL | |
DE2326696A1 (en) | PROCESS FOR DESULFURIZING PETROLEUM WITH ALKALINE METALS | |
DE1212903B (en) | Process for the catalytic oxidation of low-value sulfur compounds in waste water | |
DE102011013470A1 (en) | Process and means for removing metals from high boiling hydrocarbon fractions | |
DE1019786B (en) | Process for hydrated desulphurisation of high-boiling, sulphurous petroleum products | |
DE2714947A1 (en) | CONTINUOUS PROCEDURE FOR THE REMOVAL OF MERCAPTANES FROM A HYDROCARBON STREAM | |
EP3417035B1 (en) | Method for desulfurizing a hydrocarbon mixture | |
DE69011120T2 (en) | METHOD FOR TREATING EMULSIFIED PETROLEUM WASTE. | |
DE102019133911B4 (en) | Methods of co-processing | |
DE879537C (en) | Process and device for bringing immiscible, flowable media of different specific gravity into contact with one another | |
DE69129588T2 (en) | BIO-DESULFURATION OF BITUMEN FUELS | |
DE2414606A1 (en) | BONDING OF HYDROCARBONS AND OTHER ORGANIC PRODUCTS IN COMPLEX PROCESSES FOR THEIR PRODUCTION AND USE | |
DE2218769C3 (en) | Process for cleaning up odorous waste water streams | |
DE1921917C3 (en) | Process for the production of low-sulfur heating oils from residual oils with a high sulfur content | |
DE102014012110A1 (en) | Process for the removal of undesirable compounds from mineral oil and apparatus for carrying out the process | |
EP0370397A1 (en) | Process for the treatment of oil-containing water | |
DE671612C (en) | Process for purifying raw paraffin | |
AT66681B (en) | Process for separating waste pulps from their impurities, colors and impurities. | |
DE102007034258A1 (en) | Processing a coalescence inhibited emulsion comprising components made from complete cell biotransformations like e.g. soluble cell components, comprises mixing the emulsion after biotransformation with carbon dioxide in a container | |
DE2105710A1 (en) | Process for the treatment of sulfur-containing mineral oils to reduce their sulfur content | |
AT260819B (en) | Process for the separation of specifically lighter, emulsified, oily contaminants from waste water | |
DE2310410C3 (en) | Method of preventing foaming | |
DE1248622B (en) | Process for removing carbonyl sulfide from gases or liquids which are at least partially immiscible with water | |
DE1470611C (en) | Process for sweetening light petroleum distillates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180720 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NA+S GMBH |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200120 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20200507 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1295792 Country of ref document: AT Kind code of ref document: T Effective date: 20200815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017006426 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20201006 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201030 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201029 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201029 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201129 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017006426 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
26N | No opposition filed |
Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210213 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210213 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502017006426 Country of ref document: DE Owner name: LANDEV IP B.V., NL Free format text: FORMER OWNER: NA+S GMBH, 33647 BIELEFELD, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220221 Year of fee payment: 6 Ref country code: FI Payment date: 20220215 Year of fee payment: 6 Ref country code: DK Payment date: 20220221 Year of fee payment: 6 Ref country code: DE Payment date: 20220217 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20220203 Year of fee payment: 6 Ref country code: NL Payment date: 20220216 Year of fee payment: 6 Ref country code: FR Payment date: 20220221 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1295792 Country of ref document: AT Kind code of ref document: T Effective date: 20220213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170213 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502017006426 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20230228 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230213 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |