EP3408061A1 - Procédé et système pour planifier la trajectoire d'un robot redondant - Google Patents

Procédé et système pour planifier la trajectoire d'un robot redondant

Info

Publication number
EP3408061A1
EP3408061A1 EP17700889.3A EP17700889A EP3408061A1 EP 3408061 A1 EP3408061 A1 EP 3408061A1 EP 17700889 A EP17700889 A EP 17700889A EP 3408061 A1 EP3408061 A1 EP 3408061A1
Authority
EP
European Patent Office
Prior art keywords
robot
redundancy
path
quality criterion
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17700889.3A
Other languages
German (de)
English (en)
Inventor
Tobias Josef Jakob
Reinhard NEUREITER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUKA Systems GmbH
Original Assignee
KUKA Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUKA Systems GmbH filed Critical KUKA Systems GmbH
Publication of EP3408061A1 publication Critical patent/EP3408061A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1643Programme controls characterised by the control loop redundant control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39086Reduce impact effect by impact configuration of redundant manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40336Optimize multiple constraints or subtasks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40369Generate all possible arm postures associated with end effector position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40465Criteria is lowest cost function, minimum work path

Definitions

  • the present invention relates to a method and a system for path planning of a redundant robot and to a computer program product for carrying out the method.
  • WO 2013/004329 A1 optionally takes into account energy optimality as well as a distance to singular, desired and previous poses.
  • the object of the present invention is to further improve the path planning of a redundant robot.
  • Claims 7, 13 provide a system or computer program product
  • a method for partially or fully automated path planning of a multi-axis robot comprises the step of resolving a redundancy of the robot with respect to one in one
  • Quality criterion which, in particular proportionally, an effective mass of the robot and, in particular proportionate, an amount of a minimum collision force of the robot comprises, based on predetermined detection limits for axle forces of the robot Robot is detectable, is minimal or is or under or by minimizing a mixed quality criterion, which, in particular proportionate, an effective mass of the robot and, in particular proportionate, an amount of minimum collision force of the robot comprises, based on predetermined detection Limits for
  • Axes forces of the robot is detectable or under or by means of minimization, in particular combined or Pareto minimization, both an effective mass of the robot and an amount of minimum collision force of the robot, which is detectable based on predetermined detection limits for axial forces of the robot , It is thus proposed in an embodiment, in addition to the minimization of the effective mass, which is known from the above-mentioned WO 2013/004329 AI, to the correspondingly incorporated additional reference and the content of which is expressly fully made the subject of the present disclosure, at least one Collision force of the robot, which is detectable based on predetermined detection limits for axial forces of the robot to
  • the mixed quality criterion in addition to the effective mass and the amount of minimum collision force may include other cost functions or shares, in another development, it is only (proportionately) from the effective mass and the amount of minimum collision force.
  • axis coordinates qe 5R dof be described, in particular by its joint or drive in particular engine positions, in particular angle.
  • a path z (s) e R b or individual points z, e 9? b the web by means of a one or more, in particular three-dimensional position x and / or a one or more, in particular Three-dimensional orientation a of a robot-fixed reference, in particular a TCPs of the robot, are given or be.
  • the robot is redundant with respect to the predetermined path in the workspace.
  • This may in particular be a so-called kinematic redundancy if the robot has seven or more axes. Likewise, a robot having six or fewer axes may be redundant with respect to a pathway
  • the redundancy may be due to a one- or multi-dimensional so-called
  • Redundancy parameter r reduced, in particular eliminated, be or be. If, for example, an axis coordinate, in particular a joint angle, is specified for a seven-axis robot, this robot is no longer redundant with respect to a path prescribed in the working space six-dimensionally - except for singular poses. reduces or eliminates its redundancy or the dimension of its null space to zero.
  • the determination of the minimum coordinates or of the redundancy parameter is thus present in particular for position, in particular positional and / or orientation coordinates, predetermined in the working space of the robot.
  • the robot in particular a robot-fixed reference, in particular its TCPs understood (z -> q or z -> r).
  • One or the effective mass m u of the robot is or is defined or determined in an embodiment in WO 2013/004329 A1, to which reference is additionally made, in particular according to:
  • Jacobi matrix J or J v of the translation the mass matrix M and the kinetic
  • One or the collision force r k of the robot is or is defined or determined in one embodiment, in particular on the basis of a linear mapping of the path tangent or direction u, wherein the linear mapping in a development based on a pseudoinverse J * des Robot is defined or determined is, in particular by the pseudoinverse can be defined: wherein the pseudo inverses in one embodiment in accordance with the usual
  • J * , J T y (4) can be defined or determined with the weighting matrix A, which can be the mass matrix or the unit matrix in a further development.
  • Achs can thus be in particular torques acting in or on axes, in particular joints (s) or drives, in particular motors, of the robot.
  • axle forces especially axis-specific, detection limit values for axle forces to be predefined or be:
  • a predetermined limit value t dii indicates from which value on an axis / ' a collision is detected on the basis of a force acting in the robot-fixed reference.
  • this can be the limiting value, in particular, for which a safety reaction of the robot, for example a STOP 0, STOP 1 or STOP 2 or a retraction, in particular on the track, is triggered or predetermined.
  • Collision (unit) force (at least) must be multiplied, so that in
  • the amount f of the minimum collision force of the robot which is detectable on the basis of predetermined detection limits for axial forces of the robot, in particular be determined or defined by the fact that the amount, starting from an initial value is increased inter-operatively until, for the first time or within the framework of an iteration precision in (at least) one axis: t ki ,> T d , j.
  • the amount f of the minimum collision force and the effective mass m u of the robot are or are in one embodiment in the form of a mixed quality criterion, in a development in particular in the form of a weighted sum G of the effective mass and the amount of minimum collision force and possibly other cost functions G , determines or minimizes:
  • Redundancy parameter r be reduced or be. Accordingly applies in one
  • Redundancy parameter values ⁇ respectively determined values of the mixed quality criterion and then each of the pose or the redundancy parameter value are selected for the or the quality criterion has the smallest value.
  • a search or permissible value range for the redundancy parameter in an embodiment for a subsequent path point in each case starting from a preceding or current redundancy parameter value, advantageously a variation of the redundancy parameter can be limited in one embodiment and a particularly advantageous path can be planned , Accordingly, in one embodiment, the redundancy is generally such or below
  • predetermined variation limit is or remains.
  • a system for at least partially automated path planning of a multi-axis robot in particular hardware and / or software, in particular programmatically, for implementing a method described herein and / or has means for resolving a redundancy of the robot with respect to a in a working space of the robot predetermined path such that a mixed quality criterion, which includes an effective mass of the robot and an amount of minimum collision force of the robot, which is detectable based on predetermined detection limits for axial forces of the robot is minimal on.
  • the system includes means for resolving the redundancy such that a variation of a redundancy parameter to reduce the redundancy of the robot along the path is less than a predetermined variation limit; Means for determining the based on predetermined detection limits
  • a means in the sense of the present invention may be designed in terms of hardware and / or software, in particular a data or signal-connected, preferably digital, processing, in particular microprocessor unit (CPU) and / or a memory and / or bus system or multiple programs or program modules.
  • the CPU may be configured to execute instructions implemented as a program stored in a memory system, to capture input signals from a data bus, and / or
  • a storage system may comprise one or more, in particular different, storage media, in particular optical, magnetic, solid state and / or other non-volatile media.
  • the program may be such that it is capable of embodying or executing the methods described herein so that the CPU may perform the steps of such methods and thus, in particular, plan the lane.
  • the system can control the robot on the basis of the path planned in this manner or in such a way that it travels once or several times, or for this purpose, in particular hardware and / or software, in particular program technology.
  • FIG. 1 shows, in a simplified embodiment for explanation, to which reference is additionally made to WO 2013/004329 A1, a three-armed robot 1 with a rocker mounted on a fixed base 1.1, an arm 1.2 hinged thereto and one at the swing away End hinged hand 1.3 with the TCP. All three hinges have parallel, on the plane of Fig. 1 perpendicular axes of rotation.
  • FIG. 2 shows the sequence of a method according to an embodiment of the present invention, which executes a controller 2 of the robot 1:
  • a first step S10 the controller 2 discretizes the web B into individual Stauer- Track points (x, y) i (x, y) n .
  • the controller 2 determines, for the initial support or track point (x, y) i, for a given search or value range, respectively
  • Redundancy parameter r in the exemplary embodiment purely exemplary of
  • Tangent unit vector to the path B in the initial support or track point (x, y ⁇ must be multiplied at least to allow its projection in the
  • a mixed quality criterion for this pose the value of the weighted sum of effective mass and this factor f is determined.
  • the controller 2 selects that pose as the starting pose or start redundancy parameter value defining it
  • a step S40 the controller 2 determines the values of the quality criterion for different poses or redundancy parameter values for a subsequent support or track point (x, y) in an analogous manner. This is or is the search or
  • Redundancy parameter (s) s compared to the previous support point (x, y) i-i is less than a predetermined variation threshold. This can advantageously an undesirable significant reorientation of the
  • Robot 1 can be prevented along the track.
  • a step S50 the controller 2 selects, for the support or track point (x, y) j in an analogous manner as a pose or start redundancy parameter value defining that pose or redundancy parameter value for which this quality criterion is minimal or will.
  • the controller checks whether an end support point (x, y) n has been reached. As long as this is not the case (S60: "N"), the controller 2 repeats the steps S40 - S60 in an analogous manner, otherwise (S60: "Y”), the path planning is completed.

Abstract

L'invention concerne un procédé de planification de trajectoire au moins partiellement automatisée d'un robot pluriaxial (1) comprenant l'étape consistant : à résoudre (S20, S40, S50) une redondance du robot par rapport à une trajectoire (B) prédéfinie dans un espace de travail du robot, de manière qu'un critère de qualité mixte comprenant une masse effective du robot et une valeur d'une force de collision minimale du robot détectable sur la base d'une valeur limite de détection prédéfinie pour les forces axiales du robot soit minimal.
EP17700889.3A 2016-01-26 2017-01-18 Procédé et système pour planifier la trajectoire d'un robot redondant Withdrawn EP3408061A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016000754.0A DE102016000754A1 (de) 2016-01-26 2016-01-26 Verfahren und System zur Bahnplanung eines redundanten Roboters
PCT/EP2017/000054 WO2017129352A1 (fr) 2016-01-26 2017-01-18 Procédé et système pour planifier la trajectoire d'un robot redondant

Publications (1)

Publication Number Publication Date
EP3408061A1 true EP3408061A1 (fr) 2018-12-05

Family

ID=57860804

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17700889.3A Withdrawn EP3408061A1 (fr) 2016-01-26 2017-01-18 Procédé et système pour planifier la trajectoire d'un robot redondant

Country Status (3)

Country Link
EP (1) EP3408061A1 (fr)
DE (1) DE102016000754A1 (fr)
WO (1) WO2017129352A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111052134B (zh) 2017-08-31 2024-04-26 快图有限公司 外围处理设备
CN109782815B (zh) * 2018-12-27 2020-06-19 西安交通大学 基于多轴联动系统的复杂型面自适应测量路径规划方法
DE102019101072B3 (de) * 2019-01-16 2020-03-12 Franka Emika Gmbh Unterstützen eines manuellen Führens eines Robotermanipulators
DE102019118263B3 (de) * 2019-07-05 2020-08-20 Franka Emika Gmbh Ausgeben einer Güteinformation über eine Krafterfassung am Robotermanipulator
CN110480640B (zh) * 2019-08-26 2021-01-29 中科新松有限公司 用于台阶地形行走的机器人足端轨迹规划方法
DE102019131400B4 (de) * 2019-11-21 2022-03-10 Franka Emika Gmbh Kraftmessung und Krafterzeugung in redundanten Robotermanipulatoren
DE102019219930B3 (de) * 2019-12-18 2021-01-14 Kuka Deutschland Gmbh Verfahren und System zum Steuern eines Roboters
CN113031511B (zh) * 2019-12-24 2022-03-22 沈阳智能机器人创新中心有限公司 一种基于高阶b样条的多轴系统实时引导轨迹规划方法
CN112276953B (zh) * 2020-10-27 2021-12-28 清华大学深圳国际研究生院 连续型超冗余机械臂的臂型协同规划方法、终端设备和存储介质
CN114310915B (zh) * 2022-02-16 2022-09-09 哈尔滨工业大学 基于视觉反馈的空间机械臂对接末端工具轨迹规划方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294873A (en) * 1992-10-27 1994-03-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Kinematic functions for redundancy resolution using configuration control
DE102011106321A1 (de) 2011-07-01 2013-01-03 Kuka Laboratories Gmbh Verfahren und Steuermittel zum Steuern eines Roboters
DE102013010290A1 (de) * 2013-06-19 2014-12-24 Kuka Laboratories Gmbh Überwachen eines kinematisch redundanten Roboters

Also Published As

Publication number Publication date
DE102016000754A1 (de) 2017-07-27
WO2017129352A1 (fr) 2017-08-03

Similar Documents

Publication Publication Date Title
EP3408061A1 (fr) Procédé et système pour planifier la trajectoire d'un robot redondant
EP3323026B1 (fr) Détermination d'une instruction d'entrée pour un robot, qui est entrée en exerçant manuellement une force sur le robot
EP2563553B1 (fr) Procédé et moyen de commande pour commander un robot
DE102009058004B4 (de) Impedanzsteuerung im Betriebsraum mit mehreren Prioritäten
EP2977149A2 (fr) Procede et moyen de conception et/ou de fonctionnement d'un robot
EP2977148B1 (fr) Procede et dispositif destines a la commande d'un robot
DE102018214257B3 (de) Roboterregelung
EP3685969A1 (fr) Optimisation assistée par ordinateur d'un usinage à commande numérique d'une pièce à usiner
EP2919081B1 (fr) Machine d'usinage avec prise en compte des erreurs de position lors du contrôle de collision
DE102015001741A1 (de) Verfahren und System zum Betreiben einer mehrachsigen Maschine, insbesondere eines Roboters
DE102019205651B3 (de) Verfahren und System zum Ausführen von Roboterapplikationen
WO2019025248A1 (fr) Procédé et système de vérification et/ou modification d'un processus de travail d'un robot
DE102017213651A1 (de) Handhabungseinrichtung mit einem Roboter sowie Verfahren und Computerprogramm
DE102018209044B3 (de) Kraftregelung eines Roboters
EP3471928A1 (fr) Configuration et/ou commande d'un ensemble de robots
EP4056331A1 (fr) Fonctionnement sécurisé d'une cinématique à axes multiples
DE102019219930B3 (de) Verfahren und System zum Steuern eines Roboters
WO2019219790A1 (fr) Dispositif de commande de robot
DE102020209866B3 (de) Verfahren und System zum Betreiben eines Roboters
DE102017010244A1 (de) Verfahren und Steuermittel zum Steuern einer Roboteranordnung
WO2020169302A1 (fr) Procédé et système pour l'exécution d'une tâche prédéfinie par un robot
DE102018207921B3 (de) Steuern eines Roboters
WO2019224224A1 (fr) Procédé et commande servant à commander un robot
WO2019219795A1 (fr) Commande d'un robot
DE102018209870B3 (de) Verfahren und System zum Überführen eines Endeffektors eines Roboters zwischen einer Endeffektorpose und einer weiteren Endeffektorpose

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200615

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201027

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528