WO2019219790A1 - Dispositif de commande de robot - Google Patents

Dispositif de commande de robot Download PDF

Info

Publication number
WO2019219790A1
WO2019219790A1 PCT/EP2019/062567 EP2019062567W WO2019219790A1 WO 2019219790 A1 WO2019219790 A1 WO 2019219790A1 EP 2019062567 W EP2019062567 W EP 2019062567W WO 2019219790 A1 WO2019219790 A1 WO 2019219790A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
target point
following error
target
predetermined
Prior art date
Application number
PCT/EP2019/062567
Other languages
German (de)
English (en)
Inventor
Juan David MUNOZ OSORIO
Original Assignee
Kuka Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuka Deutschland Gmbh filed Critical Kuka Deutschland Gmbh
Publication of WO2019219790A1 publication Critical patent/WO2019219790A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39226Operational space formulation, project model into cartesian coordinates

Definitions

  • the present invention relates to a method and a controller for controlling a robot and to a computer program product for carrying out the robot
  • Robots should perform tasks, for example, with a robot-fixed reference such as the TCP run a predetermined path.
  • Such robots can be stopped by obstacles or operating personnel.
  • the driving forces with which the robot attempts to continue driving the track and accordingly works against obstacles or operating personnel increase.
  • Task space of the robot is limited to a predetermined amount V max .
  • V max In order to run a given trajectory in the task space, this amount V max must be set sufficiently high. This results in large tracking errors, for example, as a result of deliberate removal of the
  • the object of the present invention is to improve the operation of a robot, in particular to reduce one or more of the aforementioned disadvantages.
  • Claims 5, 6 provide a control or computer program product
  • a method of controlling a robot includes the step of:
  • predetermined target point in particular several, in particular
  • the robot has at least three, in particular at least six, in one embodiment at least seven (movement) axes or joints which are adjustable or movable by the drives or are displaced or moved.
  • the drives can in particular have electric motors.
  • the present invention is used with particular advantage.
  • a target point x d ⁇ r ⁇ a task space of the robot in one embodiment, a one-, two- or three-dimensional target position and / or one, two or three-dimensional target orientation of one or more robotic references, in particular one or a plurality of Cartesian desired coordinates, target Euler or gimbal angle, target quanta of the TCP or the like, a desired position of one or more axes of the robot, in particular so desired axis or
  • the task space is correspondingly in a usual way a space in which such points are (can), for example, for two-dimensional target positions [x d , y d ] T a subspace of the Cartesian space.
  • Commanding of drives in one embodiment comprises the presetting of desired drive forces or moments t and / or setpoint axle positions q d .
  • the departure of a (given by target points) predetermined trajectory in the task space is stopped if or as long as the
  • a trajectory or set of target points x di ⁇ m task space to be approached one after the other can be predetermined, in particular in the form of a discrete point sequence ⁇ x d x d 2 , x d 3 , ... ⁇ , of a function or the like, wherein in each case a next of these target points to be approached successively x d k + 1 is given only as a new target point, if the following error to the
  • Robot still tries a given trajectory in the task room (further) to depart, be reduced, in particular be limited.
  • the predetermined trajectory in the task space is thus made time-invariant.
  • a target return speed to the (currently) to be approached target point in the task space for a first following error to this target point is limited to a larger amount than for a second following error, which is greater than the first following error.
  • the setpoint return speed is calculated on the basis of or as a function of a difference or deviation between the current actual and the (currently) approaching target point in the working space and / or the current speed in the working space, taking into account a (maximum ) Limitation, preferably in accordance with the article "A Unified Approach for Motion and Force Control of Robotic Manipulators: The Operational Space Formulation", to which reference is additionally made and whose contents are fully incorporated into the present disclosure, in particular, in which
  • Lag error ei is limited to a larger amount than for a second following error e 2 , which is greater than the first following error, in particular so
  • Vmax (®I)> Vmax (e 2 )>0; e 2 > b i (5) can be used in an embodiment advantageously in the vicinity of the trajectory a higher target return speed to run the trajectory at a target speed, and at the same time further away from the trajectory, an interaction of operators with the robot , in particular a hand guide to be improved. Nevertheless, in one embodiment, the more limited target return speed with a larger tracking error still ensures a return of the robot to the trajectory, as soon as the interaction with the
  • the robot is yielding and / or force-controlled, in particular impedance-controlled, for the start-up of the (currently) approachable target point or for the trajectory given thereby in the task space.
  • the article "A Unified Approach for Motion and Force Control of Robotic Manipulators: The Operational Space
  • an operation of the robot in the event of a collision with an obstacle or interaction with operating personnel can be improved.
  • the drives are commanded for approaching the target point to be approached on a straight line in the task space of the robot.
  • the target feedback speed is below a lower limit E u for the following error to a predetermined constant first value V max, i , above an upper limit E 0 for the following error to a predetermined constant second value V max , 2 (the in an embodiment smaller than the predetermined constant first value Vmax 1 ) and / or between the lower and upper limit values by a predetermined function h (e), which in one embodiment connects the first and second values in a continuously differentiable manner, in particular a trigonometric one Function, for example or the like, ie:
  • a controller in particular hardware and / or software, in particular program technology, is set up to carry out a method described here and / or has:
  • the controller or its agent has:
  • Means for commanding the drives to approach the target point on a straight line in the robot's task space Means for commanding the drives to approach the target point on a straight line in the robot's task space
  • a means in the sense of the present invention may be designed in terms of hardware and / or software, in particular a data or signal-connected, preferably digital, processing, in particular microprocessor unit (CPU) and / or a memory and / or bus system or multiple programs or program modules.
  • the CPU may be configured to execute instructions implemented as a program stored in a memory system, to capture input signals from a data bus, and / or
  • a storage system may comprise one or more, in particular different, storage media, in particular optical, magnetic, solid state and / or other non-volatile media.
  • the program may be such that it is capable of embodying or executing the methods described herein so that the CPU may perform the steps of such methods and, in particular, control the robot.
  • a computer program product may include, in particular, a non-volatile storage medium for storing a program or a program stored thereon, wherein execution of this program causes a system or a controller, in particular a computer, to do so method described herein or one or more of its steps.
  • one or more, in particular all, steps of the method are completely or partially automated, in particular by the controller or its (e) means.
  • controlling is understood as meaning, in particular, also rules or commands on the basis of or as a function of setpoint and detected actual variables.
  • Fig. 1 a robot and a robot controller for controlling the robot according to an embodiment of the present invention
  • FIG. 1 shows by way of example a six-axis robot 1 whose axis pitches are indicated by qi,..., Q 6 , and a robot controller 2 for controlling the robot 1 according to an embodiment of the present invention, which for this purpose is shown in FIG. 1
  • the robot 1 should use its TCP to traverse a trajectory predetermined by a plurality of successive target points.
  • the target points are exemplary Cartesian positions of the TCP, of which in FIG. 1 a current (approaching) target point x dk and a subsequent target point x d k + are designated.
  • the current actual position of the TCP is indicated, which has a lag error e compared to the currently (approached) en target point x dk .
  • a step S10 the robot controller 2 checks whether the following error to the current (to be approached) en target point below a predetermined threshold E.
  • the destination point is updated by replacing the previous destination point x dk with the subsequent destination point c ⁇ M as the new destination to be approached.
  • step S30 The method proceeds directly to step S30.
  • step S30 according to eq. (9), (10) limits a target return speed V max to the target point to be approached as a function of the following error e, from this according to Eq. (3), (4) determines a (virtual) target force in the task space, this according to Eq. (6), (7) transformed to desired drive torques and the drives are controlled with these and so commanded to start the current target point.
  • the target return speed near the trajectory is less limited so that the robot can do this at higher speeds while being more limited at a greater distance to the trajectory so that operators can interact better with the robot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

L'invention concerne un procédé de commande de robot (1) comprenant l'étape de : commander (S30) des entraînements du robot pour approcher au moins un point cible prédéterminé (x d,k ; x d,k+ 1) dans un espace de tâche du robot, un point cible courant n'étant modifié que si une erreur de suivi (e) sur le point cible tombe en dessous d'un seuil prédéterminé ; et/ou si une vitesse de retour cible au point cible à approcher dans l'espace de travail est limitée à une quantité supérieure pour une première erreur de suivi au point cible que pour une seconde erreur de suivi supérieure à la première erreur de suivi.
PCT/EP2019/062567 2018-05-18 2019-05-16 Dispositif de commande de robot WO2019219790A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018207919.6 2018-05-18
DE102018207919.6A DE102018207919B3 (de) 2018-05-18 2018-05-18 Robotersteuerung

Publications (1)

Publication Number Publication Date
WO2019219790A1 true WO2019219790A1 (fr) 2019-11-21

Family

ID=66548490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/062567 WO2019219790A1 (fr) 2018-05-18 2019-05-16 Dispositif de commande de robot

Country Status (2)

Country Link
DE (1) DE102018207919B3 (fr)
WO (1) WO2019219790A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019220619B3 (de) 2019-12-30 2021-01-28 Kuka Deutschland Gmbh Bewegen einer roboterfesten Referenz
CN111590570B (zh) * 2020-05-15 2022-08-05 西安航空职业技术学院 一种同步交叉耦合机器人轮廓控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2070665A2 (fr) * 2007-12-11 2009-06-17 KUKA Roboter GmbH Procédé et dispositif de surveillance de zone d'un manipulateur
DE102014019187A1 (de) * 2014-12-19 2016-06-23 Kuka Roboter Gmbh Verfahren und Vorrichtung zum Steuern einer Antriebsanordnung zum Bewegen eines, insbesondere robotergeführten, Werkzeugs

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008024950A1 (de) 2008-05-23 2009-11-26 Kuka Roboter Gmbh Verfahren und Vorrichtung zur Steuerung eines Manipulators
DE102010000101B4 (de) 2010-01-18 2014-02-13 W.E.St. Elektronik Gmbh Regler sowie Regelungsverfahren
DE102011003539A1 (de) 2011-02-02 2012-08-02 Kuka Roboter Gmbh Verfahren zum Referenzieren einer Antriebsstellung wenigstens eines elektrischen Antriebs
DE102016014989B4 (de) 2016-12-15 2019-02-14 Kuka Roboter Gmbh Kollisionsüberwachung eines Roboters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2070665A2 (fr) * 2007-12-11 2009-06-17 KUKA Roboter GmbH Procédé et dispositif de surveillance de zone d'un manipulateur
DE102014019187A1 (de) * 2014-12-19 2016-06-23 Kuka Roboter Gmbh Verfahren und Vorrichtung zum Steuern einer Antriebsanordnung zum Bewegen eines, insbesondere robotergeführten, Werkzeugs

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KHATIB O: "A unified approach for motion and force control of robot manipulators: The operational space formulation", IEEE JOURNAL ON ROBOTICS AND AUTOMATION, IEEE, USA, vol. 3, no. 1, 1 February 1987 (1987-02-01), pages 43 - 53, XP011217372, ISSN: 0882-4967, DOI: 10.1109/JRA.1987.1087068 *
O. KHATIB: "A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation", IEEE JOURNAL OF ROBOTICS AND AUTOMATION, vol. RA-3, no. 1, February 1987 (1987-02-01), pages 43 - 53, XP011217372, ISSN: 0882-4967, DOI: doi:10.1109/JRA.1987.1087068
S. HADDADIN ET AL: "Collision detection and reaction: A contribution to safe physical Human-Robot Interaction", 2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS : [IROS 2008]; NICE, FRANCE, 22 - 26 SEPTEMBER 2008, 1 September 2008 (2008-09-01), Piscataway, NJ, pages 3356 - 3363, XP055355782, ISBN: 978-1-4244-2058-2, DOI: 10.1109/IROS.2008.4650764 *

Also Published As

Publication number Publication date
DE102018207919B3 (de) 2019-06-06

Similar Documents

Publication Publication Date Title
DE102011108282B4 (de) Numerische Steuerung für eine Mehrachsenmaschine zum Bearbeiten einer geneigten Bearbeitungsebene
DE102014110355B3 (de) Robotersystem und Verfahren zur Roboter-Geschwindigkeitssteuerung
EP1950010B1 (fr) Robot et procédé de programmation d'un robot
EP2500789B1 (fr) Robot et procédé de fonctionnement d'un robot
DE102019205651B3 (de) Verfahren und System zum Ausführen von Roboterapplikationen
EP3170628A1 (fr) Commande d'un robot avec détermination d'une grandeur d'amortissement d'entraînement
EP2977148B1 (fr) Procede et dispositif destines a la commande d'un robot
DE102008010983A1 (de) Verfahren zum optimierten endkonturnahen Fräsen
WO2017016648A1 (fr) Procédé de commande d'un robot redondant mobile
WO2019219790A1 (fr) Dispositif de commande de robot
EP3408062A1 (fr) Commande d'une association de robots
EP3367185A1 (fr) Système de moteur et sa évaluation
DE102016007601A1 (de) Konfigurieren und/oder Steuern einer Roboteranordnung
EP3569367A1 (fr) Détermination d'un mouvement d'un dispositif assistée par ordinateur
EP3313627A2 (fr) Transport d'une voie prédéterminée au moyen d'un robot
WO2019086339A1 (fr) Procédé et moyen de commande pour commander un système robotique
DE102006036490A1 (de) Verfahren und Vorrichtung zum Steuern eines Handhabungsgeräts
EP4084937B1 (fr) Déplacement d'une référence fixée à un robot
DE102018207921B3 (de) Steuern eines Roboters
EP3810377B1 (fr) Procédé et système de transfert d'un effecteur terminal d'un robot entre une position d'effecteur terminal et une autre position d'effecteur terminal
WO2019219795A1 (fr) Commande d'un robot
DE102017011130B4 (de) Verfahren und System zum Steuern eines Roboters
WO2019224224A1 (fr) Procédé et commande servant à commander un robot
EP3721306A1 (fr) Arrêt d'une voie de travail prédéfinie avec un robot
DE102021125628B3 (de) Geschwindigkeitsvorgaben zur Trajektorienbestimmung von Kinematiken

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19725109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19725109

Country of ref document: EP

Kind code of ref document: A1