EP3405725B1 - Unité d'interface pour un réseau thermique, système de réfrigération, procédé de fourniture d'un système de réfrigération multimode et procédé d'amélioration de l'efficacité du refroidissement d'un réfrigérant dans un système de réfrigération - Google Patents

Unité d'interface pour un réseau thermique, système de réfrigération, procédé de fourniture d'un système de réfrigération multimode et procédé d'amélioration de l'efficacité du refroidissement d'un réfrigérant dans un système de réfrigération Download PDF

Info

Publication number
EP3405725B1
EP3405725B1 EP17702911.3A EP17702911A EP3405725B1 EP 3405725 B1 EP3405725 B1 EP 3405725B1 EP 17702911 A EP17702911 A EP 17702911A EP 3405725 B1 EP3405725 B1 EP 3405725B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
interface unit
condenser
flow path
refrigeration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17702911.3A
Other languages
German (de)
English (en)
Other versions
EP3405725A1 (fr
EP3405725C0 (fr
Inventor
Dmitriy Ivanovich ZAYNULIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seal Navitas Ltd
Original Assignee
Seal Navitas Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seal Navitas Ltd filed Critical Seal Navitas Ltd
Publication of EP3405725A1 publication Critical patent/EP3405725A1/fr
Application granted granted Critical
Publication of EP3405725B1 publication Critical patent/EP3405725B1/fr
Publication of EP3405725C0 publication Critical patent/EP3405725C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves

Definitions

  • the present invention relates to an interface unit for use with any particular vapour-compression refrigeration system as part of a thermal network.
  • the invention further relates to a refrigeration system for providing cooled media to a location, to a method of providing a multi-mode heat rejection from refrigeration system, and to a method of improving the efficiency of cooling.
  • FIG. 1 shows a generalised representation of a vapour-compression refrigeration system, indicated globally at 10.
  • the system 10 comprises a compressor 12, a condenser 14 indicated as a heat exchange element, an expansion valve 16, and an evaporator 18, which is also indicated as a heat exchange element.
  • a refrigerant in the system 10 is pressurised by the compressor 12, and is then passed through a piping circuit 20 of the system 10 to the condenser 14.
  • the refrigerant then condenses into a liquid at the condenser 12, resulting in a decrease in the enthalpy of the refrigerant at constant pressure.
  • the liquid refrigerant is then directed through the expansion valve 16, thereby decreasing the pressure of the refrigerant on the other side of the expansion valve 16, accompanied by a change in enthalpy.
  • the reduced pressure refrigerant equalises with the pressure of refrigerant entering the evaporator 18, and there is a phase transition occurring as the refrigerant intensively absorbs heat from outside, as determined by the evaporation effect, with an associated increase in enthalpy of the refrigerant.
  • the evaporator 18 is then coupled to a thermal energy transfer means, such as a fan for air circulation, or a solid medium for conductive heat transfer.
  • phase changes associated with a refrigerant are illustrated globally in Figure 2 at 22, indicating the thermodynamic changes occurring in the refrigerant as the cycle progresses, the cycle being defined by the specific pressure envelope. Any change in refrigerant state during compression, condensation, expansion and evaporation can be illustrated by the curved dome line in the phase diagram 22.
  • Refrigerant is present in its vapour form on the right side of the dome and in its liquid form on the left side of the dome. Within the dome, refrigerant is at a mid-point, that is, co-existing liquid and vapour phases.
  • the top part of the line S-S specifically indicates where refrigerant enters a liquid phase, such that cooling beyond the point of condensation without any associated change in pressure, as defined by the top horizontal line in Figure 2 , can be defined as sub-cooling.
  • this effect may occur naturally during a vapour-compression cycle, but a greater magnitude of sub-cooling can be highly beneficial since it will provide excess cooling capability defined by the crossing of line S-S with the lower horizontal line, that is, the evaporation part of the envelope.
  • an extension of the magnitude of the envelope into the left side of line S-S could provide additional potential for cooling.
  • the engineering challenge in producing an efficient system is to provide a high-quality heatsink so as to be able to achieve the lowest possible discharge pressure regime for a given cooling temperature.
  • a poor quality heatsink requires more work from the compressor in the refrigeration system, by reducing the cooling capacity of a refrigeration system. This in turn creates additional stresses on the system, which can result in failure and/or damage to the components.
  • the ability to cool is limited by the phase relationships of the refrigerant; a typical pressure-enthalpy phase diagram is illustrated in Figure 2 for standard refrigerant.
  • the bounded dome represents a liquid-vapour phase, with pure liquid to the left of the dome, and pure vapour to the right.
  • the compressor does the work in the refrigeration system, increasing the pressure of the refrigerant.
  • the refrigerant is able to condense down to the point of condensation into the liquid phase, that is, the enthalpy can be reduced at constant pressure up to the liquid-vapour to liquid boundary of the dome.
  • a process known as natural sub-cooling may be possible, in which the enthalpy of the liquid is reduced beyond the point of condensation, and this is a known phenomenon for all refrigerants.
  • Carbon dioxide when utilised as a refrigerant, may demonstrate larger natural sub-cooling effects due to its relatively high pressure of condensation, as determined by its physical properties. Such sub-cooling permits a more efficient vapour-compression cycle.
  • refrigeration systems in the art include those of CN101368772A and EP2725310A1 .
  • an interface unit for a thermal network comprising: an interface unit heat exchanger; a plurality of refrigerant pipes; a plurality of intercept valves engagable with a piping circuit of a thermal network; and a controller associated with the plurality of intercept valves; the plurality of refrigerant pipes defining at least two different refrigerant flow paths across the interface unit heat exchanger, the at least two different refrigerant flow paths being selectively activatable by the controller controlling a status of the plurality of intercept valves.
  • a first said refrigerant pipe is provided as a sub-cooling refrigerant inlet pipe
  • a second said refrigerant pipe may be provided as a multi-stage refrigerant inlet pipe
  • a third said refrigerant pipe may be provided as a heat-recovery refrigerant inlet pipe
  • a fourth said refrigerant pipe may be provided as a refrigerant outlet pipe, the said first, second and third refrigerant pipes respectively defining a sub-cooling refrigerant flow path, a multi-stage refrigerant flow path, and a heat-recovery flow path through the interface unit heat exchanger and out of the said fourth refrigerant pipe.
  • one said intercept valve may be provided as a pre-condenser intercept valve, and at least one said intercept valve may be provided as a post-condenser intercept valve, the pre-condenser intercept valve being positionable prior to a condenser in a thermal network, and the at least one post-condenser intercept being positionable following the condenser in a thermal network.
  • a s refrigeration system comprising: at least one compressor; at least one condenser; at least one expansion valve; at least one evaporator; and a piping circuit defining a default refrigerant flow path through the compressor, condenser, expansion valve and evaporator; and an interface unit, preferably in accordance with the first aspect of the invention, wherein one said intercept valve is connected to the piping circuit before the or each condenser as a pre-condenser intercept valve, and at least one said intercept valve is connected to the piping circuit following the or each condenser as a post-condenser intercept valve, the controller permitting selective control of a refrigerant flow through the piping circuit and interface unit, wherein at least one of the refrigerant flow paths through the interface unit is a sub-cooling refrigerant flow path.
  • 'sub-cooling as used herein and throughout is intended to mean or is defined as a condition where liquid refrigerant is colder than a minimum or saturation temperature required to keep the liquid refrigerant from boiling and thus changing from the liquid to a gas phase.
  • the refrigeration system may further comprise a receiver vessel in communication with the piping circuit, the receiver vessel having a volume of the liquid refrigerant therein.
  • the receiver vessel may be positioned on the piping circuit, one said post-condenser intercept valve being positioned before the receiver on the piping circuit, and one further said post-condenser intercept valve being positioned following the receiver on the piping circuit.
  • the said at least one refrigerant flow path may be defined by the piping circuit and plurality of refrigerant pipes of the interface unit in an order of: compressor; condenser; receiver; interface unit heat exchanger; expansion valve; evaporator; and compressor.
  • a receiver vessel beneficially moderates and regulates perturbations on the refrigerant system, making the sub-cooling apparatus more resilient to, for example, extreme changes in the external temperature. Furthermore, the receiver vessel also advantageously encourages separation of the liquid and liquid-vapour phases of the refrigerant, allowing the interface unit heat exchanger to act more effectively to sub-cool liquid refrigerant.
  • the piping circuit may additionally define a second said refrigerant flow path having a multi-stage refrigerant flow path which extends between the condenser and sub-cooling heat exchanger in which the condenser and sub-cooling heat exchanger are connected in series, the sub-cooling heat exchanger acting as a second stage condenser.
  • the said second refrigerant flow path may be defined by the piping circuit and plurality of refrigerant pipes of the interface unit in an order of: compressor; condenser; sub-cooling heat exchanger; receiver; expansion valve; evaporator; and compressor.
  • An extent of the piping circuit which is between the condenser and interface unit heat exchanger may be greater along the said sub-cooling refrigerant flow path than for the said multi-stage cooling refrigerant flow path.
  • the piping circuit may additionally define a third refrigerant flow path having a heat recovery refrigerant flow path in which the condenser is bypassed.
  • Said third refrigerant flow path may be defined by the piping circuit and plurality of refrigerant pipes of the interface unit in an order of: compressor; interface unit heat exchanger; expansion valve; evaporator; and compressor.
  • the piping circuit may define a fourth refrigerant flow path having a sub-cooling bypass refrigerant flow path in which the interface unit is bypassed, in which case the said fourth refrigerant flow path be defined by the piping circuit and plurality of refrigerant pipes of the interface unit in an order of: compressor; condenser; expansion valve; evaporator; and compressor.
  • Providing a plurality of different refrigerant flow paths through the apparatus advantageously allows the refrigeration system to be selectively operated in a plurality of different modes other than the standard sub-cooling mode, thereby significantly increasing the utility of the system for a user.
  • the present apparatus allows for the provision of a sub-cooling regime for many different types of refrigerant, whereas previous systems may have relied on the natural sub-cooling properties of the refrigerant, such as for carbon dioxide.
  • the piping circuit and plurality of refrigerant pipes of the interface unit may be mono-directional to prevent back-flow of refrigerant therethrough.
  • a method of providing a multi-mode refrigeration system comprising the steps of: a] providing a refrigeration system, preferably in accordance with the second aspect of the invention, in which the condenser and interface unit heat exchanger are selectably connected both in series and parallel with one another; and b] selecting a refrigerant flow path through the interface unit in accordance with a pre-determined desired system function, wherein one said refrigerant flow path across the interface unit heat exchanger is a sub-cooling refrigerant flow path.
  • condenser and sub-cooling heat exchanger in the present invention advantageously allows for the switching arrangement which allows the user to readily change between the multi-stage cooling or sub-cooling regimes, in addition to the other modes of operation.
  • a method of improving the efficiency of cooling of a refrigerant in a refrigeration system comprising the steps of: a] connecting a dedicated interface unit, preferably in accordance with the first aspect of the invention, to the refrigeration system; b] directing a refrigerant through the at least one condenser to reduce the enthalpy of the refrigerant to the point of condensation; and c] directing the refrigerant to the dedicated interface unit heat exchanger to reduce the enthalpy and therefore sub-cool the condensed liquid refrigerant.
  • FIG. 3 there is shown an interface unit capable of integrating and improving an existing refrigeration system, the interface unit being indicated globally at 50.
  • the interface unit 50 comprises a housing 52 which encloses an interface unit heat exchanger 54, a plurality of refrigerant pipes, a plurality of intercept or similar flow control valves, and a controller 56.
  • a first, sub-cooling refrigerant inlet pipe 58a can direct refrigerant toward the interface unit heat exchanger 54, and out of an outlet refrigerant pipe 60;
  • a second, multi-stage refrigerant inlet pipe 58b directs a second flow path through or across the interface unit heat exchanger 54 and out of the outlet refrigerant pipe 60;
  • a third heat-recovery refrigerant inlet pipe 58c directs a third flow path through or across the interface unit heat exchanger 54.
  • Each of the refrigerant pipes 58a, 58b, 58c, 60 is then associated with a respective intercept valve: the sub-cooling refrigerant inlet pipe 58a with a sub-cooling intercept valve 62a; the multi-stage refrigerant inlet pipe 58b with a multi-stage intercept valve 62b; the heat-recovery refrigerant inlet pipe 58c with a heat-recovery intercept valve 62c; and the outlet refrigerant pipe 60 with an outlet intercept valve 62d.
  • the controller 56 is in communication with the intercept valves 62a, 62b, 62c, 62d, being able to selectively activate or switch the valves 62a, 62b, 62c, 62d, which are here formed as bi-directional valves to allow two-way control of the refrigerant flow therethrough.
  • the interface unit 50 when the interface unit 50 is coupled to a refrigerant system, a plurality of different refrigerant flow paths across the interface unit heat exchanger 54 can be achieved.
  • FIG. 110 one embodiment of a vapour-compression refrigeration system is indicated generally at 110. Only a portion of the whole refrigeration system 110 is illustrated, from the compressor 112 to the portion of the piping circuit 120 leading up to the expansion valve, which is not shown in Figures 4 to 7 , but is indicated at 16 in the generalised flow diagram of Figure 1 , described above. However, an interface unit 50 has been inserted into the refrigeration system, as indicated.
  • the interface unit 50 has been positioned on the piping circuit 120 near to the condenser 114 following the compressor 112 and before the expansion valve: the condenser 114.
  • a receiver vessel 126 is also provided following the condenser 114.
  • the dedicated interface unit 50 is installed such that the heat recovery intercept valve 62c is installed so as to intercept the piping circuit 120 prior to the condenser 114, the multi-stage intercept valve 62b between the condenser 114 and the receiver vessel 126, with the sub-cooling intercept valve 62a following the receiver vessel 126.
  • the receiver vessel 126 is installed so as to provide a reservoir of liquid refrigerant therein which is contained at a pressure equal to that of the discharge pressure of the compressor 112. This acts to provide a good separation of the liquid and liquid-vapour phases in the piping circuit 120, and can also compensate for rapid changes in the load within the refrigeration system 110 due to the increased refrigerant volume within the piping circuit 120. It will, however, be appreciated that the receiver vessel 126 is not strictly necessary.
  • the interface unit heat exchanger 54 may be supplied as a plate heat exchanger, which has been demonstrated to be an efficient heat exchanger for the purposes of sub-cooling; however, other forms of heat exchanger could be provided, such as a vaned or ribbed heat exchanger.
  • the condenser 114, interface unit heat exchanger 124 and receiver vessel 126 are connected by the piping circuit 120 and the plurality of refrigerant pipes of the interface unit 50 both in parallel and series, with the plurality of intercept valves 62a, 62b, 62c, 62d being provided to change the refrigerant flow path through the various components so as to alter the functionality of the refrigeration system 110.
  • the first, heat recovery intercept valve 62c may be positioned after the compressor 112 so as to provide selective control of the refrigerant flow path between a direction towards the condenser 114 or towards the interface unit heat exchanger 54.
  • the second, multi-stage intercept valve 62b may be positioned following the condenser 114 so as to provide selective control of the refrigerant flow path between a direction towards the interface unit heat exchanger 54 or towards the receiver vessel 126, if present.
  • the third, sub-cooling intercept valve 62a may be positioned following the receiver vessel 126 so as to provide selective control of the refrigerant flow path between a direction towards the interface unit heat exchanger 54 or towards the piping circuit 120 leading to the expansion valve.
  • the outlet intercept valve 62d may be positioned following the interface unit heat exchanger 54 so as to provide selective control of the refrigerant flow path between a direction towards the receiver vessel 126, if present, or towards the piping circuit 120 leading to the expansion valve.
  • FIG 4 illustrates one refrigerant flow path of the refrigeration system 110.
  • Pressurised refrigerant is discharged from the compressor 112 in the vapour phase, and is directed towards the condenser 114 via the first intercept valve 62c.
  • the refrigerant vapour condenses into liquid refrigerant at the condenser 114, resulting in a decrease in the enthalpy of the refrigerant.
  • the refrigerant is then directed to the expansion valve where it will be depressurised, on a path through the piping circuit 120 via the second intercept valve 62b, the receiver vessel 126, and the third intercept valve 62a.
  • the refrigerant is then directed towards the expansion valve, evaporator and back to the compressor 112 to complete the vapour-compression cycle.
  • Figure 5 illustrates a nominal heat recovery mode of the refrigeration system 110, in which the condenser 114 is isolated from the piping circuit 120 by switching of the first intercept valve 62c so as to direct refrigerant towards the interface unit heat exchanger 54. This can then result in a heat recovery refrigerant flow path in which the condenser 114 is bypassed, the refrigerant flow path flowing from the compressor 112 through the first intercept valve 62c, the interface unit heat exchanger 54, the outlet intercept valve 62d, the receiver vessel 126, and the third intercept valve 62c. The refrigerant is then directed towards the expansion valve, evaporator and back to the compressor 112 to complete the vapour-compression cycle.
  • the interface unit heat exchanger 54could be configured so as to act as a secondary condenser, if desired, although the intended usage in the depicted embodiment is as a means of heat recovery for the refrigeration system 110.
  • a recovery manifold may therefore be provided in thermal communication with the interface unit heat exchanger 54so as to retrieve and utilise excess thermal energy generated during the vapour-compression cycle, to thereby be put to use.
  • Figure 6 illustrates a further refrigerant flow path through the piping circuit 120 and refrigerant pipes.
  • the refrigerant is discharged from the compressor 112, and directed through the first intercept valve 62c to the condenser 114.
  • the refrigerant exits the condenser 114 and is directed through the second intercept valve 62b directly towards the interface unit heat exchanger 54 which thereby acts as a secondary condenser in series with the primary condenser 114.
  • the refrigerant Exiting the interface unit heat exchanger 54, the refrigerant is directed towards the receiver vessel 126 via the outlet intercept valve 62d.
  • the refrigerant is then directed through the third intercept valve 62a towards the expansion valve, evaporator and back to the compressor 112 to complete the vapour-compression cycle.
  • This arrangement may act to improve the efficiency of the standard vapour-compression cycle, preventing the primary compressor 114 from overheating, but does not improve the prospects of sub-cooling of the refrigerant; with reference to Figure 2 , both stages of the condensation occur whilst the refrigerant exists in the liquid-vapour phase, with each of the condenser 114 and interface unit heat exchanger 54assisting with a percentage of the load of the condensation process.
  • Figure 7 shows another refrigerant flow path through the piping circuit 120 and refrigerant pipes in which the interface unit heat exchanger 54is able to act to sub-cool the refrigerant flowing therethrough.
  • the refrigerant vapour exits the compressor 112 before being directed via the first intercept valve 62c towards the condenser 114, and via the second intercept valve 62b towards the receiver vessel 126.
  • the separated liquid refrigerant is then diverted via the third intercept valve 62a into the interface unit heat exchanger 54.
  • Sub-cooling of liquid refrigerant can then occur at the interface unit heat exchanger 54; this is distinguished from natural sub-cooling, as would be experienced by, for instance, carbon dioxide, since this sub-cooling is applicable to a much wider variety of refrigerants, and/or can improve the efficiency of sub-cooling of refrigerants for which natural sub-cooling is possible.
  • the emergent liquid refrigerant from the interface unit heat exchanger 54 can then be directed via the outlet intercept valve 62d towards the expansion valve, evaporator, and eventually cycled back to the compressor 112.
  • the extent of the piping circuit 120 which extends between the condenser 114 and interface unit heat exchanger 54 is significantly increased for the sub-cooling refrigerant flow path when compared with the multi-stage cooling refrigerant flow path, which inhibits the potential of the interface unit heat exchanger 54 to act as a secondary condenser.
  • a dedicated interface unit heat exchanger 54 means that the refrigeration capacity of the refrigeration system 110 can be increased and/or optimised.
  • the sub-cooling allows for some compensation of the loss of cooling capacity during elevated ambient conditions in which the discharge pressure from the compressor 112 would be increased to a maximum threshold.
  • the provision of a dedicated interface unit heat exchanger 54 allows for improved efficiency of the refrigeration system during periods of colder external temperatures; the minimum discharge pressure from the compressor 112 provides a limit to the efficiency of the refrigeration system 110, and therefore sub-cooling extends this efficiency without changing the minimum discharge pressure requirements, by permitting the liquid refrigerant to be cooled, rather than just vapour or liquid-vapour refrigerant at the condenser 114.
  • the presence of the receiver vessel 126 is beneficial in improving the ability of the system to achieve this goal of dedicated sub-cooling by improving the separation of the liquid refrigerant and liquid-vapour refrigerant such that the interface unit heat exchanger 54is able to solely act to reduce the enthalpy of the liquid refrigerant.
  • the particular arrangement of the piping circuit 120 and refrigerant pipes beneficially allows a user to operate the refrigeration system 110 in multiple different modes by attachment of an interface unit 50, including at least a sub-cooling refrigerant flow mode, and potentially also including heat recovery refrigerant flow mode, sub-cooling bypass mode, and/or multi-stage cooling mode.
  • This is achieved by providing the condenser 114 and interface unit heat exchanger 54in selectively switchable series and parallel configurations, so as to allow for reconfiguration of the refrigerant flow path therethrough.
  • refrigerant utilised in the system is likely to be or include carbon dioxide, it will be appreciated that a much wider range of refrigerants can now be sub-cooled as part of a refrigeration system in accordance with the present invention.
  • the directionality of the refrigerant flow through the system is important for the provision of the dedicated sub-cooling as hereto described. It may therefore be advantageous to provide a piping circuit which is mono-direction, so as to prevent or limit back-flow or reflux of refrigerant through the system. This contrasts with prior refrigeration systems, in which the direction of refrigerant through the piping circuit could be reversed.
  • the apparatus includes a dedicated interface unit heat exchanger for this purpose. This arrangement allows for sub-cooling to be applied to a much wider scope of refrigerants, thereby improving the efficiency of the refrigeration process in both ambient and extreme external conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Claims (14)

  1. Unité d'interface (50) pour un réseau thermique, l'unité d'interface (50) comprenant :
    un échangeur de chaleur d'unité d'interface (54) ;
    une pluralité de tuyaux de réfrigérant (58a, 58b, 58c, 60) ;
    une pluralité de vannes de modération (62a, 62b, 62c, 62d) pouvant être engagées avec un circuit de tuyauterie (120) d'un réseau thermique ; et
    un contrôleur (56) associé à la pluralité de vannes de modération ;
    la pluralité de tuyaux de réfrigérant (58a, 58b, 58c, 60) définissant au moins deux trajets d'écoulement de réfrigérant différents en travers de l'échangeur de chaleur d'unité d'interface (54), les au moins deux trajets d'écoulement de réfrigérant différents pouvant être activés sélectivement par le contrôleur (56) commandant un statut de la pluralité de vannes de modération (62a, 62b, 62c, 62d), et
    caractérisée en ce qu'un premier dit tuyau de réfrigérant est prévu en tant que tuyau d'entrée de réfrigérant de sous-refroidissement (58a), un deuxième dit tuyau de réfrigérant est prévu en tant que tuyau d'entrée de réfrigérant multiétagé (58b), un troisième dit tuyau de réfrigérant est prévu en tant que tuyau d'entrée de réfrigérant de récupération de chaleur (58c), et un quatrième dit tuyau de réfrigérant est prévu en tant que tuyau de sortie de réfrigérant (60), lesdits premier, deuxième et troisième tuyaux de réfrigérant (58a, 58b, 58c) définissant respectivement un trajet d'écoulement de réfrigérant de sous-refroidissement, un trajet d'écoulement de réfrigérant multiétagé et un trajet d'écoulement de récupération de chaleur à travers l'échangeur de chaleur d'unité d'interface (54) et hors dudit quatrième tuyau de réfrigérant.
  2. Unité d'interface (50) selon la revendication 1, dans laquelle une dite vanne de modération est prévue en tant que vanne de modération pré-condensateur (62c), et au moins une dite vanne de modération est prévue en tant que vanne de modération post-condensateur (62a, 62b, 62d), la vanne de modération pré-condensateur (62c) étant positionnée avant un condensateur (114) dans un réseau thermique, et l'au moins une vanne de modération post-condensateur (62a, 62b, 62d) étant positionnée à la suite du condensateur (114) dans ledit réseau thermique.
  3. Système de réfrigération (110) comprenant :
    au moins un compresseur (112) ;
    au moins un condensateur (114) ;
    au moins une soupape de dilatation ;
    au moins un évaporateur ;
    un circuit de tuyauterie (120) définissant un trajet d'écoulement de réfrigérant par défaut à travers le/la ou chaque compresseur (112), condensateur (114),
    soupape de dilatation et évaporateur ; et
    une unité d'interface (50) selon l'une quelconque des revendications précédentes, dans lequel une dite vanne de modération est connectée au circuit de tuyauterie (120) avant le ou chaque condensateur (114) en tant que vanne de modération pré-condensateur (62c), et au moins une dite vanne de modération est connectée au circuit de tuyauterie (120) à la suite du ou de chaque condensateur en tant que vanne de modération post-condensateur (62a, 62b, 62d), le contrôleur (56) permettant la commande sélective d'un écoulement de réfrigérant à travers le circuit de tuyauterie (120) et l'unité d'interface (50), dans lequel au moins un des trajets d'écoulement de réfrigérant à travers l'unité d'interface (50) est un trajet d'écoulement de réfrigérant de sous-refroidissement.
  4. Système de réfrigération (110) selon la revendication 3, comprenant en outre un réservoir (126) en communication avec le circuit de tuyauterie (120), le réservoir (126) ayant un volume du réfrigérant liquide en son sein.
  5. Système de réfrigération (110) selon la revendication 4, dans lequel le réservoir (126) est positionné sur le circuit de tuyauterie (120), une dite vanne de modération post-condensateur (62b) étant positionnée avant le réservoir (126) sur le circuit de tuyauterie, et une autre dite vanne de modération post-condensateur (62a) étant positionnée à la suite du réservoir (126) sur le circuit de tuyauterie (120).
  6. Système de réfrigération (110) selon la revendication 5, dans lequel ledit au moins un trajet d'écoulement de réfrigérant est défini par le circuit de tuyauterie (120) et la pluralité de tuyaux de réfrigérant de l'unité d'interface (50) dans un ordre de : compresseur (112) ; condensateur (114) ; réservoir (126) ; échangeur de chaleur d'unité d'interface (54) ; soupape de dilatation ; évaporateur ; et compresseur (112).
  7. Système de réfrigération (110) selon l'une quelconque des revendications 3 à 6, dans lequel le circuit de tuyauterie (120) et la pluralité de tuyaux de réfrigérant de l'unité d'interface (50) définissent un deuxième dit trajet d'écoulement de réfrigérant ayant un trajet d'écoulement de réfrigérant multiétagé qui s'étend entre le condensateur (114) et l'échangeur de chaleur d'unité d'interface (54) dans lequel le condensateur (114) et l'échangeur de chaleur d'unité d'interface (54) sont connectés en série, l'échangeur de chaleur d'unité d'interface (54) agissant en tant que condensateur de deuxième étage.
  8. Système de réfrigération (110) selon la revendication 7, lorsqu'elle dépend de l'une quelconque des revendications 4 à 6, dans lequel ledit deuxième trajet d'écoulement de réfrigérant est défini par le circuit de tuyauterie et la pluralité de tuyaux de réfrigérant de l'unité d'interface (50) dans un ordre de : compresseur (112); condensateur (114); échangeur de chaleur d'unité d'interface (54) ; réservoir (126) ; soupape de dilatation ; évaporateur ; et compresseur (112).
  9. Système de réfrigération (110) selon la revendication 7 ou la revendication 8, dans lequel une étendue d'un tuyau de réfrigérant (58b) de l'unité d'interface (50) qui est entre le condensateur (114) et l'échangeur de chaleur d'unité d'interface (54) est plus grande le long dudit trajet d'écoulement de réfrigérant de sous-refroidissement que pour ledit trajet d'écoulement de réfrigérant de refroidissement multiétagé.
  10. Système de réfrigération (110) selon l'une quelconque des revendications 3 à 9, dans lequel le circuit de tuyauterie (120) et la pluralité de tuyaux de réfrigérant (58a, 58b, 58c, 60) de l'unité d'interface (50) définissent un troisième dit trajet d'écoulement de réfrigérant ayant un trajet d'écoulement de réfrigérant de récupération de chaleur dans lequel le condensateur (114) est contourné, dans lequel ledit troisième trajet d'écoulement de réfrigérant est défini par le circuit de tuyauterie et la pluralité de tuyaux de réfrigérant (58a, 58b, 58c, 60) de l'unité d'interface (50) dans un ordre de : compresseur (112) ; échangeur de chaleur d'unité d'interface (54) ; soupape de dilatation ; évaporateur ; et compresseur (112).
  11. Système de réfrigération (110) selon l'une quelconque des revendications 3 à 10, dans lequel le circuit de tuyauterie (120) et la pluralité de tuyaux de réfrigérant (58a, 58b, 58c, 60) de l'unité d'interface (50) définissent un quatrième dit trajet d'écoulement de réfrigérant ayant un trajet d'écoulement de réfrigérant de contournement d'unité d'interface dans lequel l'unité d'interface (50) est contournée, dans lequel ledit quatrième trajet d'écoulement de réfrigérant est défini par le circuit de tuyauterie (120) et la pluralité de tuyaux de réfrigérant (58a, 58b, 58c, 60) de l'unité d'interface (50) dans un ordre de : compresseur (112) ; condensateur (114) ; soupape de dilatation ; évaporateur ; et compresseur (112).
  12. Système de réfrigération (110) selon l'une quelconque des revendications 3 à 11, dans lequel le circuit de tuyauterie (120) et la pluralité de tuyaux de réfrigérant (58a, 58b, 58c, 60) de l'unité d'interface (50) sont monodirectionnels pour empêcher un retour de réfrigérant à travers eux.
  13. Procédé de fourniture d'un système de réfrigération multimode (110), le procédé comprenant les étapes consistant à :
    a] fournir un système de réfrigération (110) selon l'une quelconque des revendications 3 à 12 dans lequel le condensateur (114) et l'échangeur de chaleur d'unité d'interface (54) sont connectés de manière sélectionnable tous deux en série et parallèle l'un à l'autre ; et
    b] sélectionner un trajet d'écoulement de réfrigérant à travers l'unité d'interface (50) conformément à une fonction de système souhaitée prédéterminée, dans lequel un dit trajet d'écoulement de réfrigérant inclut un trajet d'écoulement de réfrigérant de sous-refroidissement en travers de l'échangeur de chaleur d'unité d'interface (54) pour le sous-refroidissement de réfrigérant.
  14. Procédé d'amélioration de l'efficacité de refroidissement d'un réfrigérant dans un système de réfrigération (110), le procédé comprenant les étapes consistant à :
    a] connecter une unité d'interface dédiée (50) selon la revendication 1 ou la revendication 2 au système de réfrigération (110) ;
    b] diriger un réfrigérant à travers au moins un condensateur du système de réfrigération pour réduire l'enthalpie du réfrigérant au point de condensation ; et
    c] diriger le réfrigérant vers l'échangeur de chaleur d'unité d'interface (54) pour réduire l'enthalpie et sous-refroidir de ce fait un réfrigérant liquide condensé émergent du condensateur (114).
EP17702911.3A 2016-01-22 2017-01-11 Unité d'interface pour un réseau thermique, système de réfrigération, procédé de fourniture d'un système de réfrigération multimode et procédé d'amélioration de l'efficacité du refroidissement d'un réfrigérant dans un système de réfrigération Active EP3405725B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1601177.7A GB2546529B (en) 2016-01-22 2016-01-22 Interface unit for a thermal network
PCT/GB2017/050060 WO2017125716A1 (fr) 2016-01-22 2017-01-11 Unité d'interface pour réseau thermique

Publications (3)

Publication Number Publication Date
EP3405725A1 EP3405725A1 (fr) 2018-11-28
EP3405725B1 true EP3405725B1 (fr) 2023-10-25
EP3405725C0 EP3405725C0 (fr) 2023-10-25

Family

ID=55534761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17702911.3A Active EP3405725B1 (fr) 2016-01-22 2017-01-11 Unité d'interface pour un réseau thermique, système de réfrigération, procédé de fourniture d'un système de réfrigération multimode et procédé d'amélioration de l'efficacité du refroidissement d'un réfrigérant dans un système de réfrigération

Country Status (4)

Country Link
EP (1) EP3405725B1 (fr)
GB (1) GB2546529B (fr)
RU (1) RU2732947C2 (fr)
WO (1) WO2017125716A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107477824B (zh) * 2017-09-11 2020-02-07 珠海格力电器股份有限公司 模式转换器、热回收多联机空调系统及控制方法
CN111121356B (zh) * 2019-11-19 2021-06-11 万洲电气股份有限公司 一种基于中央冷却系统的工业循环冷却水节能系统及方法
CN110887109B (zh) * 2019-12-04 2020-10-27 珠海格力电器股份有限公司 可变更规模的空调系统及其运行方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8359882B2 (en) * 2007-04-13 2013-01-29 Al-Eidan Abdullah A Air conditioning system with selective regenerative thermal energy feedback control
US9303901B2 (en) * 2007-06-12 2016-04-05 Danfoss A/S Method for controlling a vapour compression system
CN101368772B (zh) * 2007-08-15 2011-08-24 珠海格力电器股份有限公司 多模式热回收水水式地源热泵机组
KR101636326B1 (ko) * 2009-12-24 2016-07-21 삼성전자주식회사 냉동 사이클 장치, 히트 펌프 급탕 에어컨 및 그 실외기
KR101296064B1 (ko) * 2011-09-06 2013-08-12 엘지전자 주식회사 공기조화기 및 그 제어방법
KR102025740B1 (ko) * 2012-10-29 2019-09-26 삼성전자주식회사 히트펌프장치

Also Published As

Publication number Publication date
RU2018130121A (ru) 2020-02-20
EP3405725A1 (fr) 2018-11-28
WO2017125716A1 (fr) 2017-07-27
RU2732947C2 (ru) 2020-09-24
GB2546529A (en) 2017-07-26
EP3405725C0 (fr) 2023-10-25
GB2546529B (en) 2020-04-15
RU2018130121A3 (fr) 2020-05-18
GB201601177D0 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
EP1555494B1 (fr) Système de chauffage et de refroidissement
JP5355016B2 (ja) 冷凍装置及び熱源機
WO2018002983A1 (fr) Dispositif à cycle de réfrigération
EP3217121B1 (fr) Unité extérieure de climatiseur d'air et son procédé de commande
JP5985418B2 (ja) 冷凍サイクル装置、ならびに冷凍サイクル装置を備えた冷凍装置および空気調和装置
EP3405725B1 (fr) Unité d'interface pour un réseau thermique, système de réfrigération, procédé de fourniture d'un système de réfrigération multimode et procédé d'amélioration de l'efficacité du refroidissement d'un réfrigérant dans un système de réfrigération
JP5709575B2 (ja) 冷凍装置
JP4206870B2 (ja) 冷凍サイクル装置
CN106152840B (zh) 热管系统、制冷系统及其控制方法
JP6598882B2 (ja) 冷凍サイクル装置
EP2729742B1 (fr) Circuit de réfrigération et système de chauffage et de refroidissement
JP2006097978A (ja) 冷凍サイクル
EP2649387B1 (fr) Circuit de refroidissement
JP6448780B2 (ja) 空気調和装置
KR101823469B1 (ko) 이원 싸이클을 이용한 부분부하가 적용된 고온 급탕 및 냉난방 장치
JP6072559B2 (ja) 冷凍装置
US11841179B2 (en) Heating, ventilation, and air-conditioning systems and methods
JP6336066B2 (ja) 空気調和装置
EP3564600B1 (fr) Système de refroidissement et procédé d'operation
KR20120031842A (ko) 냉매시스템
JP2006057869A (ja) 冷凍装置
JP2013217602A (ja) 熱源機、冷凍空調装置、制御装置
JP2002228284A (ja) 冷凍装置
AU2013100212A4 (en) A Refrigeration System
JP2017227396A (ja) 二元冷凍サイクル装置

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210622

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 6/04 20060101ALI20220530BHEP

Ipc: F25B 6/02 20060101ALI20220530BHEP

Ipc: F25B 49/02 20060101ALI20220530BHEP

Ipc: F25B 41/20 20210101ALI20220530BHEP

Ipc: F25B 41/00 20060101AFI20220530BHEP

INTG Intention to grant announced

Effective date: 20220620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221202

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230510

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017075631

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

U01 Request for unitary effect filed

Effective date: 20231030

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231106

U20 Renewal fee paid [unitary effect]

Year of fee payment: 8

Effective date: 20240111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025