EP3403260B1 - Method and apparatus for conditioning an audio signal subjected to lossy compression - Google Patents
Method and apparatus for conditioning an audio signal subjected to lossy compression Download PDFInfo
- Publication number
- EP3403260B1 EP3403260B1 EP17711600.1A EP17711600A EP3403260B1 EP 3403260 B1 EP3403260 B1 EP 3403260B1 EP 17711600 A EP17711600 A EP 17711600A EP 3403260 B1 EP3403260 B1 EP 3403260B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- frequencies
- audio
- frequency
- audio signal
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005236 sound signal Effects 0.000 title claims description 121
- 238000000034 method Methods 0.000 title claims description 71
- 230000006835 compression Effects 0.000 title claims 7
- 238000007906 compression Methods 0.000 title claims 7
- 230000003750 conditioning effect Effects 0.000 title claims 6
- 238000001228 spectrum Methods 0.000 claims description 43
- 230000002596 correlated effect Effects 0.000 claims description 6
- 238000012546 transfer Methods 0.000 claims description 3
- 239000000945 filler Substances 0.000 claims 11
- 230000001143 conditioned effect Effects 0.000 claims 2
- 238000012545 processing Methods 0.000 description 23
- 238000013144 data compression Methods 0.000 description 11
- 230000000873 masking effect Effects 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000006978 adaptation Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 210000003027 ear inner Anatomy 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/0204—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
- G10L19/0208—Subband vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/008—Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/0017—Lossless audio signal coding; Perfect reconstruction of coded audio signal by transmission of coding error
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/012—Comfort noise or silence coding
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0316—Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
- G10L21/0364—Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude for improving intelligibility
Definitions
- the invention relates to a method for processing a lossy compressed audio signal.
- the data compression of audio signals or information, such as. B. music files is known in and of itself.
- the purpose of data compression is to reduce the data size of corresponding audio signals.
- data compression can be lossy or not lossy.
- the lossy data compression should be considered in particular, which can be implemented, for example, by data-based rejection of frequency components lying on the edge of the human hearing range. The subjective hearing perception by a listener should hardly be impaired in this way.
- lossy compressed audio signals Because of the reduced sound quality in comparison of lossy compressed audio signals, it is sometimes desirable to prepare lossy compressed audio signals, i. H. to at least partially restore correspondingly rejected frequency components or to replace them with comparable frequency components.
- EP 1501190 A1 discloses a method and a device for equalizing an audio signal with an external interference signal to increase the intelligibility of the audio signal.
- the invention is therefore based on the object of specifying an improved method for processing a lossy compressed audio signal.
- the object is achieved by a method according to claim 1.
- the dependent claims relate to advantageous embodiments of the method.
- the object is further achieved by the device according to claim 14 and by the audio device according to claim 15.
- the method described herein is generally used to process a lossy compressed audio signal.
- a processable or processed audio signal it can e.g. B. a lossy compressed audio file or part of such.
- it can be e.g. B. a lossy compressed audio file using an mp3 algorithm, d. H. is an mp3-encoded audio file or mp3 file.
- the audio file or parts of it can already be decoded.
- suitable decoding algorithms can be used, by means of which an at least partial decoding of the mp3-coded audio file was carried out. The same applies, of course, to audio data that was not coded using an mp3 algorithm, but rather using other algorithms.
- the audio file can e.g. B.
- audio signals e.g. B. include a piece of music.
- Processing is generally an at least partial restoration that is missing, i. H. z. B. discarded as part of data compression, frequency components or an at least partial replacement missing, d. H. z. B. in the context of data compression discarded to understand frequency components by comparable frequency components.
- lossy compressed audio signals in particular require an at least partial replacement of missing, ie. H. z. B. discarded in the context of data compression, frequency components relevant.
- a lossy compressed audio signal to be processed is provided.
- a corresponding audio signal can in principle be provided via any physical or non-physical audio source, that is to say, for example, from an audio device for processing and outputting audio signals.
- the audio signal is transmitted into a frequency spectrum.
- energies of the audio signal are correlated with frequencies of the audio signal.
- the content of the audio signal is reduced to its energy, i.e. H. Amplitude or frequency components are examined and the individual energy components of the audio signal are transmitted or converted in terms of data into a frequency-dependent representation.
- the audio signal is typically divided into individual, possibly overlapping, time intervals, which are individually transmitted or converted into the frequency spectrum.
- the transmission or conversion of the audio signal into the frequency spectrum takes place by means of suitable algorithms, i. H. z. B. using (faster) Fourier transform algorithms.
- the length of the algorithms is basically variable.
- the examination of the content of the audio signal for its energy components can include a classification and grouping of the energy components and an estimate of the energy components of the audio signal.
- frequencies of local amplitude maxima are determined in the frequency spectrum.
- the frequency spectrum is examined for local amplitude maxima and the frequencies associated with the respective amplitude maxima are determined.
- Below a local amplitude maximum is an amplitude maximum value to be understood in a defined frequency range.
- Local amplitude maxima are determined using suitable analysis algorithms.
- a first selection criterion is defined. On the basis of the first selection criterion, the frequencies of two immediately following (local) amplitude maxima are preselected, which frequencies meet the first selection criterion. In the fourth step, the frequencies of pairs of immediately consecutive amplitude maxima are examined with regard to the first selection criterion. In the fourth step, the frequencies of immediately successive amplitude maxima are then examined in pairs to determine whether the frequencies associated with the respective amplitude maxima meet the first selection criterion. In the further steps of the method, only the frequencies that meet the first selection criterion are typically considered. In the fourth step, the frequencies to be considered below and the associated amplitude maxima are preselected.
- the first selection criterion typically describes a specific limit frequency value (range) (“threshold”). Frequencies of immediately successive amplitude maxima satisfy the first selection criterion if their frequency difference exceeds the limit frequency value (range) described by the first selection criterion, cf. the relationship represented by the formula I shown below: ⁇ f i > ⁇ f T
- ⁇ f i applies: frequency difference between two immediately following amplitude maxima; ⁇ f T : cutoff frequency value (range).
- Both the preselected frequencies and the limit frequency value described by the first selection criterion can be transferred to the Bark scale using the relationship represented by Formula II.
- the limit frequency value can fundamentally correspond to a bark or a bark adjusted by an adaptation factor or multiplied by an adaptation factor.
- the adjustment factor is typically between 0.7 and 1.1, in particular 0.9.
- the limit frequency value thus typically corresponds to 0.7 to 1.1, in particular 0.9, Bark.
- the frequency difference of the respective frequencies should correspond to a bark or almost a bark in order to meet the first selection criterion.
- a certain variability of the limit frequency value is given by the adjustment factor.
- a second selection criterion is defined. On the basis of the second selection criterion, (based on the first selection criterion) preselected frequencies of two immediately successive local amplitude maxima are selected which satisfy the second selection criterion. In the fifth step, preselected frequencies are considered with regard to the second selection criterion. In the fifth step, preselected frequencies are then examined to determine whether (additionally) they meet the second selection criterion.
- the second selection criterion can describe a limit energy value (range). Respective preselected frequencies meet the second selection criterion if the energy content between them falls below the limit energy value (range) described by the second selection criterion (“threshold”).
- the limit energy value (range) can be defined by a specified limit energy content. Respective preselected frequencies meet the second selection criterion if they fall below the limit energy content described by the second selection criterion, cf. the relationship represented by the formula III shown below: ⁇ f 1 f 2 S f 2 df ⁇ T
- S (f) the area described by the frequencies or frequency values f 1 , f 2 of the two immediately successive amplitude maxima (energy content between the frequencies or frequency values f 1 , f 2 of the two immediately successive amplitude maxima); T: Limit energy content.
- the limit energy value (range) can alternatively also be determined by using a first energy curve starting from the preselected frequency ("lower frequency”) which belongs to the lower (lower frequency) amplitude maximum and a frequency ("upper frequency") which immediately follows the upper (frequency higher) maximum amplitude is associated, outgoing second energy curve is generated and the two energy curves are transferred to the frequency spectrum.
- the limit energy value is then defined by the respective energy profiles.
- the first energy curve runs from the frequency of the (frequency-wise) lower amplitude maximum of the two immediately following amplitude maxima in the direction of the frequency of the (frequency-wise) upper (higher) amplitude maximum of the two immediately successive amplitude maxima.
- the second energy curve starts from the frequency of the (in terms of frequency) upper amplitude maximum of the two immediately following amplitude maxima in the direction of the frequency of (in terms of frequency) lower (lower) amplitude maximum of the two immediately following amplitude maxima.
- the energy profiles generated can be transferred into the frequency spectrum in terms of data.
- a closed area or area is defined by the actual frequency curve between the frequencies and the energy curves.
- the range is defined in terms of frequency by the frequencies of the two immediately adjacent amplitude maxima and in terms of energy by the actual frequency profile between the amplitude maxima and the energy profiles running between them. The range typically only contains energy values ⁇ zero. If one looks at the area geometrically in relation to the frequency spectrum, the area corresponds to the area geometrically defined by the two immediately adjacent amplitude maxima, the energy or frequency profiles running between these and the frequency axis (x-axis).
- the energy profiles are typically generated on the basis of a psychoacoustic model.
- a psychoacoustic model is therefore typically used to generate the energy profiles, or the energy profiles are derived from a psychoacoustic model.
- the psychoacoustic model generally describes those frequency components of a certain sound which are heard by the human ear in a certain noise environment, i.e. H. if necessary in the presence of other noises.
- a preferred used psychoacoustic model is the model of spectral masking or masking, by which it is described that the human hearing ability cannot perceive certain frequency components of a certain noise or only with reduced sensitivity.
- These masking or masking effects are essentially based on the anatomical or mechanical conditions of the human inner ear and, for example, mean that low-energy or quiet tones in the middle frequency range are not perceivable with simultaneous reproduction of high-energy or loud tones in the low frequency range; the tones in the low frequency range mask the tones in the medium frequency range.
- the energy profiles are derived in particular from the hearing thresholds of human hearing given by the respective psychoacoustic model at the respective preselected frequencies. This means that the psychoacoustic model is applied to the frequencies of the two immediately following amplitude maxima.
- the first energy curve corresponds to the part of the hearing threshold derived from the psychoacoustic model for the frequency of the lower amplitude maximum, which extends in the direction of increasing frequencies.
- the second energy curve corresponds to the part of the hearing threshold derived from the psychoacoustic model for the frequency of the upper amplitude maximum, which extends in the direction of falling frequencies.
- an audio fill signal is generated or generated.
- the audio fill signal is typically generated in a targeted manner with regard to the previously determined frequency ranges to be processed within the audio signal to be processed.
- the audio fill signal is therefore typically generated in a targeted manner with regard to the frequency range defined by immediately successive frequencies that satisfy both the first and the second selection criterion in order to fill it and to fill the "energy valley" between the frequencies, at least in sections, in particular completely.
- the generated audio fill signal therefore expediently has a frequency range lying between the frequencies of respective immediately successive amplitude maxima.
- the generation of the audio fill signal takes place e.g. B. by means of a suitable signal generator.
- a seventh step of the method the actual processing of the audio signal is carried out by introducing the audio fill signal into respective frequency ranges between respective frequencies satisfying the first and second selection criteria, so that a respective frequency range is filled with the audio fill signal at least in sections, in particular completely.
- corresponding "energy troughs" resulting from the data compression of the audio signal are determined and specifically filled with a certain data content in the form of the audio fill signal generated with regard to the determined "energy troughs", as a result of which the audio signal is processed. It follows from this that the processing of the audio signal according to the method, as mentioned above, in particular by an at least partial replacement of missing, ie. H. z. B. in the context of data compression discarded, frequency components of the audio signal is realized.
- the steps of the method described result in an improved method for processing a lossy compressed audio signal, in particular with regard to the efficiency of the processing and the quality of the processed audio signal.
- an optional eighth step of the method it is possible to process the correspondingly prepared audio signal via at least one z. B. trained as a speaker device or at least one such comprehensive signal output device.
- An optional eighth step of the method can then provide for the output of a processed audio signal via at least one signal output device.
- the eighth step of the method it is possible to store the correspondingly processed audio signal in a memory device, ie. H. z. B. a hard disk space to store (between).
- a correspondingly prepared, stored audio signal can be output at a later point in time via at least one corresponding signal output device and / or transmitted to at least one communication partner via a suitable, in particular wireless, communication network.
- An optional eighth step of the method can therefore (also) provide for storing a processed audio signal in at least one storage device and / or transmitting a processed audio signal to at least one communication partner.
- the processed audio signal can be subjected to an inverse Fourier transformation before it is output and / or stored and / or transmitted.
- the third energy profile if any, proceeds from the frequency of the (in terms of frequency) lower amplitude maximum of the two immediately following amplitude maxima in the direction of the frequency of (in terms of frequency) the upper amplitude maximum of the two immediately following amplitude maxima.
- the fourth energy curve if any, starts from the frequency of the (frequency-wise) upper (higher) amplitude maximum of the two immediately successive amplitude maxima in the direction of the frequency of the (frequency-wise) lower (lower) amplitude maximum of the two immediately successive amplitude maxima.
- the energy profiles generated can in turn be transmitted in terms of data to the frequency spectrum.
- a closed area or area is also defined by the frequencies and the energy profiles.
- the range is in turn defined by the frequencies of the two immediately following amplitude maxima and in terms of energy by the energy profiles running between them.
- the range typically only contains energy values ⁇ zero. If the area is viewed geometrically with respect to the frequency spectrum, the area in turn corresponds to the area defined geometrically by the two immediately adjacent amplitude maxima, the energy or frequency courses running between these and the frequency axis (x-axis) Area.
- the generation of the third and fourth energy profiles is typically also carried out on the basis of a psychoacoustic model.
- a psychoacoustic model is therefore typically also used to generate the energy profiles, or the energy profiles are derived from a psychoacoustic model.
- the explanations in connection with the first two energy profiles apply analogously.
- the third and fourth energy profiles are likewise derived in particular from the hearing thresholds of human hearing given by the respective psychoacoustic model at the respective preselected frequencies.
- the possibly third energy profile corresponds to the part of the hearing threshold derived from the psychoacoustic model for the frequency of the lower amplitude maximum, which extends in the direction of increasing frequencies.
- the possibly fourth energy curve corresponds to the part of the hearing threshold derived from the psychoacoustic model for the frequency of the upper amplitude maximum, which extends in the direction of falling frequencies.
- the audio fill signal is subsequently introduced at least in sections, in particular completely, into the region of the frequency spectrum defined by the two preselected frequencies and the respective energy profiles.
- the audio signal is processed here by introducing the audio fill signal into the frequency range of the frequency spectrum defined by the frequencies of the two immediately adjacent amplitude maxima and the respective energy profiles, so that the range of the frequency spectrum defined by the frequencies of the two immediately adjacent amplitude maxima and the respective energy profiles Frequency spectrum at least in sections, in particular completely, is or will be filled with the audio fill signal.
- the audio fill signal can be generated as a function of or independently of acoustic parameters of the audio signal to be processed, in particular with regard to the respective energy and frequency components of the audio signal.
- the audio fill signal is expediently generated independently of acoustic parameters of the audio signal, that is to say solely with regard to the at least partial filling of the range of the frequency spectrum defined by the frequencies of the two immediately adjacent amplitude maxima, since the computing effort for generating the audio fill signal may be such can be significantly reduced.
- the filling or filling of the range of the frequency spectrum defined by the frequencies of the two immediately consecutive amplitude maxima can be carried out depending on certain acoustic parameters of the audio signal, in particular the amplitude and / or frequency curve. or certain acoustic parameters of a further audio signal to be processed, in particular of the amplitude and / or frequency curve. In this way, a more natural perception of the prepared audio signal for the human ear can be realized.
- a Bark scale can be used as the frequency spectrum in which the audio signal is transmitted according to the method.
- the 24 individual barks or bands of the Bark scale are known to correspond to the 24 individual frequency groups of human hearing, i.e. H. those frequency ranges that are jointly evaluated by human hearing.
- the individual barks or bands of the Bark scale contain different frequencies or frequency ranges or bandwidths. Possible frequency bands of the frequency spectrum can correspond to the 24 barks or bands of the Bark scale.
- the device comprises a control device equipped or communicating with appropriate devices.
- the device can be part of an audio device or an audio system for a motor vehicle.
- the invention further relates to an audio device or an audio system for a motor vehicle.
- the audio device can be part of a motor vehicle-side multimedia device for outputting multimedia content, in particular audio and / or video content, to occupants of a motor vehicle.
- the audio device comprises at least one signal output device, i. H. z. B. a loudspeaker device, which is set up for acoustic output of prepared audio signals in an at least part of a passenger compartment of an interior of a motor vehicle.
- the audio device is characterized in that it has at least one device for processing lossy compressed audio signals as described for the preparation of lossy compressed audio signals.
- Fig. 1 shows a schematic diagram of a device 1 for processing a lossy compressed audio signal 2.
- the audio signal 2 may, for. B. is a lossy compressed audio file. Specifically, it can be e.g. B. can be a lossy compressed mp3-encoded audio file ("mp3 file") by means of an mp3 algorithm.
- the audio file can already be at least partially decoded.
- the audio file can e.g. B. include a piece of music.
- the device 1 shown in the exemplary embodiment forms part of an audio device 3 or an audio system of a motor vehicle 4.
- the audio device 3 can be part of a motor vehicle-side multimedia device (not shown) for outputting multimedia content, in particular audio and / or video content, to occupants of the motor vehicle 4.
- the audio device 3 comprises at least one z. B. designed as a loudspeaker device or at least one such comprehensive signal output device 5, which is set up for acoustic output of prepared audio signals 6 in an at least part of the passenger compartment interior 7 of the motor vehicle 4.
- the device 1 comprises a central hardware and / or software implemented control device 8, which is set up in the following with reference to Fig. 2 to implement the described method for processing lossy compressed audio signals 2.
- Steps S1-S7 (S8) carried out according to the method can be carried out in separate hardware and / or software implemented devices (not shown) of the control device 8.
- the device 1 comprises a control device 8 equipped with corresponding devices.
- Fig. 2 shows a block diagram of an embodiment of a method for processing lossy compressed audio signals 2. The method can be carried out with the device 1 described above.
- the lossy compressed audio signal 2 to be processed is provided.
- the provision of the audio signal 2 can in principle be via any physical or non-physical audio source, i. H. z. B. from the audio device 3. Specifically, the audio signal 2 z. B. from a data memory (not shown) of the audio device 3.
- the audio signal 2 is transmitted into a frequency spectrum.
- energies of the audio signal 2 are correlated with frequencies of the audio signal 2.
- the content of the audio signal 2 is examined for its energy, that is to say amplitude and frequency components, and the individual energy components of the audio signal 2 are transmitted in terms of data into a frequency-dependent representation by means of suitable algorithms, for example by means of (faster) Fourier transformation algorithms.
- a corresponding frequency spectrum is included in Fig. 5 shown in a schematic diagram ..
- frequencies f i of local amplitude maxima are determined in the frequency spectrum; the frequency spectrum is therefore examined for local amplitude maxima and the frequencies f i associated with the respective amplitude maxima are determined.
- the frequencies f i associated with the respective amplitude maxima are determined.
- Under one in the 5 - 8 by a dot graphically highlighted local amplitude maximum is to be understood as an amplitude maximum value in a defined frequency environment range.
- a first selection criterion is defined. On the basis of the first selection criterion, the frequencies f i of two immediately following (local) amplitude maxima are preselected, which frequencies meet the first selection criterion. In the fourth step S4, the frequencies f i of pairs of immediately consecutive amplitude maxima are examined with regard to the first selection criterion to determine whether the frequencies f i meet the first selection criterion. In the further steps S5-S7 of the method, only the frequencies f i which meet the first selection criterion are considered. The fourth step S4 then preselects the frequencies f i to be considered below.
- the first selection criterion describes a certain limit frequency value ⁇ f T.
- Frequencies f i of immediately successive amplitude maxima satisfy the first selection criterion if their frequency difference ⁇ f i exceeds the limit frequency value ⁇ f T described by the first selection criterion, cf. the relationship represented by the following formula: ⁇ f i > ⁇ f T
- ⁇ f i applies: frequency difference between two immediately following amplitude maxima; ⁇ f T : cutoff frequency value.
- the limit frequency value ⁇ f T is determined by transferring the preselected frequencies f i to a Bark scale.
- Both the preselected frequencies f i and the limit frequency values ⁇ f T described by the first selection criterion can be transferred to the Bark scale using the relationship represented by the above formula.
- the limit frequency value ⁇ f T can correspond to a bark or to a bark adjusted by an adaptation factor or multiplied by an adaptation factor.
- the adjustment factor is typically between 0.7 and 1.1, in particular 0.9.
- the limit frequency value thus typically corresponds to 0.7 to 1.1, in particular 0.9, Bark.
- a second selection criterion is defined in the fifth step S5 of the method.
- preselected frequencies f i are selected which (additionally) meet the second selection criterion.
- preselected frequencies f i are then examined to determine whether they (additionally) meet the second selection criterion.
- the frequencies f i (additionally) satisfying the second selection criterion can in turn be transferred to a Bark scale.
- the second selection criterion can describe a limit energy value. Respective preselected frequencies f i satisfy the second selection criterion if the amount of energy between them falls below the limit energy value described by the second selection criterion.
- the limit energy value can be defined by a defined limit energy content T.
- Respective preselected frequencies f i meet the second selection criterion if they fall below the limit energy content T described by the second selection criterion, cf. the relationship represented by the following formula: ⁇ f 1 f 2 S f 2 df ⁇ T
- S (f) the area described by the frequencies f 1 , f 2 of the two immediately consecutive amplitudes (energy content between the frequencies f 1 , f 2 of the two immediately consecutive amplitude maxima); T: Limit energy content.
- FIG. 6 Schematic representation of a frequency spectrum containing two preselected frequencies f 1 , f 2 , which is also a section of another, namely the one in Fig. 5 shown frequency spectrum is to refer.
- Out Fig. 6 the area described by the frequencies f 1 , f 2 of the two immediately successive amplitude maxima (hatched) and the limit energy content T represented by a horizontal line are illustrated.
- the hatched area corresponds to the integral represented by the above formula.
- the limit energy value can alternatively also be determined by a first energy curve EV1 starting from the preselected frequency f 1 ("lower frequency"), which belongs to the lower (lower in frequency) amplitude maximum, and a first energy curve EV1 from the preselected frequency f 2 ("upper frequency ), which is associated with the upper (higher frequency) amplitude maximum, the outgoing second energy curve EV2 is generated and the two energy curves EV1, EV2 are transmitted into the frequency spectrum Energy profiles EV1, EV2 defined.
- first energy curve EV1 starting from the preselected frequency f 1
- upper frequency which is associated with the upper (higher frequency) amplitude maximum
- the generated energy profiles EV1, EV2 can be transmitted in terms of data into the frequency spectrum.
- the first energy curve EV1 proceeds from the lower frequency f 1 in the direction of the upper frequency f 2 .
- the second energy curve EV2 proceeds from the upper frequency f 2 in the direction of the lower frequency f 1 .
- a closed area or area is defined by the actual frequency curve between the frequencies f 1, 2 and the energy curves EV1, EV2.
- the range is defined in terms of frequency share by the two frequencies f 1, 2 and in terms of energy share by the actual frequency curve and the energy curves EV1, EV2 running between them.
- the range typically only contains energy values ⁇ zero. If one looks at the area geometrically with respect to the frequency spectrum, the area corresponds to the geometrically defined amplitude or maxima defined by the frequencies f 1, 2 of the two immediately adjacent amplitude maxima, and the frequency axis (x-axis) between them Fig. 7 hatched area.
- the energy profiles EV1, EV2 are generated on the basis of a psychoacoustic model.
- a preferred used psychoacoustic model is the spectral masking or masking model.
- the energy profiles EV1, EV2 are derived from the hearing thresholds of the human ear given the respective preselected frequencies f 1, 2 by the respective psychoacoustic model. This means that the psychoacoustic model used is applied to the two frequencies f 1, 2 .
- the first energy curve EV1 corresponds to the part of the hearing threshold derived from the psychoacoustic model for the lower frequency f 1 , which extends in the direction of increasing frequencies (see left curly bracket in Fig. 3 ).
- the second energy curve EV2 corresponds to the part of the hearing threshold derived from the psychoacoustic model for the upper frequency f 2 , which extends in the direction of falling frequencies (cf. right-hand curly bracket in Fig. 3 ).
- the energy profiles EV1, EV2 intersect or intersect in a value range above the x-axis.
- a suitable signal generator is used generates an audio fill signal AFS.
- the audio fill signal AFS is generated in a targeted manner with regard to the previously determined frequency ranges to be processed within the audio signal 2 to be processed.
- the audio fill signal AFS is thus generated in a targeted manner with regard to the frequency range defined by the frequencies f i and f 1, 2 of the two immediately successive amplitude maxima, which satisfy both the first and the second selection criterion, in order to fill this and that between the frequencies f i fill given "energy valley".
- the generated audio fill signal AFS therefore has a frequency range lying between the frequencies f i of the respective directly successive amplitude maxima.
- the audio fill signal AFS can be generated as a function of or independently of acoustic parameters of the audio signal 2, in particular with regard to the respective energy and frequency components of the audio signal 2.
- the audio filling signal AFS becomes independent of acoustic parameters of the audio signal 2, ie solely with regard to the filling of the frequency component with frequencies f 1, 2 and energy component with the actual frequency profile and the range defined between these energy profiles EV3, EV4. generated.
- a seventh step S7 of the method the actual processing of the audio signal 2 takes place by introducing the audio fill signal AFS into respective frequency ranges between respective frequencies f i satisfying the first and second selection criteria, so that a respective frequency range is filled with the audio fill signal AFS.
- a further or third energy curve EV3 starting from the selected lower (lower) frequency f 1 , which is associated with the lower (lower in frequency) amplitude, and one from the selected upper (higher ) Frequency f 2 , which is associated with the upper (higher frequency) amplitude maximum, generates outgoing further or fourth energy curve EV4.
- Fig. 8 it can be seen that the generated energy profiles EV3, EV4 - analogously to the energy profiles EV1, EV2 - are transmitted to the frequency spectrum in terms of data.
- the third energy curve EV3 proceeds from the lower frequency f 1 in the direction of the upper frequency f 2 .
- the fourth energy curve EV4 proceeds from the upper frequency f 2 in the direction of the lower frequency f 1 .
- a closed area or area is defined by the actual frequency curve between the frequencies f 1, 2 and the energy curves EV3, EV4.
- the range is defined in terms of frequency share by the frequencies f 1, 2 of the amplitude maxima and in terms of energy share by the actual frequency curve and the energy curves EV3, EV4 running between them.
- the range typically only contains energy values ⁇ zero. Looking at the area geometrically with respect to the frequency spectrum, corresponds to the range of the geometrically defined energy or frequency profiles and the frequency axis (x-axis) defined by the frequencies f 1, 2 of the two immediately adjacent amplitude maxima, in Fig. 8 hatched area.
- the energy profiles EV3, EV4 are also generated on the basis of a psychoacoustic model.
- a preferred used psychoacoustic model is the model of spectral masking or masking (cf. Fig. 4 ).
- the energy profiles EV3, EV4 are derived from the hearing thresholds of the human ear given the respective preselected frequencies f 1, 2 by the respective psychoacoustic model.
- this means that the psychoacoustic model used is applied to the two immediately successive frequencies f 1, 2 .
- the third energy curve EV3 corresponds to the part of the hearing threshold derived from the psychoacoustic model for the lower frequency f 1 , which extends in the direction of increasing frequencies (see left brace in Fig.
- the fourth energy curve EV4 corresponds to the part of the hearing threshold derived from the psychoacoustic model for the upper frequency f 2 , which extends in the direction of falling frequencies (see right curly bracket in Fig. 4 ).
- the energy profiles EV3, EV4 intersect or intersect in a range of values above the x-axis.
- the (first two) energy profiles EV1, EV2 can differ from the third and fourth energy profiles Ev3, EV4.
- "energy valleys” resulting from the data compression of the audio signal 2 are determined and specifically filled with a certain data content in the form of the audio fill signal AFS generated with regard to the determined “energy valleys", whereby the audio signal 2 is processed. It follows from this that the processing of the audio signal 2 according to the method by an at least partial replacement of missing, ie. H. z. B. in the context of data compression discarded, frequency components of the audio signal 2 is realized.
- An optional eighth step S8 of the method can output a processed audio signal 2 via at least one signal output device 5 and / or store a processed audio signal 2 in at least one storage device (not shown) and / or transmit a processed audio signal 2 to at least one communication partner (not shown).
- the processed audio signal 2 can be subjected to an inverse Fourier transformation before it is output and / or stored and / or transmitted.
- the described steps S1-S7 (S8) of the method result in an improved method for processing a lossy compressed audio signal 2, in particular with regard to the efficiency of the processing and the quality of the processed audio signal 6.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Computational Linguistics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mathematical Physics (AREA)
- Circuit For Audible Band Transducer (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Aufbereitung eines verlustbehaftet komprimierten Audiosignals.The invention relates to a method for processing a lossy compressed audio signal.
Die Datenkompression von Audiosignalen bzw. -informationen, wie z. B. Musikdateien, ist an und für sich bekannt. Zweck der Datenkompression ist eine Reduzierung der Datengröße entsprechender Audiosignale. Die Datenkompression kann grundsätzlich verlustbehaftet oder nicht verlustbehaftet erfolgen. Im Weiteren soll insbesondere die verlustbehaftete Datenkompression betrachtet werden, welche beispielsweise durch datenmäßige Verwerfung von am Rande des menschlichen Hörbereichs liegenden Frequenzanteilen realisiert werden kann. Die subjektive Hörwahrnehmung durch einen Hörer soll derart kaum beeinträchtigt werden.The data compression of audio signals or information, such as. B. music files is known in and of itself. The purpose of data compression is to reduce the data size of corresponding audio signals. In principle, data compression can be lossy or not lossy. In addition, the lossy data compression should be considered in particular, which can be implemented, for example, by data-based rejection of frequency components lying on the edge of the human hearing range. The subjective hearing perception by a listener should hardly be impaired in this way.
Aufgrund der im Vergleich reduzierten Klangqualität verlustbehaftet komprimierter Audiosignale, ist es bisweilen gewünscht, verlustbehaftet komprimierte Audiosignale aufzubereiten, d. h. entsprechend verworfene Frequenzanteile zumindest teilweise wieder herzustellen oder durch vergleichbare Frequenzanteile zu ersetzen.Because of the reduced sound quality in comparison of lossy compressed audio signals, it is sometimes desirable to prepare lossy compressed audio signals, i. H. to at least partially restore correspondingly rejected frequency components or to replace them with comparable frequency components.
Zur Aufbereitung verlustbehaftet komprimierter Audiosignale sind bis dato unterschiedliche technische Ansätze bekannt. Diese bekannten Ansätze sind regelmäßig vergleichsweise (rechen)aufwändig und wenig effizient konzipiert. Es besteht daher ein Weiterentwicklungsbedarf an verbesserten Verfahren zur Aufbereitung eines verlustbehaftet komprimierten Audiosignals.To date, different technical approaches have been known for processing lossy compressed audio signals. These known approaches are regularly comparatively (arithmetically) complex and not very efficiently designed. There is therefore a need for further development of improved methods for processing a lossy compressed audio signal.
Im Stand der Technik ist das Dokument
Der Erfindung liegt damit die Aufgabe zugrunde, ein verbessertes Verfahren zur Aufbereitung eines verlustbehaftet komprimierten Audiosignals anzugeben.The invention is therefore based on the object of specifying an improved method for processing a lossy compressed audio signal.
Die Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst. Die hierzu abhängigen Ansprüche betreffen vorteilhafte Ausführungsformen des Verfahrens. Die Aufgabe wird ferner durch die Vorrichtung gemäß Anspruch 14 sowie durch die Audioeinrichtung gemäß Anspruch 15 gelöst.The object is achieved by a method according to
Das hierin beschriebene Verfahren dient im Allgemeinen der Aufbereitung eines verlustbehaftet komprimierten Audiosignals. Bei einem verfahrensgemäß aufzubereitenden bzw. aufbereiteten Audiosignal kann es sich z. B. um eine verlustbehaftet komprimierte Audiodatei oder einen Teil einer solchen handeln. Konkret kann es sich z. B. um eine vermittels eines mp3-Algorithmus verlustbehaftet komprimierte Audiodatei, d. h. um eine mp3-codierte Audiodatei bzw. mp3-Datei, handeln.The method described herein is generally used to process a lossy compressed audio signal. With a processable or processed audio signal, it can e.g. B. a lossy compressed audio file or part of such. Specifically, it can be e.g. B. a lossy compressed audio file using an mp3 algorithm, d. H. is an mp3-encoded audio file or mp3 file.
Die Audiodatei oder Teile davon können bereits dekodiert sein. Für das vorgenannte Beispiel einer mp3-codierten Audiodatei können also beispielsweise geeignete Dekodierungsalgorithmen angewendet worden sein, über welche eine zumindest teilweise Dekodierung der mp3-codierten Audiodatei vorgenommen wurde. Analoges gilt selbstverständlich für Audiodaten, welche nicht über einen mp3-Algorithmus, sondern über andere Algorithmen kodiert wurden.The audio file or parts of it can already be decoded. For the above example In an mp3-coded audio file, for example, suitable decoding algorithms can be used, by means of which an at least partial decoding of the mp3-coded audio file was carried out. The same applies, of course, to audio data that was not coded using an mp3 algorithm, but rather using other algorithms.
In allen Fällen kann die Audiodatei z. B. Audiosignale z. B. eines Musikstücks beinhalten.In all cases, the audio file can e.g. B. audio signals e.g. B. include a piece of music.
Unter einer Aufbereitung ist grundsätzlich eine zumindest teilweise Wiederherstellung fehlender, d. h. z. B. im Rahmen der Datenkompression verworfener, Frequenzanteile bzw. ein zumindest teilweiser Ersatz fehlender, d. h. z. B. im Rahmen der Datenkompression verworfener, Frequenzanteile durch vergleichbare Frequenzanteile zu verstehen. Wie sich im Weiteren ergibt, ist für die verfahrensgemäße Aufbereitung verlustbehaftet komprimierter Audiosignale insbesondere ein zumindest teilweiser Ersatz fehlender, d. h. z. B. im Rahmen der Datenkompression verworfener, Frequenzanteile relevant.Processing is generally an at least partial restoration that is missing, i. H. z. B. discarded as part of data compression, frequency components or an at least partial replacement missing, d. H. z. B. in the context of data compression discarded to understand frequency components by comparable frequency components. As can be seen further below, for the processing according to the method, lossy compressed audio signals in particular require an at least partial replacement of missing, ie. H. z. B. discarded in the context of data compression, frequency components relevant.
Die einzelnen Schritte des hierin beschriebenen Verfahrens werden nachfolgend näher erläutert:
In einem ersten Schritt des Verfahrens wird ein aufzubereitendes verlustbehaftet komprimiertes Audiosignal bereitgestellt. Die Bereitstellung eines entsprechenden Audiosignals kann grundsätzlich über jedwede körperliche oder nicht-körperliche Audioquelle, d. h. z. B. von einer Audioeinrichtung zur Verarbeitung und Ausgabe von Audiosignalen, erfolgen.The individual steps of the method described here are explained in more detail below:
In a first step of the method, a lossy compressed audio signal to be processed is provided. A corresponding audio signal can in principle be provided via any physical or non-physical audio source, that is to say, for example, from an audio device for processing and outputting audio signals.
In einem zweiten Schritt des Verfahrens erfolgt eine Übertragung des Audiosignals in ein Frequenzspektrum. In dem Frequenzspektrum werden Energien des Audiosignals mit Frequenzen des Audiosignals korreliert. Mit anderen Worten wird der Inhalt des Audiosignals auf seine Energie-, d. h. Amplituden- bzw. Frequenzanteile, untersucht und die einzelnen Energieanteile des Audiosignals datenmäßig in eine frequenzabhängige Darstellung übertragen bzw. umgesetzt. Typischerweise wird das Audiosignal hierfür in einzelne, gegebenenfalls überlappende, Zeitintervalle unterteilt, welche einzeln in das Frequenzspektrum übertragen bzw. umgesetzt werden. Die Übertragung bzw. Umsetzung des Audiosignals in das Frequenzspektrum erfolgt vermittels geeigneter Algorithmen, d. h. z. B. vermittels (schneller) Fourier-Transformations-Algorithmen. Die Länge der Algorithmen ist grundsätzlich variabel. Die Untersuchung des Inhalts des Audiosignals auf seine Energieanteile kann eine Klassifizierung und Gruppierung der Energieanteile sowie eine Abschätzung der Energieanteile des Audiosignals beinhalten.In a second step of the method, the audio signal is transmitted into a frequency spectrum. In the frequency spectrum, energies of the audio signal are correlated with frequencies of the audio signal. In other words, the content of the audio signal is reduced to its energy, i.e. H. Amplitude or frequency components are examined and the individual energy components of the audio signal are transmitted or converted in terms of data into a frequency-dependent representation. For this purpose, the audio signal is typically divided into individual, possibly overlapping, time intervals, which are individually transmitted or converted into the frequency spectrum. The transmission or conversion of the audio signal into the frequency spectrum takes place by means of suitable algorithms, i. H. z. B. using (faster) Fourier transform algorithms. The length of the algorithms is basically variable. The examination of the content of the audio signal for its energy components can include a classification and grouping of the energy components and an estimate of the energy components of the audio signal.
In einem dritten Schritt des Verfahrens werden in dem Frequenzspektrum Frequenzen von lokalen Amplitudenmaxima ermittelt. Mit anderen Worten wird das Frequenzspektrum auf lokale Amplitudenmaxima untersucht und die den jeweiligen Amplitudenmaxima zugehörigen Frequenzen ermittelt. Unter einem lokalen Amplitudenmaximum ist ein Amplitudenmaximalwert in einem definierten Frequenzumgebungsbereich zu verstehen. Die Ermittlung lokaler Amplitudenmaxima erfolgt vermittels geeigneter Analysealgorithmen.In a third step of the method, frequencies of local amplitude maxima are determined in the frequency spectrum. In other words, the frequency spectrum is examined for local amplitude maxima and the frequencies associated with the respective amplitude maxima are determined. Below a local amplitude maximum is an amplitude maximum value to be understood in a defined frequency range. Local amplitude maxima are determined using suitable analysis algorithms.
In einem vierten Schritt des Verfahrens wird ein erstes Auswahlkriterium festgelegt. Auf Grundlage des ersten Auswahlkriteriums werden die Frequenzen zweier unmittelbar aufeinander folgender (lokaler) Amplitudenmaxima vorausgewählt, welche Frequenzen dem ersten Auswahlkriterium genügen. In dem vierten Schritt werden also die Frequenzen von Paaren unmittelbar aufeinanderfolgender Amplitudenmaxima im Hinblick auf das erste Auswahlkriterium untersucht. In dem vierten Schritt erfolgt sonach eine paarweise Untersuchung der Frequenzen von unmittelbar aufeinanderfolgenden Amplitudenmaxima dahin, ob die den jeweiligen Amplitudenmaxima zugehörigen Frequenzen dem ersten Auswahlkriterium genügen. In den weiteren Schritten des Verfahrens werden typischerweise nur die dem ersten Auswahlkriterium genügenden Frequenzen betrachtet. In dem vierten Schritt erfolgt sonach eine Vorauswahl der im Weiteren zu betrachtenden Frequenzen bzw. der zugehörigen Amplitudenmaxima.In a fourth step of the method, a first selection criterion is defined. On the basis of the first selection criterion, the frequencies of two immediately following (local) amplitude maxima are preselected, which frequencies meet the first selection criterion. In the fourth step, the frequencies of pairs of immediately consecutive amplitude maxima are examined with regard to the first selection criterion. In the fourth step, the frequencies of immediately successive amplitude maxima are then examined in pairs to determine whether the frequencies associated with the respective amplitude maxima meet the first selection criterion. In the further steps of the method, only the frequencies that meet the first selection criterion are typically considered. In the fourth step, the frequencies to be considered below and the associated amplitude maxima are preselected.
Das erste Auswahlkriterium beschreibt typischerweise einen bestimmten Grenzfrequenzwert(bereich) ("threshold"). Frequenzen unmittelbar aufeinanderfolgender Amplitudenmaxima genügen dem ersten Auswahlkriterium, wenn deren Frequenzunterschied den durch das erste Auswahlkriterium beschriebenen Grenzfrequenzwert(bereich) betragsmäßig überschreitet, vgl. hierzu den durch nachfolgend wiedergegebene Formel I dargestellten Zusammenhang:
Dabei gilt Δfi: Frequenzunterschied zweier unmittelbar aufeinander folgender Amplitudenmaxima; ΔfT: Grenzfrequenzwert(bereich).In this case, Δf i applies: frequency difference between two immediately following amplitude maxima; Δf T : cutoff frequency value (range).
Der Grenzfrequenzwert(bereich) kann durch Übertragen der vorausgewählten Frequenzen in eine Bark-Skala festgelegt werden. Bekanntermaßen lassen sich Frequenzen grundsätzlich in eine Bark-Skala übertragen. Die Übertragung der vorausgewählten Frequenzen in eine Bark-Skala erfolgt auf Grundlage des durch nachfolgend wiedergegebene Formel II dargestellten Zusammenhangs:
Dabei gilt z: Bark; f: in die Bark-Skala zu übertragender Frequenzwert.Z: Bark; f: frequency value to be transferred to the Bark scale.
Über den durch die Formel II dargestellten Zusammenhang lassen sich sowohl vorausgewählte Frequenzen als auch der von dem ersten Auswahlkriterium beschriebene Grenzfrequenzwert in die Bark-Skala übertragen.Both the preselected frequencies and the limit frequency value described by the first selection criterion can be transferred to the Bark scale using the relationship represented by Formula II.
Der Grenzfrequenzwert kann grundsätzlich einem Bark oder einem über einen Anpassungsfaktor angepassten bzw. mit einem Anpassungsfaktor multiplizierten Bark entsprechen. Der Anpassungsfaktor liegt typischerweise zwischen 0,7 und 1,1, insbesondere bei 0,9. Der Grenzfrequenzwert entspricht damit typischerweise 0,7 bis 1,1, insbesondere 0,9, Bark. Mit anderen Worten soll der Frequenzunterschied der jeweiligen Frequenzen einem Bark oder nahezu einem Bark entsprechen, um dem ersten Auswahlkriterium zu genügen. Durch den Anpassungsfaktor ist eine gewisse Variabilität des Grenzfrequenzwerts gegeben.The limit frequency value can fundamentally correspond to a bark or a bark adjusted by an adaptation factor or multiplied by an adaptation factor. The adjustment factor is typically between 0.7 and 1.1, in particular 0.9. The limit frequency value thus typically corresponds to 0.7 to 1.1, in particular 0.9, Bark. In other words, the frequency difference of the respective frequencies should correspond to a bark or almost a bark in order to meet the first selection criterion. A certain variability of the limit frequency value is given by the adjustment factor.
In einem fünften Schritt des Verfahrens wird ein zweites Auswahlkriterium festgelegt. Auf Grundlage des zweiten Auswahlkriteriums werden (auf Grundlage des ersten Auswahlkriteriums) vorausgewählte Frequenzen von zwei unmittelbar aufeinander folgenden lokalen Amplitudenmaxima ausgewählt, welche dem zweiten Auswahlkriterium genügen. In dem fünften Schritt werden vorausgewählte Frequenzen im Hinblick auf das zweite Auswahlkriterium betrachtet. In dem fünften Schritt erfolgt sonach eine Untersuchung vorausgewählter Frequenzen dahin, ob diese (zusätzlich) dem zweiten Auswahlkriterium genügen.In a fifth step of the process, a second selection criterion is defined. On the basis of the second selection criterion, (based on the first selection criterion) preselected frequencies of two immediately successive local amplitude maxima are selected which satisfy the second selection criterion. In the fifth step, preselected frequencies are considered with regard to the second selection criterion. In the fifth step, preselected frequencies are then examined to determine whether (additionally) they meet the second selection criterion.
Das zweite Auswahlkriterium kann einen Grenzenergiewert(bereich) beschreiben. Jeweilige vorausgewählte Frequenzen genügen dem zweiten Auswahlkriterium, wenn der Energieinhalt zwischen diesen den durch das zweite Auswahlkriterium beschriebenen Grenzenergiewert(bereich) ("threshold") betragsmäßig unterschreitet.The second selection criterion can describe a limit energy value (range). Respective preselected frequencies meet the second selection criterion if the energy content between them falls below the limit energy value (range) described by the second selection criterion (“threshold”).
Der Grenzenergiewert(bereich) kann durch einen festgelegten Grenzenergieinhalt definiert werden. Jeweilige vorausgewählte Frequenzen genügen dem zweiten Auswahlkriterium dann, wenn sie den durch das zweite Auswahlkriterium beschriebenen Grenzenergieinhalt betragsmäßig unterschreiten, vgl. hierzu den durch nachfolgend wiedergegebene Formel III dargestellten Zusammenhang:
Dabei gilt: S(f): die durch die Frequenzen bzw. Frequenzwerte f1, f2 der beiden unmittelbar aufeinander folgenden Amplitudenmaxima beschriebene Fläche (Energieinhalt zwischen den Frequenzen bzw. Frequenzwerte f1, f2 der beiden unmittelbar aufeinander folgenden Amplitudenmaxima); T: Grenzenergieinhalt.The following applies: S (f): the area described by the frequencies or frequency values f 1 , f 2 of the two immediately successive amplitude maxima (energy content between the frequencies or frequency values f 1 , f 2 of the two immediately successive amplitude maxima); T: Limit energy content.
Der Grenzenergiewert(bereich) kann alternativ auch bestimmt werden, indem ein von der vorausgewählten Frequenz ("untere Frequenz"), welche dem unteren (frequenzmäßig niedrigeren) Amplitudenmaximum zugehörig ist, ausgehender erster Energieverlauf und ein von der Frequenz ("obere Frequenz"), welche dem unmittelbar folgenden oberen (frequenzmäßig höheren) Amplitudenmaximum zugehörig ist, ausgehender zweiter Energieverlauf erzeugt wird und die beiden Energieverläufe in das Frequenzspektrum übertragen werden. Der Grenzenergiewert wird dann durch die jeweiligen Energieverläufe definiert. Der erste Energieverlauf verläuft ausgehend von der Frequenz des (frequenzmäßig) unteren Amplitudenmaximums der beiden unmittelbar aufeinander folgenden Amplitudenmaxima in Richtung der Frequenz des (frequenzmäßig) oberen (höheren) Amplitudenmaximums der beiden unmittelbar aufeinander folgenden Amplitudenmaxima. Der zweite Energieverlauf verläuft ausgehend von der Frequenz des (frequenzmäßig) oberen Amplitudenmaximums der beiden unmittelbar aufeinander folgenden Amplitudenmaxima in Richtung der Frequenz des (frequenzmäßig) unteren (niedrigeren) Amplitudenmaximums der beiden unmittelbar aufeinander folgenden Amplitudenmaxima. Die erzeugten Energieverläufe können datenmäßig in das Frequenzspektrum übertragen werden. Durch den tatsächlichen Frequenzverlauf zwischen den Frequenzen und die Energieverläufe wird ein abgeschlossener Bereich bzw. eine abgeschlossene Fläche definiert. Der Bereich ist frequenzanteilsmäßig durch die Frequenzen der beiden unmittelbar benachbarten Amplitudenmaxima und energieanteilsmäßig durch den tatsächlichen Frequenzverlauf zwischen den Amplitudenmaxima und die zwischen diesen verlaufenden Energieverläufe definiert. Der Bereich beinhaltet typischerweise nur Energiewerte ≥ Null. Betrachtet man den Bereich geometrisch in Bezug auf das Frequenzspektrum, entspricht der Bereich der durch die beiden unmittelbar benachbarten Amplitudenmaxima, den zwischen diesen verlaufenden Energie- bzw. Frequenzverläufen und der Frequenzachse (x-Achse) geometrisch definierten Fläche.The limit energy value (range) can alternatively also be determined by using a first energy curve starting from the preselected frequency ("lower frequency") which belongs to the lower (lower frequency) amplitude maximum and a frequency ("upper frequency") which immediately follows the upper (frequency higher) maximum amplitude is associated, outgoing second energy curve is generated and the two energy curves are transferred to the frequency spectrum. The limit energy value is then defined by the respective energy profiles. The first energy curve runs from the frequency of the (frequency-wise) lower amplitude maximum of the two immediately following amplitude maxima in the direction of the frequency of the (frequency-wise) upper (higher) amplitude maximum of the two immediately successive amplitude maxima. The second energy curve starts from the frequency of the (in terms of frequency) upper amplitude maximum of the two immediately following amplitude maxima in the direction of the frequency of (in terms of frequency) lower (lower) amplitude maximum of the two immediately following amplitude maxima. The energy profiles generated can be transferred into the frequency spectrum in terms of data. A closed area or area is defined by the actual frequency curve between the frequencies and the energy curves. The range is defined in terms of frequency by the frequencies of the two immediately adjacent amplitude maxima and in terms of energy by the actual frequency profile between the amplitude maxima and the energy profiles running between them. The range typically only contains energy values ≥ zero. If one looks at the area geometrically in relation to the frequency spectrum, the area corresponds to the area geometrically defined by the two immediately adjacent amplitude maxima, the energy or frequency profiles running between these and the frequency axis (x-axis).
Die Erzeugung der Energieverläufe erfolgt typischerweise auf Grundlage eines psychoakustischen Modells. Zur Erzeugung der Energieverläufe wird sonach typischerweise ein psychoakustisches Modell herangezogen bzw. werden die Energieverläufe aus einem psychoakustischen Modell abgeleitet. Das psychoakustische Modell beschreibt im Allgemeinen diejenigen Frequenzanteile eines bestimmten Geräuschs, welche von dem menschlichen Gehör in einer bestimmten Geräuschumgebung, d. h. gegebenenfalls in Anwesenheit anderer Geräusche, wahrnehmbar sind. Ein bevorzugt verwendetes psychoakustisches Modell ist das Modell der spektralen Verdeckung bzw. Maskierung, durch welches beschrieben ist, dass das menschliche Hörvermögen bestimmte Frequenzanteile eines bestimmten Geräuschs nicht oder nur mit verringerter Sensitivität wahrnehmen kann. Diese Verdeckungs- bzw. Maskierungseffekte beruhen im Wesentlichen auf den anatomischen bzw. mechanischen Gegebenheiten des menschlichen Innenohrs und bedingen beispielsweise, dass energiearme bzw. leise Töne im mittleren Frequenzbereich bei gleichzeitiger Wiedergabe energiereicher bzw. lauter Töne im tiefen Frequenzbereich nicht wahrnehmbar sind; die Töne im tiefen Frequenzbereich maskieren die Töne im mittleren Frequenzbereich.The energy profiles are typically generated on the basis of a psychoacoustic model. A psychoacoustic model is therefore typically used to generate the energy profiles, or the energy profiles are derived from a psychoacoustic model. The psychoacoustic model generally describes those frequency components of a certain sound which are heard by the human ear in a certain noise environment, i.e. H. if necessary in the presence of other noises. A preferred used psychoacoustic model is the model of spectral masking or masking, by which it is described that the human hearing ability cannot perceive certain frequency components of a certain noise or only with reduced sensitivity. These masking or masking effects are essentially based on the anatomical or mechanical conditions of the human inner ear and, for example, mean that low-energy or quiet tones in the middle frequency range are not perceivable with simultaneous reproduction of high-energy or loud tones in the low frequency range; the tones in the low frequency range mask the tones in the medium frequency range.
Die Energieverläufe werden insbesondere aus den bei jeweiligen vorausgewählten Frequenzen durch das jeweilige psychoakustische Modell gegebenen Hörschwellen des menschlichen Gehörs abgeleitet. Dies bedeutet, dass das psychoakustische Modell jeweils auf die Frequenzen der beiden unmittelbar aufeinander folgenden Amplitudenmaxima angewandt wird.The energy profiles are derived in particular from the hearing thresholds of human hearing given by the respective psychoacoustic model at the respective preselected frequencies. This means that the psychoacoustic model is applied to the frequencies of the two immediately following amplitude maxima.
Der erste Energieverlauf entspricht dem Teil der für die Frequenz des unteren Amplitudenmaximums aus dem psychoakustischen Modell abgeleiteten Hörschwelle, welcher sich in Richtung steigender Frequenzen erstreckt. Der zweite Energieverlauf entspricht dem Teil der für die Frequenz des oberen Amplitudenmaximums aus dem psychoakustischen Modell abgeleiteten Hörschwelle, welcher sich in Richtung fallender Frequenzen erstreckt.The first energy curve corresponds to the part of the hearing threshold derived from the psychoacoustic model for the frequency of the lower amplitude maximum, which extends in the direction of increasing frequencies. The second energy curve corresponds to the part of the hearing threshold derived from the psychoacoustic model for the frequency of the upper amplitude maximum, which extends in the direction of falling frequencies.
Für das Verfahren ist wesentlich, dass Frequenzbereiche zwischen den jeweiligen Frequenzen zweier unmittelbar aufeinander folgender Amplitudenmaxima, welche Frequenzen sowohl dem ersten als auch dem zweiten Auswahlkriterium genügen, aufbereitet werden. Die bisher beschriebenen Schritte des Verfahrens betreffen sonach die Ermittlung von aufzubereitenden Frequenzbereichen innerhalb des aufzubereitenden Audiosignals.It is essential for the method that frequency ranges between the respective frequencies of two immediately following amplitude maxima, which frequencies satisfy both the first and the second selection criterion, are processed. The steps of the method described so far relate to the determination of frequency ranges to be processed within the audio signal to be processed.
In einem sechsten Schritt des Verfahrens wird ein Audiofüllsignal erzeugt bzw. generiert. Das Audiofüllsignal wird typischerweise gezielt im Hinblick auf die vorher ermittelten aufzubereitenden Frequenzbereiche innerhalb des aufzubereitenden Audiosignals erzeugt. Das Audiofüllsignal wird also typischerweise gezielt im Hinblick auf den durch unmittelbar aufeinander folgende, sowohl dem ersten als auch dem zweiten Auswahlkriterium genügende Frequenzen definierten Frequenzbereich erzeugt, um diesen auszufüllen und das zwischen den Frequenzen gegebene "Energietal" zumindest abschnittsweise, insbesondere vollständig, zu füllen. Das erzeugte Audiofüllsignal weist daher zweckmäßig einen zwischen den Frequenzen jeweiliger unmittelbar aufeinander folgender Amplitudenmaxima liegenden Frequenzbereich auf. Die Erzeugung des Audiofüllsignals erfolgt z. B. vermittels eines geeigneten Signalgenerators.In a sixth step of the method, an audio fill signal is generated or generated. The audio fill signal is typically generated in a targeted manner with regard to the previously determined frequency ranges to be processed within the audio signal to be processed. The audio fill signal is therefore typically generated in a targeted manner with regard to the frequency range defined by immediately successive frequencies that satisfy both the first and the second selection criterion in order to fill it and to fill the "energy valley" between the frequencies, at least in sections, in particular completely. The generated audio fill signal therefore expediently has a frequency range lying between the frequencies of respective immediately successive amplitude maxima. The generation of the audio fill signal takes place e.g. B. by means of a suitable signal generator.
In einem siebten Schritt des Verfahrens erfolgt die eigentliche Aufbereitung des Audiosignals durch Einbringen des Audiofüllsignals in jeweilige Frequenzbereiche zwischen jeweiligen dem ersten und zweiten Auswahlkriterium genügenden Frequenzen, sodass ein jeweiliger Frequenzbereich zumindest abschnittsweise, insbesondere vollständig, mit dem Audiofüllsignal befüllt ist.In a seventh step of the method, the actual processing of the audio signal is carried out by introducing the audio fill signal into respective frequency ranges between respective frequencies satisfying the first and second selection criteria, so that a respective frequency range is filled with the audio fill signal at least in sections, in particular completely.
Mit anderen Worten werden verfahrensgemäß entsprechende aus der Datenkompression des Audiosignals resultierende "Energietäler" ermittelt und in Form des im Hinblick auf die ermittelten "Energietäler" erzeugten Audiofüllsignals gezielt mit einem bestimmten Dateninhalt gefüllt, wodurch eine Aufbereitung des Audiosignals realisiert wird. Hieraus ergibt sich, dass die verfahrensgemäße Aufbereitung des Audiosignals, wie weiter oben erwähnt, insbesondere durch einen zumindest teilweisen Ersatz fehlender, d. h. z. B. im Rahmen der Datenkompression verworfener, Frequenzanteile des Audiosignals realisiert wird.In other words, according to the method, corresponding "energy troughs" resulting from the data compression of the audio signal are determined and specifically filled with a certain data content in the form of the audio fill signal generated with regard to the determined "energy troughs", as a result of which the audio signal is processed. It follows from this that the processing of the audio signal according to the method, as mentioned above, in particular by an at least partial replacement of missing, ie. H. z. B. in the context of data compression discarded, frequency components of the audio signal is realized.
Durch die beschriebenen Schritte des Verfahrens ist ein, insbesondere im Hinblick auf die Effizienz der Aufbereitung und die Qualität des aufbereiteten Audiosignals, verbessertes Verfahren zur Aufbereitung eines verlustbehaftet komprimierten Audiosignals gegeben.The steps of the method described result in an improved method for processing a lossy compressed audio signal, in particular with regard to the efficiency of the processing and the quality of the processed audio signal.
Selbstverständlich ist es in einem optionalen achten Schritt des Verfahrens möglich, das entsprechend aufbereitete Audiosignal über wenigstens eine z. B. als Lautsprechereinrichtung ausgebildete oder wenigstens eine solche umfassende Signalausgabeeinrichtung auszugeben. Ein optionaler achter Schritt des Verfahrens kann sonach ein Ausgeben eines aufbereiteten Audiosignals über wenigstens eine Signalausgabeeinrichtung vorsehen. Alternativ oder ergänzend ist es in dem achten Schritt des Verfahrens möglich, das entsprechend aufbereitete Audiosignal in einer Speichereinrichtung, d. h. z. B. einem Festplattenspeicher, (zwischen) zu speichern. Ein entsprechend aufbereitetes gespeichertes Audiosignal kann zu einem späteren Zeitpunkt über wenigstens eine entsprechende Signalausgabeeinrichtung ausgegeben und/oder über ein geeignetes, insbesondere drahtloses, Kommunikationsnetzwerk an wenigstens einen Kommunikationspartner übertragen werden. Ein optionaler achter Schritt des Verfahrens kann sonach (auch) ein Speichern eines aufbereiteten Audiosignals in wenigstens einer Speichereinrichtung und/oder ein Übertragen eines aufbereiteten Audiosignals an wenigstens einen Kommunikationspartner vorsehen. Das aufbereitete Audiosignal kann vor der Ausgabe und/oder Speicherung und/oder Übertragung einer inversen Fourier-Transformation unterzogen werden.Of course, in an optional eighth step of the method it is possible to process the correspondingly prepared audio signal via at least one z. B. trained as a speaker device or at least one such comprehensive signal output device. An optional eighth step of the method can then provide for the output of a processed audio signal via at least one signal output device. Alternatively or in addition, in the eighth step of the method it is possible to store the correspondingly processed audio signal in a memory device, ie. H. z. B. a hard disk space to store (between). A correspondingly prepared, stored audio signal can be output at a later point in time via at least one corresponding signal output device and / or transmitted to at least one communication partner via a suitable, in particular wireless, communication network. An optional eighth step of the method can therefore (also) provide for storing a processed audio signal in at least one storage device and / or transmitting a processed audio signal to at least one communication partner. The processed audio signal can be subjected to an inverse Fourier transformation before it is output and / or stored and / or transmitted.
Es ist möglich, dass vor dem Aufbereiten des Audiosignals durch Einbringen des Audiofüllsignals in den Frequenzbereich zwischen den dem zweiten Auswahlkriterium genügenden Frequenzen ein von der ausgewählten Frequenz ("untere Frequenz"), welche dem unteren (frequenzmäßig niedrigeren) Amplitudenmaximum zugehörig ist, ausgehender, gegebenenfalls dritter, Energieverlauf und ein von der ausgewählten Frequenz ("obere Frequenz"), welche dem (frequenzmäßig höheren) Amplitudenmaximum zugehörig ist, ausgehender, gegebenenfalls vierter, Energieverlauf erzeugt wird und diese beiden Energieverläufe in das Frequenzspektrum übertragen werden. Der gegebenenfalls dritte Energieverlauf verläuft ausgehend von der Frequenz des (frequenzmäßig) unteren Amplitudenmaximums der beiden unmittelbar aufeinander folgenden Amplitudenmaxima in Richtung der Frequenz des (frequenzmäßig) oberen Amplitudenmaximums der beiden unmittelbar aufeinander folgenden Amplitudenmaxima. Der gegebenenfalls vierte Energieverlauf verläuft ausgehend von der Frequenz des (frequenzmäßig) oberen (höheren) Amplitudenmaximums der beiden unmittelbar aufeinander folgenden Amplitudenmaxima in Richtung der Frequenz des (frequenzmäßig) unteren (niedrigeren) Amplitudenmaximums der beiden unmittelbar aufeinander folgenden Amplitudenmaxima. Die erzeugten Energieverläufe können wiederum datenmäßig in das Frequenzspektrum übertragen werden. Durch die Frequenzen und die Energieverläufe wird ebenso ein abgeschlossener Bereich bzw. eine abgeschlossene Fläche definiert. Der Bereich ist frequenzanteilsmäßig wiederum durch die Frequenzen der beiden unmittelbar aufeinander folgenden Amplitudenmaxima und energieanteilsmäßig durch die zwischen diesen verlaufenden Energieverläufe definiert. Der Bereich beinhaltet typischerweise nur Energiewerte ≥ Null. Betrachtet man den Bereich geometrisch in Bezug auf das Frequenzspektrum, entspricht der Bereich wiederum der durch die beiden unmittelbar benachbarten Amplitudenmaxima, den zwischen diesen verlaufenden Energie- bzw. Frequenzverläufen und der Frequenzachse (x-Achse) geometrisch definierten Fläche.It is possible that, before processing the audio signal, by introducing the audio fill signal into the frequency range between the frequencies which satisfy the second selection criterion, a frequency which is based on the selected frequency (“lower frequency”) and which is associated with the lower (lower in frequency) amplitude maximum, if necessary third, energy curve and a fourth energy curve, possibly a fourth, are generated from the selected frequency ("upper frequency"), which is associated with the (higher frequency) amplitude maximum, and these two energy curves are transmitted into the frequency spectrum. The third energy profile, if any, proceeds from the frequency of the (in terms of frequency) lower amplitude maximum of the two immediately following amplitude maxima in the direction of the frequency of (in terms of frequency) the upper amplitude maximum of the two immediately following amplitude maxima. The fourth energy curve, if any, starts from the frequency of the (frequency-wise) upper (higher) amplitude maximum of the two immediately successive amplitude maxima in the direction of the frequency of the (frequency-wise) lower (lower) amplitude maximum of the two immediately successive amplitude maxima. The energy profiles generated can in turn be transmitted in terms of data to the frequency spectrum. A closed area or area is also defined by the frequencies and the energy profiles. In terms of frequency, the range is in turn defined by the frequencies of the two immediately following amplitude maxima and in terms of energy by the energy profiles running between them. The range typically only contains energy values ≥ zero. If the area is viewed geometrically with respect to the frequency spectrum, the area in turn corresponds to the area defined geometrically by the two immediately adjacent amplitude maxima, the energy or frequency courses running between these and the frequency axis (x-axis) Area.
Die Erzeugung der gegebenenfalls dritten und vierten Energieverläufe erfolgt typischerweise ebenso auf Grundlage eines psychoakustischen Modells. Zur Erzeugung der Energieverläufe wird sonach typischerweise ebenso ein psychoakustisches Modell herangezogen bzw. werden die Energieverläufe aus einem psychoakustischen Modell abgeleitet. Es gelten die Ausführungen im Zusammenhang mit den ersten beiden Energieverläufen analog.The generation of the third and fourth energy profiles, if appropriate, is typically also carried out on the basis of a psychoacoustic model. A psychoacoustic model is therefore typically also used to generate the energy profiles, or the energy profiles are derived from a psychoacoustic model. The explanations in connection with the first two energy profiles apply analogously.
Die gegebenenfalls dritten und vierten Energieverläufe werden ebenso insbesondere aus den bei jeweiligen vorausgewählten Frequenzen durch das jeweilige psychoakustische Modell gegebenen Hörschwellen des menschlichen Gehörs abgeleitet. Dies bedeutet, dass das psychoakustische Modell jeweils auf die Frequenzen der beiden unmittelbar aufeinander folgenden Amplitudenmaxima angewandt wird. Der gegebenenfalls dritte Energieverlauf entspricht dem Teil der für die Frequenz des unteren Amplitudenmaximums aus dem psychoakustischen Modell abgeleiteten Hörschwelle, welcher sich in Richtung steigender Frequenzen erstreckt. Der gegebenenfalls vierte Energieverlauf entspricht dem Teil der für die Frequenz des oberen Amplitudenmaximums aus dem psychoakustischen Modell abgeleiteten Hörschwelle, welcher sich in Richtung fallender Frequenzen erstreckt.The third and fourth energy profiles, if any, are likewise derived in particular from the hearing thresholds of human hearing given by the respective psychoacoustic model at the respective preselected frequencies. This means that the psychoacoustic model is applied to the frequencies of the two immediately following amplitude maxima. The possibly third energy profile corresponds to the part of the hearing threshold derived from the psychoacoustic model for the frequency of the lower amplitude maximum, which extends in the direction of increasing frequencies. The possibly fourth energy curve corresponds to the part of the hearing threshold derived from the psychoacoustic model for the frequency of the upper amplitude maximum, which extends in the direction of falling frequencies.
Sofern, wie weiter oben erläutert, auch im Zusammenhang mit dem von dem zweiten Auswahlkriterium beschriebenen Grenzenergiewert entsprechende Energieverläufe erzeugt und in das Frequenzspektrum übertragen werden sollten, können sich diese (ersten beiden) Energieverläufe von den in dem vorherigen Absatz erwähnten (dritten und vierten) Energieverläufen unterscheiden.If, as explained above, corresponding energy profiles should also be generated in connection with the limit energy value described by the second selection criterion and transferred to the frequency spectrum, these (first two) energy profiles can differ from the (third and fourth) energy profiles mentioned in the previous paragraph differentiate.
Das Audiofüllsignal wird im Weiteren zumindest abschnittsweise, insbesondere vollständig, in den durch die beiden vorausgewählten Frequenzen und die jeweiligen Energieverläufe definierten Bereich des Frequenzspektrums eingebracht. Die Aufbereitung des Audiosignals erfolgt hier also, indem das Audiofüllsignal in den durch die Frequenzen der beiden unmittelbar benachbarten Amplitudenmaxima und die jeweiligen Energieverläufe definierten Frequenzbereich des Frequenzspektrums eingebracht wird, sodass der durch die Frequenzen der beiden unmittelbar aufeinander folgenden Amplitudenmaxima und die jeweiligen Energieverläufe definierte Bereich des Frequenzspektrums zumindest abschnittsweise, insbesondere vollständig, mit dem Audiofüllsignal befüllt ist bzw. wird.The audio fill signal is subsequently introduced at least in sections, in particular completely, into the region of the frequency spectrum defined by the two preselected frequencies and the respective energy profiles. The audio signal is processed here by introducing the audio fill signal into the frequency range of the frequency spectrum defined by the frequencies of the two immediately adjacent amplitude maxima and the respective energy profiles, so that the range of the frequency spectrum defined by the frequencies of the two immediately adjacent amplitude maxima and the respective energy profiles Frequency spectrum at least in sections, in particular completely, is or will be filled with the audio fill signal.
In allen Fällen gilt, dass das Audiofüllsignal abhängig oder unabhängig von akustischen Parametern des aufzubereitenden Audiosignals, insbesondere betreffend jeweilige Energie- und Frequenzanteile des Audiosignals, erzeugt werden kann. Zweckmäßig wird das Audiofüllsignal jedoch unabhängig von akustischen Parametern des Audiosignals, d. h. allein im Hinblick auf die zumindest abschnittsweise Ausfüllung des durch die Frequenzen der beiden unmittelbar benachbarten Amplitudenmaxima definierten Bereichs des Frequenzspektrums, erzeugt, da derart der Rechenaufwand zur Erzeugung des Audiofüllsignals gegebenenfalls erheblich reduziert werden kann.In all cases it applies that the audio fill signal can be generated as a function of or independently of acoustic parameters of the audio signal to be processed, in particular with regard to the respective energy and frequency components of the audio signal. However, the audio fill signal is expediently generated independently of acoustic parameters of the audio signal, that is to say solely with regard to the at least partial filling of the range of the frequency spectrum defined by the frequencies of the two immediately adjacent amplitude maxima, since the computing effort for generating the audio fill signal may be such can be significantly reduced.
Sofern das Audiofüllsignal abhängig von akustischen Parametern des Audiosignals erzeugt wird, kann die Aus- bzw. Befüllung des durch die Frequenzen der beiden unmittelbar aufeinander folgenden Amplitudenmaxima definierten Bereichs des Frequenzspektrums in Abhängigkeit bestimmter akustischer Parameter des Audiosignals, insbesondere des Amplituden- und/oder Frequenzverlaufs, oder bestimmter akustischer Parameter eines weiteren aufzubereitenden Audiosignals, insbesondere des Amplituden- und/oder Frequenzverlaufs, erfolgen. Derart kann eine für das menschliche Ohr gegebenenfalls natürlichere Wahrnehmung des aufbereiteten Audiosignals realisiert werden.If the audio fill signal is generated as a function of acoustic parameters of the audio signal, the filling or filling of the range of the frequency spectrum defined by the frequencies of the two immediately consecutive amplitude maxima can be carried out depending on certain acoustic parameters of the audio signal, in particular the amplitude and / or frequency curve. or certain acoustic parameters of a further audio signal to be processed, in particular of the amplitude and / or frequency curve. In this way, a more natural perception of the prepared audio signal for the human ear can be realized.
Grundsätzlich gilt, dass als Frequenzspektrum, in welches das Audiosignal verfahrensgemäß übertragen wird, eine Bark-Skala verwendet werden kann. Die 24 einzelnen Barken bzw. Banden der Bark-Skala entsprechen bekanntermaßen den 24 einzelnen Frequenzgruppen des menschlichen Gehörs, d. h. denjenigen Frequenzbereichen, die durch das menschliche Gehör gemeinsam ausgewertet werden. Die einzelnen Barken bzw. Banden der Bark-Skala beinhalten unterschiedliche Frequenzen bzw. Frequenzbereiche bzw. Bandbreiten. Mögliche Frequenzbanden des Frequenzspektrums können den 24 Barken bzw. Banden der Bark-Skala entsprechen.Basically, a Bark scale can be used as the frequency spectrum in which the audio signal is transmitted according to the method. The 24 individual barks or bands of the Bark scale are known to correspond to the 24 individual frequency groups of human hearing, i.e. H. those frequency ranges that are jointly evaluated by human hearing. The individual barks or bands of the Bark scale contain different frequencies or frequency ranges or bandwidths. Possible frequency bands of the frequency spectrum can correspond to the 24 barks or bands of the Bark scale.
Die Erfindung betrifft neben dem beschriebenen Verfahren weiterhin eine Vorrichtung zur Aufbereitung eines verlustbehaftet komprimierten Audiosignals gemäß dem wie vorstehend beschriebenen Verfahren Die Vorrichtung umfasst wenigstens eine hard- und/oder softwaremäßig implementierte Steuereinrichtung, welche sich dadurch auszeichnet, dass sie zur
- Übertragung eines Audiosignals in ein Frequenzspektrum, in welchem Energien des Audiosignals mit Frequenzen des Audiosignals korreliert werden,
- Ermittlung von Frequenzen lokaler Amplitudenmaxima in dem Frequenzspektrum,
- Festlegung eines ersten Auswahlkriteriums und Vorauswahl der Frequenzen von zwei unmittelbar aufeinander folgenden lokalen Amplitudenmaxima, welche Frequenzen dem ersten Auswahlkriterium genügen,
- Festlegung eines zweiten Auswahlkriteriums und Auswahl von vorausgewählten dem ersten Auswahlkriterium genügenden Frequenzen von zwei unmittelbar aufeinander folgenden Amplitudenmaxima, welche zusätzlich dem zweiten Auswahlkriterium genügen,
- Erzeugung eines Audiofüllsignals und
- Aufbereitung des Audiosignals durch Einbringen des Audiofüllsignals in einen Bereich zwischen den dem zweiten Auswahlkriterium genügenden Frequenzen, sodass der Bereich zumindest abschnittsweise, insbesondere vollständig, mit dem Audiofüllsignal befüllt ist, eingerichtet ist.
- Transfer of an audio signal into a frequency spectrum in which energies of the audio signal are correlated with frequencies of the audio signal,
- Determination of frequencies of local amplitude maxima in the frequency spectrum,
- Definition of a first selection criterion and preselection of the frequencies of two immediately following local amplitude maxima, which frequencies meet the first selection criterion,
- Definition of a second selection criterion and selection of preselected frequencies of two immediately successive amplitude maxima which satisfy the first selection criterion and which additionally satisfy the second selection criterion,
- Generation of an audio fill signal and
- Processing of the audio signal by introducing the audio fill signal into a range between the frequencies satisfying the second selection criterion, so that the range is at least partially, in particular completely, filled with the audio fill signal.
Selbstverständlich können einzelne, mehrere oder sämtliche der verfahrensgemäß durchgeführten Schritte auch in gesonderten hard- und/oder softwaremäßig implementierten Einrichtungen der Steuereinrichtung vorgenommen werden. In diesem Fall umfasst die Vorrichtung eine mit entsprechenden Einrichtungen ausgestattete oder kommunizierende Steuereinrichtung. Wie sich im Folgenden ergibt, kann die Vorrichtung Teil einer Audioeinrichtung bzw. eines Audiosystems für ein Kraftfahrzeug sein.Of course, individual, several or all of the steps carried out according to the method can also be implemented in separate hardware and / or software Devices of the control device are made. In this case, the device comprises a control device equipped or communicating with appropriate devices. As follows in the following, the device can be part of an audio device or an audio system for a motor vehicle.
Die Erfindung betrifft ferner eine Audioeinrichtung bzw. ein Audiosystem für ein Kraftfahrzeug. Die Audioeinrichtung kann Teil einer kraftfahrzeugseitigen Multimediaeinrichtung zur Ausgabe von Multimediainhalten, insbesondere von Audio- und/oder Videoinhalten, an Insassen eines Kraftfahrzeugs sein. Die Audioeinrichtung umfasst wenigstens eine Signalausgabeeinrichtung, d. h. z. B. eine Lautsprechereinrichtung, welche zur akustischen Ausgabe aufbereiteter Audiosignale in einen wenigstens einen Teil einer Fahrgastzelle bildenden Innenraum eines Kraftfahrzeugs eingerichtet ist. Die Audioeinrichtung zeichnet sich dadurch aus, dass sie zur Aufbereitung verlustbehaftet komprimierter Audiosignale wenigstens eine wie beschriebene Vorrichtung zur Aufbereitung verlustbehaftet komprimierter Audiosignale aufweist.The invention further relates to an audio device or an audio system for a motor vehicle. The audio device can be part of a motor vehicle-side multimedia device for outputting multimedia content, in particular audio and / or video content, to occupants of a motor vehicle. The audio device comprises at least one signal output device, i. H. z. B. a loudspeaker device, which is set up for acoustic output of prepared audio signals in an at least part of a passenger compartment of an interior of a motor vehicle. The audio device is characterized in that it has at least one device for processing lossy compressed audio signals as described for the preparation of lossy compressed audio signals.
Sowohl für die Vorrichtung zur Aufbereitung eines verlustbehaftet komprimierten Audiosignals als auch für die Audioeinrichtung gelten sämtliche Ausführungen im Zusammenhang mit dem beschriebenen Verfahren analog.All statements in connection with the described method apply analogously both to the device for processing a lossy compressed audio signal and to the audio device.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand der Zeichnungsfiguren näher erläutert. Dabei zeigen:
- Fig. 1
- eine Prinzipdarstellung einer Vorrichtung zur Durchführung eines Verfahrens gemäß einem Ausführungsbeispiel;
- Fig. 2
- ein Blockdiagramm eines Verfahrens gemäß einem Ausführungsbeispiel;
- Fig. 3, 4
- jeweils eine Prinzipdarstellung eines psychoakustischen Modells gemäß einem Ausführungsbeispiel; und
- Fig. 5 - 8
- jeweils eine Prinzipdarstellung eines Frequenzspektrums, in welchem Energien eines Audiosignals mit Frequenzen des Audiosignals korreliert werden, gemäß einem Ausführungsbeispiel.
- Fig. 1
- a schematic diagram of an apparatus for performing a method according to an embodiment;
- Fig. 2
- a block diagram of a method according to an embodiment;
- 3, 4
- a schematic representation of a psychoacoustic model according to an embodiment; and
- 5 - 8
- a schematic representation of a frequency spectrum, in which energies of an audio signal are correlated with frequencies of the audio signal, according to an embodiment.
Die in dem Ausführungsbeispiel gezeigte Vorrichtung 1 bildet einen Teil einer Audioeinrichtung 3 bzw. eines Audiosystems eines Kraftfahrzeugs 4. Die Audioeinrichtung 3 kann Teil einer kraftfahrzeugseitigen Multimediaeinrichtung (nicht gezeigt) zur Ausgabe von Multimediainhalten, insbesondere von Audio- und/oder Videoinhalten, an Insassen des Kraftfahrzeugs 4 sein. Die Audioeinrichtung 3 umfasst wenigstens eine z. B. als Lautsprechereinrichtung ausgebildete oder wenigstens eine solche umfassende Signalausgabeeinrichtung 5, welche zur akustischen Ausgabe aufbereiteter Audiosignale 6 in einen wenigstens einen Teil der Fahrgastzelle bildenden Innenraum 7 des Kraftfahrzeugs 4 eingerichtet ist.The
Die Vorrichtung 1 umfasst eine zentrale hard- und/oder softwaremäßig implementierte Steuereinrichtung 8, welche dazu eingerichtet ist, ein im Weiteren näher mit Bezug auf
Einzelne, mehrere oder sämtliche der im Weiteren erläuterten mit Bezug auf
In dem ersten Schritt S1 des Verfahrens wird das aufzubereitende verlustbehaftet komprimierte Audiosignal 2 bereitgestellt. Die Bereitstellung des Audiosignals 2 kann grundsätzlich über jedwede körperliche oder nicht-körperliche Audioquelle, d. h. z. B. von der Audioeinrichtung 3, erfolgen. Konkret kann das Audiosignal 2 z. B. von einem Datenspeicher (nicht gezeigt) der Audioeinrichtung 3 bereitgestellt werden.In the first step S1 of the method, the lossy
In dem zweiten Schritt S2 des Verfahrens erfolgt eine Übertragung des Audiosignals 2 in ein Frequenzspektrum. In dem Frequenzspektrum werden Energien des Audiosignals 2 mit Frequenzen des Audiosignals 2 korreliert. Hierzu wird der Inhalt des Audiosignals 2 auf seine Energie-, d. h. Amplituden- und Frequenzanteile, untersucht und die einzelnen Energieanteile des Audiosignals 2 vermittels geeigneter Algorithmen, d. h. z. B. vermittels (schneller) Fourier-Transformations-Algorithmen, datenmäßig in eine frequenzabhängige Darstellung übertragen. Ein entsprechendes Frequenzspektrum ist u. a. in
In dem dritten Schritt S3 des Verfahrens werden in dem Frequenzspektrum Frequenzen fi lokaler Amplitudenmaxima ermittelt; das Frequenzspektrum wird also auf lokale Amplitudenmaxima untersucht und die den jeweiligen Amplitudenmaxima zugehörigen Frequenzen fi ermittelt. Unter einem in den
In dem vierten Schritt S4 des Verfahrens wird ein erstes Auswahlkriterium festgelegt. Auf Grundlage des ersten Auswahlkriteriums werden die Frequenzen fi zweier unmittelbar aufeinander folgender (lokaler) Amplitudenmaxima vorausgewählt, welche Frequenzen dem ersten Auswahlkriterium genügen. In dem vierten Schritt S4 werden also die Frequenzen fi von Paaren unmittelbar aufeinanderfolgender Amplitudenmaxima im Hinblick auf das erste Auswahlkriterium dahin untersucht, ob die Frequenzen fi dem ersten Auswahlkriterium genügen. In den weiteren Schritten S5 - S7 des Verfahrens werden nur die dem ersten Auswahlkriterium genügenden Frequenzen fi betrachtet. In dem vierten Schritt S4 erfolgt sonach eine Vorauswahl der im Weiteren zu betrachtenden Frequenzen fi.In the fourth step S4 of the method, a first selection criterion is defined. On the basis of the first selection criterion, the frequencies f i of two immediately following (local) amplitude maxima are preselected, which frequencies meet the first selection criterion. In the fourth step S4, the frequencies f i of pairs of immediately consecutive amplitude maxima are examined with regard to the first selection criterion to determine whether the frequencies f i meet the first selection criterion. In the further steps S5-S7 of the method, only the frequencies f i which meet the first selection criterion are considered. The fourth step S4 then preselects the frequencies f i to be considered below.
Das erste Auswahlkriterium beschreibt einen bestimmten Grenzfrequenzwert ΔfT. Frequenzen fi unmittelbar aufeinanderfolgender Amplitudenmaxima genügen dem ersten Auswahlkriterium, wenn deren Frequenzunterschied Δfi den durch das erste Auswahlkriterium beschriebenen Grenzfrequenzwert ΔfT betragsmäßig überschreitet, vgl. hierzu den durch nachfolgend wiedergegebene Formel dargestellten Zusammenhang:
Dabei gilt Δfi: Frequenzunterschied zweier unmittelbar aufeinander folgender Amplitudenmaxima; ΔfT: Grenzfrequenzwert.In this case, Δf i applies: frequency difference between two immediately following amplitude maxima; Δf T : cutoff frequency value.
Der Grenzfrequenzwert ΔfT wird durch Übertragen der vorausgewählten Frequenzen fi in eine Bark-Skala festgelegt. Die Übertragung der vorausgewählten Frequenzen fi in eine Bark-Skala erfolgt auf Grundlage des durch nachfolgend wiedergegebene Formel dargestellten Zusammenhangs:
Dabei gilt z: Bark; f: in die Bark-Skala zu übertragender Frequenzwert.Z: Bark; f: frequency value to be transferred to the Bark scale.
Über den durch die vorstehende Formel dargestellten Zusammenhang lassen sich sowohl vorausgewählte Frequenzen fi als auch der von dem ersten Auswahlkriterium beschriebene Grenzfrequenzwerte ΔfT in die Bark-Skala übertragen.Both the preselected frequencies f i and the limit frequency values Δf T described by the first selection criterion can be transferred to the Bark scale using the relationship represented by the above formula.
Der Grenzfrequenzwert ΔfT kann einem Bark oder einem über einen Anpassungsfaktor angepassten bzw. mit einem Anpassungsfaktor multiplizierten Bark entsprechen. Der Anpassungsfaktor liegt typischerweise zwischen 0,7 und 1,1, insbesondere bei 0,9. Der Grenzfrequenzwert entspricht damit typischerweise 0,7 bis 1,1, insbesondere 0,9, Bark.The limit frequency value Δf T can correspond to a bark or to a bark adjusted by an adaptation factor or multiplied by an adaptation factor. The adjustment factor is typically between 0.7 and 1.1, in particular 0.9. The limit frequency value thus typically corresponds to 0.7 to 1.1, in particular 0.9, Bark.
In dem fünften Schritt S5 des Verfahrens wird ein zweites Auswahlkriterium festgelegt. Auf Grundlage des zweiten Auswahlkriteriums werden (auf Grundlage des ersten Auswahlkriteriums) vorausgewählte Frequenzen fi ausgewählt, welche (zusätzlich) dem zweiten Auswahlkriterium genügen. In dem fünften Schritt S5 erfolgt sonach eine Untersuchung vorausgewählter Frequenzen fi dahin, ob sie (zusätzlich) dem zweiten Auswahlkriterium genügen. Die (zusätzlich) dem zweiten Auswahlkriterium genügenden Frequenzen fi können wiederum in eine Bark-Skala übertragen werden.A second selection criterion is defined in the fifth step S5 of the method. On the basis of the second selection criterion, (based on the first selection criterion) preselected frequencies f i are selected which (additionally) meet the second selection criterion. In the fifth step S5, preselected frequencies f i are then examined to determine whether they (additionally) meet the second selection criterion. The frequencies f i (additionally) satisfying the second selection criterion can in turn be transferred to a Bark scale.
Das zweite Auswahlkriterium kann einen Grenzenergiewert beschreiben. Jeweilige vorausgewählte Frequenzen fi genügen dem zweiten Auswahlkriterium, wenn der Energieinhalt zwischen diesen den durch das zweite Auswahlkriterium beschriebenen Grenzenergiewert betragsmäßig unterschreitet.The second selection criterion can describe a limit energy value. Respective preselected frequencies f i satisfy the second selection criterion if the amount of energy between them falls below the limit energy value described by the second selection criterion.
Der Grenzenergiewert kann durch einen festgelegten Grenzenergieinhalt T definiert werden. Jeweilige vorausgewählte Frequenzen fi genügen dem zweiten Auswahlkriterium dann, wenn sie den durch das zweite Auswahlkriterium beschriebenen Grenzenergieinhalt T betragsmäßig unterschreiten, vgl. hierzu den durch nachfolgend wiedergegebene Formel dargestellten Zusammenhang:
Dabei gilt: S(f): die durch die Frequenzen f1, f2 der beiden unmittelbar aufeinander folgenden Amplitudenbeschriebene Fläche (Energieinhalt zwischen den Frequenzen f1, f2 der beiden unmittelbar aufeinander folgenden Amplitudenmaxima); T: Grenzenergieinhalt.The following applies: S (f): the area described by the frequencies f 1 , f 2 of the two immediately consecutive amplitudes (energy content between the frequencies f 1 , f 2 of the two immediately consecutive amplitude maxima); T: Limit energy content.
In diesem Zusammenhang auf die in
Der Grenzenergiewert kann alternativ auch bestimmt werden, indem ein von der vorausgewählten Frequenz f1 ("untere Frequenz"), welche dem unteren (frequenzmäßig niedrigeren) Amplitudenmaximum zugehörig ist, ausgehender erster Energieverlauf EV1 und ein von der vorausgewählten Frequenz f2 ("obere Frequenz), welche dem oberen (frequenzmäßig höheren) Amplitudenmaximum zugehörig ist, ausgehender zweiter Energieverlauf EV2 erzeugt wird und die beiden Energieverläufe EV1, EV2 in das Frequenzspektrum übertragen werden. Der Grenzenergiewert wird dann durch die jeweiligen Energieverläufe EV1, EV2 definiert.The limit energy value can alternatively also be determined by a first energy curve EV1 starting from the preselected frequency f 1 ("lower frequency"), which belongs to the lower (lower in frequency) amplitude maximum, and a first energy curve EV1 from the preselected frequency f 2 ("upper frequency ), which is associated with the upper (higher frequency) amplitude maximum, the outgoing second energy curve EV2 is generated and the two energy curves EV1, EV2 are transmitted into the frequency spectrum Energy profiles EV1, EV2 defined.
Anhand von
Durch den tatsächlichen Frequenzverlauf zwischen den Frequenzen f1, 2 und die Energieverläufe EV1, EV2 wird ein abgeschlossener Bereich bzw. eine abgeschlossene Fläche definiert. Der Bereich ist frequenzanteilsmäßig durch die beiden Frequenzen f1, 2 und energieanteilsmäßig durch den tatsächlichen Frequenzverlauf und die zwischen diesen verlaufenden Energieverläufe EV1, EV2 definiert. Der Bereich beinhaltet typischerweise nur Energiewerte ≥ Null. Betrachtet man den Bereich geometrisch in Bezug auf das Frequenzspektrum, entspricht der Bereich der durch die Frequenzen f1, 2 der beiden unmittelbar benachbarten Amplitudenmaxima, den zwischen diesen verlaufenden Energie- bzw. Frequenzverläufen und der Frequenzachse (x-Achse) geometrisch definierten, in
Die Erzeugung der Energieverläufe EV1, EV2 erfolgt auf Grundlage eines psychoakustischen Modells. Ein bevorzugt verwendetes psychoakustisches Modell ist das Modell der spektralen Verdeckung bzw. Maskierung. Anhand von
Für das Verfahren ist wesentlich, dass Frequenzbereiche zwischen den jeweiligen Frequenzen fi bzw. f1, 2 der zwei unmittelbar aufeinander folgenden Amplitudenmaxima, welche Frequenzen sowohl dem ersten als auch dem zweiten Auswahlkriterium genügen, aufbereitet werden. Die bisher beschriebenen Schritte S1 - S5 des Verfahrens betreffen sonach die Ermittlung von verfahrensgemäß aufzubereitenden Frequenzbereichen innerhalb des aufzubereitenden Audiosignals 2.It is essential for the method that frequency ranges between the respective frequencies f i or f 1, 2 of the two immediately following amplitude maxima, which frequencies satisfy both the first and the second selection criterion, are processed. The steps S1-S5 of the method described so far relate to the determination of frequency ranges to be processed according to the method within the
In einem sechsten Schritt S6 des Verfahrens wird vermittels eines geeigneten Signalgenerators ein Audiofüllsignal AFS erzeugt bzw. generiert. Das Audiofüllsignal AFS wird gezielt im Hinblick auf die vorher ermittelten aufzubereitenden Frequenzbereiche innerhalb des aufzubereitenden Audiosignals 2 erzeugt. Das Audiofüllsignal AFS wird also gezielt im Hinblick auf den durch die sowohl dem ersten als auch dem zweiten Auswahlkriterium genügenden Frequenzen fi bzw. f1, 2 der beiden unmittelbar aufeinander folgenden, Amplitudenmaxima definierten Frequenzbereich erzeugt, um diesen auszufüllen und das zwischen den Frequenzen fi gegebene "Energietal" zu füllen. Das erzeugte Audiofüllsignal AFS weist daher einen zwischen den Frequenzen fi jeweiliger unmittelbar aufeinander folgender Amplitudenmaxima liegenden Frequenzbereich auf.In a sixth step S6 of the method, a suitable signal generator is used generates an audio fill signal AFS. The audio fill signal AFS is generated in a targeted manner with regard to the previously determined frequency ranges to be processed within the
Das Audiofüllsignal AFS kann abhängig oder unabhängig von akustischen Parametern des Audiosignals 2, insbesondere betreffend jeweilige Energie- und Frequenzanteile des Audiosignals 2, erzeugt werden. In dem beschriebenen Ausführungsbeispiel wird das Audiofüllsignal AFS unabhängig von akustischen Parametern des Audiosignals 2, d. h. allein im Hinblick auf die Ausfüllung des frequenzanteilsmäßig durch die Frequenzen f1, 2 und energieanteilsmäßig durch den tatsächlichen Frequenzverlauf und die zwischen diesen verlaufenden Energieverläufe EV3, EV4 definierten Bereichs, erzeugt.The audio fill signal AFS can be generated as a function of or independently of acoustic parameters of the
In einem siebten Schritt S7 des Verfahrens erfolgt die eigentliche Aufbereitung des Audiosignals 2 durch Einbringen des Audiofüllsignals AFS in jeweilige Frequenzbereiche zwischen jeweiligen dem ersten und zweiten Auswahlkriterium genügenden Frequenzen fi, sodass ein jeweiliger Frequenzbereich mit dem Audiofüllsignal AFS befüllt ist.In a seventh step S7 of the method, the actual processing of the
Vor dem Aufbereiten des Audiosignals 2 durch Einbringen des Audiofüllsignals AFS wird ein von der ausgewählten unteren (niedrigeren) Frequenz f1, welche dem unteren (frequenzmäßig niedrigeren) Amplitudenmaximum zugehörig ist, ausgehender weiterer bzw. dritter Energieverlauf EV3 und ein von der ausgewählten oberen (höheren) Frequenz f2, welche dem oberen (frequenzmäßig höheren) Amplitudenmaximum zugehörig ist, ausgehender weiterer bzw. vierter Energieverlauf EV4 erzeugt.Before the
Anhand von
Durch den tatsächlichen Frequenzverlauf zwischen den Frequenzen f1, 2 und die Energieverläufe EV3, EV4 wird ein abgeschlossener Bereich bzw. eine abgeschlossene Fläche definiert. Der Bereich ist frequenzanteilsmäßig durch die Frequenzen f1, 2 der Amplitudenmaxima und energieanteilsmäßig durch den tatsächlichen Frequenzverlauf und die zwischen diesen verlaufenden Energieverläufe EV3, EV4 definiert. Der Bereich beinhaltet typischerweise nur Energiewerte ≥ Null. Betrachtet man den Bereich geometrisch in Bezug auf das Frequenzspektrum, entspricht der Bereich der durch die Frequenzen f1, 2 der beiden unmittelbar benachbarten Amplitudenmaxima, den zwischen diesen verlaufenden Energie- bzw. Frequenzverläufen und der Frequenzachse (x-Achse) geometrisch definierten, in
Die Erzeugung der Energieverläufe EV3, EV4 erfolgt ebenso auf Grundlage eines psychoakustischen Modells. Ein bevorzugt verwendetes psychoakustisches Modell ist auch hier das Modell der spektralen Verdeckung bzw. Maskierung (vgl.
Im Allgemeinen gilt, dass sich die (ersten beiden) Energieverläufe EV1, EV2 von den dritten und vierten Energieverläufen Ev3, EV4 unterscheiden können.In general, the (first two) energy profiles EV1, EV2 can differ from the third and fourth energy profiles Ev3, EV4.
Insgesamt werden verfahrensgemäß also aus der Datenkompression des Audiosignals 2 resultierende "Energietäler" ermittelt und in Form des im Hinblick auf die ermittelten "Energietäler" erzeugten Audiofüllsignals AFS gezielt mit einem bestimmten Dateninhalt gefüllt, wodurch eine Aufbereitung des Audiosignals 2 realisiert wird. Hieraus ergibt sich, dass die verfahrensgemäße Aufbereitung des Audiosignals 2 durch einen zumindest teilweisen Ersatz fehlender, d. h. z. B. im Rahmen der Datenkompression verworfener, Frequenzanteile des Audiosignals 2 realisiert wird.Overall, according to the method, "energy valleys" resulting from the data compression of the
Ein optionaler achter Schritt S8 des Verfahrens kann ein Ausgeben eines aufbereiteten Audiosignals 2 über wenigstens eine Signalausgabeeinrichtung 5 und/oder ein Speichern eines aufbereiteten Audiosignals 2 in wenigstens einer Speichereinrichtung (nicht gezeigt) und/oder ein Übertragen eines aufbereiteten Audiosignals 2 an wenigstens einen Kommunikationspartner (nicht gezeigt) vorsehen. Das aufbereitete Audiosignal 2 kann vor der Ausgabe und/oder Speicherung und/oder Übertragung einer inversen Fourier-Transformation unterzogen werden.An optional eighth step S8 of the method can output a processed
Durch die beschriebenen Schritte S1 - S7 (S8) des Verfahrens ist ein, insbesondere im Hinblick auf die Effizienz der Aufbereitung und die Qualität des aufbereiteten Audiosignals 6, verbessertes Verfahren zur Aufbereitung eines verlustbehaftet komprimierten Audiosignals 2 gegeben.The described steps S1-S7 (S8) of the method result in an improved method for processing a lossy
- 11
- Vorrichtungcontraption
- 22
- Audiosignal (komprimiert)Audio signal (compressed)
- 33
- AudioeinrichtungAudio device
- 44
- KraftfahrzeugMotor vehicle
- 55
- SignalausgabeeinrichtungSignal output device
- 66
- Audiosignal (aufbereitet)Audio signal (processed)
- 77
- Innenrauminner space
- 88th
- SteuereinrichtungControl device
- AFSAFS
- AudiofüllsignalAudio fill signal
- EV1 - EV4EV1 - EV4
- EnergieverlaufEnergy flow
- fi f i
- Frequenzfrequency
- ΔfT Δf T
- GrenzfrequenzwertCutoff frequency value
- TT
- GrenzenergieinhaltLimit energy content
- S1 - S8S1 - S8
- VerfahrensschrittProcedural step
Claims (15)
- Method for conditioning an audio signal (2) subjected to lossy compression, characterised by the following steps:- provision of an audio signal (2) subjected to lossy compression, which is an already decoded audio file subjected to lossy compression,- transfer of the audio signal (2) to a frequency spectrum in which energies of the audio signal (2) are correlated with frequencies of the audio signal (2),- determination of frequencies (fi) of local amplitude maxima in the frequency spectrum,- definition of a first selection criterion and preselection of the frequencies (fi) of two local amplitude maxima directly following one another, which frequencies satisfy the first selection criterion,- definition of a second selection criterion and selection of preselected frequencies (fi) satisfying the first selection criterion of two local amplitude maxima directly following one another, which frequencies additionally satisfy the second selection criterion,- generation of an audio filler signal (AFS) and- conditioning of the audio signal (2) by introduction of the audio filler signal (AFS) into a frequency range between the frequencies (fi) satisfying the second selection criterion, so that the frequency range is filled at least in sections, in particular completely, with the audio filler signal (AFS).
- Method according to claim 1, characterised in that the frequencies (fi) satisfy the first selection criterion if their frequency difference exceeds in amount a limit frequency value (Δfi) described by the first selection criterion.
- Method according to claim 2, characterised in that the limit frequency value (Δfi) is defined by transferring the frequencies (fi) to a Bark scale, wherein the limit frequency value (Δfi) corresponds to a Bark or a Bark adjusted by way of an adjustment factor.
- Method according to claim 3, characterised in that the adjustment factor used corresponds to a value between 0.7 and 1.1 Bark, in particular 0.9 Bark.
- Method according to any of the preceding claims, characterised in that the frequencies (fi) satisfy the second selection criterion if the energy content between the frequencies (fi) falls below a limit energy value in amount.
- Method according to claim 5, characterised in that the limit energy value is defined by a fixed limit energy content (T).
- Method according to claim 5, characterised in that the limit energy value is defined in that a first energy curve (EV1) starting out from the selected lower frequency (f1) and a second energy curve (EV2) starting out from the selected upper frequency (f2) is generated and the two energy curves (EV1, EV2) are transferred to the frequency spectrum, wherein the limit energy value is defined by the respective energy curves (EV1, EV2).
- Method according to claim 7, characterised in that the generation of the first and second energy curves (EV1, EV2) takes place on the basis of a psychoacoustic model.
- Method according to any one of the preceding claims, characterised in that before the conditioning of the audio signal (2) by introducing the audio filler signal (AFS) into the frequency range between the frequencies (fi) satisfying the second selection criterion, so that the frequency range is filled at least in sections, in particular completely, by the audio filler signal (AFS),
an, if applicable third, energy curve (EV3) starting out from the selected lower frequency (f1) and an, if applicable fourth, energy curve (EV4) starting out from the selected upper frequency (f2) is generated and the two energy curves (EV3, EV4) are transferred to the frequency spectrum. - Method according to claim 9, characterised in that the audio filler signal (AFS) is introduced at least in sections, in particular completely, into a range of the frequency spectrum defined by the two selected frequencies (f1, f2) and the respective energy curves (EV3, EV4).
- Method according to claim 9 or 10, characterised in that the generation of the energy curves (EV3, EV4) takes place on the basis of a psychoacoustic model.
- Method according to any one of the preceding claims, characterised in that the audio filler signal (AFS) is generated depending on or independently of acoustic parameters of the audio signal (2).
- Method according to claim 12, characterised in that the audio filler signal (AFS) is generated depending on acoustic parameters of the audio signal (2), wherein the filling of the range (A) takes place as a function of certain acoustic parameters of the audio signal (2) or of another audio signal (2) to be conditioned.
- Apparatus (1) for conditioning an audio signal (2) subjected to lossy compression according to a method according to any one of the preceding claims, characterised by at least one control device (8), which is adapted to- provide an audio signal (2) subjected to lossy compression,- transfer the audio signal (2) to a frequency spectrum in which energies of the audio signal (2) are correlated with frequencies of the audio signal (2),- determine frequencies (fi) of local amplitude maxima in the frequency spectrum,- define a first selection criterion and preselect the frequencies (fi) of two local amplitude maxima directly following one another, which frequencies satisfy the first selection criterion,- define a second selection criterion and select preselected frequencies (fi) satisfying the first selection criterion of two local amplitude maxima directly following one another, which frequencies additionally satisfy the second selection criterion,- generate an audio filler signal (AFS) and- condition the audio signal (2) by introduction of the audio filler signal (AFS) into a range between the frequencies (fi) satisfying the second selection criterion, so that the range is filled at least in sections, in particular completely, with the audio filler signal (AFS).
- Audio device (3) for a motor vehicle (4), comprising at least one signal output device (5), which is adapted for the acoustic output of conditioned audio signals (6) into an interior (7) of a motor vehicle (4) forming at least part of a passenger compartment, characterised in that for conditioning audio signals (2) subjected to lossy compression the audio device has at least one apparatus (1) according to claim 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016104665.5A DE102016104665A1 (en) | 2016-03-14 | 2016-03-14 | Method and device for processing a lossy compressed audio signal |
PCT/EP2017/055820 WO2017157841A1 (en) | 2016-03-14 | 2017-03-13 | Method and apparatus for conditioning an audio signal subjected to lossy compression |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3403260A1 EP3403260A1 (en) | 2018-11-21 |
EP3403260B1 true EP3403260B1 (en) | 2020-03-04 |
Family
ID=58358566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17711600.1A Active EP3403260B1 (en) | 2016-03-14 | 2017-03-13 | Method and apparatus for conditioning an audio signal subjected to lossy compression |
Country Status (5)
Country | Link |
---|---|
US (1) | US10734000B2 (en) |
EP (1) | EP3403260B1 (en) |
CN (1) | CN108174614B (en) |
DE (1) | DE102016104665A1 (en) |
WO (1) | WO2017157841A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110491407B (en) * | 2019-08-15 | 2021-09-21 | 广州方硅信息技术有限公司 | Voice noise reduction method and device, electronic equipment and storage medium |
CN113192519B (en) * | 2021-04-29 | 2023-05-23 | 北京达佳互联信息技术有限公司 | Audio encoding method and apparatus, and audio decoding method and apparatus |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5479560A (en) | 1992-10-30 | 1995-12-26 | Technology Research Association Of Medical And Welfare Apparatus | Formant detecting device and speech processing apparatus |
DE10103134A1 (en) * | 2001-01-24 | 2002-08-08 | Harman Becker Automotive Sys | Decoding device, decoding method and motor vehicle audio system with such a decoding device |
EP1423847B1 (en) * | 2001-11-29 | 2005-02-02 | Coding Technologies AB | Reconstruction of high frequency components |
US7447631B2 (en) * | 2002-06-17 | 2008-11-04 | Dolby Laboratories Licensing Corporation | Audio coding system using spectral hole filling |
DE50312002D1 (en) * | 2003-07-24 | 2009-11-19 | Palm Inc | Method and device for equalizing an audio signal subject to an external interference signal |
US7562021B2 (en) * | 2005-07-15 | 2009-07-14 | Microsoft Corporation | Modification of codewords in dictionary used for efficient coding of digital media spectral data |
EP3779975B1 (en) * | 2010-04-13 | 2023-07-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio decoder and related methods for processing multi-channel audio signals using a variable prediction direction |
JP2013148724A (en) * | 2012-01-19 | 2013-08-01 | Sony Corp | Noise suppressing device, noise suppressing method, and program |
JP5949270B2 (en) * | 2012-07-24 | 2016-07-06 | 富士通株式会社 | Audio decoding apparatus, audio decoding method, and audio decoding computer program |
ES2714289T3 (en) * | 2013-01-29 | 2019-05-28 | Fraunhofer Ges Forschung | Filled with noise in audio coding by perceptual transform |
CN116665683A (en) * | 2013-02-21 | 2023-08-29 | 杜比国际公司 | Method for parametric multi-channel coding |
EP2830060A1 (en) * | 2013-07-22 | 2015-01-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Noise filling in multichannel audio coding |
EP2830061A1 (en) * | 2013-07-22 | 2015-01-28 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for encoding and decoding an encoded audio signal using temporal noise/patch shaping |
CN106471822B (en) * | 2014-06-27 | 2019-10-25 | 杜比国际公司 | The equipment of smallest positive integral bit number needed for the determining expression non-differential gain value of compression indicated for HOA data frame |
EP2960903A1 (en) * | 2014-06-27 | 2015-12-30 | Thomson Licensing | Method and apparatus for determining for the compression of an HOA data frame representation a lowest integer number of bits required for representing non-differential gain values |
KR102606212B1 (en) * | 2014-06-27 | 2023-11-29 | 돌비 인터네셔널 에이비 | Coded hoa data frame representation that includes non-differential gain values associated with channel signals of specific ones of the data frames of an hoa data frame representation |
-
2016
- 2016-03-14 DE DE102016104665.5A patent/DE102016104665A1/en not_active Ceased
-
2017
- 2017-03-13 WO PCT/EP2017/055820 patent/WO2017157841A1/en active Search and Examination
- 2017-03-13 EP EP17711600.1A patent/EP3403260B1/en active Active
- 2017-03-13 CN CN201780003220.1A patent/CN108174614B/en active Active
- 2017-03-13 US US16/076,880 patent/US10734000B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US10734000B2 (en) | 2020-08-04 |
WO2017157841A1 (en) | 2017-09-21 |
EP3403260A1 (en) | 2018-11-21 |
CN108174614B (en) | 2018-12-28 |
US20190080702A1 (en) | 2019-03-14 |
DE102016104665A1 (en) | 2017-09-14 |
CN108174614A (en) | 2018-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69122648T2 (en) | Digital subband coding device | |
EP0661905B1 (en) | Method for the fitting of hearing aids, device therefor and hearing aid | |
DE112016006218B4 (en) | Sound Signal Enhancement Device | |
EP1953739B1 (en) | Method and device for reducing noise in a decoded signal | |
EP1386307B1 (en) | Method and device for determining a quality measure for an audio signal | |
EP3197181B1 (en) | Method for reducing latency of a filter bank for filtering an audio signal and method for low latency operation of a hearing system | |
EP2919652B1 (en) | Processing of audio signals for a tinnitus therapy | |
DE102010039589A1 (en) | Hearing aid and / or tinnitus therapy device | |
DE102006047983A1 (en) | Processing an input signal in a hearing aid | |
DE102017222750A1 (en) | Control device and method for improving a noise quality of an air conditioning system | |
EP3403260B1 (en) | Method and apparatus for conditioning an audio signal subjected to lossy compression | |
EP1351550B1 (en) | Method for adapting a signal amplification in a hearing aid and a hearing aid | |
EP1212751B1 (en) | Method for suppressing spurious noise in a signal field | |
EP3232691B1 (en) | Method for determining the spacial impulse response of a passenger cabin of a motor vehicle | |
DE102009030551A1 (en) | Method for loudness-based binaural adjustment of amplification of left and right hearing aids, involves adjusting amplification of left and right hearing aids at preset level and frequency while blind signals are not provided | |
EP3232684B1 (en) | Method for transmitting an audio signal from a transmitter to a receiver | |
EP1130577B1 (en) | Method for the reconstruction of low speech frequencies from mid-range frequencies | |
DE102018207530A1 (en) | Device and method for improving privacy | |
EP3217392B1 (en) | Rendering wideband ultrasonic signals audible | |
DE102023107308B3 (en) | Psychoacoustic calibration of an audio playback system | |
EP2024022B1 (en) | Device and method for producing a filtered activity pattern, source separator, method for producing a corrected audio signal and computer program | |
WO2022175349A2 (en) | Method and arrangement for signal processing | |
EP3965434A1 (en) | Method for improved sonication of a plurality of sonication areas | |
EP3834723A1 (en) | Method for determining the hearing threshold of a test subject | |
DE19626329A1 (en) | Method for acoustically accurate analysis of noise of auditory events |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180606 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190717 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191122 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1241292 Country of ref document: AT Kind code of ref document: T Effective date: 20200315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017004091 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200604 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200604 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200605 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200704 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017004091 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200313 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200313 |
|
26N | No opposition filed |
Effective date: 20201207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200504 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200304 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1241292 Country of ref document: AT Kind code of ref document: T Effective date: 20220313 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220313 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240326 Year of fee payment: 8 |