EP3197181B1 - Method for reducing latency of a filter bank for filtering an audio signal and method for low latency operation of a hearing system - Google Patents

Method for reducing latency of a filter bank for filtering an audio signal and method for low latency operation of a hearing system Download PDF

Info

Publication number
EP3197181B1
EP3197181B1 EP16204529.8A EP16204529A EP3197181B1 EP 3197181 B1 EP3197181 B1 EP 3197181B1 EP 16204529 A EP16204529 A EP 16204529A EP 3197181 B1 EP3197181 B1 EP 3197181B1
Authority
EP
European Patent Office
Prior art keywords
signal
audio signal
output
prediction period
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16204529.8A
Other languages
German (de)
French (fr)
Other versions
EP3197181A1 (en
Inventor
Marc Aubreville
Oliver Dressler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP3197181A1 publication Critical patent/EP3197181A1/en
Application granted granted Critical
Publication of EP3197181B1 publication Critical patent/EP3197181B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/353Frequency, e.g. frequency shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/0017Lossless audio signal coding; Perfect reconstruction of coded audio signal by transmission of coding error
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility

Definitions

  • the invention relates to a method for reducing the latency of a filter bank for filtering an audio signal, wherein a plurality of signal blocks in the time domain is formed from the audio signal, wherein in each case a filter function is specified for at least a plurality of the signal blocks, the signal Block is filtered with the given filter function transformed into the frequency domain, and thereby a transformed signal block is formed, and signal components of the transformed signal block are output for further processing.
  • the invention further relates to a method for low-latency operation of a hearing system, wherein a first audio signal is generated from a sound signal by a first input transducer, wherein the first audio signal is filtered in a signal processing unit by means of a first filter bank, wherein signal components of the filtered first audio signal in the signal processing unit further processed and for generating an output signal, and wherein an output sound signal is generated from the output signal by an output transducer.
  • an audio signal generated by a microphone is usually transformed from the time domain into the frequency domain after digitization, ie after the digitization the audio signal initially exists in the form of time-resolved samples which, if necessary, become individual signal blocks (so-called “signal blocks”).
  • Frames ") are decomposed by a Fourier transform such as FFT into individual spectral signal components of the generated audio signal.
  • FFT Fourier transform
  • This has the advantage that frequency-selective algorithms such as noise reduction, directional microphone or dynamic compression can be applied.
  • the mentioned transformation has the disadvantage that an audio signal converted back into the time domain after a corresponding frequency-selective processing has a delay with respect to the input signal, which is typically of the order of magnitude of several ms. This delay, also known as latency, is greater the higher the resolution in the frequency domain is chosen.
  • an open adaptation of the hearing device is often chosen, in which the sound output from a speaker of the hearing aid output signal via a sound tube with Schirmchen or a listener with Schirmchen in the ear canal is passed to the eardrum.
  • the eardrum itself thus comes a mixture of a frequency selective attenuated direct sound of the environment as well as the output sound signal generated by the hearing aid.
  • different mixing ratios are therefore found as a function of the frequency.
  • the described problems with comb filter effects are not tied to a binaural hearing system, but can also occur in a monaural hearing system with only one hearing aid, in which a direct sound of the environment and an output sound signal of a hearing device overlaid with temporal displacement reach the eardrum of the user ,
  • the temporal offset is primarily due to the internal latency of the hearing system for signal processing and in particular in the filtering.
  • a method for filtering an input signal by means of a desired impulse response in which the impulse response in the time domain is decomposed into individual segments which are transformed into the frequency domain and from which respective coefficient blocks are formed for the filtering of the individual time-delayed frames in the frequency domain ,
  • the frames thus filtered with the coefficient blocks are summed with their corresponding time delay, and from this a signal in the time domain is generated by inverse transformation, of which in a predetermined time Way still individual signal components are discarded to obtain the final, filtered output signal.
  • the US Pat. No. 7,251,271 B1 refers to a method to avoid so-called aliasing effects when filtering a discrete input signal with a discrete impulse response. These can occur during the transformation of the individual frames of the input signal from the time domain into the frequency domain and the inverse transformation of the product of impulse response and frequency spectrum of the input signal into the time domain. To avoid the aliasing effects, individual frames are extended before the respective transformation by adding zeros in order to correspond to the respective filter length.
  • the invention is therefore based on the object of specifying a method for as low-latency spectral filtering of an audio signal with the highest possible spectral resolution.
  • the invention is further based on the object of specifying a method for low-latency operation of a hearing system.
  • the first object is achieved according to the invention by a method for reducing the latency of a filter bank for filtering an audio signal, wherein a plurality of signal blocks in the time domain is formed from the audio signal.
  • a filter function is specified, at least a subinterval of the signal block is given as a prediction period, signal components of the signal block are estimated in the at least one subinterval for the prediction period, and from the for the prediction period of estimated signal components and the signal components of the signal block outside the prediction period, a predicted signal block is generated.
  • the predicted signal block is filtered with the predetermined filter function transformed into the frequency domain, and thereby a transformed signal block is formed, and signal components of the transformed signal block are output for further processing.
  • the second object is achieved by a method for low-latency operation of a hearing system, wherein from a sound signal through a first input transducer, a first audio signal is generated, wherein the first audio signal is transmitted directly to a signal processing unit, and in the signal processing unit directly by means of a first filter bank according to the above-described method for reducing the latency of a filter bank for filtering an audio signal is filtered, wherein signal portions of the filtered first audio signal in the signal processing unit further processed and used to generate an output signal, and wherein from the output signal directly by an output transducer, an output sound signal is generated.
  • a signal block (“frame") in the time domain is formed from the audio signal by the audio signal is converted by time and amplitude discretization in a plurality of each successive time points associated amplitude ("samples"), and a plurality of consecutive samples is combined into a signal block.
  • the further processing of the signal components of the transformed signal block comprises in particular a frequency band-dependent amplification, a frequency band-dependent directional characteristic, a frequency band-dependent noise suppression and a backward transformation of frequency band-dependent treated signal components in the time domain.
  • the estimation of the signal components for the prediction period of a respective signal block preferably takes place via a prediction algorithm, such as by a linear prediction filter.
  • a prediction algorithm such as by a linear prediction filter.
  • an adaptive adaptation of time-correlated coefficients used for the estimation is possible such that an estimation coefficient, which is assigned as a coordinate in the signal block in each case to a sample with a specific time delay, depending on the error between an estimated sample and a real from the Audio signal obtained sample is corrected, whereby the corrector is renewed at periodic intervals.
  • a signal component estimated for a signal block becomes is also used for a signal block which follows later, if the period corresponding to the signal component still falls within the prediction period of the signal block following later.
  • the prediction period preferably comprises the respectively first and / or the last sample of a signal block.
  • the period lying outside the prediction period in each case forms a coherent interval in a signal block.
  • the prediction period comprises the first n samples and / or the last m samples, where n and m natural numbers are smaller than the number of samples in the respective signal block.
  • An input transducer or an output transducer of the hearing system includes any shape of an acousto-electric or an electro-acoustic transducer, for example a microphone or a loudspeaker.
  • Direct transmission of the first audio signal to the signal processing unit is to be understood as meaning that the transmission of the first audio signal takes place immediately after its generation, that is to say in particular without another, via signal preprocessing, such as signal processing.
  • a / D conversion and / or data compression beyond time delay takes place, as z. B. by a long-term physical storage, which is not based on the FIFO principle ("first-in-first-out"), would occur.
  • the transmission takes place in particular locally within a hearing device, for example on the signal path predetermined by the signal lines.
  • the transmission also takes place wirelessly, for example from a first hearing device of a binaural hearing system to a second hearing device of the binaural hearing system.
  • Direct filtering of the first audio signal in the signal processing unit analogously means that the filtering process for the audio signal takes place immediately after its input in the signal processing unit, ie in particular without a further, beyond the direct signal transmission time delay as z. B. by a long-term storage, which is not based on the FIFO principle ("first-in-first-out"), would occur.
  • an immediate generation of the output sound signal from the output signal means that immediately after the generation of the output signal is passed through the further processing, the output signal to the output transducer for output, ie in particular without a further, beyond the direct signal transmission outgoing time delay, z.
  • the filter banks which are used to transform the audio signals generated by the input transducers into the frequency domain (analysis filter banks), and the filter banks for the inverse transformation of the frequency resolved, further processed audio signals into the time domain (Synthetic filter banks), the former usually have a larger proportion.
  • the transmission of an audio signal from one hearing aid to another for the generation of a binaural output signal is associated with a certain delay.
  • the latter is difficult to reduce given the restrictions on encoding for transmission.
  • the effective length of the signal block can be reduced with an appropriate choice of the prediction period, without This affects the frequency resolution of the filter bank.
  • the frequency resolution of the filter bank depends on the temporal information content of the signal blocks to be used for the filter process, ie of their length. Since the signal components are now estimated in a signal block for a period of time, the latency of the filter bank can be reduced by the duration corresponding to the associated prediction period.
  • two temporally successive signal blocks overlap each other in part.
  • the definition of the temporal sequence is preferably carried out via a reference sample for the respective signal block, e.g. the first sample.
  • the consequence of the described overlap is that the relevant, successive signal blocks have several, preferably successive, samples in common.
  • this improves the temporal resolution in the frequency domain, since this allows frequent frequency band information to be updated frequently, and on the other hand, the cost of estimating the signal components can be reduced because already estimated signal components are available for a subsequent block without a new estimation process stand.
  • signal portions of the transformed signal block are output separately according to different frequency bands for further processing.
  • the latency of the filter bank which is reduced by estimating the signal components of the prediction periods, is particularly advantageous given a constant high frequency resolution.
  • the filter function in the prediction period preferably has an average lower transmission amplitude than outside the prediction period. This is to mean that the value of the transmission amplitude of the filter function averaged over the entire prediction period is lower than that over the remaining one Period of the signal block outside the prediction period averaged value of the transmission amplitude of the filter function.
  • the transmission amplitude of the filter function is formed in each case by a logarithmically concave function, wherein the prediction period spans the maximum of the transmission amplitude of the filter function.
  • a logarithmically concave function is defined as a function whose logarithm is concave in the domain of definition - which is given here by the individual samples of the respective signal block. Such a function may for example be given by an approximation of a Gaussian bell curve over a finite, discretized domain of definition.
  • the advantage of the logarithmic concave behavior of the transmission amplitude is that it has a maximum of two inflection points in the domain of definition, and thus is not subject to any oscillations. This results in an advantageous filter behavior, since thus no relevant signal components with a minimum value of an oscillation of the filter function are filtered.
  • a logarithmic concave function can be represented as a function reciprocal to a particular logarithmic convex function.
  • a logarithmically convex function is in turn convex. This means that the reciprocal, logarithmically concave function due to the reciprocity property has a maximum of two inflection points.
  • the maximum of the transmission amplitude lies in a convex region, so that beyond the inflection points the transmission amplitude runs concavely.
  • the transmission amplitude usually already has sufficiently low values, so that the choice of the prediction time period in at least one of the two ranges can ensure that errors which can occur due to deviations in the estimation of the signal components from the real signal components, be largely suppressed due to the sufficiently lower transmission amplitude of the filter function, and thus not significantly enter into the transformed signal block.
  • an empty signal is respectively estimated as signal components for the prediction period of at least one signal block.
  • An empty signal is in this case the signal which has no amplitude for the period in question.
  • the estimation of an empty signal is carried out in particular in the event that the signal components of the audio signal which are used for the estimation method of the signal components of the prediction period do not allow a qualitatively sufficiently high-quality estimate of the signal components as a result of insufficient correlations. This can occur, for example, if there is a high proportion of white noise in the audio signal, which reduces the correlation of successive samples and thus makes prediction more difficult.
  • estimated signal components which are different from the empty signal, with respect to the quality of the estimate, are to be compared with the corresponding real signal components of the audio signal in order to be able to evaluate the quality of the prediction.
  • excessive deviation - defined by a deviation measure such.
  • B. an averaged over several samples difference and an associated upper bound for the deviation measure - is determined instead of the predicted signal components, an empty signal as estimated for the prediction signal component. It is also possible to check the signal components of the audio signal for correlations even before the prediction, and to set an empty signal as signal component for the prediction period if the correlation is too low.
  • a second audio signal is generated from the sound signal by a second input transducer spatially separated from the first input transducer, the second audio signal is transmitted directly to the signal processing unit and filtered by a second filter bank, and wherein signal components of filtered second audio signal in the signal processing unit further processed and used to generate the output signal.
  • the filtering of the second audio signal by means of the second filter bank in accordance with the above-described method for reducing the latency of a filter bank for filtering an audio signal is understood to mean that the transmission of the second audio signal without another, via a signal preprocessing such.
  • a / D conversion and / or data compression and the direct signal transmission beyond time delay takes place, as z. B. by a long-term physical storage, which would not based on the FIFO principle ("first-in-first-out”) would occur.
  • This named embodiment makes possible, in particular, a low-latency operation of a binaural hearing system, taking into account the special features occurring in such a hearing system as a result of the signal transmission from one hearing aid to another occurring for the generation of the binaural auditory sensation. Since, in the case of a binaural hearing system for compression, the real information content of signal portions of the audio signal received by the respective other hearing device for the generation of the binaural hearing sensation is often reduced for better transmission, for example by data compression, this is possible by estimating the signal components in the prediction period reduced errors in its meaning.
  • a further advantage of using the method for low-latency operation of a binaural hearing system is that a certain latency of several ms is already introduced into the hearing system through the described transmission of the audio signals.
  • the reduction of further possible latencies, e.g. in the present case through the filter banks, here helps to minimize the losses of the sound quality by comb filter effects as low as possible.
  • the invention further provides a hearing aid, comprising at least one input transducer for generating an audio signal, an output transducer for generating an output sound signal, and a local signal processing unit having a first filter bank, which for carrying out the above-described method for reducing the latency of a filter bank for filtering an audio signal is set up.
  • the invention also mentions a binaural hearing system with two hearing aids as described above, which is set up to carry out the method for low-latency operation of a hearing system with at least two input transducers.
  • the advantages specified for the method and its developments can be transferred analogously to the binaural hearing system.
  • Fig. 1 1 is a schematic block diagram of a binaural hearing system 1.
  • the binaural hearing system 1 is in this case formed by a first hearing device 2 and a second hearing device 4.
  • the first hearing device 2 has a first input transducer 8 configured as a microphone 6, which generates a first audio signal 10 from a sound signal 9.
  • the second hearing device 4 has a second input transducer 14 configured as a microphone 12, which generates a second audio signal 16 from the sound signal 9.
  • the first audio signal 10 and the second audio signal 16 are respectively prepared in the respective hearing device 2, 4 by a local signal preprocessing 18, 20, which in each case in particular comprises an A / D conversion, for the further signal processing processes.
  • the local signal preprocessing 18, 20 comprises in particular only runtime processes, ie those processes which do not involve any further delay, in particular no longer-term storage and charging processes of the signal components, over the duration of the signal processing taking place.
  • the first audio signal 10 is first transmitted immediately after the local signal pre-processing 18 in a binaural transmission process 22 from the first hearing aid 2 to the second hearing aid 4, where it is filtered in a signal processing unit 24 in a first filter bank 26 in a manner to be described.
  • the binaural transmission process 22 takes place immediately after the local signal preprocessing 18, that is, in particular without further delay, in particular without longer-term storage and recharging the relevant signal components on a FIFO memory addition.
  • the filtered first audio signal 28 will now be subjected to frequency bandwise signal processing algorithms 30, e.g. Noise suppression, directional microphone or dynamic compression applied.
  • the second audio signal 16 is supplied immediately after the local signal pre-processing 20 of the signal processing unit 24, where it is first filtered in a second filter bank 32 in a manner to be described, wherein as a filtered second audio signal 34, the respective signal components are transmitted separately in individual frequency bands.
  • the filtered second audio signal 34 resulting from the second filter bank 32 the respective signal components are output separately in individual frequency bands.
  • frequency bandwise signal processing algorithms 28 such as noise reduction, directional microphone or dynamic compression are now applied. From the filtered first audio signal 26 and the filtered second audio signal 34, an output signal 36 is generated after the frequency band-wise signal processing 28, which locally reflects the binaural hearing at the location of the second hearing device 4.
  • the output signal 36 is converted directly, ie in particular without further long-term storage and recharges of the signal components, from an output transducer 40 designed as a loudspeaker 38 into an output sound signal 42.
  • Fig. 2 is against a time axis t, the first audio signal 10 after Fig. 1 which is split into individual partially overlapping signal blocks 50a-f.
  • the individual signal blocks 50a-f are in this case formed from a large number of successive samples of the first audio signal 10, individual samples occurring as a result of the overlap of the successive signal blocks 50a-f in at least two signal blocks.
  • the individual signal blocks 50a-f are now each transformed in a manner to be described, the frequency domain. Due to the short time interval of each of two consecutive signal blocks 50a-f, the spectral signal components of the first audio signal 10 can thus be updated in short intervals in the frequency domain.
  • the individual signal blocks 50a-f are determined Signal portions, which is shown for the signal block 50c on the basis of a detail representation.
  • the individual real signal components 52a, 52b are shown against a time axis t '.
  • the real signal components 52a, 52b are each given by the amplitude of the corresponding sample.
  • the transmission amplitude 54c of the filter function 56c is shown, which in the present case is approximately given by a Gaussian bell curve.
  • the filter function 56c in this case represents a window function with which the edges of the signal block 50c for the transformation into the frequency domain are to be smoothed out. This is because without such a window function, the Fourier transform of the signal components of the signal block 50c is de facto a Fourier transform of the signal components of the first audio signal 10, which are multiplied by a rectangular function corresponding to the duration of the signal block.
  • this multiplication in the time domain means a convolution of the frequency components of the first audio signal 10 with the Fourier transform of the rectangular function, which is given by a strongly oscillating sin (x) / x or Sinc function.
  • the edges of the signal block 50c for the transformation into the frequency domain are "hidden” by means of a suitable filter function 56c. This is done by the transmission amplitude 54c of the filter function 56c converges to zero at the edges of the signal block 50c as free of oscillation as possible, ie in particular with as few turning points as possible.
  • a function having such properties is given by a logarithmic concave function, such as e.g. the approximated Gaussian bell curve of the present case.
  • the sub-interval 58c lies beyond the point of inflection 62c of the transmission amplitude 54c, ie in particular far away from the maximum 64c of the transmission amplitude 54c, so that in the sub-interval 58c, which defines the prediction time 60c, the transmission amplitude 54c has only low values.
  • the signal components to be used for the transformation are now estimated there by means of a prediction algorithm, for example a linear prediction filter, instead of the real signal components 52b.
  • the signal portions 66b estimated in the prediction period 60c and the signal portions 52a of the signal block 50c outside the prediction period 60c now form a predicted signal block 68c.
  • This predicted signal block 68c is now multiplied by the filter function 56c and transformed into the frequency domain by means of a fast Fourier transformation, so that there the frequency-resolved information of the transformed signal block 50c is available for further processing by means of frequency band-dependent signal processing algorithms stands.
  • the procedure described is used to estimate signal components for a prediction period which is to be chosen favorably on the basis of the respective filter function to be used, in order thus to reduce the latency for the transformation into the frequency domain. since then the last samples of a signal block need not yet exist, so that the transformation can be started several ms earlier due to the estimation.
  • An important role in this case plays the course of the transmission amplitude 54c of the filter function 56c.
  • a possible error which could result from the deviation of the signal portions 66b estimated for the prediction period 60c from the real signal portions 52b is suppressed by the fact that for the prediction period 60c the transmission amplitude 54c has only comparatively small values relative to its maximum 64c, and thus by the corresponding multiplication with the filter function 56c, the estimated signal components 66b make only a small contribution to the transformed signal block anyway.
  • this contribution is important for the spectral resolution.
  • tonal signal components can be estimated relatively well anyway by means of conventional prediction methods. Even with a white noise, which is unfavorable due to its static properties, due to the mentioned suppression of the errors due to possible deviations, the described method gives good results.
  • the binaural hearing system 1 of Fig. 1 is the first audio signal 10 in the first filter bank 24 according to the basis of Fig. 2 described method filtered.
  • the filtering of the second audio signal 16 in the second filter bank 32 can be done in the same way; however, a conventional filter method-that is to say without estimation of signal components for a respective prediction period of the individual signal blocks-can also be used for this purpose.
  • the decision on this is made in particular as a function of the tolerable overall latency of the binaural hearing system 1 and the delay caused by the binaural transmission process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Stereophonic System (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Reduktion der Latenzzeit einer Filterbank zur Filterung eines Audiosignals, wobei aus dem Audiosignal eine Vielzahl von Signal-Blöcken in der Zeitdomäne gebildet wird, wobei für wenigstens eine Mehrzahl der Signal-Blöcke jeweils eine Filterfunktion vorgegeben wird, der Signal-Block mit der vorgegebenen Filterfunktion gefiltert in die Frequenz-Domäne transformiert wird, und hierdurch ein transformierter Signal-Block gebildet wird, und Signalanteile des transformierten Signal-Blocks zur Weiterverarbeitung ausgegeben werden. Die Erfindung betrifft weiter ein Verfahren zum latenzarmen Betrieb eines Hörsystems, wobei aus einem Schallsignal durch einen ersten Eingangswandler ein erstes Audiosignal erzeugt wird, wobei das erste Audiosignal in einer Signalverarbeitungseinheit mittels einer ersten Filterbank gefiltert wird, wobei Signalanteile des gefilterten ersten Audiosignals in der Signalverarbeitungseinheit weiterverarbeitet und zur Erzeugung eines Ausgabesignals verwendet werden, und wobei aus dem Ausgabesignal durch einen Ausgangswandler ein Ausgabe-Schallsignal erzeugt wird.The invention relates to a method for reducing the latency of a filter bank for filtering an audio signal, wherein a plurality of signal blocks in the time domain is formed from the audio signal, wherein in each case a filter function is specified for at least a plurality of the signal blocks, the signal Block is filtered with the given filter function transformed into the frequency domain, and thereby a transformed signal block is formed, and signal components of the transformed signal block are output for further processing. The invention further relates to a method for low-latency operation of a hearing system, wherein a first audio signal is generated from a sound signal by a first input transducer, wherein the first audio signal is filtered in a signal processing unit by means of a first filter bank, wherein signal components of the filtered first audio signal in the signal processing unit further processed and for generating an output signal, and wherein an output sound signal is generated from the output signal by an output transducer.

In einem Hörgerät wird ein von einem Mikrofon erzeugte Audiosignal nach einer Digitalisierung meist von der Zeitdomäne in die Frequenzdomäne transformiert, d. h., das Audiosignal liegt nach der Digitalisierung zunächst in Form zeitaufgelöster Samples vor, welche, ggf. zu einzelnen Signal-Blöcken (sog. "Frames") gruppiert, durch eine Fourier-Transformation wie z.B. FFT in einzelne spektrale Signalanteile des erzeugten Audiosignals zerlegt werden. Dies hat den Vorteil, dass frequenzselektiv Algorithmen wie Störgeräuschreduktion, Richtmikrofonie oder Dynamikkompression angewandt werden können. Die erwähnte Transformation hat jedoch den Nachteil, dass ein nach entsprechender, frequenzselektiver Bearbeitung in die Zeitdomäne zurückgewandeltes Audiosignal eine Verzögerung gegenüber dem Eingangssignal aufweist, die typischerweise in der Größenordnung von mehreren ms liegt. Diese Verzögerung, auch Latenz genannt, ist umso größer, je höher die Auflösung in der Frequenz-Domäne gewählt wird.In a hearing aid, an audio signal generated by a microphone is usually transformed from the time domain into the frequency domain after digitization, ie after the digitization the audio signal initially exists in the form of time-resolved samples which, if necessary, become individual signal blocks (so-called "signal blocks"). Frames "), are decomposed by a Fourier transform such as FFT into individual spectral signal components of the generated audio signal. This has the advantage that frequency-selective algorithms such as noise reduction, directional microphone or dynamic compression can be applied. However, the mentioned transformation has the disadvantage that an audio signal converted back into the time domain after a corresponding frequency-selective processing has a delay with respect to the input signal, which is typically of the order of magnitude of several ms. This delay, also known as latency, is greater the higher the resolution in the frequency domain is chosen.

Viele Schwerhörige leiden vorrangig unter einem Verlust des Hörvermögens bei hohen Frequenzen, beispielsweise einer merklich abgeschwächten Wahrnehmung ab 5-10 kHz, während sie für niedrige Frequenzen kaum eine Abweichung im Vergleich zu einer normal hörenden Person zeigen. In diesen Fällen werden hauptsächlich hohe Frequenzen erheblich verstärkt.Many hard of hearing suffer primarily from a loss of hearing at high frequencies, such as a noticeably weakened perception from 5-10 kHz, while for low frequencies they show little deviation compared to a normal hearing person. In these cases, mainly high frequencies are significantly increased.

Überdies wird hierbei wird auch häufig eine offene Anpassung des Hörgeräts gewählt, in welcher das von einem Lautsprecher des Hörgeräts Ausgabe-Schallsignal über einen Schallschlauch mit Schirmchen oder einen über einen Hörer mit Schirmchen im Gehörgang zum Trommelfell geleitet wird. Am Trommelfell selbst kommt somit eine Mischung aus einem frequenzselektiv gedämpften Direktschall der Umgebung sowie dem vom Hörgerät erzeugten Ausgabe-Schallsignal an. Je nach Hörverlust und Anpassungsart, welche wiederum frequenzabhängig die Dämpfung des Direktschalls von der Umgebung zum Gehör beeinflusst, findet man deshalb unterschiedliche Mischverhältnisse in Abhängigkeit der Frequenz vor.Moreover, an open adaptation of the hearing device is often chosen, in which the sound output from a speaker of the hearing aid output signal via a sound tube with Schirmchen or a listener with Schirmchen in the ear canal is passed to the eardrum. At the eardrum itself thus comes a mixture of a frequency selective attenuated direct sound of the environment as well as the output sound signal generated by the hearing aid. Depending on the hearing loss and the type of adaptation, which in turn influences the attenuation of the direct sound from the environment to the hearing in a frequency-dependent manner, different mixing ratios are therefore found as a function of the frequency.

Bei der Überlagerung korrelierter Signale mit Zeitversatz, wie sie im eben beschriebenen Fall am Trommelfell durch den Direktschall der Umgebung und das Ausgangs-Schallsignal des Hörgeräts vorliegen, treten oftmals Kammfiltereffekte auf. Diese erzeugen charakteristische Amplitudenminima ("Notches") mit gleichem Abstand über der Frequenz, bei welcher eine fast völlige Auslöschung des Signalanteils entsprechender Frequenz stattfindet. Je größer der zeitliche Abstand zwischen beiden überlagerten Signalen, desto geringer ist in der Frequenz-Domäne Abstand dieser Amplitudenminima. Dadurch wird das aus der Überlagerung resultierende Signal verzerrt, es tritt ein röhriger Klang auf. Gerade im Fall der binauralen Audiosignalverarbeitung, wie sie in binauralen Hörsystemen Anwendung findet, ist die Latenz besonders groß und daher die Anfälligkeit für Kammfiltereffekte besonders groß.In the superimposition of correlated signals with time offset, as in the case just described on the eardrum by the direct sound of the environment and the output sound signal of the hearing aid, often occur comb filter effects. These generate characteristic amplitude notches ("notches") at the same distance above the frequency at which an almost complete extinction of the signal component of the corresponding frequency takes place. The greater the time interval between the two superimposed signals, the lower is the frequency domain distance of these amplitude minima. This distorts the signal resulting from the overlay, causing a roaring sound. Especially in the case of binaural audio signal processing, as it is used in binaural hearing systems, the latency is particularly large and therefore the susceptibility to comb filter effects particularly large.

Um diese Kammfiltereffekte möglichst zu vermeiden, ist es also sinnvoll, die gesamte Latenz im binauralen Hörsystem zu reduzieren. Die beschriebenen Probleme mit Kammfiltereffekten sind jedoch nicht an ein binaurales Hörsystem gebunden, sondern können auch in einem monauralen Hörsystem mit nur einem Hörgerät auftreten, in welchem ein Direktschall der Umgebung und ein Ausgangs-Schallsignal eines Hörgeräts mit zeitlichem Versatz überlagert an das Trommelfell des Benutzers gelangen.So to avoid these comb filter effects as possible, so it makes sense to reduce the overall latency in the binaural hearing system. However, the described problems with comb filter effects are not tied to a binaural hearing system, but can also occur in a monaural hearing system with only one hearing aid, in which a direct sound of the environment and an output sound signal of a hearing device overlaid with temporal displacement reach the eardrum of the user ,

Der zeitliche Versatz ist hierbei vorrangig bedingt durch die interne Latenz des Hörsystems zur Signalverarbeitung und hierbei insbesondere in der Filterung.The temporal offset is primarily due to the internal latency of the hearing system for signal processing and in particular in the filtering.

In der DE 10 2014 204 557 A1 ist beschrieben, wie insbesondere zur Anwendung in einem binauralen Hörgerät in einem Eingangssignal ein Windrauschen anhand des typischen Frequenzspektrums des Windrauschens reduziert wird. Für eine möglichst geringe Latenzzeit wird hierbei vorgeschlagen, das Eingangssignal in zwei Teilsignale aufzuteilen, und die Teilsignale jeweils mit unterschiedlicher Frequenzauflösung und somit Latenz zu filtern. Im höher aufgelösten Signalzweig werden nun Filterparameter ermittelt, welche auf das mit geringerer Latenz gefilterte Teilsignal angewandt werden.In the DE 10 2014 204 557 A1 It is described how, in particular for use in a binaural hearing aid in an input signal, wind noise is reduced on the basis of the typical frequency spectrum of the wind noise. For the lowest possible latency, it is proposed in this case to divide the input signal into two sub-signals, and to filter the sub-signals in each case with different frequency resolution and thus latency. In the higher-resolution signal branch filter parameters are now determined, which are applied to the filtered with less latency part signal.

In der DE 693 32 975 T2 wird ein Verfahren zur Filterung eines Eingangssignals mittels einer gewünschten Impulsantwort genannt, in welchem die Impulsantwort in der Zeitdomäne in einzelne Segmente zerlegt wird, welche in die Frequenzdomäne transformiert werden, und daraus jeweils Koeffizientenblöcke für die Filterung der einzelnen zueinander zeitverzögerten Frames in der Frequenzdomäne gebildet werden. Die so mit den Koeffizientenblöcken gefilterten Frames werden mit ihrer entsprechenden Zeitverzögerung aufsummiert, und daraus durch Rücktransformation ein Signal in der Zeitdomäne erzeugt, von welchem in vorbestimmter Weise noch einzelne Signalanteile verworfen werden, um das fertige, gefilterte Ausgangssignal zu erhalten.In the DE 693 32 975 T2 A method is described for filtering an input signal by means of a desired impulse response, in which the impulse response in the time domain is decomposed into individual segments which are transformed into the frequency domain and from which respective coefficient blocks are formed for the filtering of the individual time-delayed frames in the frequency domain , The frames thus filtered with the coefficient blocks are summed with their corresponding time delay, and from this a signal in the time domain is generated by inverse transformation, of which in a predetermined time Way still individual signal components are discarded to obtain the final, filtered output signal.

Die US 7, 251, 271 B1 nennt ein Verfahren, um bei einer Filterung eines diskretisierten Eingangssignals mit einer diskreten Impulsantwort sog. Aliasing-Effekte zu vermeiden. Diese können bei der Transformation der einzelnen Frames des Eingangssignals von der Zeit- in die Frequenzdomäne und der Rücktransformation des Produktes aus Impulsantwort und Frequenzsprektrum des Eingangssignals in die Zeitdomäne auftreten. Zur Vermeidung der Aliasing-Effekte werden einzelne Frames vor der jeweiligen Transformation durch Hinzufügen von Nullen verlängert, um mit der jeweiligen Filterlänge zu korrespondieren.The US Pat. No. 7,251,271 B1 refers to a method to avoid so-called aliasing effects when filtering a discrete input signal with a discrete impulse response. These can occur during the transformation of the individual frames of the input signal from the time domain into the frequency domain and the inverse transformation of the product of impulse response and frequency spectrum of the input signal into the time domain. To avoid the aliasing effects, individual frames are extended before the respective transformation by adding zeros in order to correspond to the respective filter length.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren für eine möglichst latenzarme spektrale Filterung eines Audiosignals bei möglichst hoher spektraler Auflösung anzugeben. Der Erfindung liegt weiter die Aufgabe zugrunde, ein Verfahren zum möglichst latenzarmen Betrieb eines Hörsystems anzugeben.The invention is therefore based on the object of specifying a method for as low-latency spectral filtering of an audio signal with the highest possible spectral resolution. The invention is further based on the object of specifying a method for low-latency operation of a hearing system.

Die erstgenannte Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Reduktion der Latenzzeit einer Filterbank zur Filterung eines Audiosignals, wobei aus dem Audiosignal eine Vielzahl von Signal-Blöcken in der Zeitdomäne gebildet wird. Hierbei ist vorgesehen, dass für wenigstens eine Mehrzahl der Signal-Blöcke jeweils eine Filterfunktion vorgegeben wird, wenigstens ein Teilintervall des Signal-Blocks als ein Prädiktionszeitraum vorgegeben wird, Signalanteile des Signal-Blocks im wenigstens einen Teilintervall für den Prädiktionszeitraum geschätzt werden, und aus den für den Prädiktionszeitraum geschätzten Signalanteilen und den Signalanteilen des Signal-Blocks außerhalb des Prädiktionszeitraums ein prädizierter Signal-Block erzeugt wird. Weiter ist vorgesehen, dass der prädizierte Signal-Block mit der vorgegebenen Filterfunktion gefiltert in die Frequenz-Domäne transformiert wird, und hierdurch ein transformierter Signal-Block gebildet wird, und Signalanteile des transformierten Signal-Blocks zur Weiterverarbeitung ausgegeben werden.The first object is achieved according to the invention by a method for reducing the latency of a filter bank for filtering an audio signal, wherein a plurality of signal blocks in the time domain is formed from the audio signal. In this case, it is provided that for at least a plurality of the signal blocks in each case a filter function is specified, at least a subinterval of the signal block is given as a prediction period, signal components of the signal block are estimated in the at least one subinterval for the prediction period, and from the for the prediction period of estimated signal components and the signal components of the signal block outside the prediction period, a predicted signal block is generated. It is further provided that the predicted signal block is filtered with the predetermined filter function transformed into the frequency domain, and thereby a transformed signal block is formed, and signal components of the transformed signal block are output for further processing.

Die zweitgenannte Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zum latenzarmen Betrieb eines Hörsystems, wobei aus einem Schallsignal durch einen ersten Eingangswandler ein erstes Audiosignal erzeugt wird, wobei das erste Audiosignal unmittelbar zu einer Signalverarbeitungseinheit übertragen wird, und in der Signalverarbeitungseinheit unmittelbar mittels einer ersten Filterbank gemäß dem vorbeschriebenen Verfahren zur Reduktion der Latenzzeit einer Filterbank zur Filterung eines Audiosignals gefiltert wird, wobei Signalanteile des gefilterten ersten Audiosignals in der Signalverarbeitungseinheit weiterverarbeitet und zur Erzeugung eines Ausgabesignals verwendet werden, und wobei aus dem Ausgabesignal unmittelbar durch einen Ausgangswandler ein Ausgabe-Schallsignal erzeugt wird. Vorteilhafte und teils für sich gesehen erfinderische Ausgestaltungen sind in den Unteransprüchen und in der nachfolgenden Beschreibung dargelegt.The second object is achieved by a method for low-latency operation of a hearing system, wherein from a sound signal through a first input transducer, a first audio signal is generated, wherein the first audio signal is transmitted directly to a signal processing unit, and in the signal processing unit directly by means of a first filter bank according to the above-described method for reducing the latency of a filter bank for filtering an audio signal is filtered, wherein signal portions of the filtered first audio signal in the signal processing unit further processed and used to generate an output signal, and wherein from the output signal directly by an output transducer, an output sound signal is generated. Advantageous and partly inventive in themselves embodiments are set forth in the subclaims and in the description below.

Bevorzugt wird aus dem Audiosignal ein Signal-Block ("Frame") in der Zeitdomäne gebildet, indem das Audiosignal durch Zeit- und Amplitudendiskretisierung in eine Vielzahl von jeweils aufeinander folgenden Zeitpunkten zugeordneten Amplitudenkennwerten ("Samples") umgewandelt wird, und jeweils eine Vielzahl von aufeinander folgenden Samples zu einem Signal-Block zusammengefasst wird. Die Weiterverarbeitung der Signalanteile des transformierten Signal-Blocks umfasst insbesondere eine frequenzband-abhängige Verstärkung, eine frequenzband-abhängige Richtcharakteristik, eine frequenzband-abhängige Rauschunterdrückung sowie eine Rücktransformation frequenzband-abhängig behandelter Signalanteile in die Zeit-Domäne.Preferably, a signal block ("frame") in the time domain is formed from the audio signal by the audio signal is converted by time and amplitude discretization in a plurality of each successive time points associated amplitude ("samples"), and a plurality of consecutive samples is combined into a signal block. The further processing of the signal components of the transformed signal block comprises in particular a frequency band-dependent amplification, a frequency band-dependent directional characteristic, a frequency band-dependent noise suppression and a backward transformation of frequency band-dependent treated signal components in the time domain.

Das Schätzen der Signalanteile für den Prädiktionszeitraum eines jeweiligen Signal-Blocks erfolgt bevorzugt über einen Prädiktionsalgorithmus, wie z.B. durch ein lineares Prädiktionsfilter. Insbesondere ist auch eine adaptive Anpassung von zur Schätzung verwendeter, zeitkorrelierter Koeffizienten derart möglich, dass ein Schätzkoeffizient, welcher als Koordinate im Signal-Block jeweils einem Sample mit einer bestimmten Zeitverzögerung zuzuordnen ist, in Abhängigkeit des Fehlers zwischen einem geschätzten Sample und einem real aus dem Audiosignal gewonnenen Sample korrigiert wird, wobei die Korrektor in periodischen Abständen erneuert wird. Insbesondere wird ein für einen Signal-Block geschätzter Signalanteil auch für einen später folgenden Signal-Block verwendet, falls der dem Signalanteil entsprechende Zeitraum auch dann noch in den Prädiktionszeitraum des später folgenden Signal-Blocks fällt. Bevorzugt umfasst der Prädiktionszeitraum das jeweils erste und/oder das jeweils letzte Sample eines Signal-Blocks. Insbesondere bildet jeweils in einem Signal-Block der außerhalb des Prädiktionszeitraums liegende Zeitraum ein zusammenhängendes Intervall. Insbesondere umfasst der Prädiktionszeitraum die ersten n Samples und/oder die letzten m Samples, wobei n und m natürliche Zahlen kleiner der Anzahl an Samples im jeweiligen Signal-Block sind.The estimation of the signal components for the prediction period of a respective signal block preferably takes place via a prediction algorithm, such as by a linear prediction filter. In particular, an adaptive adaptation of time-correlated coefficients used for the estimation is possible such that an estimation coefficient, which is assigned as a coordinate in the signal block in each case to a sample with a specific time delay, depending on the error between an estimated sample and a real from the Audio signal obtained sample is corrected, whereby the corrector is renewed at periodic intervals. In particular, a signal component estimated for a signal block becomes is also used for a signal block which follows later, if the period corresponding to the signal component still falls within the prediction period of the signal block following later. The prediction period preferably comprises the respectively first and / or the last sample of a signal block. In particular, the period lying outside the prediction period in each case forms a coherent interval in a signal block. In particular, the prediction period comprises the first n samples and / or the last m samples, where n and m natural numbers are smaller than the number of samples in the respective signal block.

Unter einem Eingangswandler bzw. einem Ausgangswandler des Hörsystems ist jede Form eines akusto-elektrischen bzw. eines elektro-akustischen Wandlers umfasst, beispielsweise ein Mikrofon bzw. ein Lautsprecher. Unter einer unmittelbaren Übertragung des ersten Audiosignals zur Signalverarbeitungseinheit ist zu verstehen, dass die Übertragung des ersten Audiosignals unmittelbar nach dessen Erzeugung stattfindet, also insbesondere ohne eine weitere, über eine Signal-Vorverarbeitung wie z.B. A/D-Wandlung und/oder Datenkompression hinaus gehende Zeitverzögerung stattfindet, wie sie z. B. durch eine langfristige physische Speicherung, welche nicht auf dem FIFO-Prinzip basiert ("first-in-first-out"), eintreten würde. Die Übertragung erfolgt dabei insbesondere dabei lokal innerhalb eines Hörgerätes, beispielsweise auf dem durch die Signalleitungen vorgegebenen Signalweg. Insbesondere erfolgt die Übertragung aber auch drahtlos, beispielsweise von einem ersten Hörgerät eines binauralen Hörsystems zu einem zweiten Hörgerät des binauralen Hörsystems.An input transducer or an output transducer of the hearing system includes any shape of an acousto-electric or an electro-acoustic transducer, for example a microphone or a loudspeaker. Direct transmission of the first audio signal to the signal processing unit is to be understood as meaning that the transmission of the first audio signal takes place immediately after its generation, that is to say in particular without another, via signal preprocessing, such as signal processing. A / D conversion and / or data compression beyond time delay takes place, as z. B. by a long-term physical storage, which is not based on the FIFO principle ("first-in-first-out"), would occur. In this case, the transmission takes place in particular locally within a hearing device, for example on the signal path predetermined by the signal lines. In particular, however, the transmission also takes place wirelessly, for example from a first hearing device of a binaural hearing system to a second hearing device of the binaural hearing system.

Unter einer unmittelbaren Filterung des ersten Audiosignals in der Signalverarbeitungseinheit ist hierzu analog zu verstehen, dass der Filterprozess für das Audiosignal unmittelbar nach dessen Eingang in der Signalverarbeitungseinheit stattfindet, also insbesondere ohne eine weitere, über die direkte Signalübertragung hinaus gehende Zeitverzögerung, wie sie z. B. durch eine langfristige Speicherung, welche nicht auf dem FIFO-Prinzip basiert ("first-in-first-out"), eintreten würde. Ebenso ist unter einer unmittelbaren Erzeugung des Ausgabe-Schallsignals aus dem Ausgabesignal zu verstehen, dass unmittelbar nach der Erzeugung des Ausgabesignals durch die Weiterverarbeitung das Ausgabesignal zum Ausgangswandler zur Ausgabe weitergegeben wird, also insbesondere ohne eine weitere, über die direkte Signalübertragung hinaus gehende Zeitverzögerung, z. B. durch eine langfristige Speicherung.Direct filtering of the first audio signal in the signal processing unit analogously means that the filtering process for the audio signal takes place immediately after its input in the signal processing unit, ie in particular without a further, beyond the direct signal transmission time delay as z. B. by a long-term storage, which is not based on the FIFO principle ("first-in-first-out"), would occur. Likewise, an immediate generation of the output sound signal from the output signal means that immediately after the generation of the output signal is passed through the further processing, the output signal to the output transducer for output, ie in particular without a further, beyond the direct signal transmission outgoing time delay, z. By long-term storage.

In Hörsystemen fällt ein wichtiger Anteil der Latenz auf die Filterbänke, welche zur Transformation der von den Eingangswandlern erzeugten Audiosignale in die Frequenz-Domäne eingesetzt werden (Analyse-Filterbänke), sowie den Filterbänken für die Rücktransformation der frequenzaufgelösten, weiterverarbeiteten Audiosignale in die Zeit-Domäne (Synthese-Filterbänke), wobei erstere meistens einen größeren Anteil aufweisen. Weiter ist bei einem binauralen Hörsystem auch die Übertragung eines Audiosignals von einem Hörgerät zum anderen für die Erzeugung eines binauralen Ausgabesignals mit einer gewissen Verzögerung verbunden. Letztere ist jedoch angesichts der Restriktionen bei der Kodierung zur Übertragung nur schwer zu verringern. Somit ist es auch im Falle eines binauralen Hörsystems vorteilhaft, für einen möglichst latenzarmen Betrieb des Hörsystems die Latenzzeit für die frequenzbandweise Filterung des Audiosignals, also streng genommen des Analyse-Filters für die Transformation in die Frequenz-Domäne, zu reduzieren.In hearing systems, an important portion of the latency falls on the filter banks, which are used to transform the audio signals generated by the input transducers into the frequency domain (analysis filter banks), and the filter banks for the inverse transformation of the frequency resolved, further processed audio signals into the time domain (Synthetic filter banks), the former usually have a larger proportion. Furthermore, in a binaural hearing system, the transmission of an audio signal from one hearing aid to another for the generation of a binaural output signal is associated with a certain delay. However, the latter is difficult to reduce given the restrictions on encoding for transmission. Thus, even in the case of a binaural hearing system, it is advantageous to reduce the latency for the frequency band-wise filtering of the audio signal, that is strictly speaking the analysis filter for the transformation into the frequency domain, for as low-latency operation of the hearing system as possible.

Um die Latenzzeit des Analyse-Filters zu reduzieren, wäre es nun zunächst möglich, die einzelnen Signal-Blöcke, welche jeweils für einen Filterprozess herangezogen werden, kurzer zu wählen, d.h., weniger Samples in einem Signal-Block zu verarbeiten, da für die Verarbeitung eines Signal-Blocks bevorzugt immer erst alle benötigten Samples des Signal-Blocks vorliegen sollten. Da jedoch die Verringerung der Samples in einem Signal-Block eine Verringerung der zu insgesamt im Signal-Block zur Verfügung stehenden Information über die Signalanteile bedeutet, führt diese ohne die Durchführung von korrigierenden Maßnahmen auch zu einer verringerten Frequenzauflösung im transformierten Signal-Block. Dies ist jedoch unerwünscht, da viele Algorithmen zur Signalverarbeitung, welche in Hörsystemen Verwendung finden, für einen im Endergebnis zufrieden stellenden Klangcharakter eine besonders frequenzselektive Anwendung erfordern.In order to reduce the latency of the analysis filter, it would now be possible to choose the individual signal blocks, which are each used for a filtering process, shorter, ie to process fewer samples in a signal block, since for the processing a signal block should preferably always be present only all the required samples of the signal block. However, since the reduction of the samples in a signal block means a reduction of the information about the signal components available overall in the signal block, this also leads to a reduced frequency resolution in the transformed signal block without the implementation of corrective measures. However, this is undesirable since many signal processing algorithms used in hearing aids require a particularly frequency-selective application for a satisfactory sound character in the end result.

Dadurch, dass nun zur Filterung die Signalanteile für den Prädiktionszeitraum eines Signal-Blocks geschätzt werden, anstatt die entsprechenden, real aus dem Audiosignal erzeugten Signalanteile zu verwenden, kann bei einer geeigneten Wahl des Prädiktionszeitraumes die effektive Länge des Signal-Blocks verringert werden, ohne dass hierdurch die Frequenzauflösung der Filterbank beeinträchtigt wird. Die Frequenzauflösung der Filterbank hängt ab vom zeitlichen Informationsgehalt der für den Filterprozess zu verwenden Signal-Blöcke, also von deren Länge. Dadurch, dass nun in einem Signal-Block für einen Zeitraum die Signalanteile geschätzt werden, kann die Latenz der Filterbank um die dem zugehörigen Prädiktionszeitraum entsprechende Dauer verringert werden.By now estimating the signal components for the prediction period of a signal block instead of using the corresponding signal components actually generated from the audio signal, the effective length of the signal block can be reduced with an appropriate choice of the prediction period, without This affects the frequency resolution of the filter bank. The frequency resolution of the filter bank depends on the temporal information content of the signal blocks to be used for the filter process, ie of their length. Since the signal components are now estimated in a signal block for a period of time, the latency of the filter bank can be reduced by the duration corresponding to the associated prediction period.

Vorzugsweise überlappen sich dabei je zwei zeitlich aufeinander folgende Signal-Blöcke teilweise. Die Definition der zeitlichen Abfolge erfolgt hierbei bevorzugt über ein Referenz-Sample für den jeweiligen Signal-Block, z.B. das erste Sample. Die Folge des beschriebenen Überlapps ist, dass die betreffenden, aufeinander folgenden Signal-Blöcke mehrere, bevorzugt aufeinander folgende Samples gemeinsam haben. Dies verbessert einerseits die zeitliche Auflösung in der Frequenz-Domäne, da hierdurch ein häufiges Aktualisieren der frequenzbandweisen Information ermöglicht wird, andererseits kann hierdurch auch der Aufwand beim Schätzen der Signalanteile verringert werden, da bereits geschätzte Signalanteile für einen nachfolgenden Block ohne einen erneuten Schätzvorgang zur Verfügung stehen.Preferably two temporally successive signal blocks overlap each other in part. The definition of the temporal sequence is preferably carried out via a reference sample for the respective signal block, e.g. the first sample. The consequence of the described overlap is that the relevant, successive signal blocks have several, preferably successive, samples in common. On the one hand, this improves the temporal resolution in the frequency domain, since this allows frequent frequency band information to be updated frequently, and on the other hand, the cost of estimating the signal components can be reduced because already estimated signal components are available for a subsequent block without a new estimation process stand.

Zweckmäßigerweise werden jeweils Signalanteile des transformierten Signal-Blocks nach verschiedenen Frequenzbändern getrennt zur Weiterverarbeitung ausgegeben. Für eine derartige Weitergabe ist die durch das Schätzen der Signalanteile der Prädiktionzeiträume reduzierte Latenz der Filterbank bei gleichbleibender hoher Frequenzauflösung besonders vorteilhaft.Expediently, signal portions of the transformed signal block are output separately according to different frequency bands for further processing. For such a transfer, the latency of the filter bank, which is reduced by estimating the signal components of the prediction periods, is particularly advantageous given a constant high frequency resolution.

Bevorzugt weist jeweils die Filterfunktion im Prädiktionszeitraum eine im Mittel geringere Transmissionsamplitude auf als außerhalb des Prädiktionszeitraumes. Dies soll bedeuten, dass der über den ganzen Prädiktionszeitraum gemittelte Wert der Transmissionsamplitude der Filterfunktion geringer ist als der über den restlichen Zeitraum des Signal-Blocks außerhalb des Prädiktionszeitraums gemittelte Wert der Transmissionsamplitude der Filterfunktion. In diesem Fall ist nämlich davon auszugehen, dass bei einer entsprechenden Filterung in die Frequenz-Domäne mittels der Filterfunktion Fehler, welche für den Prädiktionszeitraum durch Abweichungen der Schätzung der Signalanteile von den realen Signalanteilen auftreten können, infolge der im Mittel geringeren Transmissionsamplitude der Filterfunktion weitgehend unterdrückt werden, und somit nicht nennenswert in den transformierten Signal-Block eingehen.In each case, the filter function in the prediction period preferably has an average lower transmission amplitude than outside the prediction period. This is to mean that the value of the transmission amplitude of the filter function averaged over the entire prediction period is lower than that over the remaining one Period of the signal block outside the prediction period averaged value of the transmission amplitude of the filter function. In this case, it can be assumed that with a corresponding filtering in the frequency domain by means of the filter function errors that can occur for the prediction by deviating the estimate of the signal components of the real signal components, largely suppressed due to the average lower transmission amplitude of the filter function and thus do not enter significantly into the transformed signal block.

In einer vorteilhaften Ausgestaltung wird die Transmissionsamplitude der Filterfunktion jeweils durch eine logarithmisch konkave Funktion gebildet, wobei der Prädiktionszeitraum das Maximum der Transmissionsamplitude der Filterfunktion ausspart. Eine logarithmisch konkave Funktion ist definiert als eine Funktion, deren Logarithmus im Definitionsbereich - welcher hier durch die einzelnen Samples des jeweiligen Signal-Blocks gegeben ist - konkav ist. Eine derartige Funktion kann beispielsweise gegeben sein durch eine Approximation einer Gaußschen Glockenkurve über einem endlichen, diskretisierten Definitionsbereich. Der Vorteil des logarithmisch konkaven Verhaltens der Transmissionsamplitude ist, dass diese maximal zwei Wendepunkte im Definitionsbereich aufweist, und somit keinerlei Oszillationen unterworfen ist. Dies hat ein vorteilhaftes Filterverhalten zur Folge, da somit keine an sich relevanten Signalanteile mit einem Minimumswert einer Oszillation der Filterfunktion gefiltert werden.In an advantageous embodiment, the transmission amplitude of the filter function is formed in each case by a logarithmically concave function, wherein the prediction period spans the maximum of the transmission amplitude of the filter function. A logarithmically concave function is defined as a function whose logarithm is concave in the domain of definition - which is given here by the individual samples of the respective signal block. Such a function may for example be given by an approximation of a Gaussian bell curve over a finite, discretized domain of definition. The advantage of the logarithmic concave behavior of the transmission amplitude is that it has a maximum of two inflection points in the domain of definition, and thus is not subject to any oscillations. This results in an advantageous filter behavior, since thus no relevant signal components with a minimum value of an oscillation of the filter function are filtered.

Als besonders zweckmäßig erweist es sich, wenn jeweils der Prädiktionszeitraum nur konvexe Bereiche der Transmissionsamplitude der Filterfunktion beinhaltet. Eine logarithmisch konkave Funktion lässt sich darstellen als eine zu einer bestimmten logarithmisch konvexen Funktion reziproke Funktion. Eine logarithmisch konvexe Funktion ist ihrerseits wiederum konvex. Dies bedeutet, dass die hierzu reziproke, logarithmisch konkave Funktion infolge der Reziprozitätseigenschaft maximal zwei Wendepunkte aufweist.It proves to be particularly expedient if in each case the prediction period contains only convex regions of the transmission amplitude of the filter function. A logarithmic concave function can be represented as a function reciprocal to a particular logarithmic convex function. A logarithmically convex function is in turn convex. This means that the reciprocal, logarithmically concave function due to the reciprocity property has a maximum of two inflection points.

Bei einer geeigneten Wahl der Filterfunktion, beispielsweise einer Approximation einer Gaußschen Glockenkurve, liegt das Maximum der Transmissionsamplitude in einem konvexen Bereich, so dass jenseits der Wendepunkte die Transmissionsamplitude konkav ausläuft. In diesen beiden Bereichen weist die Transmissionsamplitude üblicherweise bereits hinreichend geringe Werte auf, so dass mit der Wahl des Prädiktionszeitraums in wenigstens einem der beiden Bereiche sicher gestellt werden kann, dass Fehler, welche aufgrund der Abweichungen der Schätzung der Signalanteile von den realen Signalanteilen auftreten können, infolge der hinreichend geringeren Transmissionsamplitude der Filterfunktion weitgehend unterdrückt werden, und somit nicht nennenswert in den transformierten Signal-Block eingehen.With a suitable choice of the filter function, for example an approximation of a Gaussian bell curve, the maximum of the transmission amplitude lies in a convex region, so that beyond the inflection points the transmission amplitude runs concavely. In these two ranges, the transmission amplitude usually already has sufficiently low values, so that the choice of the prediction time period in at least one of the two ranges can ensure that errors which can occur due to deviations in the estimation of the signal components from the real signal components, be largely suppressed due to the sufficiently lower transmission amplitude of the filter function, and thus not significantly enter into the transformed signal block.

Als weiter vorteilhaft erweist es sich, wenn für den Prädiktionszeitraum wenigstens eines Signal-Blocks als Signalanteile jeweils ein leeres Signal geschätzt wird. Ein leeres Signal ist hierbei dasjenige Signal, welches für den betreffenden Zeitraum keinerlei Amplitude aufweist. Das Schätzen eines leeren Signals erfolgt insbesondere für den Fall, dass die Signalanteile des Audiosignals, welche für das Schätzverfahren der Signalanteile des Prädiktionszeitraumes verwendet werden, infolge mangelhafter Korrelationen keine qualitativ hinreichend hochwertige Schätzung der Signalanteile zulassen. Dies kann beispielsweise auftreten, wenn im Audiosignal ein hoher Anteil an weißem Rauschen vorliegt, was die Korrelation aufeinander folgender Samples verringert und damit eine Prädiktion erschwert.It proves to be further advantageous if an empty signal is respectively estimated as signal components for the prediction period of at least one signal block. An empty signal is in this case the signal which has no amplitude for the period in question. The estimation of an empty signal is carried out in particular in the event that the signal components of the audio signal which are used for the estimation method of the signal components of the prediction period do not allow a qualitatively sufficiently high-quality estimate of the signal components as a result of insufficient correlations. This can occur, for example, if there is a high proportion of white noise in the audio signal, which reduces the correlation of successive samples and thus makes prediction more difficult.

Insbesondere sind mittels einer Prädiktion geschätzte, vom leeren Signal verschiedene Signalanteile auf die Qualität der Schätzung hin mit den entsprechenden realen Signalanteilen des Audiosignals zu vergleichen, um die Qualität der Prädiktion bewerten zu können. Im Fall einer zu hohen Abweichung - definiert über ein Abweichungsmaß wie z. B. einen über mehrere Samples gemittelten Differenzbetrag und eine zugehörige Oberschranke für das Abweichungsmaß - wird statt der prädizierten Signalanteile ein leeres Signal als für den Prädiktionszeitraum geschätzter Signalanteil festgelegt. Ebenso ist es möglich, die Signalanteile des Audiosignals noch vor der Prädiktion auf Korrelationen hin zu überprüfen, und bei einer zu geringen Korrelation direkt ein leeres Signal als Signalanteil für den Prädiktionszeitraum festzulegen.In particular, by means of a prediction, estimated signal components, which are different from the empty signal, with respect to the quality of the estimate, are to be compared with the corresponding real signal components of the audio signal in order to be able to evaluate the quality of the prediction. In the case of excessive deviation - defined by a deviation measure such. B. an averaged over several samples difference and an associated upper bound for the deviation measure - is determined instead of the predicted signal components, an empty signal as estimated for the prediction signal component. It is also possible to check the signal components of the audio signal for correlations even before the prediction, and to set an empty signal as signal component for the prediction period if the correlation is too low.

In einer weiter vorteilhaften Ausgestaltung des Verfahrens zum latenzarmen Betrieb eines Hörsystems wird aus dem Schallsignal durch einen vom ersten Eingangswandler räumlich getrennten zweiten Eingangswandler ein zweites Audiosignal erzeugt, wobei das zweite Audiosignal unmittelbar zur Signalverarbeitungseinheit übertragen und mittels einer zweiten Filterbank gefiltert wird, und wobei Signalanteile des gefilterten zweiten Audiosignals in der Signalverarbeitungseinheit weiterverarbeitet und zur Erzeugung des Ausgabesignals verwendet werden.In a further advantageous embodiment of the method for low-latency operation of a hearing system, a second audio signal is generated from the sound signal by a second input transducer spatially separated from the first input transducer, the second audio signal is transmitted directly to the signal processing unit and filtered by a second filter bank, and wherein signal components of filtered second audio signal in the signal processing unit further processed and used to generate the output signal.

Insbesondere erfolgt die Filterung des zweiten Audiosignals mittels der zweiten Filterbank gemäß dem vorbeschriebenen Verfahren zur Reduktion der Latenzzeit einer Filterbank zur Filterung eines Audiosignals. Unter einer unmittelbaren Übertragung des zweiten Audiosignals zur Signalverarbeitungseinheit ist zu verstehen, dass die Übertragung des zweiten Audiosignals ohne eine weitere, über eine Signal-Vorverarbeitung wie z.B. A/D-Wandlung und/oder Datenkompression sowie die direkte Signalübertragung hinaus gehende Zeitverzögerung stattfindet, wie sie z. B. durch eine langfristige physikalische Speicherung, welche nicht auf dem FIFO-Prinzip basiert ("first-in-first-out"), eintreten würde.In particular, the filtering of the second audio signal by means of the second filter bank in accordance with the above-described method for reducing the latency of a filter bank for filtering an audio signal. Immediate transmission of the second audio signal to the signal processing unit is understood to mean that the transmission of the second audio signal without another, via a signal preprocessing such. A / D conversion and / or data compression and the direct signal transmission beyond time delay takes place, as z. B. by a long-term physical storage, which would not based on the FIFO principle ("first-in-first-out") would occur.

Diese genannte Ausgestaltung ermöglicht durch das Verfahren insbesondere einen latenzarmen Betrieb eines binauralen Hörsystems unter Berücksichtigung der in einem solchen Hörsystem infolge der für die Erzeugung des binauralen Hörempfindens stattfindenden Signalübertragung von einem Hörgerät zum anderen auftretenden Besonderheiten. Da oftmals bei einem binauralen Hörsystem zur Kompression der reale Informationsgehalt von Signalanteilen des Audiosignals, welches vom jeweils anderen Hörgerät für die Erzeugung des binauralen Hörempfindens empfangen wird, zur bessren Übertragung reduziert wird, beispielsweise durch Datenkompression, ist der durch die Schätzung der Signalanteile im Prädiktionszeitraum mögliche induzierte Fehler in seiner Bedeutung reduziert. Bei diesem Audiosignal findet durch die Übertragung bereits ein Informationsverlust statt, so dass die Abweichungen durch die Schätzung für den Prädiktionszeitraum keine zusätzliche kumulative, sondern nur eine als alternativ zu betrachtende Fehlerquelle darstellen. Kurz gesagt macht es wenig aus, ob ein Fehler statistisch durch die Datenkompression oder die Schätzung erfolgt.This named embodiment makes possible, in particular, a low-latency operation of a binaural hearing system, taking into account the special features occurring in such a hearing system as a result of the signal transmission from one hearing aid to another occurring for the generation of the binaural auditory sensation. Since, in the case of a binaural hearing system for compression, the real information content of signal portions of the audio signal received by the respective other hearing device for the generation of the binaural hearing sensation is often reduced for better transmission, for example by data compression, this is possible by estimating the signal components in the prediction period reduced errors in its meaning. In the case of this audio signal, there is already a loss of information due to the transmission, so that the deviations by the estimation for the prediction period do not represent an additional cumulative source of error but only an alternative source of error to be considered as an alternative. In short, it makes little difference whether an error is made statistically by the data compression or the estimation.

Ein weiterer Vorteil der Anwendung des Verfahrens zum latenzarmen Betrieb eines binauralen Hörsystems ist, dass durch die beschriebene Übertragung der Audiosignale bereits eine gewisse Latenz von mehreren ms ins Hörsystem eingeführt wird. Die Reduktion weitere möglicher Latenzen, wie z.B. im vorliegenden Fall durch die Filterbänke, hilft hier, die Verluste der Klangqualität durch Kammfiltereffekte möglichst gering zu halten.A further advantage of using the method for low-latency operation of a binaural hearing system is that a certain latency of several ms is already introduced into the hearing system through the described transmission of the audio signals. The reduction of further possible latencies, e.g. in the present case through the filter banks, here helps to minimize the losses of the sound quality by comb filter effects as low as possible.

Die Erfindung nennt weiter ein Hörgerät, umfassend wenigstens einen Eingangswandler zur Erzeugung eines Audiosignals, einen Ausgangswandler zur Erzeugung eines Ausgangs-Schallsignals, sowie eine lokalen Signalverarbeitungseinheit mit einer ersten Filterbank, welches zur Durchführung des vorbeschriebenen Verfahrens zur Reduktion der Latenzzeit einer Filterbank zur Filterung eines Audiosignals eingerichtet ist. Die für das Verfahren und seine Weiterbildungen angegebenen Vorteile können dabei sinngemäß auf das Hörgerät übertragen werden.The invention further provides a hearing aid, comprising at least one input transducer for generating an audio signal, an output transducer for generating an output sound signal, and a local signal processing unit having a first filter bank, which for carrying out the above-described method for reducing the latency of a filter bank for filtering an audio signal is set up. The advantages stated for the method and its developments can be transferred analogously to the hearing aid.

Die Erfindung nennt zudem ein binaurales Hörsystem mit zwei vorbeschriebenen Hörgeräten, welches zur Durchführung des Verfahrens zum latenzarmenBetrieb eines Hörsystems mit wenigstens zwei Eingangswandlern eingerichtet ist. Die für das Verfahren und seine Weiterbildungen angegebenen Vorteile können dabei sinngemäß auf das binaurale Hörsystem übertragen werden.The invention also mentions a binaural hearing system with two hearing aids as described above, which is set up to carry out the method for low-latency operation of a hearing system with at least two input transducers. The advantages specified for the method and its developments can be transferred analogously to the binaural hearing system.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Hierbei zeigen jeweils schematisch:

Fig. 1
in einem Blockdiagram ein binaurales Hörsystem mit zwei Hörgeräten, und
Fig. 2
in einer Zeitdarstellung ein von einem Hörgerät nach Fig. 1 erzeugtes Audiosignal und in einer Ausschnittdarstellung ein Signal-Block des Audiosignals mit einer Filterfunktion und einem Prädiktionszeitraum.
An embodiment of the invention will be explained in more detail with reference to a drawing. Here are shown schematically in each case:
Fig. 1
in a block diagram a binaural hearing system with two hearing aids, and
Fig. 2
in a time representation of a hearing aid Fig. 1 generated audio signal and in a detail representation of a signal block of the audio signal with a filter function and a prediction period.

Einander entsprechende Teile und Größen sind in allen Figuren jeweils mit gleichen Bezugszeichen versehen.Corresponding parts and sizes are provided in all figures with the same reference numerals.

In Fig. 1 ist schematisch in einem Blockdiagramm ein binaurales Hörsystem 1 dargestellt. Das binaurale Hörsystem 1 wird hierbei gebildet durch ein erstes Hörgerät 2 und ein zweites Hörgerät 4. Das erste Hörgerät 2 weist einen als Mikrofon 6 ausgestalteten ersten Eingangswandler 8 auf, welcher aus einem Schallsignal 9 ein erstes Audiosignal 10 erzeugt. Das zweite Hörgerät 4 weist einen als Mikrofon 12 ausgestalteten zweiten Eingangswandler 14 auf, welcher aus dem Schallsignal 9 ein zweites Audiosignal 16 erzeugt. Das erste Audiosignal 10 bzw. das zweite Audiosignal 16 werden im jeweiligen Hörgerät 2, 4 jeweils durch eine lokale Signal-Vorverarbeitung 18, 20, welche jeweils insbesondere eine A/D-Wandlung umfasst, für die weiteren Signalverarbeitungsprozesse vorbereitet. Die lokale Signal-Vorverarbeitung 18, 20 umfasst hierbei insbesondere nur Laufzeit-Prozesse, d.h., solche Prozesse, welche über die Zeitdauer der stattfindenden Signalverarbeitung selbst hinaus keine weitere Verzögerung, insbesondere keine längerfristigen Speicher- und Ladevorgänge der Signalanteile beinhalten.In Fig. 1 1 is a schematic block diagram of a binaural hearing system 1. The binaural hearing system 1 is in this case formed by a first hearing device 2 and a second hearing device 4. The first hearing device 2 has a first input transducer 8 configured as a microphone 6, which generates a first audio signal 10 from a sound signal 9. The second hearing device 4 has a second input transducer 14 configured as a microphone 12, which generates a second audio signal 16 from the sound signal 9. The first audio signal 10 and the second audio signal 16 are respectively prepared in the respective hearing device 2, 4 by a local signal preprocessing 18, 20, which in each case in particular comprises an A / D conversion, for the further signal processing processes. In this case, the local signal preprocessing 18, 20 comprises in particular only runtime processes, ie those processes which do not involve any further delay, in particular no longer-term storage and charging processes of the signal components, over the duration of the signal processing taking place.

Das erste Audiosignal 10 wird unmittelbar nach der lokalen Signal-Vorverarbeitung 18 zunächst in einem binauralen Übertragungsprozess 22 vom ersten Hörgerät 2 zum zweiten Hörgerät 4 übertragen, wo es in einer Signalverarbeitungseinheit 24 in einer ersten Filterbank 26 in noch zu beschreibenden Weise gefiltert wird. Der binaurale Übertragungsprozess 22 erfolgt dabei unmittelbar nach der lokalen-Signal-Vorverarbeitung 18, also insbesondere ohne weitere Verzögerung, insbesondere ohne längerfristige Speicher- und erneute Ladevorgänge der betreffenden Signalanteile über einen FIFO-Speicher hinaus. Auf das gefilterte erste Audiosignal 28 werden nun frequenzbandweise Signalverarbeitungsalgorithmen 30 wie z.B. Rauschunterdrückung, Richtmikrofonie oder Dynamikkompression angewandt.The first audio signal 10 is first transmitted immediately after the local signal pre-processing 18 in a binaural transmission process 22 from the first hearing aid 2 to the second hearing aid 4, where it is filtered in a signal processing unit 24 in a first filter bank 26 in a manner to be described. The binaural transmission process 22 takes place immediately after the local signal preprocessing 18, that is, in particular without further delay, in particular without longer-term storage and recharging the relevant signal components on a FIFO memory addition. The filtered first audio signal 28 will now be subjected to frequency bandwise signal processing algorithms 30, e.g. Noise suppression, directional microphone or dynamic compression applied.

Das zweite Audiosignal 16 wird unmittelbar nach der lokalen Signal-Vorverarbeitung 20 der Signalverarbeitungseinheit 24 zugeführt, wo es zunächst in einer zweiten Filterbank 32 in noch zu beschreibenden Weise gefiltert wird, wobei als ein gefiltertes zweites Audiosignal 34 die jeweiligen Signalanteile in einzelnen Frequenzbändern getrennt weitergegeben werden. Im aus der zweiten Filterbank 32 resultierenden gefilterten zweiten Audiosignal 34 sind die jeweiligen Signalanteile in einzelnen Frequenzbändern getrennt ausgegeben. Auch auf das gefilterte zweite Audiosignal 34 werden nun frequenzbandweise Signalverarbeitungsalgorithmen 28 wie z.B. Rauschunterdrückung, Richtmikrofonie oder Dynamikkompression angewandt. Aus dem gefilterten ersten Audiosignal 26 und dem gefilterten zweiten Audiosignal 34 wird nach der frequenzbandweisen Signalverarbeitung 28 ein Ausgangsignal 36 erzeugt, welches lokal das binaurale Hörempfinden am Ort des zweiten Hörgeräts 4 wiederspiegelt.The second audio signal 16 is supplied immediately after the local signal pre-processing 20 of the signal processing unit 24, where it is first filtered in a second filter bank 32 in a manner to be described, wherein as a filtered second audio signal 34, the respective signal components are transmitted separately in individual frequency bands. In the filtered second audio signal 34 resulting from the second filter bank 32, the respective signal components are output separately in individual frequency bands. Also on the filtered second audio signal 34 frequency bandwise signal processing algorithms 28 such as noise reduction, directional microphone or dynamic compression are now applied. From the filtered first audio signal 26 and the filtered second audio signal 34, an output signal 36 is generated after the frequency band-wise signal processing 28, which locally reflects the binaural hearing at the location of the second hearing device 4.

Das Ausgangssignal 36 wird unmittelbar, also insbesondere ohne weitere längerfristige Speicher- und erneute Ladevorgänge der Signalanteile, von einem als Lautsprecher 38 ausgestalteten Ausgangswandler 40 in ein Ausgabe-Schallsignal 42 umgewandelt.The output signal 36 is converted directly, ie in particular without further long-term storage and recharges of the signal components, from an output transducer 40 designed as a loudspeaker 38 into an output sound signal 42.

In Fig. 2 ist gegen eine Zeitachse t das erste Audiosignal 10 nach Fig. 1 aufgetragen, welches in einzelne, sich teilweise überlappende Signal-Blöcke 50a-f aufgeteilt wird. Die einzelnen Signal-Blöcke 50a-f werden hierbei gebildet aus einer Vielzahl an aufeinander folgenden Samples des ersten Audiosignals 10, wobei einzelne Samples infolge des Überlapps der aufeinander folgenden Signal-Blöcke 50a-f jeweils in wenigstens zwei Signal-Blöcken auftreten. Die einzelnen Signal-blöcke 50a-f werden nun jeweils in noch zu beschreibender Weise die Frequenz-Domäne transformiert. Durch den kurzen zeitlichen Abstand je zweier aufeinander folgender Signal-Blöcke 50a-f können somit in der Frequenz-Domäne die spektralen Signalanteile des ersten Audiosignals 10 in kurzen Zeitabständen aktualisiert werden. Infolge der relativ hohen Anzahl an einzelnen Samples und somit des hohen zeitaufgelösten Informationsgehaltes je Signal-Block 50a-f liegt zudem auch eine hohe spektrale Auflösung des ersten Audiosignals 10 nach Transformation in die Frequenz-Domäne vor. Um die bei einer hohen zeitlichen Auflösung auftretende hohe Latenz beim Filterprozess und der Transformation in die Frequenz-Domäne zu reduzieren, werden für die einzelnen Signal-Blöcke 50a-f bestimmte Signalanteile geschätzt, was für den Signal-Block 50c anhand einer Ausschnittdarstellung gezeigt wird.In Fig. 2 is against a time axis t, the first audio signal 10 after Fig. 1 which is split into individual partially overlapping signal blocks 50a-f. The individual signal blocks 50a-f are in this case formed from a large number of successive samples of the first audio signal 10, individual samples occurring as a result of the overlap of the successive signal blocks 50a-f in at least two signal blocks. The individual signal blocks 50a-f are now each transformed in a manner to be described, the frequency domain. Due to the short time interval of each of two consecutive signal blocks 50a-f, the spectral signal components of the first audio signal 10 can thus be updated in short intervals in the frequency domain. Due to the relatively high number of individual samples and thus the high time-resolved information content per signal block 50a-f, there is also a high spectral resolution of the first audio signal 10 after transformation into the frequency domain. In order to reduce the high latency occurring in the filtering process and the transformation into the frequency domain at a high temporal resolution, the individual signal blocks 50a-f are determined Signal portions, which is shown for the signal block 50c on the basis of a detail representation.

Für den Signal-Block 50c sind gegen eine Zeitachse t' die einzelnen realen Signalanteile 52a, 52b gezeigt. Die realen Signalanteile 52a, 52b sind dabei jeweils gegeben durch die Amplitude des entsprechenden Samples. Weiter ist für den Signal-Block 50c die Transmissionsamplitude 54c der Filterfunktion 56c gezeigt, welche im vorliegenden Fall näherungsweise gegeben ist durch eine Gaußsche Glockenkurve.For the signal block 50c, the individual real signal components 52a, 52b are shown against a time axis t '. The real signal components 52a, 52b are each given by the amplitude of the corresponding sample. Further, for the signal block 50c, the transmission amplitude 54c of the filter function 56c is shown, which in the present case is approximately given by a Gaussian bell curve.

Die Filterfunktion 56c stellt hierbei eine Fensterfunktion dar, mit der die Ränder des Signal-Blocks 50c für die Transformation in die Frequenz-Domäne geglättet "ausgeblendet" werden sollen. Dies erfolgt, da ohne eine derartige Fensterfunktion die Fourier-Transformation der Signalanteile des Signal-Blocks 50c de facto eine Fourier-Transformation der Signalanteile des ersten Audiosignals 10 ist, welche mit einer Rechteckfunktion entsprechend der Dauer des Signal-Blocks multipliziert werden. Infolge des Faltungstheorems bedeutet diese Multiplikation in der Zeit-Domäne eine Faltung der Frequenzanteile des ersten Audiosignals 10 mit der Fourier-Transformierten der Rechteckfunktion, welche gegeben ist durch eine stark oszillierende sin(x)/x- bzw. Sinc-Funktion. Um derartige Oszillationen zu vermeiden, werden die Ränder des Signal-Blocks 50c für die Transformation in die Frequenz-Domäne mittels einer geeigneten Filterfunktion 56c "ausgeblendet". Dies geschieht, indem die Transmissionsamplitude 54c der Filterfunktion 56c an den Rändern des Signal-Blocks 50c möglichst oszillationsfrei, also insbesondere mit möglichst wenigen Wendepunkten, gegen Null konvergiert. Eine Funktion mit derartigen Eigenschaften ist insbesondere gegeben durch eine logarithmisch konkave Funktion wie z.B. die approximierte Gaußsche Glockenkurve des vorliegenden Falls.The filter function 56c in this case represents a window function with which the edges of the signal block 50c for the transformation into the frequency domain are to be smoothed out. This is because without such a window function, the Fourier transform of the signal components of the signal block 50c is de facto a Fourier transform of the signal components of the first audio signal 10, which are multiplied by a rectangular function corresponding to the duration of the signal block. As a result of the convolution theorem, this multiplication in the time domain means a convolution of the frequency components of the first audio signal 10 with the Fourier transform of the rectangular function, which is given by a strongly oscillating sin (x) / x or Sinc function. In order to avoid such oscillations, the edges of the signal block 50c for the transformation into the frequency domain are "hidden" by means of a suitable filter function 56c. This is done by the transmission amplitude 54c of the filter function 56c converges to zero at the edges of the signal block 50c as free of oscillation as possible, ie in particular with as few turning points as possible. In particular, a function having such properties is given by a logarithmic concave function, such as e.g. the approximated Gaussian bell curve of the present case.

Der beschriebene Verlauf der Transmissionsamplitude 54c der Filterfunktion 56c kann nun dazu ausgenutzt werden, die Latenz der ersten Filterbank 24 zu verringern, ohne dabei an Auflösungsvermögen in der Frequenz-Domäne einzubüßen. Hierfür wird ein Teilintervall 58c am zeitlichen Ende des Signal-Blocks 50c als ein Prädiktionszeitraum 60c definiert. Das Teilintervall 58c liegt jenseits des Wendepunktes 62c der Transmissionsamplitude 54c, also insbesondere weit abseits des Maximums 64c der Transmissionsamplitude 54c, so dass im Teilintervall 58c, welches den Prädiktionszeitraum 60c definiert, die Transmissionsamplitude 54c nur noch geringe Werte aufweist. Für den Prädiktionszeitraum 60c werden nun mittels eines Prädiktionsalgorithmus, z.B. eines linearen Prädiktionsfilters, statt der realen Signalanteile 52b dort die für die Transformation zu verwendenden Signalanteile geschätzt. Die im Prädiktionszeitraum 60c geschätzten Signalanteile 66b und die Signalanteile 52a des Signal-Blocks 50c außerhalb des Prädiktionszeitraums 60c bilden nun einen prädizierten Signal-Block 68c.The described profile of the transmission amplitude 54c of the filter function 56c can now be exploited to reduce the latency of the first filter bank 24, without losing any of the resolution capability in the frequency domain. For this purpose, a sub-interval 58c at the end of the signal block 50c as a Prediction period 60c defined. The sub-interval 58c lies beyond the point of inflection 62c of the transmission amplitude 54c, ie in particular far away from the maximum 64c of the transmission amplitude 54c, so that in the sub-interval 58c, which defines the prediction time 60c, the transmission amplitude 54c has only low values. For the prediction period 60c, the signal components to be used for the transformation are now estimated there by means of a prediction algorithm, for example a linear prediction filter, instead of the real signal components 52b. The signal portions 66b estimated in the prediction period 60c and the signal portions 52a of the signal block 50c outside the prediction period 60c now form a predicted signal block 68c.

Dieser prädizierte Signal-Block 68c wird nun mit der Filterfunktion 56c multipliziert, und mittels einer schnellen Fourier-Transformation in die Frequenz-Domäne transformiert, so dass dort die frequenzaufgelöste Information des transformierten Signal-Blocks 50c für eine Weiterverarbeitung mittels Frequenzband-abhängiger Signalverarbeitungsalgorithmen zur Verfügung steht. Auch für die anderen Signal-Blöcke 50a, 50b, 50d-f erfolgt das beschriebene Vorgehen, Signalanteile für einen anhand der jeweils zu verwendenden Filterfunktion günstig zu wählenden Prädiktionszeitraum zu schätzen, um so die Latenz für die Transformation in die Frequenz-Domäne zu verringern, da dann die jeweils letzten Samples eines Signal-Blocks noch gar nicht vorzuliegen brauchen, so dass mit der Transformation infolge der Schätzung mehrere ms früher begonnen werden kann.This predicted signal block 68c is now multiplied by the filter function 56c and transformed into the frequency domain by means of a fast Fourier transformation, so that there the frequency-resolved information of the transformed signal block 50c is available for further processing by means of frequency band-dependent signal processing algorithms stands. For the other signal blocks 50a, 50b, 50d-f, too, the procedure described is used to estimate signal components for a prediction period which is to be chosen favorably on the basis of the respective filter function to be used, in order thus to reduce the latency for the transformation into the frequency domain. since then the last samples of a signal block need not yet exist, so that the transformation can be started several ms earlier due to the estimation.

Eine wichtige Rolle spielt hierbei der Verlauf der Transmissionsamplitude 54c der Filterfunktion 56c. Ein möglicher Fehler, welcher durch die Abweichung der für den Prädiktionszeitraum 60c geschätzten Signalanteile 66b von den realen Signalanteilen 52b ergeben könnte, wird dadurch unterdrückt, dass für den Prädiktionszeitraum 60c die Transmissionsamplitude 54c bezogen auf ihr Maximum 64c nur noch vergleichsweise geringe Werte aufweist, und somit durch die entsprechende Multiplikation mit der Filterfunktion 56c die geschätzten Signalanteile 66b ohnehin nur einen geringen Beitrag zum transformierten Signal-Block leisten. Dieser Beitrag ist jedoch für die spektrale Auflösung wichtig. Insbesondere tonale Signalanteile lassen sich ohnehin mittels üblicher Prädiktionsmethoden relativ gut schätzen. Selbst bei einem weißen Rauschen, welches infolge seiner statischen Eigenschaften ungünstig zu schätzen ist, liefert infolge der genannten Unterdrückung der Fehler durch eventuelle Abweichungen das beschriebene Verfahren gute Resultate.An important role in this case plays the course of the transmission amplitude 54c of the filter function 56c. A possible error which could result from the deviation of the signal portions 66b estimated for the prediction period 60c from the real signal portions 52b is suppressed by the fact that for the prediction period 60c the transmission amplitude 54c has only comparatively small values relative to its maximum 64c, and thus by the corresponding multiplication with the filter function 56c, the estimated signal components 66b make only a small contribution to the transformed signal block anyway. However, this contribution is important for the spectral resolution. In particular, tonal signal components can be estimated relatively well anyway by means of conventional prediction methods. Even with a white noise, which is unfavorable due to its static properties, due to the mentioned suppression of the errors due to possible deviations, the described method gives good results.

Im binauralen Hörsystem 1 der Fig. 1 wird das erste Audiosignal 10 in der ersten Filterbank 24 gemäß des anhand der Fig. 2 beschriebenen Verfahrens gefiltert. Die Filterung des zweiten Audiosignals 16 in der zweiten Filterbank 32 kann auf die gleiche Art erfolgen; ebenso kann hierfür jedoch auch ein konventionelles Filterverfahren - also ohne Schätzung von Signalanteilen für einen jeweiligen Prädiktionszeitraum der einzelnen Signal-Blöcke - verwendet werden. Die Entscheidung hierüber wird insbesondere in Abhängigkeit der zu tolerierenden Gesamtlatenz des binauralen Hörsystems 1 und der Verzögerung getroffen, welche durch den binauralen Übertragungsprozess verursacht wird.In the binaural hearing system 1 of Fig. 1 is the first audio signal 10 in the first filter bank 24 according to the basis of Fig. 2 described method filtered. The filtering of the second audio signal 16 in the second filter bank 32 can be done in the same way; however, a conventional filter method-that is to say without estimation of signal components for a respective prediction period of the individual signal blocks-can also be used for this purpose. The decision on this is made in particular as a function of the tolerable overall latency of the binaural hearing system 1 and the delay caused by the binaural transmission process.

Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, ist die Erfindung nicht durch dieses Ausführungsbeispiel eingeschränkt. Andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been illustrated and described in detail by the preferred embodiment, the invention is not limited by this embodiment. Other variations can be deduced therefrom by those skilled in the art without departing from the scope of the invention.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Binaurales HörsystemBinaural hearing system
22
erstes Hörgerätfirst hearing aid
44
zweites Hörgerätsecond hearing aid
66
Mikrofonmicrophone
88th
erster Eingangswandlerfirst input converter
99
Schallsignalsound signal
1010
erstes Audiosignalfirst audio signal
1212
Mikrofonmicrophone
1414
zweiter Eingangswandlersecond input converter
1616
zweites Audiosignalsecond audio signal
1818
lokale Signal-Vorverarbeitunglocal signal preprocessing
2020
lokale Signal-Vorverarbeitunglocal signal preprocessing
2222
binauraler Übertragungsprozessbinaural transmission process
2424
SignalverarbeitungseinheitSignal processing unit
2626
erste Filterbankfirst filter bank
2828
gefiltertes erstes Audiosignalfiltered first audio signal
3030
frequenzbandweise Signalverarbeitungfrequency bandwise signal processing
3232
zweite Filterbanksecond filter bank
3434
gefiltertes zweites Audiosignalfiltered second audio signal
3636
Ausgangssignaloutput
3838
Lautsprecherspeaker
4040
Ausgangswandleroutput transducer
4242
Ausgabe-SchallsignalOutput sound signal
50a-f50a-f
Signal-BlockSignal block
52a, b52a, b
reale Signalanteilereal signal components
54c54c
Transmissionsamplitudetransmission amplitude
56c56c
Filterfunktionfilter function
58c58c
Teilintervallsubinterval
60c60c
PrädiktionszeitraumPrädiktionszeitraum
62c62c
Wendepunktturning point
64c64c
Maximummaximum
66b66b
geschätzte Signalanteileestimated signal components
68c68c
prädizierte Signal-Blockpredicted signal block
t, t't, t '
Zeitachsetimeline

Claims (11)

  1. Method for reducing the latency period of a filter bank (26, 32) for filtering an audio signal (10, 16), wherein a large number of signal blocks (50a-f) in the time domain are formed from the audio signal (10, 16), wherein for at least a plurality of the signal blocks (50a-f) in each instance
    - a filter function (56c) is predetermined,
    - at least one partial interval (58c) of the signal block (50a-f) is predetermined as a prediction period (60c),
    - signal components (66b) of the signal block (50a-f) in the at least one partial interval (58c) are estimated for the prediction period (60c), and a predicted signal block (68c) is generated from the signal components (66b) estimated for the prediction period (60c) and from the signal components (52a) of the signal block (50a-f) outside the prediction period (60c), and
    - the predicted signal block (68c), filtered with the predetermined filter function (56c), is transformed into the frequency domain, and by this means a transformed signal block is formed, and
    - signal components of the transformed signal block are output for further processing.
  2. Method according to Claim 1,
    wherein each two temporally consecutive signal blocks (50a-f) partially overlap.
  3. Method according to Claim 1 or Claim 2,
    wherein in each instance signal components of the transformed signal block according to various frequency bands are output separately for further processing (30) .
  4. Method according to one of the preceding claims,
    wherein in each instance the filter function (56c) exhibits a smaller - on average - transmission amplitude (54c) within the prediction period (60c) than outside the prediction period (60c).
  5. Method according to Claim 4,
    wherein the transmission amplitude (54c) of the filter function (56c) is constituted in each instance by a logarithmically concave function, and
    wherein the prediction period (60c) omits the maximum (64c) of the transmission amplitude (54c) of the filter function (56c).
  6. Method according to Claim 5,
    wherein in each instance the prediction period (60c) includes only convex regions of the transmission amplitude (54c) of the filter function (56c).
  7. Method according to one of the preceding claims,
    wherein a blank signal is estimated in each instance as signal components (66b) for the prediction period (60c) of at least one signal block (50a-f).
  8. Method for low-latency operation of a hearing system (1),
    wherein a first audio signal (10) is generated from an acoustic signal (9) by a first input transducer (8), wherein the first audio signal (10) is transmitted immediately to a signal-processing unit (24) and filtered immediately in the signal-processing unit (24) by means of a first filter bank (26) in accordance with a method according to one of the preceding claims, wherein signal components of the filtered first audio signal (28) are subjected to further processing (30) in the signal-processing unit (24) and used for generating an output signal (36), and
    wherein an output acoustic signal (42) is generated immediately from the output signal (36) by an output transducer (40).
  9. Method according to Claim 8,
    wherein a second audio signal (16) is generated from the acoustic signal (9) by a second input transducer (14) spatially separated from the first input transducer (8),
    wherein the second audio signal (16) is transmitted immediately to the signal-processing unit (24) and filtered by means of a second filter bank (32), and wherein signal components of the filtered second audio signal (16) are subjected to further processing in the signal-processing unit (24) and used for generating the output signal (36).
  10. Hearing aid (2, 4), comprising at least one input transducer (8, 14) for generating an audio signal (10, 16), an output transducer (40) for generating an output acoustic signal (42), and also a signal-processing unit (24) with a first filter bank (26), which hearing aid has been set up to implement the method according to Claim 8 or Claim 9.
  11. Binaural hearing system (1) with two hearing aids (2, 4) according to Claim 10, which has been set up to implement the method according to Claim 9.
EP16204529.8A 2016-01-19 2016-12-15 Method for reducing latency of a filter bank for filtering an audio signal and method for low latency operation of a hearing system Active EP3197181B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016200637.1A DE102016200637B3 (en) 2016-01-19 2016-01-19 Method for reducing the latency of a filter bank for filtering an audio signal and method for low-latency operation of a hearing system

Publications (2)

Publication Number Publication Date
EP3197181A1 EP3197181A1 (en) 2017-07-26
EP3197181B1 true EP3197181B1 (en) 2018-09-26

Family

ID=57714385

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16204529.8A Active EP3197181B1 (en) 2016-01-19 2016-12-15 Method for reducing latency of a filter bank for filtering an audio signal and method for low latency operation of a hearing system

Country Status (5)

Country Link
US (1) US10142741B2 (en)
EP (1) EP3197181B1 (en)
CN (1) CN106982409B (en)
DE (1) DE102016200637B3 (en)
DK (1) DK3197181T3 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018206689A1 (en) * 2018-04-30 2019-10-31 Sivantos Pte. Ltd. Method for noise reduction in an audio signal
DE102018207780B3 (en) 2018-05-17 2019-08-22 Sivantos Pte. Ltd. Method for operating a hearing aid
CN112218221B (en) * 2020-10-21 2022-06-03 歌尔智能科技有限公司 Hearing aid adapter and control method
US11330376B1 (en) 2020-10-21 2022-05-10 Sonova Ag Hearing device with multiple delay paths
DE102021205251B4 (en) 2021-05-21 2024-08-08 Sivantos Pte. Ltd. Method and device for frequency-selective processing of an audio signal with low latency
DE102023200581A1 (en) 2023-01-25 2024-07-25 Sivantos Pte. Ltd. Method for operating a hearing instrument

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3636361B2 (en) * 1992-07-07 2005-04-06 レイク・テクノロジイ・リミテッド Digital filter with high accuracy and high efficiency
SE517525C2 (en) * 1999-09-07 2002-06-18 Ericsson Telefon Ab L M Method and apparatus for constructing digital filters
US7277554B2 (en) * 2001-08-08 2007-10-02 Gn Resound North America Corporation Dynamic range compression using digital frequency warping
US8494193B2 (en) * 2006-03-14 2013-07-23 Starkey Laboratories, Inc. Environment detection and adaptation in hearing assistance devices
DK2027750T3 (en) * 2006-06-13 2012-05-07 Phonak Ag Method and system for detecting acoustic shock and using this method in hearing aids
TWI458258B (en) * 2009-02-18 2014-10-21 Dolby Int Ab Low delay modulated filter bank and method for the design of the low delay modulated filter bank
CN102256200A (en) * 2010-05-19 2011-11-23 上海聪维声学技术有限公司 WOLA (Weighted-Overlap Add) filter bank based signal processing method for all-digital hearing aid
EP2521377A1 (en) * 2011-05-06 2012-11-07 Jacoti BVBA Personal communication device with hearing support and method for providing the same
CA2925734C (en) * 2013-10-18 2018-07-10 Guillaume Fuchs Coding of spectral coefficients of a spectrum of an audio signal
EP2897382B1 (en) * 2014-01-16 2020-06-17 Oticon A/s Binaural source enhancement
DE102014204557A1 (en) * 2014-03-12 2015-09-17 Siemens Medical Instruments Pte. Ltd. Transmission of a wind-reduced signal with reduced latency
EP3245798B1 (en) * 2015-01-14 2018-07-11 Widex A/S Method of operating a hearing aid system and a hearing aid system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10142741B2 (en) 2018-11-27
CN106982409A (en) 2017-07-25
DE102016200637B3 (en) 2017-04-27
DK3197181T3 (en) 2019-01-21
US20170208397A1 (en) 2017-07-20
CN106982409B (en) 2019-11-26
EP3197181A1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
EP3197181B1 (en) Method for reducing latency of a filter bank for filtering an audio signal and method for low latency operation of a hearing system
DE69319494T2 (en) Encoding device for audio signals and method therefor
EP1853089B1 (en) Method for elimination of feedback and for spectral expansion in hearing aids.
EP1005695B1 (en) Method and device for detecting a transient in a discrete-time audiosignal, and device and method for coding an audiosignal
DE10017646A1 (en) Noise suppression in the time domain
DE2207141C3 (en) Circuit arrangement for suppressing unwanted speech signals by means of a predictive filter
EP1386307B1 (en) Method and device for determining a quality measure for an audio signal
EP3565270B1 (en) Method for noise suppression in an audio signal
EP3065417B1 (en) Method for suppressing interference noise in an acoustic system
EP3454572A1 (en) Method for detection of a defect in a listening instrument
EP1189419B1 (en) Method and device for eliminating the loudspeaker interference on microphone signals
EP3926982A2 (en) Method for direction-dependent noise suppression for a hearing system comprising a hearing device
EP2981099B1 (en) Method and device for suppressing feedback
DE102015204253B4 (en) Method for frequency-dependent noise suppression of an input signal and hearing aid
EP3355592A1 (en) Method for operating a binaural hearing aid system
DE602004006912T2 (en) A method for processing an acoustic signal and a hearing aid
EP1351550B1 (en) Method for adapting a signal amplification in a hearing aid and a hearing aid
EP3403260B1 (en) Method and apparatus for conditioning an audio signal subjected to lossy compression
EP3340656A1 (en) Method for operating a hearing aid
EP3048813B1 (en) Method and device for suppressing noise based on inter-subband correlation
EP2190218B1 (en) Filter bank system with specific stop-band attenuation for a hearing device
DE102005015647A1 (en) compander
DE102018207780B3 (en) Method for operating a hearing aid
DE102016212393A1 (en) Computationally effective data rate mismatching for telephone clocks
EP4235664A1 (en) Method for suppressing an acoustic reverberation in an audio signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20171127

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101AFI20180209BHEP

INTG Intention to grant announced

Effective date: 20180308

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180706

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1047470

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016002092

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016002092

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181215

26N No opposition filed

Effective date: 20190627

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181215

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1047470

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 8

Ref country code: DK

Payment date: 20231219

Year of fee payment: 8

Ref country code: DE

Payment date: 20231214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240110

Year of fee payment: 8