EP3400373B1 - Aube de turbine a gaz comprenant une arete de friction refroidie - Google Patents

Aube de turbine a gaz comprenant une arete de friction refroidie Download PDF

Info

Publication number
EP3400373B1
EP3400373B1 EP17707889.6A EP17707889A EP3400373B1 EP 3400373 B1 EP3400373 B1 EP 3400373B1 EP 17707889 A EP17707889 A EP 17707889A EP 3400373 B1 EP3400373 B1 EP 3400373B1
Authority
EP
European Patent Office
Prior art keywords
rotor blade
depression
edge
blade according
rubbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17707889.6A
Other languages
German (de)
English (en)
Other versions
EP3400373A1 (fr
Inventor
Markus Gill
Christian Gindorf
Andreas Heselhaus
Robert Kunte
Marcel SCHLÖSSER
Andrew Carlson
Ross PETERSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3400373A1 publication Critical patent/EP3400373A1/fr
Application granted granted Critical
Publication of EP3400373B1 publication Critical patent/EP3400373B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the present invention relates to a rotor blade for a gas turbine having the features of claim 1.
  • the gas turbine system In a gas turbine system, thermal energy and / or flow energy of a hot gas generated by burning a fuel is converted into rotational energy, which is usually converted into electrical energy by means of a generator.
  • the gas turbine system has a flow channel, in the axial direction of which a turbine rotor is rotatably mounted.
  • This comprises a plurality of wheel disks, on the radially outer end faces of which a plurality of rotor blades are arranged in the form of a blade ring.
  • the rotor blades each have blade roots which are inserted into one or more receiving grooves formed on the end faces of the wheel disks and are fixed therein.
  • Blade platforms are formed on the upper side of the blade roots, from the outer sides of which facing away from the wheel disk blade blades protrude into the flow channel.
  • the hot gas flows through the flow channel, the flowing hot gas applying a force to the rotor blades which, due to the shape of the blade blades, is converted into a torque acting on the turbine rotor, which drives the turbine rotor to rotate.
  • rotor blades which, even under high thermal loads, have sufficient mechanical strength for the operation of the gas turbine system.
  • rotor blades are provided with complex coating systems.
  • rotor blades are cooled while the gas turbine system is in operation.
  • cavities and cooling channels are formed in their interior, through which a cooling fluid, mostly air, flows.
  • Common cooling methods are, for example, impingement cooling, in which the cooling fluid is guided in such a way that it strikes the wall of the airfoil from the inside, or film cooling, in which the cooling fluid flows outward from the interior of the airfoil through cooling bores formed in the airfoil body to form a cooling film on the outside of the EP 2 378 076 A formed cooling bores in a recess at the tip of an airfoil are known.
  • US 2014/044557 A1 known to produce the airfoils of cooled rotor blades in a casting process.
  • Commonly cast airfoils each include a hollow airfoil body which is closed in the area of the airfoil tip by what is known as a crown base. Furthermore, in the area of the blade tip, the airfoil body has a rubbing edge which is cast on the outside flush with the airfoil body and along the outer contour the peripheral wall of the airfoil body protrudes in the radial direction.
  • a narrow radial gap of a predetermined width remains between the rubbing edge and a channel wall delimiting the flow channel of the gas turbine system, in order on the one hand to enable low-friction rotation of the turbine rotor in the flow channel, but on the other hand to allow only a small part of the hot gas to flow unused through the radial gap.
  • Changes in the radial gap can occur after the turbine system has been in operation for a certain period of time.
  • the turbine runner can leave its originally central position by creeping, the length of the rotor blades can increase as a result of the centrifugal force or an originally circular flow channel can be ovalized.
  • the cooling fluid outlet openings with the removed airfoil material can then become clogged, as a result of which cooling of the abrading edges is impaired or prevented.
  • the inadequate cooling of the rubbing edges leads to greater wear and, consequently, to a shorter service life of the airfoils.
  • the present invention creates a rotor blade for a gas turbine of the type mentioned at the outset, in which at least one recess is formed in the end face of the rubbing edge, into which at least some of the cooling channels open in such a way that the cooling fluid outlet openings are completely in a bottom area of the at least lie a depression.
  • the invention is based on the idea of lowering the cooling fluid outlet openings in relation to the radial direction with respect to the end face of the rubbing edge. According to the invention, this is achieved in that at least one recess is formed in the end face of the rubbing edge and at least some of the cooling outlet openings are arranged completely in a bottom area of the at least one recess. In this way, the cooling fluid outlet openings are removed from the contact area between the end face of the rubbing edge and the duct wall, as a result of which clogging of the cooling fluid outlet openings with removed airfoil material is reduced or prevented. As a result, the cooling capacity is essentially retained over the operating time of the gas turbine system, which is associated with a correspondingly long service life of the blades.
  • the base area of the at least one depression is arranged between the end face of the rubbing edge and the outer surface of the crown base in relation to the radial direction.
  • the bottom area is preferably designed as a flat bottom surface which, compared to the end face, has a depth which is in the range from 0.5 mm to 4.5 mm and preferably in the range from 0.5 mm to 2.5 mm.
  • Such a radial position of the bottom area has the effect, on the one hand, that the cooling fluid outlet openings are arranged in the immediate vicinity of the free end area of the abrading edge, as a result of which effective cooling of this area of the abrading edge can be ensured.
  • the small depth of the bottom surface of the recess compared to the front surface is sufficient in order to prevent material particles removed from the end face from clogging the cooling fluid outlet openings, which is associated with a constant cooling performance.
  • the rubbing edge has a total height in relation to the radial direction relative to the outer surface of the crown base which is in the range from 1 mm to 10 mm, advantageously in the range from 1.5 mm to 6 mm and preferably 3.5 mm. In rubbing edges with a total height in this area, depressions with a suitable depth can easily be formed.
  • an inner surface of the rubbing edge is inclined outwardly with respect to the radial direction, forming a first angle of inclination, and is largely straight when viewed along the radial direction, the first angle of inclination being measured in a plane extending in the radial direction, which perpendicularly intersects the rubbing edge, and in is in the range from 0 ° to 45 ° and is preferably more than 10 ° and / or less than 30 °.
  • the at least one depression extends to an inside of the rubbing edge, forming a stepped cross section, wherein in particular a step corner of the cross section, preferably the inside corner, is rounded.
  • at least one recess is designed to be open to the inside. Such depressions can be produced simply during the casting of the airfoil body or only afterwards, for example by milling or eroding.
  • cooling channels are opposite a plane perpendicular to the radial direction in the direction of the leading edge of the rotor blade or inclined in the direction of the trailing edge of the rotor blade with the formation of a fourth angle of inclination, the fourth angle of inclination in the direction of the leading edge of the rotor blade being measured in a plane which perpendicularly intersects the measuring plane of the first angle of inclination, in the range between 30 ° and 80 ° and in particular 45 °.
  • Cooling channels with such an inclination in the direction of the leading edge or in the direction of the trailing edge have a greater length, as a result of which the convective cooling of the abrading edge can be improved.
  • cooling channels inclined towards the leading edge the jets are guided over the tips of the rubbing edge on the suction side and cool the surface where it is usually hottest.
  • they can favorably influence the direction of flow of the exiting cooling fluid. Cooling channels with different directions of inclination can penetrate one another or cross without penetration.
  • the end face of the rubbing edge preferably has a width which is less than the thickness of the circumferential wall of the blade body in the region of the at least one recess.
  • the end face of the rubbing edge can have a width which is less than the width of the bottom region of the at least one recess. In this way, only a relatively narrow outer area of the abrading edge forms its radially outer end area.
  • cooling channels are inclined relative to the radial direction transversely to the inner surface of the rubbing edge with the formation of a second angle of inclination, in particular the second inclination angle of the cooling channels, which are each measured in a plane extending in the radial direction, which perpendicularly intersects the rubbing edge, equal to or are approximately equal to the first angle of inclination of the inner surface of the rubbing edge.
  • Cooling channels with such an inclination lead this out of the cooling fluid outlet openings exiting cooling fluid from the inside to the outer end area of the scraper edge.
  • the end face of the rubbing edge and the bottom area of the at least one recess jointly have a width that is approximately equal to the thickness of the circumferential wall of the blade body in the area of the at least one recess.
  • Such rubbing edges essentially represent a continuation of the circumferential wall of the blade body beyond the crown base.
  • the recess in the end face of the rubbing edge can be designed as a groove leaving an outside end face section and an inside end face section, in particular the inner corners of the recess being rounded.
  • the width of the outside end face section and the width of the inside end face section of the abrading edge can each be in the range of 0.5 mm to 5 mm and preferably at least 1 mm, the ratio between the outside width and the inside width is in the range between 0.7 mm and 1.3 mm, in particular 0.9 and 1.1, and is preferably 1.
  • the circumferential wall tapers in the area of the recess in the direction of the crown base in favor of the cavity, the thickness of the circumferential wall being reduced from an initial thickness to a tapered thickness that is at least half as large as the initial thickness, and the tapering over a radial section of the peripheral wall takes place, the height of which is at least five times and at most ten times as great as the initial thickness.
  • the cooling channels can be designed in such a way that they extend closer to the outside of the abrading edge, which is accompanied by improved convective cooling of the abrading edge.
  • the cooling fluid outlet openings are advantageously arranged next to one another and at a distance from one another, in particular equidistantly and / or along a line. Cooling fluid outlet openings arranged in this way are particularly suitable for cooling the abrading edge along its circumferential extent. In principle, however, the cooling fluid outlet openings can be distributed as desired.
  • the at least one depression can only be provided in a section of the rubbing edge that protrudes from the suction-side wall section of the surrounding wall. In this way, the cooling of the section of the rubbing edge protruding from the suction-side wall section of the peripheral wall can be improved.
  • a plurality of depressions arranged next to one another in the circumferential direction can be provided, into each of which a part of the cooling channels opens and which in particular each have at least one feature mentioned above.
  • Several depressions lead to a corresponding grouping of the cooling channels.
  • each cooling channel extends in a straight line and / or has a circular cross section with a diameter which is in the range from 0.25 mm to 2 mm and is preferably 0.6 mm.
  • the cooling ducts can be widened in the area of the cooling fluid outlet openings, the widenings in particular having the shape of a cylinder whose height is at most five times, preferably as large as the diameter of the cooling duct and / or its diameter is at most three times, preferably twice as large as that Diameter of the cooling channel.
  • Such widened cooling fluid outlet openings can act as a diffuser and expand the exiting cooling fluid flow accordingly, so that a large area of the rubbing edge can be cooled according to the principle of film cooling.
  • the cooling fluid outlet openings can also be widened conically, semi-conically or in a fan-like manner.
  • the cooling channels are advantageously designed as bores. Rectilinear cooling channels with a circular cross section can easily be introduced into a cast airfoil body by drilling.
  • a transition area between an inner surface of the rubbing edge and the outer surface of the crown base is rounded. Which improves the aerodynamic Blade tip properties. Otherwise, the inner surface of the abradable edge, viewed along the radial direction, is largely straight.
  • the airfoil body is produced by casting or in a generative process, in particular by means of 3D printing.
  • Casting has proven to be a suitable manufacturing process, particularly for cooled airfoils with a cavity in their interior.
  • generative processes are also suitable for the production of airfoil bodies.
  • the Figures 1 to 3 show a rotor blade for a gas turbine according to a first embodiment of the present invention.
  • the rotor blade comprises an airfoil 1 extending in a radial direction R with a cast airfoil body 2.
  • the airfoil body 2 has a circumferential wall 3 which has a pressure-side wall section 3a and a suction-side wall section 3b.
  • the blade body 2 comprises a plate-shaped crown base 4, which is connected to the peripheral wall 3 in the area of the blade tip 5.
  • the circumferential wall 3 and the crown base 4 define a cavity 6 in the airfoil body 2 through which a cooling fluid flows during the operation of the gas turbine.
  • the airfoil body 2 comprises a rubbing edge 7.
  • the rubbing edge 7 extends along the circumferential wall 3 and is aligned with the latter on the outside.
  • the rubbing edge 7 protrudes radially above the crown bottom 4 and has a total height h relative to the radial direction R opposite the outer surface 4a of the crown bottom, which is measured perpendicular to the outer surface 4a of the crown bottom and is approximately 3 mm.
  • an inner surface 7a of the abrading edge 7 is largely straight and inclined with respect to the radial direction R by a first angle of inclination ⁇ of approx.
  • a transition area 8 between the inner surface 7a of the rubbing edge 7 and the outer surface 4a of the crown base 4 is rounded.
  • a recess 9 is formed which extends to the inside of the rubbing edge 7, forming a stepped cross section.
  • the inner corner 10 of the stepped cross-section is rounded.
  • the bottom area 9a of the recess 9 is designed as a flat bottom surface and, in relation to the radial direction R, is arranged between the end surface 7b of the rubbing edge 7 and the outer surface 4a of the crown base 4.
  • the outer surface 4a of the crown bottom 4, the bottom surface 9a of the recess 9 and the end face 7b of the rubbing edge 7 extend parallel to each other and perpendicular to the radial direction R.
  • the recess 9 has a depth h 1 compared to the end face 7b, which as perpendicular distance between the bottom surface 9a and the end face 7b is measured and is approximately 1 mm.
  • the vertically measured height h 2 of the bottom surface of the recess 9 above the outer surface 4a of the crown bottom 4 is approximately 2 mm.
  • the bottom surface 9a of the recess 9 and the outer surface 4a of the crown bottom 4 can, however, also be inclined to one another and / or to the radial direction R, the depth h 1 and the height h 2 then being determined in relation to the inner corner 10.
  • the end face 7b of the rubbing edge 7 has a width a 1 which is less than the thickness d 1 of the peripheral wall 3 of the blade body 2 in the area of the recess 9.
  • the width a 1 of the end face 7b is the Abrasive edge 7 in the region of the recess 9 is less than the width b 1 of the bottom region 9a the recess 9.
  • the end face 7b of the rubbing edge 7 and the bottom area 9a of the recess 9 have a width a 1 + b 1 , which is approximately equal to the thickness d 1 of the peripheral wall 3 of the airfoil body 2 in the area of the recess 9, the Thickness d 1 is measured as the vertical distance between the outer surface and the inner surface of the surrounding wall 3.
  • the widths a 1 and b 1 are each measured parallel to one another and to the outer surface 4 a of the crown base 4.
  • Other embodiments of the present invention can have relative proportions of the widths a 1 and b 1 and of the thickness d 1 which differ from those selected here.
  • cooling channels 11 are formed which, starting from the cavity 6, extend to cooling fluid outlet openings 12 which are provided in the rubbing edge 7.
  • the cooling channels 11 open into the recess 9 in such a way that the cooling fluid outlet openings 12 are arranged completely in the bottom region 9 a of the recess 9.
  • the cooling fluid outlet openings 12 in the recess 9 are arranged equidistantly and alongside one another along a line.
  • Each cooling channel 11 is designed as a bore and extends in a straight line. It has a circular cross-section with a diameter that is approximately 0.6 mm.
  • Each cooling channel 11 is inclined with respect to the radial direction R transversely to the inner surface 7a of the scraping edge 7, the second angles of inclination ⁇ of the cooling channels 11, which are each measured in a plane extending in the radial direction R, which perpendicularly intersects the scraping edge 7, for example are equal to the first angle of inclination ⁇ of the inner surface 7a of the rubbing edge 7.
  • the Figure 4 shows a rotor blade for a gas turbine according to a second embodiment of the present invention.
  • the structure of this rotor blade basically agrees with the structure of the Figures 1 to 3 first embodiment shown.
  • the cooling channels are widened in the area of the cooling fluid outlet openings.
  • the widened cooling fluid opening 12a has the shape of a cylinder whose height h 5 is equal to the diameter of the cooling channel 11 and whose diameter c 5 is twice the diameter of the cooling channel 11, resulting in a cross-sectional area for the cylinder that is four times as large like the cross-sectional area of the cooling channel 11.
  • a widened cooling flow is correspondingly generated during operation of the rotor blade, with which a large area of the rubbing edge 7 can be cooled.
  • the Figure 5 Fig. 3 shows a moving blade for a gas turbine according to a third embodiment of the present invention. It basically has the same structure as that in the Figures 1 to 3 illustrated blade.
  • the recess 9 is designed as a groove leaving an outside end face section and an inside end face section, i.e. does not extend to the inside of the rubbing edge 7, but is also delimited on the inside by the rubbing edge 7.
  • the outside end face 7b has a width a 2
  • the inside end face 7b has a width c 2
  • the bottom region 9a of the recess 9 has a width b 2 .
  • the first angle of inclination ⁇ is the Inner surface 7a of the rubbing edge 7 compared to the radial direction R is correspondingly smaller.
  • the Figure 6 Fig. 3 shows a moving blade for a gas turbine according to a fourth embodiment of the present invention. It differs from the previously described embodiments in that the peripheral wall 3 tapers in the direction of the crown base 4 in favor of the cavity 6.
  • the thickness of the peripheral wall 3 is reduced from an initial thickness d 1 to a tapered thickness d 2 , which is about half the size of the initial thickness d 1 .
  • the tapering takes place over a radial section of the circumferential wall 3, the height 1 of which is approximately five times as great as the initial thickness d 1 .
  • the taper runs linearly, ie the inside of the circumferential wall 3 is flat and, based on embodiments without tapering of the circumferential wall 3, is inclined by an angle ⁇ .
  • the inclination angle ⁇ of the cooling channels 11 is selected to be smaller such that the cooling channels 11 extend closer to the outside of the rubbing edge 7, whereby the convective cooling of the rubbing edge 7 is improved.
  • the transition area to the crown bottom 4 is rounded, the curvature being defined by a radius of curvature r 2 , which can deviate from the radius of curvature r 1 of embodiments without tapering the circumferential wall 3.
  • a radius of curvature r 2 is shown, which is approximately twice as large as r 1 .
  • the transition area of the taper facing away from the crown bottom 4 is rounded to avoid an edge, the rounding being defined by a radius of curvature r 3 .
  • the Figure 7 Fig. 3 shows a moving blade for a gas turbine according to a fifth embodiment of the present invention. It has the same basic structure as the previously described embodiments.
  • the cooling channels are inclined in relation to a plane perpendicular to the radial direction R in the direction of the trailing edge of the rotor blade.
  • the third angles of inclination ⁇ are measured in the direction of the trailing edge of the rotor blade in a plane which perpendicularly intersects the measuring plane of the first angle of inclination ⁇ and are 45 °.
  • the cooling channels 11 have a greater length, as a result of which the convective cooling of the rubbing edge 7 is improved.
  • the Figure 8 Fig. 3 shows a moving blade for a gas turbine according to a sixth embodiment of the present invention. It differs from the in Figure 7 Embodiments illustrated in that further cooling channels 11 are provided, which are inclined with respect to a plane perpendicular to the radial direction R in the direction of the leading edge of the rotor blade.
  • the fourth angles of inclination ⁇ are measured in the direction of the leading edge of the rotor blade in a plane which perpendicularly intersects the measuring plane of the first angle of inclination ⁇ and are 45 °.
  • the cooling channels 11 of different directions of inclination penetrate one another.
  • the fourth angle of inclination ⁇ can also be selected to differ from the third angle of inclination ⁇ .
  • the cooling channels 11 are not or only slightly clogged by material removal from the end face 7b of the rubbing edge 7. This ensures constant cooling of the rubbing edge 7 during operation of the gas turbine and thus a long service life of the rotor blade.
  • Another advantage of the rotor blade according to the invention can be seen in the simple manufacture of the recess 9 and the cooling channels 11. Due to the small depth of the recess 9, effective cooling of the abrading edge 7 remains possible over its entire height h. In addition, the cooling fluid flowing out of the cooling fluid outlet openings 12 is hardly deflected on its short path to the outside step of the rubbing edge 7 during operation of the gas turbine, which is associated with effective cooling of the blade tip 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (21)

  1. Aube mobile d'une turbine à gaz, comprenant un corps (1) d'aube qui s'étend dans une direction (R) radiale et qui comprend une pièce (2) formant corps d'aube qui a une paroi (3) de pourtour ayant une partie (3a) de paroi d'intrados et une partie (3b) de paroi d'extrados, un fond (4) de couronne en forme de plaque, relié, dans la partie du bout (5) de l'aube, à la paroi (3) de pourtour et un bord (7) d'attaque s'étendant suivant la paroi (3) de pourtour, la paroi (3) de pourtour et le fond (4) de couronne définissant une cavité (6) dans la pièce (2) formant le corps de l'aube et, dans la pièce (2) formant le corps de l'aube, sont constitués des conduits (11) de refroidissement, qui s'étendent en partant de la cavité (6) vers des ouvertures (12) de sortie de fluide de refroidissement prévues dans le bord (7) d'attaque, dans laquelle dans la surface (7b) frontale du bord (7) d'attaque est constitué au moins un creux (9) dans lequel débouche au moins une partie des conduits (11) de refroidissement de manière à ce que les ouvertures (12) de sortie du fluide de refroidissement se trouvent entièrement dans une partie (9a) de fond du creux (9),
    dans laquelle la partie (9a) de fond du au moins un creux (9) est, rapporté à la direction (R) radiale, disposée entre la surface (7b) frontale du bord (7) d'attaque et la surface (4a) extérieure du fond (4) de couronne,
    dans laquelle le au moins un creux (9) s'étend, en formant une section transversale en échelon, jusqu'à un côté intérieur du bord (7) d'attaque et
    dans laquelle, en faisant un premier angle (δ) d'inclinaison une surface (7a) intérieure du bord (7) d'attaque est inclinée vers l'extérieur par rapport à la direction (R) radiale ainsi que, considéré suivant la direction radiale, est, pour la plus grande partie, droite et a une dimension dans un plan qui s'étend dans la direction (R) radiale et qui coupe perpendiculairement le bord (7) d'attaque, dans laquelle, en formant un deuxième angle (θ) d'inclinaison, les conduits (11) de refroidissement sont inclinés par rapport à la direction (R) radiale, dans laquelle les deuxièmes angles d'inclinaison des conduits (11) de refroidissement, qui sont mesurés respectivement dans un plan s'étendant dans la direction (R) radiale, qui coupe perpendiculairement le bord (16) d'attaque,
    sont égaux ou à peu près égaux au premier angle (δ) d'inclinaison de la surface (7a) intérieure du bord (7) d'attaque,
    caractérisée en ce que le bord (7) d'attaque est du côté extérieur à affleurement avec la paroi (3) de pourtour et en saillie radialement du fond (4) de couronne,
    en ce que le premier angle (δ) d'inclinaison est dans la plage de 0° à 45° et
    en ce que chaque conduit (11) de refroidissement est, en formant un troisième ou un quatrième angle (α, β) d'inclinaison, incliné par rapport à un plan perpendiculaire à la direction (R) radiale en direction du bord d'attaque de l'aube mobile ou en direction du bord de fuite de l'aube mobile, le troisième angle (α) d'inclinaison en direction du bord de fuite de l'aube mobile et le quatrième angle (β) d'inclinaison en direction du bord d'attaque de l'aube mobile étant mesurés respectivement dans un plan qui coupe perpendiculairement le plan de mesure du premier angle (δ) d'inclinaison, étant dans une plage comprise entre 30° et 80°, de manière à ce que, par l'agencement incliné par rapport au bord d'attaque de conduits (11) de refroidissement, en fonctionnement, leurs jets de fluide de refroidissement puissent être conduits sur le bout du bord (7) d'attaque du côté de l'intrados.
  2. Aube mobile suivant la revendication 1,
    caractérisée en ce que
    la partie (9a) de fond est constituée sous le forme d'une surface de fond plane qui a, par rapport à la surface (7b) frontale, une profondeur (H1) qui est dans la plage de 0,5 mm à 4,5 mm et, de préférence, dans la plage de 0,5 mm à 2,5 mm.
  3. Aube mobile suivant l'une des revendications 1 ou2,
    caractérisée en ce que
    le bord (7) d'attaque, a rapporté à la direction (R) radiale par rapport à la surface (4a) extérieure du fond (4) de couronne, une hauteur (H) totale, qui est dans la plage de 1 mm à 10 mm, de préférence, dans la plage de 1,5 mm à 6 mm et qui est, de préférence, de 3,5 mm, une hauteur (H2) de la surface de fond du creux (9) au-dessus de la surface (4a) extérieure du fond (4) de couronne étant avantageusement dans la plage comprise entre 60 % et 80 % de la hauteur (H) totale.
  4. Aube mobile suivant l'une des revendications précédentes,
    caractérisée en ce que
    le premier angle (δ) d'inclinaison est plus petit que 30° et/ou plus grand que 10°.
  5. Aube mobile suivant l'une des revendications précédentes,
    caractérisée en ce que
    un coin d'échelon de la section transversale, de préférence le coin (10) intérieur, est arrondi.
  6. Aube mobile suivant la revendication 5,
    caractérisée en ce que
    dans la partie du au moins un creux (9), la surface (7b) frontale du bord (7) d'attaque a une largeur (a1) qui est plus petite que l'épaisseur (d1) de la paroi (3) de pourtour de la pièce (2) formant le corps de l'aube dans la partie du au moins un creux (9).
  7. Aube mobile suivant l'une des revendications 5 ou 6,
    caractérisée en ce que
    dans la partie du au moins un creux (9), la surface (7b) frontale du bord (7) d'attaque a une largeur (a1) qui est plus petite que la largeur (b1) de la partie (9a) de fond du au moins un creux (9).
  8. Aube mobile suivant l'une des revendications 5 à 7,
    caractérisée en ce que
    dans la partie du au moins un creux (9), la surface (7b) frontale du bord (7) d'attaque et la partie (9a) de fond du creux (9) ont conjointement une largeur (a1 + b1) qui est à peu près égale à l'épaisseur (d1) de la paroi (3) de pourtour de la pièce (2) formant le corps de l'aube dans la partie du au moins un creux (9).
  9. Aube mobile suivant l'une des revendications 1 à 4,
    caractérisée en ce que
    le creux (9) dans la surface (7b) frontale du bord (7) d'attaque est constitué sous la forme d'une rainure en laissant une partie (9) de surface frontale du côté extérieure et une partie de surface frontale du côté intérieur, les coins (10) intérieurs du creux (9) étant notamment arrondis.
  10. Aube mobile suivant la revendication 9,
    caractérisée en ce que
    dans la partie du creux (9) la largeur (a2) de la partie de surface frontale du côté extérieur et la largeur (c2) de la partie de surface frontale du côté intérieur du bord (7) d'attaque sont chacune dans la plage de 0,5 mm à 5 mm et, de préférence, d'au moins 1 mm, le rapport entre la largeur (a2) du côté extérieur et la largeur (c2) du côté intérieur étant dans la plage comprise entre 0,7 et 1,3, notamment 0,9 et 1,1, en étant de préférence de 1.
  11. Aube mobile suivant l'une des revendications précédentes,
    caractérisée en ce que
    dans la partie du creux (9), la paroi (3) de pourtour se rétrécit en direction du fond (4) de couronne en faveur de la cavité (6), l'épaisseur de la paroi (3) de pourtour se réduisant d'une épaisseur (d1) initiale à une épaisseur (d2) rétrécie qui est au moins à moitié aussi grande que l'épaisseur (d1) initiale, et dans laquelle notamment le rétrécissement a lieu sur une partie radiale de la paroi (3) de pourtour, dont la hauteur (1) représente au moins 5 fois et au plus 10 fois l'épaisseur (d1) initiale.
  12. Aube mobile suivant l'une des revendications précédentes,
    caractérisée en ce que
    le au moins un creux (9) est prévu seulement dans une partie du bord (7) d'attaque dépassant de la partie (3b) de paroi d'intrados de la paroi (3) de pourtour.
  13. Aube mobile suivant l'une des revendications précédentes,
    caractérisée en ce que
    il est prévu exactement un creux (9).
  14. Aube mobile suivant l'une des revendications précédentes,
    caractérisée en ce que
    il est prévu une pluralité de creux (9) qui sont disposés les uns à côté des autres dans la direction du pourtour, dans lesquels débouche respectivement une partie des conduits (11) de refroidissement et qui ont notamment au moins une caractéristique des revendications 2 à 10.
  15. Aube mobile suivant l'une des revendications précédentes,
    caractérisée en ce que
    dans le au moins un creux (9), les ouvertures (12) de sortie du fluide de refroidissement sont disposées les unes à côté des autres dans la direction du pourtour et à distance les unes des autres, en étant notamment équidistantes et/ou suivant une ligne.
  16. Aube mobile suivant l'une des revendications précédentes,
    caractérisée en ce que
    chaque conduit (11) de refroidissement s'étend en ligne droite et/ou a une section transversale circulaire ayant un diamètre qui est dans la plage de 0,25 mm à 2 mm et qui est de préférence de 0,6 mm.
  17. Aube mobile suivant l'une des revendications précédentes,
    caractérisée en ce que
    les conduits (11) de refroidissement s'élargissent dans la partie des ouvertures (12) de sortie du fluide de refroidissement, les élargissements (12a) ayant notamment la forme d'un cylindre, dont la hauteur (h5) est au plus égale à 5 fois le diamètre d'un conduit (11) de refroidissement, de préférence égale au diamètre d'un conduit (11) de refroidissement et/ou dont le diamètre (c5) est au plus égal à trois fois, de préférence à deux fois, le diamètre d'un conduit (11) de refroidissement.
  18. Aube mobile suivant l'une des revendications 16 ou 17,
    caractérisée en ce que
    les conduits (11) de refroidissement sont constitués sous la forme de trous.
  19. Aube mobile suivant les revendications 16 à 18, et la revendication 4,
    caractérisée en ce que
    le troisième et/ou le quatrième angle d'inclinaison est de 45°.
  20. Aube mobile suivant l'une des revendications précédentes,
    caractérisée en ce que
    une partie (8) de transition entre une surface (7a) intérieure du bord (7) d'attaque et la surface (4a) extérieure du fond (4a) de couronne est arrondie.
  21. Aube mobile suivant l'une des revendications précédentes,
    caractérisée en ce que
    la pièce (2) formant corps d'aube est fabriquée par coulée ou dans un procédé génératif, notamment au moyen d'une impression en 3D.
EP17707889.6A 2016-03-08 2017-03-01 Aube de turbine a gaz comprenant une arete de friction refroidie Active EP3400373B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16159107.8A EP3216983A1 (fr) 2016-03-08 2016-03-08 Aube de turbine a gaz comprenant une arete de friction refroidie
PCT/EP2017/054734 WO2017153219A1 (fr) 2016-03-08 2017-03-01 Aube mobile pour turbine à gaz avec bord de frottement refroidi

Publications (2)

Publication Number Publication Date
EP3400373A1 EP3400373A1 (fr) 2018-11-14
EP3400373B1 true EP3400373B1 (fr) 2021-04-28

Family

ID=55486583

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16159107.8A Withdrawn EP3216983A1 (fr) 2016-03-08 2016-03-08 Aube de turbine a gaz comprenant une arete de friction refroidie
EP17707889.6A Active EP3400373B1 (fr) 2016-03-08 2017-03-01 Aube de turbine a gaz comprenant une arete de friction refroidie

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16159107.8A Withdrawn EP3216983A1 (fr) 2016-03-08 2016-03-08 Aube de turbine a gaz comprenant une arete de friction refroidie

Country Status (4)

Country Link
US (1) US11136892B2 (fr)
EP (2) EP3216983A1 (fr)
CN (1) CN209976583U (fr)
WO (1) WO2017153219A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10436038B2 (en) 2015-12-07 2019-10-08 General Electric Company Turbine engine with an airfoil having a tip shelf outlet
CA2958459A1 (fr) 2016-02-19 2017-08-19 Pratt & Whitney Canada Corp. Rotor de compresseur destine a un papillon supersonique ou a l'attenuation de contrainte resonnante
CN109154200B (zh) * 2016-05-24 2021-06-15 通用电气公司 涡轮发动机的翼型件和叶片,及对应的流动冷却流体的方法
US11480057B2 (en) 2017-10-24 2022-10-25 Raytheon Technologies Corporation Airfoil cooling circuit
JP6979382B2 (ja) 2018-03-29 2021-12-15 三菱重工業株式会社 タービン動翼、及びガスタービン
DE102020202891A1 (de) * 2020-03-06 2021-09-09 Siemens Aktiengesellschaft Turbinenschaufelspitze, Turbinenschaufel und Verfahren
US11608746B2 (en) * 2021-01-13 2023-03-21 General Electric Company Airfoils for gas turbine engines

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261789A (en) * 1992-08-25 1993-11-16 General Electric Company Tip cooled blade
US5733102A (en) * 1996-12-17 1998-03-31 General Electric Company Slot cooled blade tip
US6224336B1 (en) * 1999-06-09 2001-05-01 General Electric Company Triple tip-rib airfoil
US6164914A (en) * 1999-08-23 2000-12-26 General Electric Company Cool tip blade
EP1281837A1 (fr) * 2001-07-24 2003-02-05 ALSTOM (Switzerland) Ltd Dispositiv du refroidessement pour les bouts des aubes d' une turbine
US20030021684A1 (en) 2001-07-24 2003-01-30 Downs James P. Turbine blade tip cooling construction
US7494319B1 (en) * 2006-08-25 2009-02-24 Florida Turbine Technologies, Inc. Turbine blade tip configuration
US7597539B1 (en) * 2006-09-27 2009-10-06 Florida Turbine Technologies, Inc. Turbine blade with vortex cooled end tip rail
FR2907157A1 (fr) * 2006-10-13 2008-04-18 Snecma Sa Aube mobile de turbomachine
US7740445B1 (en) * 2007-06-21 2010-06-22 Florida Turbine Technologies, Inc. Turbine blade with near wall cooling
US8061987B1 (en) * 2008-08-21 2011-11-22 Florida Turbine Technologies, Inc. Turbine blade with tip rail cooling
US8113779B1 (en) * 2008-09-12 2012-02-14 Florida Turbine Technologies, Inc. Turbine blade with tip rail cooling and sealing
US8066485B1 (en) * 2009-05-15 2011-11-29 Florida Turbine Technologies, Inc. Turbine blade with tip section cooling
US8182221B1 (en) * 2009-07-29 2012-05-22 Florida Turbine Technologies, Inc. Turbine blade with tip sealing and cooling
US8197211B1 (en) * 2009-09-25 2012-06-12 Florida Turbine Technologies, Inc. Composite air cooled turbine rotor blade
GB201006451D0 (en) * 2010-04-19 2010-06-02 Rolls Royce Plc Blades
FR2982903B1 (fr) 2011-11-17 2014-02-21 Snecma Aube de turbine a gaz a decalage vers l'intrados des sections de tete et a canaux de refroidissement
US20140044557A1 (en) 2012-08-09 2014-02-13 General Electric Company Turbine blade and method for cooling the turbine blade
US9879544B2 (en) * 2013-10-16 2018-01-30 Honeywell International Inc. Turbine rotor blades with improved tip portion cooling holes
US10570750B2 (en) * 2017-12-06 2020-02-25 General Electric Company Turbine component with tip rail cooling passage
US10934852B2 (en) * 2018-12-03 2021-03-02 General Electric Company Turbine blade tip cooling system including tip rail cooling insert

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US11136892B2 (en) 2021-10-05
US20200386104A1 (en) 2020-12-10
CN209976583U (zh) 2020-01-21
EP3216983A1 (fr) 2017-09-13
EP3400373A1 (fr) 2018-11-14
WO2017153219A1 (fr) 2017-09-14

Similar Documents

Publication Publication Date Title
EP3400373B1 (fr) Aube de turbine a gaz comprenant une arete de friction refroidie
DE3211139C1 (de) Axialturbinenschaufel,insbesondere Axialturbinenlaufschaufel fuer Gasturbinentriebwerke
EP1621730B1 (fr) Element refroidi d'une turbomachine et procédé pour le moulage de cet élement
EP3191244B1 (fr) Procédé de production d'une aube mobile et aube obtenue
EP1895102B1 (fr) Aube de turbine revêtu
DE10059997B4 (de) Kühlbare Schaufel für eine Gasturbinenkomponente
DE112015000575B4 (de) Dichtungsstruktur und rotierende Maschine
EP2140114B1 (fr) Palier axial notamment pour un turbocompresseur
DE112020000789B4 (de) Hochtemperaturbauteil und verfahren zur herstellung des hochtemperaturbauteils
EP3456923B1 (fr) Aube d'une turbomachine pourvue de canal de refroidissement et corps de refoulement agencé dans une telle aube d'une turbomachine ainsi que procédé de fabrication
DE102014009735A1 (de) Schaufel und Laufrad einer Strömungsmaschine, sowie Herstellverfahren dafür
EP3473808B1 (fr) Pale d'aube pour une aube mobile de turbine à refroidissement intérieur ainsi que procédé de fabrication d'une telle pale
WO2013167346A1 (fr) Aube mobile de turbine et section axiale de rotor pour une turbine à gaz
EP1798376B1 (fr) Méthode pour la fabrication d'un canal pour un flux secondaire
EP2826957A1 (fr) Rotor pour une turbomachine thermique
DE102012220249B4 (de) Leitschaufelkranz, Strömungsmaschine und Innenring
DE112020001010T5 (de) Turbinenschaufel, herstellungsverfahren für turbinenschaufel und gasturbine
EP2163726A1 (fr) Aube de turbine dotée d'un rebord arrière modulaire et graduée
DE102015226766A1 (de) Verfahren zur Herstellung eines Schaufelblatts für eine Turbinenschaufel einer Turbinenanlage
WO2018010918A1 (fr) Aube de turbine dotée d'ailettes de refroidissement en forme de barres
EP3274561B1 (fr) Aube de rotor pour une turbine à gaz, procédé de fabrication et procédé de post-production
EP3623576B1 (fr) Aube de turbine à gaz
EP1046784B1 (fr) Structure refroidie
DE102008029528A1 (de) Vorrichtung zur Gasführung zwischen Rotorscheiben eines Verdichters
EP1518619A1 (fr) Aube de turbine de moteur d'avion et moule de fonderie pour sa manufacture

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200117

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201015

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1387252

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010193

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210830

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010193

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1387252

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240328

Year of fee payment: 8

Ref country code: GB

Payment date: 20240319

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240321

Year of fee payment: 8

Ref country code: FR

Payment date: 20240326

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428