EP1046784B1 - Structure refroidie - Google Patents

Structure refroidie Download PDF

Info

Publication number
EP1046784B1
EP1046784B1 EP99810329A EP99810329A EP1046784B1 EP 1046784 B1 EP1046784 B1 EP 1046784B1 EP 99810329 A EP99810329 A EP 99810329A EP 99810329 A EP99810329 A EP 99810329A EP 1046784 B1 EP1046784 B1 EP 1046784B1
Authority
EP
European Patent Office
Prior art keywords
pins
component
gas side
blow
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99810329A
Other languages
German (de)
English (en)
Other versions
EP1046784A1 (fr
Inventor
Klaus Semmler
Bernard Dr. Weigand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Priority to EP99810329A priority Critical patent/EP1046784B1/fr
Priority to EP04101493A priority patent/EP1445423B1/fr
Priority to DE59910200T priority patent/DE59910200D1/de
Priority to US09/551,534 priority patent/US6305904B1/en
Publication of EP1046784A1 publication Critical patent/EP1046784A1/fr
Application granted granted Critical
Publication of EP1046784B1 publication Critical patent/EP1046784B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/208Heat transfer, e.g. cooling using heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/131Molybdenum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/14Noble metals, i.e. Ag, Au, platinum group metals
    • F05D2300/141Silver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/224Carbon, e.g. graphite

Definitions

  • the present invention relates to a coolable component according to the Preamble of claim 1.
  • the simplest form of cooling is convection cooling, in which one Coolant flows over a surface of a component, and this heat deprives while another surface with a heat input is applied.
  • convection cooling A particular disadvantage of convection cooling is that that all the heat to be dissipated through the component wall must be transported. The area exposed to the heat input is at a much higher temperature than the cooled surface. moreover become significant temperature gradients over component walls and thus Thermal stresses caused.
  • the film cooling known from US 3,527,543 was therefore used for a long time preferred in which a coolant - preferably air coming from the compressor is removed, or steam - through the component wall from one Cold gas side flows to the hot gas side to which hot gas is applied.
  • the coolant absorbs heat from the material while it is flows through the blow-out openings.
  • a film lays down relatively cool medium over the hot gas side of the component, and protects it direct contact with the hot medium. You misplace yourself with modern gas turbines completely on film cooling, the rises Coolant consumption, however, by mass.
  • EP 750 957 issues one a plurality of spaced apart material layers Component wall, which has cooling air openings. The single ones Material layers are connected to each other by thermally conductive pins.
  • GB 2 117 455 discloses a coolable component in which thermal on the cold gas side project highly conductive pins into the cooling medium. The thermal highly conductive pins are aligned. Furthermore are Openings arranged through which the cooling medium from the cold gas side to Hot gas side can flow. It is also disclosed the openings in one Arrange to escape, but from the escape in which the pens are arranged are clearly different. Therefore certain areas of the component purely through the heat dissipation via the pins and other areas purely via the Heat absorption of the coolant flowing through is cooled.
  • a coolable component consisting of a Base material, which component in operation on a hot gas side with a first flowing medium and on a cold gas side with a second flowing medium is in contact, the temperature of the first medium is higher than that of the second medium, such that the component of the the first medium is heated and cooled by the second medium, and wherein the base material of the component encloses pins, which pins from the Cold gas side protrude into the flow of the second medium, and which pins are made of a material whose thermal conductivity is greater is that of the base material used to manufacture the component, such that the pins operate as heat sinks in the base material heat transfer should improve from the pins to the cooling medium become.
  • the essence of the invention is, on the one hand, the heat instead of through the Coolant flowing through blow-out openings through thermal to lead highly conductive pins out of the material, so that the Limit coolant consumption.
  • the limitation of Coolant consumption has a very positive effect on the Efficiency when compressor air is used for cooling purposes.
  • the pins are expediently running along the cold gas side Alignments arranged, analogous to the arrangement of the blow-out openings in the Film cooling.
  • the fluid mechanical constraints prevent in a closed cooling system within a component a good one, for example, when cooling a blade trailing edge convective heat transfer from the pins to the coolant, but what a The condition for the function of the cooling method is.
  • blow-out openings and heat conducting pins can be according to different criteria, and in individual cases will of course become one detailed calculation of the temperature distributions in the Require machine component.
  • For a minimized coolant consumption will probably be the alternating one Arrangement of two pins and one blow-out opening are suitable, the opening is expediently arranged centrally between two pins. In order to achieve a temperature distribution that is as homogeneous as possible the alternating arrangement of one pin and one opening each prefer to be.
  • the thermal conductivity of the Material from which the pins are made as high as possible, and at least have three times the value of the base material.
  • the melting point too the material must of course be sufficiently high.
  • Materials that are suitable for the production of the thermal pins for example Tungsten, silver, or especially diamond.
  • the pens have to be one have the best possible heat transfer to the base material realizes that they are cast in the components. there However, should you under no circumstances remove the complete material thickness of the component from the Penetrate the cold gas side to the hot gas side to avoid any disadvantageous To create thermal bridges.
  • the pens are so deep in that Base material introduced, as it corresponds to 30% to 80% of the material thickness. On the one hand, this ensures a large heat exchange surface, on the other hand the formation of thermal bridges is avoided.
  • the Thermal pins of course by a certain axial dimension in the Protect the coolant.
  • the invention unfolds Cooling configuration their specific advantages, especially when used in hollow components, inside of which the flow of a cooling medium is provided, in particular where component walls are pointed in one Collide angles.
  • This configuration can be found in particular the trailing edges of gas turbine blades.
  • the cooling configuration according to the invention is also used for the cooling of Advantageously to use blade platforms.
  • the pens help Dissipate heat from the very solidly built platforms without the To allow cooling air consumption to rise above the masses.
  • the Cooling configuration according to the invention advantageously also with impingement cooling be combined
  • a first preferred embodiment of the invention is in two views in the Figures 1 and 2 shown.
  • the hollow cast turbine blade is in the Operation of a hot gas flow 8 flows around, which heat input causes the hot gas side 11 into the material of the blade.
  • the temperature of the hot gas exceeds that of a material temperature allowed given the mechanical load.
  • the function of such a turbine blade can therefore only be achieved by one sufficient cooling can be guaranteed.
  • the Vane cooled from the cold gas side 12 by the coolant 9. in the Different internals can be present, such as Baffle cooling plates or webs for guiding the coolant on the cold gas side.
  • Rows of blow-out openings 21 are on the surface of the blade lines running substantially normal to the direction of flow of the hot gas to recognize. Coolant that flows through these openings takes on the one hand heat from the material; on the other hand, the cooler goes down Blow-out flow with appropriate arrangement and design of the Blow-out openings 21 as an insulating layer on the hot gas side 11 of the Blade, and partially isolates it from the hot gas flow 8.
  • Shape and size of the blow-out openings 21, as well as their distance from each other, are not essential to the invention, and the chosen representation should never be understood in a restrictive sense.
  • the top view of the blade shown in FIG. 2 shows one particularly well Material accumulation 141 in the area of the rear edge 14, and the Interior 121 which narrows sharply near the rear edges Material accumulation is very likely to overheat.
  • the shovel very thin in this area.
  • the surface on the hot gas side 11 is in Trailing edge area much larger than the surface on the cold gas side 12.
  • such accumulation of material is potentially developing large local temperature differences extremely strong Thermal stress cracks at risk. Because of the special geometric Boundary conditions in the rear edge area must literally remove the heat from the Material accumulation can be transported out.
  • a row of blow-out openings 22 along the rear edge through this flowing coolant 7 takes heat from the Material accumulation 141 and transports it to the outside.
  • the blow-out openings 22 are heat sinks. Not too much for the temperature differences along the rear edge to allow it to grow and to avoid local overheating A certain maximum distance between the heat sinks exceed. As a rule of thumb for a design criterion, it is stated that the Distance between two blow-out openings 22 eight hydraulic diameters a blow-out opening should not exceed. This initially results in a large number of blow-out openings and thus in a large one Blow-out mass flow at the trailing edge of the blade.
  • a pin 23 made of a material with a high Thermal conductivity - this should be at least three times as high as that Thermal conductivity of the blade material - in the material accumulation 141 introduced, which serves as an additional heat sink.
  • Thermally conductive pin two to twenty pin diameter in the blade interior and has the best possible contact with the blade material.
  • the latter can be achieved by using the pins when casting the bucket be poured. They must have a certain length in the Bucket material can be embedded, but without penetrating it, because they otherwise a harmful thermal bridge between the hot gas side 11 and the cold gas side 12 of the blade. It will turn out to be cheap prove if the pins are embedded at a depth in the blade material, which corresponds to between 30% and 80% of the total material thickness, whereby the cheapest measure in individual cases through a numerical simulation of the Heat flows will have to be determined.
  • the pins are arranged that their longitudinal axes are more or less parallel to the exhaust openings run. Furthermore, it is advantageous if a along the trailing edge of the blade Number of heat conducting pins and blow-out openings approximately in one flight are arranged. This proves to be particularly advantageous with regard to to ensure a good flow of coolant around the pins, which is a necessary condition for the function of the heat conducting pins as heat sinks represents.
  • the trailing edge blow-out openings induce 22 forced convection in the narrow cooling gap, and the heat-conducting pins are arranged by the Blow-out streams 7 flow around and cooled.
  • the close one shows up here Interdependence of the rear edge blow-out and the heat conducting pins.
  • FIG. 3 A further preferred embodiment is shown in FIG. 3 Two blow-out openings arranged two heat-conducting pins. This will the coolant consumption compared to the geometry shown in FIG. 1 reduced again.
  • flow control devices 25 are also in Blade interior introduced that the blow-out air flow 7 on the Guide thermal pins. Such measures can of course also be used for one Fig. 1 corresponding configuration may be useful.
  • the pipe of the coolant to the rear edge can also by appropriate turbulators in the main cooling duct respectively.
  • the invention is advantageous at least when used on trailing blade edges make sure that the distance between two heat sinks is not greater is selected as eight hydraulic diameters of a trailing edge blow-out opening.
  • the preferred one Cross-sectional area of the pins called between one and ten Cross-sectional areas of a blow-out opening.
  • the shape of the heat conducting pins can be varied within wide limits. So is for example, a round cross-section is not mandatory. Is appropriate however, in all circumstances, it extends along a longitudinal axis to be chosen significantly larger than the extension in the other directions.
  • the Shape of the thermal pins is primarily due to the manufacturing method be determined, and a cylindrical pin is cut off by a Wire particularly easy to obtain. However, through the targeted Design, for example, of the part of the protruding into the coolant The flow around the pin as well as the heat exchange surface to be changed. Two examples of possible geometries are in FIGS. 4 and 5 shown.
  • the design shown in Fig. 4 holds the conical shape Flow cross-section between the pin 23 and the cooling side Component walls 12 largely constant.
  • Consoles 231 enlarge the Heat exchange surface between the base material 141 and the Thermal pin 23, and improve the fixation of the pin in the base material.
  • the corrugated design from FIG. 5 also increases the Heat exchange surface, both on the material and cool
  • FIG. 6 carries a Blade platform 3 a blade 1.
  • the entire configuration is from flow of hot gas flow 8.
  • the airfoil is on itself known cooled any way, cooling and coolant supply of the Airfoil are not taken into account in the figure.
  • the airfoil In the hollow Blade platform flows in coolant 9, and strikes an impact cooling insert 31.
  • the coolant flows through openings in the impact cooling insert 32.
  • Coolant jets 91 hit the cold gas side 12 of the at high speed Platform where an intensive convection heat exchange takes place.
  • the coolant is subsequently discharged through blowout openings 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (12)

  1. Structure refroidissable, se composant d'un matériau de base, laquelle structure, lors du fonctionnement, est en contact, d'un côté de gaz chaud (11) avec un premier fluide en mouvement (8) et d'un côté de gaz froid (12) avec un deuxième fluide en mouvement (9), la température du premier fluide étant supérieure à celle du deuxième fluide, de telle sorte que la structure soit réchauffée par le premier fluide et refroidie par le deuxième fluide, et où le matériau de base de la structure entoure des tiges (23), lesquelles tiges pénètrent depuis le côté de gaz froid (12) avec une extrémité libre dans l'écoulement du deuxième fluide, et lesquelles tiges se composent d'un matériau dont la conductivité thermique est plus importante que celle du matériau de base utilisé pour la fabrication de la structure, de telle sorte que les tiges, lors du fonctionnement, agissent comme un dissipateur de chaleur dans le matériau de base, et laquelle structure présente des ouvertures de soufflage (22) à travers lesquelles, lors du fonctionnement, au moins une partie (7) dudit deuxième fluide s'écoule depuis le côté de gaz froid vers le côté de gaz chaud, de telle sorte que les ouvertures de soufflage agissent également comme un dissipateur de chaleur, caractérisée en ce qu'une pluralité de tiges et une pluralité d'ouvertures sont disposées en alignement du côté de gaz froid, à chaque fois au moins une tige et au moins une ouverture étant disposées en alternance.
  2. Structure refroidissable selon la revendication 1, caractérisée en ce que les tiges se composent d'un matériau dont la conductibilité thermique vaut au moins le triple de la conductibilité thermique du matériau de base.
  3. Structure refroidissable selon la revendication 1, caractérisée en ce que la distance entre deux dissipateurs de chaleur (22, 23) est inférieure à huit fois le diamètre hydraulique d'une ouverture de soufflage (22).
  4. Structure refroidissable selon la revendication 1, caractérisée en ce que des ouvertures (22) et des tiges (23) ont approximativement des distances identiques les unes des autres.
  5. Structure refroidissable selon la revendication 1, caractérisée en ce que les tiges pénètrent dans le matériau de base de la structure à raison de 30% à 80% d'une épaisseur de matériau locale, mesurée dans la direction longitudinale des tiges.
  6. Structure refroidissable selon la revendication 1, caractérisée en ce que les tiges pénètrent dans le deuxième fluide au moins deux fois plus que la valeur qui résulte de la racine de la surface en section transversale de la tige au niveau de la pénétration par le côté de gaz froid.
  7. Structure refroidissable selon la revendication 1, caractérisée en ce que des moyens (25) sont disposés du côté de gaz froid, lesquels conduisent le fluide (7) qui s'écoule à travers les ouvertures de soufflage (22), au-dessus des tiges (23).
  8. Structure refroidissable selon la revendication 1, caractérisée en ce que les tiges s'étendent parallèlement aux ouvertures de soufflage.
  9. Structure refroidissable selon la revendication 1, caractérisée en ce que les tiges sont noyées dans la structure.
  10. Structure refroidissable selon la revendication 1, caractérisée en ce que la structure est un corps creux, le côté de gaz chaud se trouvant à l'extérieur et le côté de gaz froid à l'intérieur.
  11. Structure refroidissable selon la revendication 10, caractérisée en ce que la structure est une aube de turbine à gaz, et les tiges (23) et les ouvertures de soufflage (22) sont disposées du côté de gaz froid (12) d'une plate-forme d'aube (3) appartenant à l'aube de turbine à gaz.
  12. Structure refroidissable selon la revendication 10, caractérisée en ce que la structure est une aube de turbine à gaz (1), en ce que les ouvertures de soufflage (22) et les tiges (23) sont disposées le long d'une arête arrière (14) appartenant à l'aube et en ce que les tiges pénètrent à l'intérieur (121) de l'aube de turbine à gaz.
EP99810329A 1999-04-21 1999-04-21 Structure refroidie Expired - Lifetime EP1046784B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99810329A EP1046784B1 (fr) 1999-04-21 1999-04-21 Structure refroidie
EP04101493A EP1445423B1 (fr) 1999-04-21 1999-04-21 Aube de turbomachine refroidie
DE59910200T DE59910200D1 (de) 1999-04-21 1999-04-21 Kühlbares Bauteil
US09/551,534 US6305904B1 (en) 1999-04-21 2000-04-18 Coolable component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP99810329A EP1046784B1 (fr) 1999-04-21 1999-04-21 Structure refroidie

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP04101493A Division EP1445423B1 (fr) 1999-04-21 1999-04-21 Aube de turbomachine refroidie

Publications (2)

Publication Number Publication Date
EP1046784A1 EP1046784A1 (fr) 2000-10-25
EP1046784B1 true EP1046784B1 (fr) 2004-08-11

Family

ID=8242780

Family Applications (2)

Application Number Title Priority Date Filing Date
EP99810329A Expired - Lifetime EP1046784B1 (fr) 1999-04-21 1999-04-21 Structure refroidie
EP04101493A Expired - Lifetime EP1445423B1 (fr) 1999-04-21 1999-04-21 Aube de turbomachine refroidie

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04101493A Expired - Lifetime EP1445423B1 (fr) 1999-04-21 1999-04-21 Aube de turbomachine refroidie

Country Status (3)

Country Link
US (1) US6305904B1 (fr)
EP (2) EP1046784B1 (fr)
DE (1) DE59910200D1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847684A1 (fr) * 2006-04-21 2007-10-24 Siemens Aktiengesellschaft Aube de turbine
EP2426317A1 (fr) * 2010-09-03 2012-03-07 Siemens Aktiengesellschaft Aube de turbine pour une turbine à gaz
EP2505789B1 (fr) * 2011-03-30 2016-12-28 Safran Aero Boosters SA Séparateur de flux gazeux avec dispositif de dégivrage par pont thermique
US10533749B2 (en) * 2015-10-27 2020-01-14 Pratt & Whitney Cananda Corp. Effusion cooling holes
US10871075B2 (en) 2015-10-27 2020-12-22 Pratt & Whitney Canada Corp. Cooling passages in a turbine component
US11333022B2 (en) * 2019-08-06 2022-05-17 General Electric Company Airfoil with thermally conductive pins

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB624939A (en) * 1946-07-12 1949-06-20 Bbc Brown Boveri & Cie Gas turbine combustion chamber
US3527543A (en) 1965-08-26 1970-09-08 Gen Electric Cooling of structural members particularly for gas turbine engines
DE3211139C1 (de) * 1982-03-26 1983-08-11 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Axialturbinenschaufel,insbesondere Axialturbinenlaufschaufel fuer Gasturbinentriebwerke
US5810552A (en) * 1992-02-18 1998-09-22 Allison Engine Company, Inc. Single-cast, high-temperature, thin wall structures having a high thermal conductivity member connecting the walls and methods of making the same
DE4430302A1 (de) 1994-08-26 1996-02-29 Abb Management Ag Prallgekühltes Wandteil
DE19654115A1 (de) * 1996-12-23 1998-06-25 Asea Brown Boveri Vorrichtung zum Kühlen einer beidseitig umströmten Wand

Also Published As

Publication number Publication date
US6305904B1 (en) 2001-10-23
EP1046784A1 (fr) 2000-10-25
EP1445423B1 (fr) 2006-08-02
EP1445423A2 (fr) 2004-08-11
EP1445423A3 (fr) 2004-08-25
DE59910200D1 (de) 2004-09-16

Similar Documents

Publication Publication Date Title
EP2087206B1 (fr) Aube de turbine
DE60031185T2 (de) Methode zur Kühlung einer Wand einer Strömungsmaschinenschaufel
EP1309773B1 (fr) Dispositif d'aubes directrices de turbine
DE602005000449T2 (de) Kühlung mit Mikrokanälen für eine Turbinenschaufel
DE3248162C2 (de) Kühlbare Schaufel
DE10001109B4 (de) Gekühlte Schaufel für eine Gasturbine
DE69838015T2 (de) Schaufelkühlung
DE69822100T2 (de) Turbinenschaufel
DE60213328T2 (de) Gekühlte hohle Schaufelspitzenabdeckung einer Turbinenschaufel
DE102011000878B4 (de) Turbinenschaufel mit abgeschirmtem Kühlmittelzuführungskanal
EP0964981B1 (fr) Aube de turbine et son utilisation dans un systeme de turbine a gaz
EP1188500A1 (fr) Dispositif et procédé de production d'aube de turbine et aube de turbine
EP1668236B1 (fr) Chambre de combustion comprenant un dispositif de refroidissement, et procede de production de cette chambre de combustion
EP2087207B1 (fr) Aube de turbine
EP2126286A1 (fr) Aube de turbine
EP3456923B1 (fr) Aube d'une turbomachine pourvue de canal de refroidissement et corps de refoulement agencé dans une telle aube d'une turbomachine ainsi que procédé de fabrication
EP1046784B1 (fr) Structure refroidie
EP0892150B1 (fr) Système de refroidissement pour le bord de fuite des aubes creuses d'une turbine à gaz
EP0954680B1 (fr) Aube de turbine et son utilisation dans un systeme de turbine a gaz
EP3473808B1 (fr) Pale d'aube pour une aube mobile de turbine à refroidissement intérieur ainsi que procédé de fabrication d'une telle pale
EP0973998B1 (fr) Procede pour refroidir une aube de turbine
EP3263838A1 (fr) Pale de turbine avec canal de refroidissement interne
EP3762586B1 (fr) Paroi de composant à gaz chaud
WO2018010918A1 (fr) Aube de turbine dotée d'ailettes de refroidissement en forme de barres
DE2313047A1 (de) Gekuehlte turbinenlaufschaufeln mit hoher festigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010407

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SCHWEIZ) AG

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

17Q First examination report despatched

Effective date: 20030722

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59910200

Country of ref document: DE

Date of ref document: 20040916

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110429

Year of fee payment: 13

Ref country code: GB

Payment date: 20110328

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120421

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59910200

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101