EP3394471A1 - Procédé de fabrication pour disque de frein composite et disque de frein composite correspondant - Google Patents

Procédé de fabrication pour disque de frein composite et disque de frein composite correspondant

Info

Publication number
EP3394471A1
EP3394471A1 EP16819421.5A EP16819421A EP3394471A1 EP 3394471 A1 EP3394471 A1 EP 3394471A1 EP 16819421 A EP16819421 A EP 16819421A EP 3394471 A1 EP3394471 A1 EP 3394471A1
Authority
EP
European Patent Office
Prior art keywords
brake
brake disc
forming
brake disk
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16819421.5A
Other languages
German (de)
English (en)
Other versions
EP3394471B1 (fr
Inventor
Daniel Dériaz
Niculo Steinrisser
Jan Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ernst Grob AG
Original Assignee
Ernst Grob AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ernst Grob AG filed Critical Ernst Grob AG
Priority to PL16819421T priority Critical patent/PL3394471T3/pl
Publication of EP3394471A1 publication Critical patent/EP3394471A1/fr
Application granted granted Critical
Publication of EP3394471B1 publication Critical patent/EP3394471B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/123Discs; Drums for disc brakes comprising an annular disc secured to a hub member; Discs characterised by means for mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/02Making articles shaped as bodies of revolution discs; disc wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/28Making machine elements wheels; discs
    • B21K1/32Making machine elements wheels; discs discs, e.g. disc wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/134Connection
    • F16D2065/1344Connection permanent, e.g. by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0061Joining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0084Assembly or disassembly

Definitions

  • the invention relates to brake discs, more specifically to composite brake discs, and to methods for producing composite brake discs and
  • Brake disc pots for this. It relates to devices and methods according to the preamble of the independent claims.
  • Composite brake discs find applications, e.g. in vehicle construction, especially in motor vehicle construction.
  • Automotive because they can have a lower mass than conventional brake discs and because they can be manufactured more economical than conventional
  • a composite brake disc can have a brake disk cup made of sheet metal, in particular steel sheet, and a brake ring made of cast iron or other materials and even essentially of these consist of two parts.
  • a brake disk cup made of sheet metal, in particular steel sheet
  • a brake ring made of cast iron or other materials and even essentially of these consist of two parts.
  • other elements such as
  • a brake disk pot usually has a tubular portion and an adjoining bottom part or consists of these two parts, wherein a
  • Brake disk well is usually formed in one piece.
  • the tubular portion may be cylindrical; but it can also be designed (slightly) conical.
  • the brake ring is sometimes referred to as a friction ring. It may be formed in one piece, e.g. to be a casting.
  • the brake ring can also be multi-part, e.g. be in two parts and, for example, have an inner hub part and an outer brake member, wherein the hub part can be provided with an internal toothing and the brake member can be cast with the hub part.
  • Bottom part of the brake disk hub is transmitted from where the braking torque, typically by friction using bolts, can be passed to wheel hubs of vehicle wheels.
  • coated brake rings e.g. in the case of ceramic-coated brake rings / brake surfaces to increase the service life, such post-processing can not be carried out at all or only with great effort.
  • Another object of the invention is to provide composite brake discs with a particularly small flak.
  • Another object of the invention is to manufacture composite brake discs in relatively few manufacturing steps.
  • Another object of the invention is to produce composite brake discs in a short time in large numbers.
  • Another object of the invention is in the manufacture of
  • Composite brake disc can affect.
  • the method for producing a composite brake disc relates to a
  • Composite brake disc comprising a brake ring and a brake disc pot.
  • the brake ring has at least one braking surface.
  • the brake disk cup has a tubular portion and a bottom part adjoining thereto, by means of which a reference plane is defined. In the process, the previously separate parts brake disc pot and brake ring are assembled. After assembly, the brake disk hub is reshaped and thereby reduced between the at least one braking surface and the reference plane existing wobble angle.
  • the wobble and in particular: the maximum wobble
  • the at least one braking surface has (in relation to the reference plane) through the (targeted)
  • the braking surface of the finished composite brake disc should be aligned as accurately as possible perpendicular to the reference axis. In the event that there should be compound brake discs that would otherwise do so, a different surface or plane of the brake ring would be taken as a reference for the tumble.
  • the wobble (and in particular the maximum wobble) can be determined, for example, by means of a sensor, typically in an outer region of the at least one braking surface. At least when the tumble (after the
  • Joining, before forming exceeds a predetermined setpoint, e.g. 0.02 mm, the forming is carried out.
  • a predetermined setpoint e.g. 0.02 mm
  • the tumble in particular the maximum wobble
  • the tumble angle can be brought below a predetermined setpoint.
  • a specifically generated change in shape of the brake disk hub can cause the reduction of the swash angle.
  • plastic deformations of the brake disk can cause a permanent deformation of the brake disk hub. Accordingly, a permanent more accurate alignment of the at least one braking surface can be achieved.
  • the brake ring on two mutually parallel braking surfaces.
  • brake disk pot and brake ring When assembling brake disk pot and brake ring, these can be firmly connected to each other or attached to each other.
  • Brake Disc Cup and Brake Ring Create an axial lock for the brake ring on the tubular section.
  • Brake Disc Cup and Brake Ring Create an anti-rotation device for the brake ring on the tubular section.
  • a mobility (rotatability) of the brake ring can be limited or minimized by a reference axis perpendicular to the reference axis.
  • reshaping involves reshaping the brake disk pot by means of at least one tool.
  • the at least one tool can be brought into engagement with the brake disk pot.
  • a force input direction of a force exerted by the at least one forming operation tool is oriented perpendicular to a surface machined by the tool (surface of a forming area).
  • a reference axis perpendicular to the reference plane is defined by the bottom part and defines a tube axis through the tubular portion. And by reshaping the brake disc can a Tilt angle between the pipe axis and the reference axis to be changed. However, such a tilt angle is very small in practice.
  • the tubular portion (more precisely: the tube axis) to be aligned exactly perpendicular to the bottom part (more precisely: to the reference plane).
  • Brake disc can then be caused that this orientation is no longer completely vertical, in such a way that the alignment of the at least one braking surface is improved (less wobble, lesser wobble angle).
  • the brake ring (after assembly) is in contact with the tubular portion in a mounting area, and that
  • Forming the brake-disk hub takes place within an axial region extending from a bottom-side end of the attachment region up to and including the bottom part.
  • the tubular portion has an axial stop. This can be part of an axial lock.
  • Brake disk can in particular take place within an axial region which extends from the axial stop up to the bottom part.
  • the axial stop may be a bottom part-side axial stop.
  • the tubular portion has a further axial stop, wherein the bottom part-side axial stop is arranged with respect to its axial position between the bottom part and the further axial stop.
  • the brake ring has two braking surfaces, and the axial stop is provided in a radial position that lies between the radial positions of the two braking surfaces.
  • the axial stop may occur simultaneously with the creation of an outer profile of the Disc brake cup can be generated by molding a brake disc pot blank into an inner profiling of the brake ring.
  • the forming of the brake disk cup takes place within a transition region between the bottom part and the tubular part.
  • the transition region may form a rounded and / or angled connection between the bottom part and the tubular part.
  • the forming of the brake disk cup takes place within the tubular portion.
  • a degree of reshaping varies
  • Disc brake cup over the circumference of the brake disc hub more precisely: along a circumferential coordinate.
  • the perimeter or perimeter coordinate (or azimuth, azimuthal coordinate) is given by the reference axis.
  • the strength of the transformation can thus be azimuthally varying.
  • the variation of the amount of deformation may be selected depending on a variation of the tumble.
  • the variation of the amount of strain may be mirror-symmetrical to a plane including the reference axis and the azimuthal direction of the maximum tumble. It can be provided that in a first region of maximum wobble the strength of the deformation is maximal and in a second region of maximum wobble the strength of the deformation is minimal.
  • reshaping involves a single one
  • a at least 180 ° comprehensive azimuthal region (relative to the reference axis) of the brake disc hub can be transformed.
  • the forming includes sequentially performing a plurality of forming steps
  • the brake disk pot can be formed sequentially in different azimuthal regions. The strength of the transformation steps can vary with the respective azimuthal direction.
  • the deformation of the brake disk hub generated by the deformation may be a continuous deformation.
  • the deformation of the brake disk hub generated by the forming may include a plurality of azimuthally distributed individual deformations.
  • the forming includes plastically deforming the brake disk pot by means of at least one tool.
  • the brake disk cup is machined from the inside (ie on its inside) by the at least one tool.
  • the brake disk hub from the outside is processed by the at least one tool.
  • the forming involves a cold forming operation. In some embodiments, the forming involves a pressing operation.
  • the forming includes a rolling operation.
  • reshaping involves embossing.
  • the forming includes a pressing operation.
  • the forming includes a flow-puffing operation.
  • the reshaping may also include combinations of two or more of said operations.
  • the forming includes that in the
  • Disc brake disc at least one dent is generated. For example, on one side (inside or outside) of the brake disk hub a tool with the Brake disc can be brought into engagement, while on the opposite side (outside or inside) of the brake disc hub, a counter-holder with the brake disc hub in contact, the anvil only outside of a
  • the shape of the brake disk hub can be changed and a dent arises, while a material thickness of the brake disk hub in the forming region in this case (at least substantially) can remain constant.
  • the brake disk By creating a dent, the brake disk can be quasi locally contracted, so that the brake ring is tilted in the azimuthal region in which the dent is in the direction of the dent.
  • the forming includes locally reducing a wall thickness of the brake-disk cup.
  • Brake disk pot a tool with the brake disk hub are brought into engagement, while on the opposite side (outside or inside) of the brake disk hub, a counter-holder with the brake disk chamber in contact, wherein the anvil in a forming area, in which the brake disk chamber is formed by the at least one tool , is in contact with the brake disk pot.
  • a dent which both inside and outside wall of the
  • Brake disc cup concerned can be prevented.
  • a sensor may be used, eg a distance sensor.
  • a measure for a tumble of the at least one braking surface relative to the reference plane is determined by means of a sensor. It is then possible to carry out the forming of the brake disk hub in dependence on the determined Mass.
  • the said measure for the tumble may e.g. the dizziness itself or a size proportional to the tumble.
  • the tubular portion has a
  • External profiling and the brake ring has a corresponding internal profiling.
  • the outer profile and the inner profiling can interlock to form a rotation (securing the brake ring on the
  • a brake disk pot blank is introduced into a provided with an inner profiling brake ring, and then the brake disk pot blank by means of at least one embossing tool in the
  • reshaping is in the range of
  • the forming takes place in an area outside the outer profiling of the brake disk hub.
  • the composite brake disc may be a composite brake disc made according to one of the described methods.
  • a composite brake disc which has a brake ring with at least one Brake surface and a brake disk hub, wherein the brake disk hub has a tubular portion and a bottom portion connected to the tubular portion through which a reference plane and a reference plane perpendicular to the reference axis are defined.
  • regions of radial directions which, between the first and second radial directions, comprise deformations of the brake-disk cup, the strength of which decreases with increasing angular distance from the first direction to the minimum magnitude.
  • the minimum strength can be zero or different from zero.
  • the radial directions refer to the reference axis, ie are directions that are perpendicular to the reference axis.
  • the composite brake disc has a brake ring with at least one brake surface and a brake disc hub, wherein the Brake disc pot has a tubular portion and a bottom portion connected to the tubular portion through which a reference plane and a reference plane perpendicular to the reference axis are defined. Through the tubular portion of a tube axis is defined. And a wobble angle (which, for example, has been reduced by the described method) between the at least one braking surface and the reference plane is less than a tilt angle between the tube axis and the reference axis.
  • the wobble angle is, as it were, small, at the expense of an increased tilt angle.
  • the first and second radial directions may lie in a plane containing the tilt angle.
  • the brake disk pot and the brake ring can be assembled items.
  • the deformation pattern includes one or more dents in the brake disk pot.
  • the deformation pattern includes one or more regions of reduced thickness of the brake disk hub.
  • Forming relate relative to a material thickness in an area adjacent to the forming area.
  • inventions may also include methods having features that result from the features of composite brake disks described, as well as
  • Fig. 1 shows a detail of a composite brake disc being processed, in a section running through the reference axis
  • FIG. 2 shows a detail of a composite brake disk being processed, in a section running through the reference axis
  • FIG. 3 shows a detail of a composite brake disk being processed, in a section running through the reference axis
  • FIG. 4 shows a detail of a composite brake disk being processed, in a section running through the reference axis
  • FIG. 5 shows a detail of a composite brake disk being processed, in a section running through the reference axis
  • Fig. 6A is a schematic illustration of a continuous
  • 6B is a schematic illustration of a sectoral (discontinuous)
  • 6C is a schematic illustration of a sectoral (discontinuous)
  • Fig. 7 is a schematic illustration of a composite brake disc before and after the deformation, in a plane passing through the reference axis section.
  • Figures 1 to 5 each show a detail of a work in progress
  • Composite brake disc 10 in a plane passing through a reference axis A section.
  • the composite brake discs 10 each have a brake disc hub 1 and a brake ring 3, which are joined together and were previously manufactured as separate parts.
  • the brake disk cup 1 has a tubular portion lr and a bottom portion 1b connected to the tubular portion. Through the bottom part of a reference plane E is defined.
  • the reference axis A is perpendicular to the
  • tubular portion 1 r an outer profiling, e.g. an external toothing
  • brake ring 3 has a corresponding internal profiling, e.g. a
  • axial stops 5, 5 ' may be formed an axial securing, which prevents the brake disk chamber 1 and brake ring 3 in the assembled state relative to each other along the reference axis A are movable.
  • Wobble angle ⁇ can be displayed in the plane). Taumel t and wobble angle ⁇ are shown greatly exaggerated in Figures 1 to 5. Actual tumble can be for example between 0.02 mm and 0.5 mm.
  • the brake ring is shown in an optimal orientation, ie without wobble (i.e., with a wobble angle of 0 °), by means of solid lines. Then, the reference axis A is perpendicular to the braking surfaces 3f, 3f.
  • the brake disk chamber 1 is formed in a defined manner.
  • the brake disk chamber 1 can be reshaped by means of a symbolically represented tool 4. Meanwhile, the brake disk chamber 1 by means of a
  • Tool 4 engages in the figures 1 to 5 from the outside into the brake disk hub 1, while counterholder 6 within the
  • Disc brake cup 1 is arranged.
  • the reverse arrangement (counterholder outside brake disk pot and tool engagement within brake disk pot) is also possible.
  • the wall thickness of the brake disk cup 1 is reduced locally by means of a tool 4 in a forming area.
  • material of the brake disk hub 1 can flow away (symbolized by the small arrows), so that an outer edge of the brake ring in the azimuthal
  • the direction of the force application For example, perpendicular to the surface of the brake disc hub in
  • the force introduction direction can be aligned within 30 ° perpendicular to the machined surface of the brake disc hub 1.
  • the transformation takes place in a transition region from the bottom part lb to the tubular section lr.
  • the deformation takes place in the tubular portion lr.
  • the deformation takes place in a region in which the tubular portion lr is provided with external teeth.
  • the deformation takes place in the tubular portion lr.
  • the deformation takes place outside a region in which the tubular section 1r is provided with external teeth.
  • a dent in the brake disk hub 1 is generated locally by means of tool 4.
  • the counter-holder 6 supports the brake disk cup 1 only outside the processing area machined by the tool 4. In the area of the dent is quasi material of the
  • Brake disk cup 1 pulled together (symbolized by the small arrows), so that an outer edge of the brake ring is moved in the azimuthal angle range of the deformation to the reference plane E.
  • the amount of deformation that is added to the brake disk hub 1 in each case may be, for example, in the range of 0.01 mm to 2 mm.
  • FIGS. 6A to 6C illustrate various deformation patterns in a view along the reference axis.
  • the dashed line symbolizes the azimuthal Directions of maximum tumble. The larger or thicker the black area, the stronger the deformation in the corresponding azimuthal area.
  • the deformation patterns may be mirror-symmetrical to a plane in which the wobble angle is located.
  • Fig. 6A illustrates a deformation pattern representing continuous deformation.
  • a deformation pattern can be generated for example in a single forming step. Alternatively, it can be generated by a plurality of successively executed (partial) forming steps.
  • FIGS. 6B and 6C illustrate sectoral deformation patterns composed of a plurality of individual transformations in different azimuthal angular ranges.
  • the minimum and, on the other hand, the maximum deformation strength are present.
  • FIG. 7 illustrates this as well as the tumbling angle .alpha. In greatly exaggerated size.
  • Fig. 7 is highly schematic. Tilt angle ⁇ and wobble angle ⁇ are actually very small angles, smaller than 0.2 °, e.g. a few hundredths of a degree, and thus difficult to measure.
  • arrows designated by rl and r2 are the radial directions in the range of plastic deformations to the orientation of the brake ring 3 are minimal or maximum, because there the maximum wobble t.
  • Denoted at 11 is a sensor by means of which the wobble t can be quantified so that the deformation pattern can be selected (e.g., calculated) depending thereon.
  • Various forming techniques can be used to perform the forming, e.g. Cold forming techniques. Some possible forming techniques are mentioned above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Braking Arrangements (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un disque de frein composite (10) comprenant un anneau de freinage (3) avec au moins une surface de freinage (3 f, 3f') et un pot de disque de frein (1) comportant une partie tubulaire (1r) et un élément de fond (1b) relié à la partie tubulaire et qui permet de définir un plan de référence (E). Selon l'invention, les parties (1) séparées au préalable et l'anneau de freinage (3) sont assemblés, puis un angle d'inclinaison (α) entre au moins une surface de freinage (3f, 3f') et le plan de référence (E) est diminué par déformation du pot de disque de frein (1).
EP16819421.5A 2015-12-21 2016-12-19 Procédé de fabrication pour disque de frein composite et disque de frein composite correspondant Active EP3394471B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16819421T PL3394471T3 (pl) 2015-12-21 2016-12-19 Sposób wytwarzania kompozytowej tarczy hamulcowej, jak też odpowiednia kompozytowa tarcza hamulcowa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01886/15A CH711319A2 (de) 2015-12-21 2015-12-21 Herstellungsverfahren für eine Verbundbremsscheibe sowie entsprechende Verbundbremsscheibe.
PCT/CH2016/000157 WO2017106981A1 (fr) 2015-12-21 2016-12-19 Procédé de fabrication pour disque de frein composite et disque de frein composite correspondant

Publications (2)

Publication Number Publication Date
EP3394471A1 true EP3394471A1 (fr) 2018-10-31
EP3394471B1 EP3394471B1 (fr) 2020-04-08

Family

ID=57735573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16819421.5A Active EP3394471B1 (fr) 2015-12-21 2016-12-19 Procédé de fabrication pour disque de frein composite et disque de frein composite correspondant

Country Status (8)

Country Link
US (1) US10655693B2 (fr)
EP (1) EP3394471B1 (fr)
JP (1) JP6895438B2 (fr)
KR (1) KR102199788B1 (fr)
CN (1) CN108496020B (fr)
CH (1) CH711319A2 (fr)
PL (1) PL3394471T3 (fr)
WO (1) WO2017106981A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6912578B2 (ja) * 2016-12-22 2021-08-04 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー ブレーキディスクおよびその製造方法
DE102019213751A1 (de) * 2019-01-11 2020-07-16 Continental Teves Ag & Co. Ohg Gebaute Verbundbremstrommel für ein Kraftfahrzeug

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3307251A (en) * 1965-07-06 1967-03-07 Budd Co Method of producing balanced rotatable bodies
GB1298811A (en) * 1969-03-22 1972-12-06 Girling Ltd Improvements in or relating to brake discs
US3661235A (en) * 1969-03-22 1972-05-09 Girling Ltd Brake disc and hub combination
JPS52110291U (fr) * 1976-02-19 1977-08-22
JPS531436A (en) * 1976-06-28 1978-01-09 Toshiba Corp Numerical control unit
DE4419757A1 (de) 1994-06-06 1995-12-07 Teves Gmbh Alfred Bremsscheibe
IT1284314B1 (it) * 1996-01-11 1998-05-18 Skf Ind Spa Gruppo cuscinetto per mozzo ruota di veicolo.
IT1288795B1 (it) * 1996-10-31 1998-09-24 Skf Ind Spa Gruppo cuscinetto per mozzo ruota di veicolo adatto al collegamento con l'organo frenante per formatura a freddo.
WO2003100281A1 (fr) * 2002-05-27 2003-12-04 Yutaka Giken Co., Ltd. Disque de frein de type flottant
JP2005030471A (ja) 2003-07-10 2005-02-03 Aisin Takaoka Ltd ブレーキディスクの固有振動数調整方法
US7784592B1 (en) * 2005-11-23 2010-08-31 Kelsey-Hayes Company Straddle balance mill correction
DE102009012216A1 (de) 2009-03-07 2010-09-09 Daimler Ag Bremsscheibe
KR101349005B1 (ko) * 2012-03-06 2014-01-16 경창산업주식회사 자동차용 브레이크 디스크 제작 방법
DE102012016497B3 (de) * 2012-08-21 2013-12-05 Daimler Ag Verfahren zur Herstellung einer Bremsscheibe
JP6198611B2 (ja) * 2013-01-18 2017-09-20 株式会社フジコーポレーション ブレーキディスクの製造方法及びブレーキディスク
WO2015058314A2 (fr) * 2013-10-23 2015-04-30 Ernst Grob Ag Disque de frein composite ainsi que procédé et dispositif pour le fabriquer
DE102016115022A1 (de) * 2015-08-14 2017-02-16 Technische Universität Chemnitz Bremsscheibe und Verfahren zu deren Herstellung

Also Published As

Publication number Publication date
WO2017106981A1 (fr) 2017-06-29
JP6895438B2 (ja) 2021-06-30
CN108496020A (zh) 2018-09-04
KR20180095066A (ko) 2018-08-24
KR102199788B1 (ko) 2021-01-08
CH711319A2 (de) 2017-01-13
CN108496020B (zh) 2021-02-02
US20180372174A1 (en) 2018-12-27
US10655693B2 (en) 2020-05-19
EP3394471B1 (fr) 2020-04-08
PL3394471T3 (pl) 2020-11-02
JP2019501350A (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
EP2027951A1 (fr) Procédé de réalisation d'une liaison fixe en rotation d'un tube métallique et d' une tôle et liaison fixe en rotation d'un tube métallique et d' une tôle
EP1108483B1 (fr) Procédé et dispositif pour le fluotournage
WO2009018986A2 (fr) Procédé pour fabriquer une partie de boîtier en forme de pot ainsi que partie de boîtier en forme de pot, en particulier pour une partie de moyeu d'un propulseur hybride
EP2934984B1 (fr) Colonne de direction pour un véhicule automobile
DE102013112123B4 (de) Metallhülse und Verfahren zu deren Herstellung
DE102009044678B4 (de) Verfahren und Vorrichtung zur Herstellung einer formschlüssigen Verbindung von unterschiedlichen topfförmigen Bauteilen einer Bremstrommel
DE102015211857A1 (de) Lagerring, Verfahren zur Herstellung eines solchen Rings und Lager, das einen solchen Ring enthält
DE102005007716A1 (de) Sitzhöhenverstellung
DE19532519C2 (de) Verfahren zur Herstellung eines rotationssymmetrischen metallischen Werkstücks
EP3394471B1 (fr) Procédé de fabrication pour disque de frein composite et disque de frein composite correspondant
DE3302762A1 (de) Verfahren zur befestigung eines bauteils am aussenumfang eines rohrs
DE19701565A1 (de) Verfahren zur Herstellung eines Getriebeteils
WO2015117787A1 (fr) Procédé et dispositif de fabrication d'une fermeture destinée à un ensemble cylindre-piston
EP2403665B1 (fr) Dispositif de réalisation d'un profil sur une pièce en tôle
EP2205371A2 (fr) Procédé pour fabriquer des systèmes à double tube
DE102017115712B4 (de) Verbundbremsscheibe
DE19849981C5 (de) Verfahren zum Formen eines scheibenförmigen Teiles mit Nabe und Drückrolle für das Verfahren
DE19629738C2 (de) Verfahren zum Herstellen rotationssymmetrischer Körper mit Nabe
DE102015221765B3 (de) Zylinderanordnung mit einem Boden und Vorrichtung zur Herstellung einer Formschlussverbindung zwischen dem Boden und einem Zylinder
DE2953354C2 (de) Verfahren zum Herstellen eines inneren Gelenkkörpers für ein homokinetisches Gelenk
DE102010011809B4 (de) Verfahren und Drückwalz- und Profiliermaschine zum Herstellen eines rotationssymmetrischen Werkstückes sowie Profilrolle hierfür
EP3173184B1 (fr) Procédé de fabrication d'une bague de synchronisation à double cône
DE10211135B4 (de) Verfahren und Vorrichtung zur Herstellung eines Formkörpers
DE10236822B4 (de) Verfahren und Vorrichtung zur Herstellung einer Schalttrommel
DE4240613C2 (de) Topfförmiges Werkstück mit einer axialen Innenverzahnung und einer radialen Stirnverzahnung, Verfahren zur Herstellung des Werkstücks und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190606

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191030

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1254786

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009507

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200709

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200808

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009507

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211222

Year of fee payment: 6

Ref country code: FR

Payment date: 20211224

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1254786

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20221219

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 8

Ref country code: DE

Payment date: 20231214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 8