EP3391816B1 - System und verfahren zur überprüfung von echtzeit-lungenmechaniken - Google Patents

System und verfahren zur überprüfung von echtzeit-lungenmechaniken Download PDF

Info

Publication number
EP3391816B1
EP3391816B1 EP18164800.7A EP18164800A EP3391816B1 EP 3391816 B1 EP3391816 B1 EP 3391816B1 EP 18164800 A EP18164800 A EP 18164800A EP 3391816 B1 EP3391816 B1 EP 3391816B1
Authority
EP
European Patent Office
Prior art keywords
plt
inspiratory
patient
respiratory
estimate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18164800.7A
Other languages
English (en)
French (fr)
Other versions
EP3391816A1 (de
Inventor
Nawar Nazar Al-Rawas
Andrea Gabrielli
Neil Russell Euliano
Michael Joseph Banner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Convergent Engineering Inc
University of Florida Research Foundation Inc
Original Assignee
Convergent Engineering Inc
University of Florida Research Foundation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Convergent Engineering Inc, University of Florida Research Foundation Inc filed Critical Convergent Engineering Inc
Publication of EP3391816A1 publication Critical patent/EP3391816A1/de
Application granted granted Critical
Publication of EP3391816B1 publication Critical patent/EP3391816B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/091Measuring volume of inspired or expired gases, e.g. to determine lung capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0836Measuring rate of CO2 production

Definitions

  • R RS is the amount of pressure required to force a given flow of gas though the combined series resistances of the breathing circuit, ETT resistance, and physiologic airways of a mechanically ventilated patient.
  • C RS is a measurement of the distensibility of the lung, meaning the elastic recoil of the lungs and the chest wall for a given volume of gas delivered. Thus, for any given volume, elastic pressure is increased by lung stiffness (as in pulmonary fibrosis) or restricted excursion of the chest wall or diaphragm ( i.e., tense ascites, massive obesity).
  • C RS and R RS are calculated using an end inspiratory pause (EIP) during a constant inspiratory flow rate.
  • EIP end inspiratory pause
  • C RS is estimated by dividing the delivered tidal volume by inspiratory P plt , where P plt is the steady-state pressure measured during an EIP.
  • R RS is estimated by dividing the difference between peak inflation pressure (PIP) and P plt by the inspiratory flow rate.
  • PIP peak inflation pressure
  • Some ventilators have an inspiratory flow rate setting such that the clinician can read the delivered flow rate while others give an inspiratory time setting where the clinician needs to divide the tidal volume by the inspiratory time to determine the inspiratory flow rate.
  • P plt is essential for calculating C RS and R RS .
  • monitoring P plt is also essential to avoid the over-distension of the alveoli, thus avoiding baro- and/or volutrauma, especially in patients with restrictive lung diseases (ARDS network protocol (July 2008); http://www.ardsnet.org/node/77791).
  • EIP EIP be performed. For patients with respiratory failure, this can be accomplished by applying an EIP immediately following a tidal volume during controlled mechanical ventilation (CMV) or intermittent mandatory ventilation (IMV).
  • CMV controlled mechanical ventilation
  • IMV intermittent mandatory ventilation
  • Temporary disruption of inhalation by applying an EIP may also predispose to patient-ventilator dysynchrony. This may lead to increased work of breathing, and the possibility of compromising arterial blood-gas exchange.
  • WO 2006/012205 A2 describes a method and an apparatus for non-invasive prediction of intrinsic positive end-expiratory pressure in spontaneously breathing patients using certain markers, such as flow/volume trajectory, CO2 flow/volume trajectory, CO2 volume ratio, flow at the onset of inspiratory effort, modeling the patient's expiratory waveform, peak to mid-exhalation flow ratio, duration of low exhaled flow, capnograph waveform shape, and negative expiratory pressure or an increased expiratory gradient.
  • markers such as flow/volume trajectory, CO2 flow/volume trajectory, CO2 volume ratio, flow at the onset of inspiratory effort, modeling the patient's expiratory waveform, peak to mid-exhalation flow ratio, duration of low exhaled flow, capnograph waveform shape, and negative expiratory pressure or an increased expiratory gradient.
  • the invention thus provides a method for accurate and real time estimation of inspiratory plateau pressure "P plt " without using an end inspiratory pause (EIP), comprising: (a) receiving respiratory parameters of a patient from a device (5) that interfaces with a patient pulmonary system and measures the respiratory parameters; (b) calculating, with a processor unit (20), the patient's expiratory time constant " ⁇ E " using at least one respiratory parameter from step (a); and (c) calculating with the processor unit (20) at least one estimate of P plt using at least one respiratory parameter from step (a) and the patient's ⁇ E from step (b), wherein the respiratory parameters used at step (b) to calculate the patient's ⁇ E is from exhalation and the at least one respiratory parameter used at step (c) to calculate the at least one estimate of P plt is from inspiration, characterized in that the at least one respiratory parameter used to calculate at least one estimate of P plt is from an inspiratory waveform at a single instance of time when respiratory effort is low, and wherein the single instance of
  • the invention also provides a system for accurate and real time estimation of inspiratory plateau pressure "P plt " without using an end inspiratory pause (EIP), comprising: a device (5) configured to interface with a patient pulmonary system and measure respiratory parameters of a patient; a processor unit (20) configured to calculate an estimation of the patient's expiratory time constant " ⁇ E " using at least one respiratory parameter from the respiratory parameters of the patient; and where the processor unit (20) is further configured to calculate at least one estimate of P plt using the at least one respiratory parameter and the patient's ⁇ E , wherein the respiratory parameters to calculate the patient's ⁇ E is from exhalation and the at least one respiratory parameter to calculate the at least one estimate of P plt is from inspiration, wherein the system is configured such that at least one respiratory parameter used to calculate at least one estimate of P plt is from an inspiratory waveform at a single instance of time when respiratory effort is low, and wherein the system is configured to determine the single instance of time when respiratory effort is low by: (i) calculating P plt
  • the at least one respiratory parameter used to calculate at least one estimate of P plt may be from an inspiratory waveform at a single instance of time taken at an early portion of the inspiratory waveform.
  • the subject invention is particularly advantageous in that it can utilize commonly measured respiratory parameters (i.e., airway pressure and flow rate over time during inspiratory phase of mechanical ventilation) to generate accurate, real time estimates of pulmonary mechanics, including but not limited to P plt .
  • the resultant pulmonary mechanics estimates are particularly useful in real time monitoring of patient reaction to mechanical ventilation mode changes, the effects of various interventions ( i.e., drugs) on pulmonary mechanics and physiology, the risks of lung overdistension, and the adequacy of lung protection strategies.
  • Accurate and real time estimates of P plt are also useful during pressure regulated ventilation commonly utilized for weaning to assist spontaneous breathing.
  • the method comprises creating a mathematical model of the patient's expiratory time constant ( ⁇ E ) of the respiratory system by using predetermined parameters that are collected non-invasively, such as those collected with standard respiratory monitors.
  • parameters include, but are not limited to, exhalation volume, airflow rate and pressure.
  • Respiratory monitors and ventilators typically contain airway pressure and airway flow sensors that measure the flow going into and out of the lungs, and often times they also contain a carbon dioxide sensor and pulse oximeter. From these time-waveforms, a variety of parameters are selectively derived that are used in characterizing different aspects of the patient's breathing and/or the patient's interaction with the ventilator. These parameters contain information that is extracted to accurately estimate the patient's inspiratory and expiratory flow and pressure waveform data. With the patient's inspiratory waveform data and ⁇ E , accurate and continuous calculation in real time of estimates of patient inspiratory P plt , and further patient C RS , R RS , and derivative pulmonary mechanics are accomplished. All of these estimates are useful for determining appropriate therapy, including ventilator settings.
  • real time P plt , and patient C RS and R RS and derivative pulmonary mechanics are accurately and continuously estimated using ⁇ E from passive deflation of the lungs during all modes of breathing. More preferably, real time P plt , and patient C RS and R RS and derivative pulmonary mechanics, are accurately and continuously estimated using ⁇ E from passive deflation of the lungs during pressure regulated breathing.
  • the method for calculating the pulmonary mechanics in a patient comprises use of a neural network, wherein the neural network provides the pulmonary mechanics information for the patient based upon input data, wherein the input data includes at least one of the following parameters: the airway pressure, flow, airway volume, expiratory carbon dioxide flow waveform, and pulse oximeter plethysmogram waveforms normally collected by a respiratory monitor, including but not limited to tidal volume, breathing frequency (f), PIP, inspiratory time, P 0.1 , inspiratory trigger time, trigger depth, wherein accurate and useful estimates for ⁇ E , P plt , C RS , and R RS are provided as an output variable.
  • f breathing frequency
  • the neural network is trained by clinical testing of a test population of patients to obtain teaching data, the teaching data which includes the above-noted input information.
  • the teaching data are provided to the neural network, whereby the neural network is trained to provide an output variable corresponding to C RS , and R RS .
  • the invention can be implemented in numerous ways, including as a system (including a computer processing or database system), a method (including a computerized method of collecting and processing input data and a method for evaluating such data to provide an output(s)), an apparatus, a computer readable medium, a computer program product, or a data structure tangibly fixed in a computer readable memory.
  • a system including a computer processing or database system
  • a method including a computerized method of collecting and processing input data and a method for evaluating such data to provide an output(s)
  • an apparatus including a computer readable medium, a computer program product, or a data structure tangibly fixed in a computer readable memory.
  • the subject invention includes processing predetermined input variables (parameters) using the formulas described herein, preferably through the use of a computer readable media program containing program instructions, a processing system, or a neural network.
  • an embodiment of the invention includes: computer readable code devices for receiving input variables, processing the input, and providing an output indicative of C RS and R RS .
  • processing comprises utilizing a neural network.
  • the method may further include controlling a ventilator in response to the output obtained.
  • the methods of the present invention may be implemented as a computer program product with a computer-readable medium having code thereon.
  • the program product includes a program and a signal bearing media bearing the program.
  • Inspiratory P plt is an important parameter to calculate a patient's C RS and R RS during mechanical ventilation. Monitoring P plt is also essential to avoid the over-distension of the alveoli, thus avoiding baro- and/or volutrauma, especially in patients with restrictive lung diseases (ARDS network protocol (July 2008); http://www.ardsnet.org/node/77791).
  • the ⁇ E of passive lung exhalation is a parameterization of the time needed to complete exhalation based on an expontial decay and contains information about the mechanical properties of the respiratory system ( Guttmann, J. et al., "Time constant/volume relationship of passive expiration in mechanically ventilated ARDS patients," Eur Respir J., 8:114-120 (1995 ); and Lourens, MS et al., "Expiratory time constants in mechanically ventilated patients with and without COPD,” Intensive Care Med, 26(11): 1612-1618 (2000 )).
  • ⁇ E is defined as the product of the C RS and R RS ( Brunner, JX et al., "Simple method to measure total expiratory time constant based on the passive expiratory flow volume curve," Crit Care Med, 23:1117-1122 (1995 )).
  • FIGS. 13 and 14 are graphical illustrations of various respiratory parameters useful in calculating P plt , R RS and C RS .
  • FIG. 13 shows a breath from variable patient effort while on pressure support ventilation (PSV) mode. The label shows the last point of inhalation on the airway pressure curve (Paw), which represents the least patient effort and is utilized to estimate P plt , R RS and C RS.
  • PSV pressure support ventilation
  • FIG. 15 shows a P plt curve, where P plt was calculated from ⁇ E estimates at every point of inhalation (and exhalation, which should be excluded).
  • the label on the P plt curve is on the last valid portion of inhalation, which corresponds to the end of inhalation illustrated in FIG. 14 .
  • the median of ⁇ E estimates utilizing the portion of exhalation where flow is less than 80% of peak inspiratory flow but greater than 0.1 LPS provide a more accurate estimate of ⁇ E .
  • several estimates of the time constant for multiple breaths can be averaged or median filtered to provide a better estimate of ⁇ E for a region of breaths.
  • the exhalation portion can be defined by percentage of volume exhaled.
  • the median of ⁇ E estimates from different combinations of percentages of volume and/or peak expiratory flow provide more accurate estimates of ⁇ E .
  • the percentage from the peak expiratory flow lies between 95% and 20% of the peak expiratory flow.
  • the percentage from the peak expiratory flow lies between 95% and 70% of the peak expiratory flow.
  • the portion of exhalation between 80% of exhaled volume and 20% of exhaled volume is utilized.
  • ⁇ E values may vary with flow rate.
  • better ⁇ E estimates can be achieved by selecting areas of exhalation to estimate ⁇ E based on the inspiratory flow rates. For example, better ⁇ E estimates can be achieved in those ventilation modes where the inspiratory flow rates are constant such as IMV, VC+ (Volume Control Plus), or Assist Control.
  • the resistance portion of ⁇ E calculated in a mechanically ventilated patient is the sum of three series resistances i.e., total resistance (R TOT ), which is the sum of physiologic airways resistance (R aw ), imposed resistance of the endotracheal tube (R ETT ), and ventilator exhalation valve resistance (R vent ).
  • R TOT R aw + R ETT + R vent
  • the resistance applied by the ventilator exhalation valve can be excluded from the estimate of ⁇ E as derived above for improved, accurate modified estimates of ⁇ E .
  • C RS and R RS and thus P plt , can be accurately estimated in accordance with the invention as follows:
  • C RS Paw ⁇ PEEP V T + R RS ⁇ C RS ⁇ V inh : multiply both sides by C RS to derive the following equation for C RS :
  • C RS V T + ⁇ E ⁇ V ⁇ in h P aw ⁇ PEEP
  • P aw airway inflation pressure
  • PEEP positive end expiratory pressure
  • V T is tidal volume
  • V inh is inspiratory flow rate.
  • the flow, pressure, and volume values utilized are not waveforms, but are single measurements. In the preferred embodiment, these measurements occur simultaneously so that the volume, flow, and pressure values are associated with a single point in time during inhalation. Since the airway equation does not include a term for inspiratory effort generated by the patient's inspiratory muscles, the ideal location to measure these values is when the inspiratory effort is minimal (to avoid the errors caused by inspiratory effort in the airway equation). As such, the preferred point where these measurements are made are the point during inhalation with minimal effort. Locating the point of minimal patient effort, however, can be difficult because instantaneous patient effort can only be accurately calculated by invasive methods such as esophageal pressure catheters. In a typical breath, however, low patient effort often occurs near the end (or sometimes at the beginning) of inspiration.
  • a point of minimum effort for accurate parameter estimation is determined by calculating P plt curves throughout inhalation and utilizing the point where P plt was at its maximum.
  • a point of low patient effort is located by finding the position during inspiration where compliance is at its minimum value. Both of these embodiments rely on the fact that patient effort will tend to increase the estimate of compliance and decrease the plateau pressure.
  • points A, B, and C in FIG. 16 provide examples of points of compliance that can be used to identify volume, flow and pressure values in calculating ⁇ E , P plt , R RS and C RS .
  • FIG. 18 shows the resistance curve from the inhalation portion of this breath. Resistance is flow dependent, so as flow decreases, resistance will as well.
  • breaths are contaminated by coughing, the patient fighting the ventilator, poor triggering by the ventilator, sensor noise or errors, and other problems.
  • breaths that had a compliance value outside the normal range were eliminated.
  • common breath parameters are computed and compared against normal values.
  • the breath parameters include peak inspiratory pressure, tidal volume, inspiratory time, expiratory time, mean airway pressure, and the like.
  • Contemplated ventilators include those that accomplish any one or more of the following modes of ventilation: volume-cycled ventilation; assist-control ventilation (A/C); synchronized intermittent mandatory ventilation (SIMV); pressure-cycled ventilation; pressure support ventilation (PSV); pressure control ventilation (PCV); noninvasive positive pressure ventilation (NIPPV); and continuous positive airway pressure (CPAP) or bilevel positive airway pressure (BIPAP).
  • modes of ventilation volume-cycled ventilation; assist-control ventilation (A/C); synchronized intermittent mandatory ventilation (SIMV); pressure-cycled ventilation; pressure support ventilation (PSV); pressure control ventilation (PCV); noninvasive positive pressure ventilation (NIPPV); and continuous positive airway pressure (CPAP) or bilevel positive airway pressure (BIPAP).
  • continuous, real time estimates of P plt , C RS , and R RS are determined in order to diagnose pulmonary condition or disease (including apnea detection and treatment in obstructive sleep apnea as well as COPD and ARDS detection) and/or to assess intervention efficacy.
  • continuous accurate knowledge of patient C RS and R RS is particularly useful in establishing more accurate ventilator settings for the patient and in pharmaceutical applications (such as bronchodilators).
  • Continuous and accurate knowledge of patient pulmonary mechanics during application of pharmaceuticals is particularly useful in assessing therapeutic efficacy and in determining proper dosage.
  • the real-time data from this invention could be used to determine obstructions or obstacles from affecting the patient's ventilation.
  • the invention can be utilized to determine when the breathing tube requires suctioning to remove mucus or other obstructions, or may determine when the tube may be kinked.
  • real time estimates of P plt , C RS , and R RS are utilized to estimate or improve estimates of patient effort via the application of the airway equation (for example, calculating Pmus as the difference between the expected airway pressure and the actual airway pressure). This is also useful for determining and optimizing patient synchrony by allowing accurate measurement of the onset and offset of patient effort. Optimization of the ventilator on-triggering and off-triggering can be implemented either manually or automatically.
  • the real time estimates are utilized to track the patient health and response to treatment. Compliance tracking during changes in PEEP indicate when the lung is being ventilated optimally. Changes in resistance indicate that drugs to relax the patient airway are working as expected. Utilizing the physiologic parameters allows for the titration and optimization of treatments, both via the ventilator and pharmaceutically.
  • the model such as a neural network
  • the input parameters can be collected non-invasively with a standard respiratory monitor.
  • the neural network is trained to predict the physiologic and imposed pulmonary mechanics using the non-invasively acquired parameters described above (although invasive parameters may be added to the system, if desired.)
  • the network output such as an actual pulmonary mechanics variable may be used as an accurate predictor of patient pulmonary mechanics.
  • neural networks loosely model the functioning of a biological neural network, such as the human brain. Accordingly, neural networks are typically implemented as computer simulations of a system of interconnected neurons. In particular, neural networks are hierarchical collections of interconnected processing elements (PEs). These elements are typically arranged in layers, where the input layer receives the input data, the hidden layers transform the data, and the output layer produces the desired output. Other embodiments of a neural network can also be used.
  • PEs processing elements
  • Each processing element in the neural network receives multiple input signals, or data values, that are processed to compute a single output.
  • the inputs are received from the outputs of PEs in the previous layer or from the input data.
  • the output value of a PE is calculated using a mathematical equation, known in the art as an activation function or a transfer function that specifies the relationship between input data values.
  • the activation function may include a threshold, or a bias element.
  • the outputs of elements at lower network levels are provided as inputs to elements at higher levels. The highest level element, or elements, produces a final system output, or outputs.
  • the neural network is a computer simulation that is used to produce a noninvasive estimate of the quantified patient effort described previously.
  • the neural network of the present invention may be constructed by specifying the number, arrangement, and connection of the processing elements which make up the network.
  • a simple embodiment of a neural network consists of a fully connected network of processing elements. As shown in FIG. 9 , the processing elements of the neural network are grouped into the following layers: an input layer 30 where the parameters collected and/or derived from the airway pressure and flow sensors are inputted to the network; a hidden layer or layers 32 of processing elements; and an output layer 34 where the resulting prediction of patient effort 36 is produced.
  • the number of connections, and consequently the number of connection weights, is fixed by the number of elements in each layer 30, 32, 34.
  • the most common training methodology for neural networks is based upon iterative improvement of the system parameters (normally called weights) by minimizing the mean squared difference between the desired output and the network output (mean squared error, MSE).
  • MSE mean squared error
  • the input is applied to the neural network, the neural network passes the data through its hierarchical structure, and an output is created. This network output is compared with the desired output corresponding to that input and an error is calculated. This error is then used to adjust the weights of the system so that the next time that particular input is applied to the system the network output will be closer to the desired output.
  • MSE mean squared error
  • the invention may be implemented using computer programming or engineering techniques including computer software, firmware, hardware or any combination or subset thereof. Any such resulting program, having computer-readable code means, may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the invention.
  • the computer readable media may be, for instance, a fixed (hard) drive, diskette, optical disk, magnetic tape, semiconductor memory such as read-only memory (ROM), etc., or any transmitting/receiving medium such as the Internet or other communication network or link.
  • the article of manufacture containing the computer code may be made and/or used by executing the code directly from one medium, by copying the code from one medium to another medium, or by transmitting the code over a network.
  • An apparatus for making, using or selling the invention may be one or more processing systems including, but not limited to, a central processing unit (CPU), memory, storage devices, communication links and devices, servers, I/O devices, or any sub-components of one or more processing systems, including software, firmware, hardware or any combination or subset thereof, which embody the invention.
  • User input may be received from the keyboard, mouse, pen, voice, touch screen, or any other means by which a human can input data into a computer, including through other programs such as application programs.
  • the subject systems and methods for accurately estimating in real time pulmonary mechanics based on monitored ventilation parameters was validated using a heterogenous population of thirty (30) adult patients in respiratory failure requiring mechanical ventilation, namely patients receiving positive pressure ventilation.
  • FIG. 1 data from a combined pressure / flow sensor 5 (NICO, Respironics) positioned between the patient endotracheal tube 10 and Y-piece 15 of the ventilator breathing circuit, were directed to a laptop computer 20 with software performing the methods described herein (Convergent Engineering) for measurement and recording of pressure, flow, and volume data.
  • NICO Pressure / flow sensor 5
  • P plt data ranged from 10 to 44 cm H 2 0 in the studied patient population.
  • Table 1 Patient Demographic Patient Age Height Weight Gender ETT size (mm) 1 74 62 68 male 7 2 37 68 62 male 8 3 37 74 204 male 7.5 4 53 71 108 male 8 5 67 64 60 male 7 6 69 70 71 male 8 7 68 65 68 female 8 8 51 72 80 male 8 9 37 66 69 male 8 10 67 72 83 male 8 11 20 73 223 male 8 12 62 59 60 female 7 13 73 68 89 male 8 14 18 67 60 female 7 15 60 70 60 male x 16 20 64 62 male 7.5 17 50 70 63 male 8 18 54 70 80 male 7.5 19 68 65 50 female 7.5 20 48 72 76 male 8 21 47 69 66 male 7.5 22 26 71 74 male 8 23 48 72 76 male 8 24 72 74 90 male 8 25 75 65 76 male 7.5 26 18 73 100 male 8 27 63 69 70 male 7.5 28 50 67 75 female 7.5 29 25 71 86 male 8 30 70 72 83 male 8
  • ⁇ E was obtained from three random patients (A, B and C) with three different inhalational flows (0.5, 0.75 and 1 L/S) and compared with ⁇ E P plt obtained by an end inhalation pause (EIP).
  • EIP end inhalation pause
  • ⁇ E P plt differs from ⁇ E depending on the gap between PIF and PEF (X-axis).
  • ⁇ E is represented in FIGS. 4A-4C as blue diamonds and ⁇ E P plt as red squares, where the difference in ⁇ E P plt from ⁇ E is represented as green triangles.
  • PIF-PEF then becomes the correction factor for ⁇ E ( Guerin, C. et al., "Effect of PEEP on work of breathing in mechanically ventilated COPD patients," Intensive Care Med, 26(9): 1207-1214 (2000 ).
  • the 24 adults consisted of 10 males and 14 females with ranges in age 56.1 ⁇ 16.6 yrs and weight 79.9 ⁇ 28.8 kg. They had heterogeneous causes of respiratory failure and were breathing spontaneously with PSV.
  • PSV ranged between 5 and 20 cm H 2 O.
  • PSV and IMV with EIP were compared in the same patients.
  • P plt and C RS were obtained by integrating the ⁇ E from the expiratory volume and flow waveforms.
  • IMV and EIP P plt was obtained from viewing pressure plateau of the airway pressure waveform at EIP. Data were analyzed using regression and Bland-Altman analysis; alpha was set at .05.
  • P plt and C RS from the ⁇ E method were 19.65 ⁇ 6.6 cm H 2 O and 0.051 ⁇ 0.0124 ml / cm H 2 O, respectively.
  • Bland-Altman plots for P plt and C RS showed bias at 1.17 and - 0.0035, respectively and precision at ⁇ 1 and ⁇ 0.0031, respectively.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Claims (10)

  1. Verfahren zur genauen und Echtzeitschätzung des inspiratorischen Plateaudrucks "Pplt" ohne Verwendung einer endinspiratorischen Pause (EIP), umfassend:
    (a) Empfangen von respiratorischen Parametern eines Patienten von einer Vorrichtung (5), die mit dem Lungensystem eines Patienten verbunden ist und die respiratorischen Parameter misst;
    (b) Berechnen der exspiratorischen Zeitkonstante "TE" des Patienten mit einer Prozessoreinheit (20) unter Verwendung mindestens eines respiratorischen Parameters aus Schritt (a); und
    (c) Berechnen mindestens einer Schätzung von Pplt mit der Prozessoreinheit (20) unter Verwendung mindestens eines respiratorischen Parameters aus Schritt (a) und der TE des Patienten aus Schritt (b),
    wobei die respiratorischen Parameter, die in Schritt (b) zum Berechnen der TE des Patienten verwendet werden, aus der Ausatmung stammen und der mindestens eine respiratorische Parameter, der in Schritt (c) zur Berechnung der mindestens einen Schätzung von Pplt verwendet wird, aus der Einatmung stammt, wobei der mindestens eine respiratorische Parameter, der zum Berechnen von mindestens einer Schätzung von Pplt verwendet wird, aus einer inspiratorischen Wellenform zu einem einzelnen Zeitpunkt stammt, wenn die Atemleistung gering ist, und wobei der einzelne Zeitpunkt, zu dem die Atemleistung gering ist, bestimmt wird durch:
    (i) Berechnen von Pplt-Kurven während der Einatmung und Verwenden des Punktes, an dem Pplt am Maximum war, oder
    (ii) Berechnung der Compliance des respiratorischen Systems "CRS" während der Einatmung und Nutzung des Punktes, an dem CRS am Minimum war.
  2. Verfahren nach Anspruch 1, wobei der mindestens eine respiratorische Parameter, der zum Berechnen mindestens einer Schätzung von Pplt verwendet wird, aus einer inspiratorischen Wellenform zu einem einzelnen Zeitpunkt stammt, der in einem frühen Abschnitt der inspiratorischen Wellenform genommen wird.
  3. Verfahren nach Anspruch 1, wobei die respiratorischen Parameter einen oder mehrere aus der Gruppe enthalten, bestehend aus: inspiratorischem und exspiratorischem Atemwegsdruck, inspiratorischer und exspiratorischer Flussrate, Atemwegsvolumen, Atemwegswiderstand, exspiratorischer Kohlendioxidflusswellenform, Pulsoximeter-Plethysmogramm-Wellenformen, Tidalvolumen, Atemfrequenz "f", inspiratorischem Spitzendruck (Peak Inspiratory Pressure) "PIP", Inspirationszeit "P0.1", inspiratorischer Triggerzeit und Triggertiefe.
  4. Verfahren nach Anspruch 1, ferner umfassend das Anwenden eines Korrekturfaktors auf die TE des Patienten, und Verwenden einer Gleichung zum Berechnen mindestens einer Schätzung von Pplt, wobei die Gleichung Pplt = (VT * Paw - VT * PEEP) / ((VT + TE * Vinh) + PEEP) umfasst, wobei VT das Tidalvolumen ist, PEEP der positive endexspiratorische Druck ist, Paw der Atemwegsdruck ist und Vinh die inspiratorische Flussrate ist.
  5. Verfahren nach Anspruch 1, wobei die berechnete mindestens eine Schätzung von Pplt in einer oder mehreren der folgenden Funktionen verwendet wird: Bestimmen der Überdehnung oder des Überdrucks während der mechanischen Beatmung und Bestimmen der resultierenden Schätzungen für die Compliance des respiratorischen Systems "CRS" und des Atemwegswiderstands des Patienten "RRS".
  6. Verfahren nach Anspruch 1, wobei die TE des Patienten unter Verwendung einer exspiratorischen Wellenform nur während des mittleren Abschnitts der Ausatmung berechnet wird.
  7. System zur genauen und Echtzeitschätzung des inspiratorischen Plateaudrucks "Pplt" ohne Verwendung einer endinspiratorischen Pause (EIP), umfassend:
    eine Vorrichtung (5), die konfiguriert ist, um eine Schnittstelle mit einem Lungensystem des Patienten herzustellen und respiratorische Parameter eines Patienten zu messen;
    eine Prozessoreinheit (20), die konfiguriert ist, um eine Schätzung der exspiratorischen Zeitkonstante "TE" des Patienten unter Verwendung mindestens eines respiratorischen Parameters aus den respiratorischen Parametern des Patienten zu berechnen; und
    wobei die Prozessoreinheit (20) ferner konfiguriert ist, um mindestens eine Schätzung von Pplt unter Verwendung des mindestens einen respiratorischen Parameters und der TE des Patienten zu berechnen, wobei die respiratorischen Parameter zur Berechnung der TE des Patienten aus der Ausatmung stammen und der mindestens eine respiratorische Parameter zur Berechnung der mindestens einen Schätzung von Pplt aus der Einatmung stammt, wobei das System derart konfiguriert ist, dass der mindestens eine respiratorische Parameter, der zum Berechnen von mindestens einer Schätzung von Pplt verwendet wird, aus einer inspiratorischen Wellenform zu einem einzelnen Zeitpunkt stammt, wenn die Atemleistung gering ist, und wobei das System ferner konfiguriert ist, um den einzelnen Zeitpunkt, zu dem die Atemleistung gering ist, zu bestimmen durch:
    (i) Berechnen von Pplt-Kurven während der Einatmung und Verwenden des Punktes, an dem Pplt am Maximum war, oder
    (ii) Berechnung der Compliance des respiratorischen Systems "CRS" während der Einatmung und Nutzung des Punktes, an dem CRS am Minimum war.
  8. System nach Anspruch 7, wobei der mindestens eine respiratorische Parameter, der zum Berechnen mindestens einer Schätzung von Pplt verwendet wird, aus einer inspiratorischen Wellenform zu einem einzelnen Zeitpunkt stammt, der in einem frühen Abschnitt der inspiratorischen Wellenform genommen wird.
  9. System nach Anspruch 7, wobei die respiratorischen Parameter einen oder mehrere aus der Gruppe enthalten, bestehend aus: inspiratorischem und exspiratorischem Atemwegsdruck, inspiratorischer und exspiratorischer Flussrate, Atemwegsvolumen, Atemwegswiderstand, exspiratorischer Kohlendioxidflusswellenform, Pulsoximeter-Plethysmogramm-Wellenformen, Tidalvolumen, Atemfrequenz "f", inspiratorischem Spitzendruck (Peak Inspiratory Pressure) "PIP", Inspirationszeit "P0.1", inspiratorischer Triggerzeit und Triggertiefe.
  10. System nach Anspruch 7, ferner umfassend die Prozessoreinheit (20), die konfiguriert ist, um einen Korrekturfaktor auf die TE des Patienten anzuwenden und mindestens eine Schätzung von Pplt zu berechnen, wobei die Gleichung Pplt = (VT * Paw - VT * PEEP) / ((VT + TE * Vinh) + PEEP) umfasst, wobei VT das Tidalvolumen ist, PEEP der positive endexspiratorische Druck ist, Paw der Atemwegsdruck ist und Vinh die inspiratorische Flussrate ist.
EP18164800.7A 2009-12-28 2010-12-28 System und verfahren zur überprüfung von echtzeit-lungenmechaniken Active EP3391816B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US29039209P 2009-12-28 2009-12-28
US30997910P 2010-03-03 2010-03-03
EP10844262.5A EP2519151B1 (de) 2009-12-28 2010-12-28 System und verfahren zur überprüfung von echtzeit-lungenmechaniken
PCT/US2010/062232 WO2011090716A2 (en) 2009-12-28 2010-12-28 System and method for assessing real time pulmonary mechanics

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP10844262.5A Division-Into EP2519151B1 (de) 2009-12-28 2010-12-28 System und verfahren zur überprüfung von echtzeit-lungenmechaniken
EP10844262.5A Division EP2519151B1 (de) 2009-12-28 2010-12-28 System und verfahren zur überprüfung von echtzeit-lungenmechaniken

Publications (2)

Publication Number Publication Date
EP3391816A1 EP3391816A1 (de) 2018-10-24
EP3391816B1 true EP3391816B1 (de) 2020-09-09

Family

ID=44307478

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18164800.7A Active EP3391816B1 (de) 2009-12-28 2010-12-28 System und verfahren zur überprüfung von echtzeit-lungenmechaniken
EP10844262.5A Active EP2519151B1 (de) 2009-12-28 2010-12-28 System und verfahren zur überprüfung von echtzeit-lungenmechaniken

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10844262.5A Active EP2519151B1 (de) 2009-12-28 2010-12-28 System und verfahren zur überprüfung von echtzeit-lungenmechaniken

Country Status (6)

Country Link
US (1) US8728002B2 (de)
EP (2) EP3391816B1 (de)
JP (2) JP5858927B2 (de)
CN (1) CN102770070B (de)
BR (1) BR112012016102B1 (de)
WO (1) WO2011090716A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022165567A1 (pt) * 2021-02-08 2022-08-11 Magnamed Tecnologia Médica S/A Método para estimação da pressão muscular de um paciente sendo ventilado por um ventilador pulmonar e dispositivo auxiliar para um ventilador pulmonar

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010343682B2 (en) * 2010-01-22 2015-01-29 Koninklijke Philips Electronics N.V. Automatically controlled ventilation system
JP6058676B2 (ja) * 2011-09-21 2017-01-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 上気道抵抗測定デバイス
US9737676B2 (en) 2011-11-02 2017-08-22 Vyaire Medical Capital Llc Ventilation system
US9177109B2 (en) 2011-11-02 2015-11-03 Carefusion 207, Inc. Healthcare facility ventilation management
US9058741B2 (en) 2012-06-29 2015-06-16 Carefusion 207, Inc. Remotely accessing a ventilator
US9072849B2 (en) 2012-06-29 2015-07-07 Carefusion 207, Inc. Modifying ventilator operation based on patient orientation
US9821129B2 (en) 2011-11-02 2017-11-21 Vyaire Medical Capital Llc Ventilation management system
US9352110B2 (en) * 2012-06-29 2016-05-31 Carefusion 207, Inc. Ventilator suction management
US9687618B2 (en) 2011-11-02 2017-06-27 Carefusion 207, Inc. Ventilation harm index
CA2861505C (en) * 2012-02-20 2019-08-20 University Of Florida Research Foundation, Inc. Method and apparatus for predicting work of breathing
US9327090B2 (en) 2012-06-29 2016-05-03 Carefusion 303, Inc. Respiratory knowledge portal
CN104797190B (zh) * 2012-11-15 2018-07-17 杰普呼吸技术公司 用于肺机能测量的装置和方法
US10165966B2 (en) 2013-03-14 2019-01-01 University Of Florida Research Foundation, Incorporated Methods and systems for monitoring resistance and work of breathing for ventilator-dependent patients
JP6487425B2 (ja) * 2013-06-28 2019-03-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 胸内圧の非侵襲的推定及び/又は胸内圧の非侵襲的推定に基づく呼吸仕事量の計算
US20160106341A1 (en) * 2013-07-09 2016-04-21 Pulmone Advanced Medical Devices, Ltd. Determining respiratory parameters
CN104027114B (zh) * 2014-06-04 2016-06-08 广东电网公司电力科学研究院 肺泡收缩和扩展过程的流场数值模拟测量方法和系统
WO2016103142A1 (en) * 2014-12-23 2016-06-30 Koninklijke Philips N.V. Systems and methods for model-based optimization of mechanical ventilation
JP6717843B2 (ja) * 2015-02-12 2020-07-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 呼吸パラメータの領域的フィッティングによる呼吸パラメータの同時推定
CN105078462B (zh) * 2015-05-27 2018-02-02 深圳市科曼医疗设备有限公司 估算气阻和顺应性的方法和装置
FR3038748B1 (fr) * 2015-07-10 2019-06-07 Physio-Assist Interface utilisateur tactile destinee a un dispositif de stimulation de l'air tracheo-bronchique
EP3359020A1 (de) * 2015-10-09 2018-08-15 Koninklijke Philips N.V. Verbessertes akutpflegemanagement durch kombination von bildgebung und physiologischer überwachung
CN108472465B (zh) * 2015-12-02 2021-08-31 皇家飞利浦有限公司 非侵入式通气期间的co2测量的方法
EP3827861A1 (de) * 2016-02-22 2021-06-02 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Vorrichtung und verfahren zur beurteilung des zustandes der luftwege und beatmungsgerät
DE102016012824A1 (de) * 2016-10-25 2018-04-26 Drägerwerk AG & Co. KGaA Verfahren und Vorrichtung zum adaptiven Regeln eines positiv endexspiratorischen Drucks (PEEP)
ES2843105T3 (es) * 2016-12-05 2021-07-15 Medipines Corp Método y dispositivo para mediciones respiratorias utilizando muestras de gas de respiración
EP3558431A1 (de) 2016-12-20 2019-10-30 Koninklijke Philips N.V. Bestimmung der atemmechanikparameter in gegenwart von intrinsischem positivem endexpiratorischem druck
CN108267183A (zh) * 2017-01-04 2018-07-10 沈阳新松医疗科技股份有限公司 一种同步测量呼吸气体流量和成分的装置及方法
WO2018130658A1 (en) * 2017-01-16 2018-07-19 Koninklijke Philips N.V. System and method for adaptive scheduling of pause maneuvers used for estimation of compliance and/or resistance during mechanical ventilation
US10668239B2 (en) 2017-11-14 2020-06-02 Covidien Lp Systems and methods for drive pressure spontaneous ventilation
CN108109697B (zh) * 2017-12-20 2021-10-22 中国科学院合肥物质科学研究院 一种基于呼气数学模型的肺功能测试系统及方法
CN111068153B (zh) * 2019-12-02 2022-05-17 湖南明康中锦医疗科技发展有限公司 呼吸支持设备双水平性能评价方法及呼吸支持设备
CN111973188A (zh) * 2020-08-26 2020-11-24 北京航空航天大学 一种基于神经网络估算呼吸力学参数的方法
CN112438778B (zh) * 2020-10-30 2021-07-23 李波波 一种肺泡破损处理装置
EP4341947A1 (de) * 2021-05-20 2024-03-27 ResMed Inc. System und verfahren zur compliance-vorhersage auf basis von gerätenutzung und patientendemografie
CN114283662B (zh) * 2021-11-15 2023-10-20 成都泰盟软件有限公司 一种心肺复苏模型的生理反馈系统及方法
CN114027824B (zh) * 2021-12-16 2023-08-18 上海交通大学 普适性肺通气量与经胸电阻抗的线性模型构建方法及应用
CN115137349A (zh) * 2022-05-25 2022-10-04 北京易优联科技有限公司 一种肺功能检查模型建立方法及系统
CN115804585B (zh) * 2023-02-08 2023-06-13 浙江大学 一种基于机械通气波形检测气道高阻力的方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3021326A1 (de) * 1980-06-06 1981-12-17 Drägerwerk AG, 2400 Lübeck Einrichtung zur messung von mindestens zwei pneumatischen lungenparametern und messverfahren hierzu
US4802492A (en) * 1987-03-11 1989-02-07 National Jewish Center For Immunology And Respiratory Medicine Method for determining respiratory function
US5522397A (en) * 1993-03-10 1996-06-04 Vermaak; Jan C. Method of and apparatus for monitoring lung function
US5692497A (en) * 1996-05-16 1997-12-02 Children's Medical Center Corporation Microprocessor-controlled ventilator system and methods
EP1156846A1 (de) * 1999-02-03 2001-11-28 University Of Florida Verfahren und vorrichtung zur reduktion der auferzwungenen atmungsarbeit
US6571796B2 (en) * 2001-02-08 2003-06-03 University Of Florida Tracheal pressure ventilation respiratory system
AU2003273226A1 (en) 2002-08-02 2004-02-23 Wayne State University System for diagnosing and treating sleep apnea
BR0313823A (pt) 2002-08-30 2005-07-05 Univ Florida Método e aparelho para predizer o trabalho da respiração
WO2006012205A2 (en) * 2004-06-24 2006-02-02 Convergent Engineering, Inc. METHOD AND APPARATUS FOR NON-INVASIVE PREDICTION OF INTRINSIC POSITIVE END-EXPIRATORY PRESSURE (PEEPi) IN PATIENTS RECEIVING VENTILATOR SUPPORT
JP5074191B2 (ja) * 2004-10-06 2012-11-14 レスメド・リミテッド 睡眠呼吸障害の呼吸パラメータの非侵襲的監視方法および装置
US20070185406A1 (en) 2006-02-07 2007-08-09 Goldman Michael D Systems and methods for processing pulmonary function data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022165567A1 (pt) * 2021-02-08 2022-08-11 Magnamed Tecnologia Médica S/A Método para estimação da pressão muscular de um paciente sendo ventilado por um ventilador pulmonar e dispositivo auxiliar para um ventilador pulmonar

Also Published As

Publication number Publication date
BR112012016102B1 (pt) 2020-11-03
US8728002B2 (en) 2014-05-20
WO2011090716A2 (en) 2011-07-28
EP2519151B1 (de) 2018-05-16
US20120330177A1 (en) 2012-12-27
JP2013515592A (ja) 2013-05-09
CN102770070A (zh) 2012-11-07
EP3391816A1 (de) 2018-10-24
JP5858927B2 (ja) 2016-02-10
JP6564318B2 (ja) 2019-08-21
CN102770070B (zh) 2015-11-25
EP2519151A2 (de) 2012-11-07
EP2519151A4 (de) 2015-08-26
WO2011090716A3 (en) 2011-09-22
JP2016104154A (ja) 2016-06-09

Similar Documents

Publication Publication Date Title
EP3391816B1 (de) System und verfahren zur überprüfung von echtzeit-lungenmechaniken
US10165966B2 (en) Methods and systems for monitoring resistance and work of breathing for ventilator-dependent patients
JP5053083B2 (ja) 人工呼吸器支持を受けている患者の終末呼気陽圧(PEEPi)を非侵襲的に予測するための方法及び機器
EP2816952B1 (de) Verfahren und vorrichtung zur vorhersage der atemtätigkeit
EP2377463B1 (de) Verfahren und Vorrichtung zur Vorhersage der Atemtätigkeit
EP2533837B1 (de) Leckfeststellung bei einem atemhilfssystem
US8672858B2 (en) Method and apparatus for predicting work of breathing
JP2019509791A (ja) 中心静脈圧マノメトリの使用を介した呼吸パラメーター推定及び非同調検出アルゴリズムの強化
Vicario et al. Noninvasive estimation of alveolar pressure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2519151

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20190423

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20190523

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2519151

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1310531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010065444

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1310531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010065444

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211104

Year of fee payment: 12

Ref country code: FR

Payment date: 20211115

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231031

Year of fee payment: 14