EP3390312A1 - Verre feuillete asymetrique - Google Patents

Verre feuillete asymetrique

Info

Publication number
EP3390312A1
EP3390312A1 EP16825510.7A EP16825510A EP3390312A1 EP 3390312 A1 EP3390312 A1 EP 3390312A1 EP 16825510 A EP16825510 A EP 16825510A EP 3390312 A1 EP3390312 A1 EP 3390312A1
Authority
EP
European Patent Office
Prior art keywords
glass
sheet
glazing
glass sheet
glazing according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16825510.7A
Other languages
German (de)
English (en)
Inventor
Corinne CLAIREAUX
Carole FREDY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3390312A1 publication Critical patent/EP3390312A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/10119Properties of the bulk of a glass sheet having a composition deviating from the basic composition of soda-lime glass, e.g. borosilicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • B32B17/10137Chemical strengthening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10743Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings

Definitions

  • the present invention relates to an asymmetric laminated glazing unit consisting of at least two sheets of glass, one of whose sheets is a sheet of chemically quenched thin glass.
  • Ble more particularly relates to a laminated glazing for use in the field of transport (automobile, helicopter, aircraft ..) including as a car windshield.
  • Laminated glazing is commonly used since it has the advantage of being so-called "security glazing".
  • security glazing In this type of glazing, a plastic interlayer sheet is placed between the two sheets of glass.
  • asymmetric glazing in the sense that the two glass sheets constituting the glazing are of different thicknesses.
  • Current developments seek in particular to reduce the weight of glazing and therefore move towards a decrease in the thickness of the glass sheets constituting them. It is however necessary that the laminated glass even lightened have a mechanical strength compatible with the desired applications.
  • One of the possibilities for reinforcing the mechanical strength of the glazing consists of using at least one glass sheet which has a superficial zone in compression and a central zone in tension.
  • This type of glass sheet is obtained in particular by subjecting it to a thermal or chemical quenching process.
  • Chemical quenching is a process which consists in carrying out an ion exchange within the glass sheet: the superficial substitution of an ion (generally an alkaline ion such as sodium or lithium) by a larger ion ion ion ( generally another alkaline ion, such as potassium or sodium) from the surface of the glass to a depth commonly referred to as "exchange depth", can create on the surface of the glass sheet residual compressive stresses up to at a certain depth, often called “depth of compression”. This depth depends in particular on the duration of the ion exchange treatment, the temperature to which it is made and also the composition of the glass sheet. It is necessary to find a compromise between the duration and the temperature of this treatment, taking into account in particular the production constraints in the glass production lines.
  • An asymmetric laminated glazing comprising a chemically toughened glass sheet is often a glazing consisting of two glass sheets of different thickness and also of different chemical composition.
  • a certain curvature to the glazing and to bend the constituent glass sheets of the glazing before assembly.
  • the two glass sheets are laid one on top of the other and are supported along their marginal end portions in a substantially horizontal manner by a frame or skeleton having the desired profile, that is to say the final profile of the glazing after assembly.
  • the thinner, thinner glass sheet is positioned on the thicker glass sheet so that the support of the thin sheet on the thicker sheet is homogeneous over all the areas in contact.
  • the two sheets of glass pass in a bending furnace. Since the two glass sheets have different chemical compositions, their behavior during this bending step is different and the risk of occurrence of residual defects or stresses can be consequently increased.
  • the glazings have good chemical resistance and in particular good hydrolytic resistance. It is indeed necessary that the glass, after its manufacture, can be stored for a certain time, including batteries, while retaining the initial properties of the glazing, including its optical quality. Glass sheet compositions having, after chemical quenching, high compression stresses to a great depth and also good hydrolytic resistance are described in particular in patent EP0914298. However, the quenching times described in this document are not compatible with glazing production processes for automotive applications, which require significantly shorter chemical treatment times. On the other hand, the compositions of the glasses described in this document do not necessarily make it possible to be curved simultaneously with a sheet of soda-lime-type glass.
  • the object of the invention is to propose asymmetric laminated glazings which have a high mechanical strength, a good hydrolytic resistance and whose two glass sheets constituting it are such that they can be bowed simultaneously.
  • the subject of the invention is a laminated glazing unit which comprises at least a first sheet of soda-lime-type glass, a second sheet of glass of smaller thickness than the first sheet of glass, and a polymeric interlayer. between the two sheets of glass, the second sheet of glass being an aluminosilicate type glass comprising the following oxides in the ranges of weight contents defined below:
  • the content of 3C1 ⁇ 2, the main forming oxide of glass is between 60.00% and 68.00% by weight. This range advantageously makes it possible to have stable compositions which have a good chemical reinforcing ability and viscosities compatible with the processes for manufacturing the usual glass sheets (float glass on molten metal bath) and with the bending processes for make sure of a bending simultaneous during the manufacture of a laminated glazing comprising a sheet of the soda-lime-calcium type.
  • the content by weight of Al 2 O 3 is between 2.80 and 7.80%, which makes it possible to modify the viscosity of the glass so as to remain in viscosity ranges which makes it possible to manufacture the glasses without increasing the forming temperatures.
  • Alumina also has an influence on the performances in the chemical reinforcement of the glasses.
  • the oxides of sodium and potassium make it possible to maintain the melting temperatures and the viscosity of the glasses within acceptable limits.
  • the simultaneous presence of these two oxides has the particular advantage of increasing the hydrolytic resistance of the glasses and the rate of interdiffusion between the sodium and potassium ions.
  • the weight content of magnesium oxide varies between 4.90 and 10.10%. This oxide promotes the melting of the glass compositions and improves the viscosity at high temperatures, while contributing to the increase in the hydrolytic resistance of the glasses.
  • the weight content of oxide in calcium is limited to 1% because this oxide is harmful for chemical quenching.
  • the second glass sheet is reinforced by an exchange of sodium ions by potassium ions.
  • the second glass sheet is reinforced by superficial ion exchange on an ion exchange depth of at least 30 ⁇ and the surface stress of the glass sheet is less than 550 MPa, preferably less than at least 600 MPa.
  • This stress profile is obtained by an ion exchange treatment at a temperature below 490 ° C, for example at 460 ° C, for a period of 2 hours.
  • the exchange depth is estimated by the method of weight gain. Ble is deduced from the weighting of the samples by assuming that the diffusion profile is approximated by an 'erfc' function with the convention that the exchange depth corresponds to the depth for which the potassium ion concentration is equal to that of the glass matrix at 0.5% (as described in René Gy, Ion exchange for glass strengthening, Materials Sfoience and Engineering: B, Volume 149, Issue 2, 25 March 2008, Pages 159-165).
  • the thickness of the specimen is negligible compared to the dimensions of the sample tested and the weight gain Am can be related to the exchange depth e eC h by the formula
  • the second glass sheet advantageously has good resistance to a hydrolytic resistance test.
  • hydrolytic resistance is meant the ability of a glass to solubilize by leaching. This resistance is therefore particularly dependent on the chemical composition of the glass. Ble is evaluated by measuring the weight loss of finely ground glass powders after water attack.
  • the water attack of the glass grains or "DGG test” is a method that consists of dipping 10 grams of crushed glass, whose grain size is between 360 and 400 ⁇ , in 100 ml of water brought to boiling for a period of 5 hours. After rapid cooling, the solution is filtered and a determined volume of filtrate is evaporated to dryness. The weight of the dry matter obtained makes it possible to calculate the quantity of glass dissolved in the water. The quantity of glass extracted in mg per gram of tested glass, which is noted “DGG", is thus determined. The lower the DGG value, the more resistant the glass is to hydrolysis.
  • the second glass sheet of the glazing unit according to the present invention has a DGG value of less than 30 mg.
  • This temperature is obtained by performing the average between the upper annealing temperature, i.e. the temperature at which the viscosity of the glass is 10 13 Poises and the softening temperature, i.e., the temperature at which the glass viscosity is 10 7.6 Poises for each of the glass sheets.
  • the upper temperature of annealing corresponds to the temperature for which the viscosity of the glass is high enough that the disappearance of the stresses can be carried out completely in a predetermined time (stress relaxation time of about 15 minutes). This temperature is also sometimes called “stress relaxation temperature”.
  • the measurements of this temperature are carried out conventionally according to standard NF B30-105.
  • the softening temperature also sometimes referred to as "Littleton temperature” is defined as the temperature at which a glass wire with a diameter of about 0.7 mm and a length of 23.5 cm 1mm / min, under its own weight (ISO 7884-6). This temperature can be measured or calculated as explained in the publication Fluegel A. 2007, Europ. J. Glass3 ⁇ 4i. Technol. A 48 (1) 13-30.
  • This small difference in temperature makes it possible to ensure that the two glass sheets of the glazing unit according to the invention can be curved simultaneously and then assembled with the polymeric interlayer, without the risk of causing defects such as optical defects in the glazing to appear. .
  • the second glass sheet is an aluminosilicate type glass comprising the following oxides in the ranges of weight contents defined below: SQ> between 60.00 and 67.00%
  • the first glass sheet is of the silico-soda-lime type and comprises the following oxides in the ranges of weight contents defined below:
  • compositions of the first and second glass sheets mentioned above only indicate the essential constituents. Bles do not give the minor elements of the composition, such as conventionally used refining agents such as oxides of arsenic, antimony, tin, cerium, halogens or metal sulfides.
  • the compositions may also contain coloring agents, such as iron oxides, cobalt oxide, chromium oxide, copper oxide, vanadium oxide, nickel oxide and selenium, which are most often required for applications in the field. of the automobile.
  • the constituent glass sheets of the glazing unit according to the present invention are of different thicknesses and the first glass sheet is the thickest sheet.
  • the first glass sheet has a thickness of at most 2.1 mm, preferably at most 1.6 mm.
  • the second glass sheet which is thinner than the first has a thickness of at most 1.5 mm.
  • this sheet has a thickness of at most 1.1 mm or even less than 1 mm.
  • the second glass sheet has a thickness less than or equal to 0.7 mm.
  • the thickness of the sheet is at least 50 ⁇ .
  • the polymeric interlayer placed between the two glass sheets consists of one or more layers of thermoplastic material. It may especially be polyurethane, polycarbonate, polyvinyl butyral (PVB), polymethyl methacrylate (PMMA), ethylene vinyl acetate (EA) or ionomeric resin.
  • the polymeric interlayer can be in the form of a multilayer film, having particular functionalities such as, for example, better acoustic, anti-UV properties.
  • the polymeric interlayer comprises at least one layer of PVB.
  • the thickness of the polymeric interlayer is between 50 ⁇ and 4 mm. Generally, its thickness is less than 1mm. In automotive glazing, the thickness of the polymeric interlayer is conventionally 0.76 mm. When the constituent glass sheets of the glazing are very thin, it may be advantageous to use a polymeric interlayer with a thickness greater than 1 mm or even greater than 2 or 3 mm to impart rigidity to the laminated glazing, without adding too much weight important.
  • the subject of the invention is also a method for manufacturing laminated glazing according to the present invention, comprising a step of simultaneous bending of the first and second glass sheets, an ion exchange step of the second glass sheet and a step assembly of the two sheets of glass with the polymeric interlayer.
  • the constituent glass sheets of the glazing unit according to the present invention may be manufactured according to various known methods, such as the process flotation (or “float”) in which the molten glass is poured onto a bath of molten tin, and the rolling process between two rolls (or “fusion draw”), wherein the molten glass overflows with a channel and comes to form a sheet by gravity, or the so-called “down-draw” process, wherein the molten glass flows down through a slot, before being stretched to the desired thickness and simultaneously cooled.
  • process flotation or "float”
  • fusion draw rolling process between two rolls
  • the bending step of the first and second glass sheets is performed simultaneously.
  • the two glass sheets are positioned one above the other in a frame or bending skeleton, the thinnest glass sheet being the one above, the farthest from the skeleton.
  • the assembly is thus introduced into a bending furnace.
  • the two sheets are separated by a pulverulent agent of the talc, calcite, or ceramic powder type to prevent friction and sticking of one sheet to the other.
  • the bending thus produced is a forming by gravity and / or by pressing.
  • the ion exchange experienced by the second glass sheet is generally accomplished by placing said sheet in a bath filled with a molten salt of the desired alkali ion.
  • This exchange usually takes place at a temperature below the glass transition temperature and the bath degradation temperature, preferably at a temperature below 490 ° C.
  • the duration of the ion exchange is less than 24 hours. However it is desirable that the exchange time is shorter to be compatible with the productivities of laminated glazing manufacturing processes for the automobile.
  • the treatment time is for example less than or equal to 4 hours, preferably less than or equal to 2 hours.
  • the temperatures and times of exchange are to be adjusted according to the composition of the glass, the thickness of the glass sheet, as well as the thickness in compression and the desired level of stress.
  • the ion exchange can be advantageously followed by a heat treatment step to reduce the tension stress at the core and increase the depth in compression.
  • the assembly step then consists in assembling the two sheets of glass with the thermoplastic interlayer by pressurizing in an autoclave and raising the temperature.
  • the laminated glazing according to the present invention is advantageously a glazing for the automobile and in particular a windshield.
  • the first silico-soda-lime type sheet and the second thinner aluminosilicate sheet are curved together before being assembled with the polymeric interlayer to form the glazing according to the present invention.
  • the second leaf is the one that is above in the bending frame.
  • the second sheet of glass corresponds to the inner sheet of glass, that is to say the one placed towards the interior of the passenger compartment.
  • the first sheet of glass is the one that is placed outwards.
  • the glass sheets can thus be assembled directly after the bending step, without requiring the inversion of the order of the glass sheets.
  • Glazing according to the invention has been prepared from different glass sheets of different composition.
  • the compositions of Examples 7, 8 and 9 are not in accordance with the invention.
  • Glazing according to the present invention is manufactured using a first sheet of glass of the following composition, denoted F1 sheet:
  • the asymmetric laminated glazings are manufactured by using a first glass sheet of the above-described silyclo-calcium composition having a thickness of 1.6 mm. , a 0.76 mm thick PVB interlayer and a second 0.55 mm thick glass sheet obtained after thinning the glass sheets whose composition is given in Table 1.
  • the notation used to characterize the glazing is the following "F1 / F2.x" in which F1 specifies that it is the combination of a first sheet of composition F1 and a second sheet of composition x (where x varies from 1 to 9 and corresponds to Examples 1 to 9 given in Table 1.
  • the sheet F2.1 is the second sheet of glass whose composition is that of Example 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

La présente invention porte sur un vitrage feuilleté comprenant au moins une première feuille de verre de type silico-sodo calcique, une deuxième feuille de verre de plus faible épaisseur que la première feuille de verre, et un intercalaire polymérique situé entre les deux feuilles de verre, dans lequel la deuxième feuille de verre est un verre de type aluminosilicate comprenant les oxydes suivants dans les gammes de teneurs pondérales définies ci-après : SIO2 entre 60,00 et 68,00% Al2O3 entre 2,80 et 7,80% Na2O entre 10,00 et 15,80% MgO entre 4,90 et 10,10% K2O entre 4,80 et 9,70% B2O3 entre 0 et 3,20% CaO entre 0 et 1,00%. Le procédé de fabrication d'un tel vitrage et son utilisation comme vitrage automobile sont également décrits.

Description

VERRE FEUILLETE ASYMETRIQUE
La présente invention porte sur un vitrage feuilleté asymétrique constitué d'au moins deux feuilles de verre dont une des feuilles est une feuille de verre mince trempée chimiquement. Ble concerne plus particulièrement un vitrage feuilleté pour une utilisation dans le domaine des transports (automobile, hélicoptère, avion..) notamment en tant que pare- brise de voiture.
Les vitrages feuilletés sont couramment utilisés puisqu'ils présentent l'avantage d'être des vitrages dits « de sécurité ». Dans ce type de vitrage, une feuille intercalaire en matière plastique est placée entre les deux feuilles de verre. Il est courant, dans le domaine de l'automobile, d'utiliser des vitrages asymétriques, dans le sens où les deux feuilles de verre constitutives du vitrage sont d'épaisseurs différentes. Les développements actuels cherchent en particulier à réduire le poids des vitrages et par conséquent s'orientent vers une diminution des épaisseurs des feuilles de verre les constituant. Il est toutefois nécessaire que les vitrages feuilletés même allégés présentent une résistance mécanique compatible avec les applications recherchées. Une des possibilités permettant de renforcer la résistance mécanique du vitrage consiste à utiliser au moins une feuille de verre qui possède une zone superficielle en compression et une zone centrale en tension. Ce type de feuille de verre est notamment obtenu en lui faisant subir un procédé de trempe thermique ou chimique. La trempe chimique est un procédé qui consiste à réaliser un échange ionique au sein de la feuille de verre : la substitution superficielle d'un ion (généralement un ion alcalin tel que le sodium ou le lithium) par un ion de rayon ionique plus grand (généralement un autre ion alcalin, tel que le potassium ou le sodium) depuis la surface du verre jusqu'à une profondeur communément désignée par « profondeur d'échange », permet de créer en surface de la feuille de verre des contraintes résiduelles de compression jusqu'à une certaine profondeur, souvent appelée « profondeur de compression ». Cette profondeur dépend notamment de la durée du traitement d'échanges d'ions, de la température à laquelle celui-ci est réalisé et également de la composition de la feuille de verre. Il est nécessaire de trouver un compromis entre la durée et la température de ce traitement, prenant notamment en compte les contraintes de production dans les lignes de fabrication des vitrages.
Un vitrage feuilleté asymétrique comprenant une feuille de verre trempée chimiquement est souvent un vitrage constitué de deux feuilles de verre d'épaisseur différente et également de composition chimique différente. Or, pour les applications souhaitées et notamment dans le domaine de l'automobile, il est nécessaire de donner une certaine courbure au vitrage et de réaliser un bombage des feuilles de verre constitutives du vitrage avant leur assemblage. Il est avantageux d'utiliser des techniques de bombage qui permettent de bomber simultanément les feuilles de verre. Ceci permet en particulier de s'assurer que les feuilles présenteront exactement les mêmes courbures, ce qui facilitera leur assemblage. Dans les procédés de bombage, les deux feuilles de verre sont posées l'une sur l'autre et sont supportées le long de leurs parties d'extrémités marginales d'une façon sensiblement horizontale par un cadre ou squelette ayant le profil désiré, c'est-à-dire le profil définitif du vitrage après assemblage. La feuille de verre d'épaisseur la plus mince est positionnée sur la feuille de verre plus épaisse de sorte que l'appui de la feuille mince sur la feuille plus épaisse se fasse de façon homogène sur la totalité des zones en contact. Ainsi positionnées sur le cadre, les deux feuilles de verre passent dans un four de bombage. Bant donné que les deux feuilles de verre ont des compositions chimiques différentes, leur comportement pendant cette étape de bombage est différent et le risque d'apparition de défauts ou contraintes résiduelles peut être par conséquent augmenté.
D'autre part, outre les exigences concernant les propriétés de résistance mécaniques et les exigences liées au procédé de bombage du vitrage, il est nécessaire que les vitrages possèdent une bonne résistance chimique et notamment une bonne résistance hydrolytique. Il faut en effet que le verre, après sa fabrication, puisse être stocké pendant un certain temps, notamment en piles, tout en conservant les propriétés initiales du vitrage, notamment sa qualité optique. Des compositions de feuille de verre présentant, après trempe chimique, des contraintes de compression élevées sur une grande profondeur et également une bonne résistance hydrolytique sont notamment décrites dans le brevet EP0914298. Toutefois, les durées de trempe décrites dans ce document ne sont pas compatibles avec les procédés de production de vitrage pour des applications automobiles, qui nécessitent des durées de traitement chimique nettement plus courtes. D'autre part, les compositions des verres décrites dans ce document ne permettent pas nécessairement d'être bombées simultanément avec une feuille de verre de type silico-sodo- calcique.
L'invention a pour but de proposer des vitrages feuilletés asymétriques qui présentent une résistance mécanique élevée, une bonne résistance hydrolytique et dont les deux feuilles de verre le constituant sont telles qu'elles puissent être bombées simultanément.
A cet effet, l'invention a pour objet un vitrage feuilleté qui comprend au moins une première feuille de verre de type silico-sodo-calcique, une deuxième feuille de verre de plus faible épaisseur que la première feuille de verre, et un intercalaire polymérique situé entre les deux feuilles de verre, la deuxième feuille de verre étant un verre de type aluminosilicate comprenant les oxydes suivants dans les gammes de teneurs pondérales définies ci -après :
3 O2 ent re 60, 00 et 68, 00%
AI2O3 entre 2,80 et 7,80%
Na20 entre 10, 00 et 15, 80%
MgO entre 4,90 et 10,10%
K2O ent re 4, 80 et 9, 70%
B2O3 entre 0 et 3,20%
CaO entre 0 et 1,00%
La teneur en 3C½, principal oxyde formateur du verre, est comprise entre 60, 00% et 68,00 %en poids. Cette gamme permet avantageusement d'avoir des compositions stables, qui présentent une bonne aptitude au renforcement chimique et des viscosités compatibles avec les procédés de fabrication des feuilles de verre usuels (flottage du verre sur bain de métal fondu) et avec les procédés de bombage pour s'assurer d'un bombage simultané lors de la fabrication d'un vitrage feuilleté comprenant une feuille de type silico-sodo-calcique.
La teneur pondérale en AI2O3 est comprise entre 2.80 et 7.80% ce qui permet de jouer sur la viscosité du verre de façon à rester dans des gammes de viscosité qui permettent de fabriquer les verres sans augmenter les températures de formage. L'alumine a également une influence sur les performances au niveau du renforcement chimique des verres.
Les oxydes de sodium et de potassium permettent de maintenir les températures de fusion et la viscosité des verres dans les limites acceptables. La présence simultanée de ces deux oxydes a notamment pour avantage d'augmenter la résistance hydrolytique des verres et la vitesse d' interdiffusion entre les ions sodium et potassium.
La teneur pondérale en oxyde de magnésium varie entre 4.90 et 10.10% Cet oxyde favorise la fusion des compositions de verre et améliore la viscosité aux hautes températures, tout en contribuant à l'augmentation de la résistance hydrolytique des verres.
La teneur pondérale en oxyde en calcium est limitée à 1%car cet oxyde est nuisible pour la trempe chimique.
Avantageusement la deuxième feuille de verre est renforcée par un échange d'ions sodium par des ions potassium. La deuxième feuille de verre est renforcée par échange d'ions superficiels sur une profondeur d'échange d'ions d'au moins 30 μιτι et la contrainte de surface de la feuille de verre est d'au moi ns 550 MPa, de préférence d'au moins 600 MPa. Ce profil de contraintes est obtenu par un traitement d'échange ionique à une température inférieure à 490°C, par exemple à 460°C, pendant une durée de 2 heures.
La profondeur d'échange est estimée par la méthode de la prise de poids. Ble est déduite à partir de la prise de masse des échantillons en supposant que le profil de diffusion est approximé par une fonction 'erfc' avec pour convention que la profondeur d'échange correspond à la profondeur pour laquelle la concentration en ion potassium est égale à celle de la matrice verrière à 0.5% près (comme décrit dans René Gy, Ion exchange for glass strengthening, Materials Sfoience and Engineering: B, Volume 149, Issue 2, 25 March 2008, Pages 159-165). Ici l'épaisseur de l'éprouvette est négligeable devant les dimensions de l'échantillon testé et la prise de poids Am peut être reliée à la profondeur d'échange eeCh par la formule
_Δτη Mtot ev
eech = νπ 7
™ί <½α20■ (MK20 ~ MNa20)
avec m, la masse initiale de l'éprouvette, Mtot la masse molaire totale du verre, MK2o et A o les masses molaires des oxydes K2O et Na20 respectivement, aNa20 le pourcentage molaire de sodium, ev l'épaisseur de l'éprouvette. D'autre part, pour avoir une bonne résistance à la corrosion en piles, la deuxième feuille de verre présente avantageusement une bonne résistance à un test de résistance hydrolytique. On entend par résistance hydrolytique la capacité qu'a un verre à se solubiliser par lixiviation. Cette résistance est donc notamment dépendante de la composition chimique du verre. Ble est évaluée par la mesure de la perte de poids de poudres de verre finement broyées après attaque à l'eau. L'attaque à l'eau du verre en grains ou «test DGG » est une méthode qui consiste à plonger 10 grammes de verre broyé, dont la taille des grains est comprise entre 360 et 400 μιτι, dans 100 ml d'eau portés à ébullition pendant une durée de 5 heures. Après refroidissement rapide, la solution est filtrée et un volume déterminé de filtrat est évaporé à sec. Le poids de la matière sèche obtenu permet de calculer la quantité de verre dissoute dans l'eau. On détermine ainsi la quantité de verre extrait en mg par gramme de verre testé, que l'on note « DGG». Plus la valeur de la DGG est faible, plus le verre est résistant à l'hydrolyse. Avantageusement, la deuxième feuille de verre du vitrage selon la présente invention a une valeur de DGG inférieure à 30 mg.
Il est essentiel que les deux feuilles de verre constitutives du vitrage selon la présente invention puissent être bombées de façon simultanée. Le vitrage selon l'invention est caractérisé par le fait que l'écart entre les températures de chacune des feuilles de verre constitutives du vitrage pour lesquelles la viscosité vaut 1010,3 Poises, notée T(log η=10,3) est inférieure, en valeur absolue, à 30°C. Cette température est obtenue en effectuant la moyenne entre la température supérieure de recuisson, c'est-à-dire la température à laquelle la viscosité du verre vaut 1013 Poises et la température de ramollissement, c'est-à-dire la température à laquelle la viscosité du verre vaut 107,6 Poises pour chacune des feuilles de verre. La température supérieure de recuisson correspond à la température pour laquelle la viscosité du verre est assez forte pour que la disparition des contraintes puisse s'effectuer totalement en un temps déterminé (temps de relaxation des contraintes d'environ 15 minutes). Cette température est également parfois appelée « température de relaxation des contraintes ». Les mesures de cette température sont effectuées classiquement selon la norme NF B30-105. La température de ramollissement, également parfois appelée « température de Littleton » est quant à elle définie comme étant la température à laquelle un fil de verre d'un diamètre d'environ 0,7 mm et de longueur 23,5 cm s'allonge de 1mm/ min, sous son propre poids (norme ISO 7884-6). Cette température peut être mesurée ou calculée comme expliqué dans la publication Fluegel A. 2007, Europ. J. Glass¾i. Technol. A 48 (1) 13-30. Préférentiellement, l'écart entre la température ΤΊ (log η=10,3) de la première feuille de verre et la température T2 (log η=10,3) de la deuxième feuille de verre est inférieure en valeur absolue à 23°C. Ce faible écart de température permet de s'assurer que les deux feuilles de verre du vitrage selon l'invention peuvent être bombées simultanément, puis assemblées avec l'intercalaire polymérique, sans risquer de faire apparaître des défauts tels que des défauts optiques dans le vitrage.
Ainsi, en associant une première feuille de verre de type silico-sodo- calcique avec une deuxième feuille de verre de type aluminosilicate de composition chimique décrite ci-avant, les inventeurs ont découvert qu'il était possible d'obtenir par bombage simultané des deux feuilles de verre un vitrage présentant les propriétés de résistance à la fois mécanique et chimique recherchées.
De façon préférée, la deuxième feuille de verre est un verre de type aluminosilicate comprenant les oxydes suivants dans les gammes de teneurs pondérales définies ci -après : SQ> entre 60,00 et 67,00%
AI2C¾ entre 2,80 et 7,80%
Na20 entre 10,00 et 13,50%
entre 4,90 et 10,10%
K2O entre 8,50 et 9,70%
B2O3 entre 0 et 3,20%
CaO entre 0 et 1,00%
Les verres présentant cette composition ont avantageusement une bonne résistance chimique et une bonne résistance mécanique. Ils possèdent également une température T2 (log η=10,3) proche de la température ΤΊ (log η=10,3) de la première feuille de verre, ce qui permet de bomber les deux feuilles simultanément de façon plus aisée.
La première feuille de verre est de type silico-sodo-calcique et comprend les oxydes suivants dans les gammes de teneurs pondérales définies ci -après:
3 O2 ent re 65, 00 et 75, 00%
Na20 entre 10, 00 et 20, 00%
CaO entre 2,00 et 15,00%
AI2C¾ entre 0 et 5,00%
MgO entre 0 et 5,00%
K2O entre 0 et 5,00%
Les compositions des premières et deuxièmes feuilles de verre mentionnées ci-dessus n'indiquent que les constituants essentiels. Bles ne donnent pas les éléments mineurs de la composition, comme les agents affinants classiquement utilisés tels que les oxydes d'arsenic, d'antimoine, d'étain, de cérium, les halogènes ou les sulfures métalliques. Les compositions peuvent également contenir des agents colorants, tels que les oxydes de fer, l'oxyde de cobalt, de chrome, de cuivre, de vanadium, de nickel et le sélénium, qui sont la plupart du temps nécessaires pour les applications dans le domaine de l'automobile.
Les feuilles de verre constitutives du vitrage selon la présente invention sont d'épaisseurs différentes et la première feuille de verre est la feuille la plus épaisse. La première feuille de verre a une épaisseur d'au plus 2,1 mm, de préférence d'au plus 1,6 mm. La deuxième feuille de verre qui est plus mince que la première a une épaisseur d'au plus 1,5 mm. Préférentiellement, cette feuille a une épaisseur d'au plus 1,1 mm voire est inférieure à 1mm. Avantageusement, la deuxième feuille de verre a une épaisseur inférieure ou égale à 0,7 mm. L'épaisseur de la feuille est d'au moins 50 μιτι.
Le fait d'utiliser des feuilles de verre mince permet d'alléger le vitrage feuilleté et par conséquent répond aux spécifications demandées actuellement par les constructeurs qui cherchent à diminuer le poids des véhicules.
L'intercalaire polymérique placé entre les deux feuilles de verre est constitué d'une ou plusieurs couches de matériau thermoplastique. Il peut notamment être en polyuréthane, en polycarbonate, en polyvynilbutyral (PVB), en polyméthacrylate de méthyle (PMMA), en éthylène vinyl acétate (E A) ou en résine ionomère. L'intercalaire polymérique peut se présenter sous la forme d'un film multicouche, possédant des fonctionnalités particulières comme par exemple de meilleures propriétés acoustiques, anti UV ...De façon classique, l'intercalaire polymérique comprend au moins une couche de PVB. L'épaisseur de l'intercalaire polymérique est compris entre 50 μιτι et 4 mm. Généralement, son épaisseur est inférieure à 1mm. Dans les vitrages automobiles, l'épaisseur de l'intercalaire polymérique est classiquement de 0,76 mm. Lorsque les feuilles de verre constitutives du vitrage sont très minces, il peut être avantageux d'utiliser un intercalaire polymérique d'une épaisseur supérieure à 1mm voire supérieure à 2 ou 3 mm pour conférer de la rigidité au vitrage feuilleté, sans apporter un alourdissement trop important.
L'invention a également pour objet un procédé de fabrication du vitrage feuilleté selon la présente invention, comprenant une étape de bombage simultané de la première et la deuxième feuille de verre, une étape d'échange ionique de la deuxième feuille de verre et une étape d'assemblage des deux feuilles de verre avec l'intercalaire polymérique.
Les feuilles de verre constitutives du vitrage selon la présente invention peuvent être fabriquées selon différents procédés connus, tels que le procédé de flottage (ou encore « float ») dans lequel le verre fondu est déversé sur un bain d'étain en fusion, et le procédé de laminage entre deux rouleaux (ou encore «fusion draw »), dans lequel le verre fondu déborde d'un canal et vient former une feuille par gravité, ou encore le procédé dit « down-draw », dans lequel le verre fondu s'écoule vers le bas par une fente, avant d'être étiré à l'épaisseur voulue et simultanément refroidi.
L'étape de bombage des première et deuxième feuilles de verre est réalisée de façon simultanée. Les deux feuilles de verre sont positionnées l'une au-dessus de l'autre dans un cadre ou squelette de bombage, la feuille de verre la plus mince étant celle du dessus, la plus éloignée du squelette. L'ensemble est ainsi introduit dans un four de bombage. Les deux feuilles sont séparées par un agent pulvérulent de type talc, calcite, ou poudre céramique pour éviter les frottements et le collage d'une feuille sur l'autre. Le bombage ainsi réalisé est un formage par gravité et/ ou par pressage.
L'échange ionique que subit la deuxième feuille de verre est généralement réalisé en plaçant ladite feuille dans un bain rempli d'un sel fondu de l'ion alcalin désiré. Cet échange a lieu habituellement à une température inférieure à la température de transition du verre et à la température de dégradation du bain, avantageusement à une température inférieure à 490°C. La durée de l'échange ionique est inférieure à 24 heures. Cependant il est souhaitable que le temps d'échange soit plus court pour être compatible avec les productivités des procédés de fabrication des vitrages feuilletés pour l'automobile. La durée de traitement est par exemple inférieur ou égal à 4 heures, préférentiellement inférieur ou égal à 2 heures. Les températures et les durées d'échange sont à ajuster en fonction de la composition du verre, de l'épaisseur de la feuille de verre, ainsi que de l'épaisseur en compression et du niveau de contraintes souhaité. On obtient notamment de bonnes performances au niveau de la trempe lorsque celle-ci est effectuée pendant une durée de 2 heures à une température de 460°C. L'échange ionique peut être avantageusement suivi d'une étape de traitement thermique pour diminuer la contrainte de tension à cœur et augmenter la profondeur en compression. L'étape d'assemblage consiste ensuite à assembler les deux feuilles de verre avec l'intercalaire thermoplastique par mise sous pression dans un autoclave et élévation de la température.
Le vitrage feuilleté selon la présente invention constitue avantageusement un vitrage pour l'automobile et notamment un pare-brise. La première feuille de type silico-sodo-calcique et la seconde feuille plus mince de type aluminosilicate sont bombées ensemble avant d'être assemblées avec l'intercalaire polymérique pour former le vitrage selon la présente invention. La deuxième feuille est celle qui est au-dessus dans le cadre de bombage. Une fois montée dans le véhicule, cette deuxième feuille de verre correspond à la feuille de verre interne, c'est-à-dire celle placée vers l'intérieur de l'habitacle. La première feuille de verre est donc celle qui est placée vers l'extérieur. Les feuilles de verre peuvent ainsi être assemblées directement après l'étape de bombage, sans nécessiter l'inversion de l'ordre des feuilles de verre.
Les exemples ci -après illustrent l'invention sans en limiter la portée.
Des vitrages selon l'invention ont été préparés à partir de différentes feuilles de verre de composition différente.
Dfférentes compositions pour la deuxième feuille de verre ont été préparées et sont données dans le tableau ci-après :
Ex.1 Ex.2 Ex.3 Ex.4 Ex.5 Ex.6 Ex.7 Ex.8 Ex.9
67,00 64,90 66,35 64,40 60,65 63,35 76,75 70,95 63,6
0
ΑΙ2θ3 2,80 7,50 7,60 5,30 7,70 5,95 2,95 3,00 2,75
10,05 5,05 4,95 7,30 8,40 8,95 5,00 5,05 10,2
0
Na20 10,15 10,05 15,65 12,70 13,10 12,10 9,85 15,55 15,9
5
K20 9,40 9,25 4,80 7,30 9,55 9,15 4,75 4,75 4,50
B2O3 0,10 2,85 0,10 3,00 0 0 0,15 0,15 2,70 diver 0,50 0,40 0,55 0,60 0,50 0,55 0,55 0,30 s
total 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100 0 0 0 0 0 0 0 0
Tableau 1
Le tableau 2 donne les valeurs des températures supérieures de recuisson T(log η=13), les températures de Littleton, les températures pour lesquelles la viscosité du verre vaut 10,3 Poises T(log η=7,6), la valeur de DGG mesurée en mg, ainsi que la profondeur d'échange et la contrainte de surface en MPa, après un échange ionique d'une durée de 24 h à une température de 360°C pour chacune des compositions données dans le tableau ci-dessus (épaisseur des échantillons testés 2.5 mm). Les compositions des exemples 7, 8 et 9 sont non conformes à l'invention.
Ex.1 Ex.2 Ex.3 Ex.4 Ex.5 Ex.6 Ex.7 Ex.8 Ex.9
T(log 549 549 510 540 557 552 568 489 525 η=13)
en °C
T(log 738 741 713 722 724 729 757 694 709 η=7,6)
en °C
T(log 643,5 645 611,5 631 640,5 640,5 662,5 591,5 617 η=10,3)
En °C
DGG (mg) 26,7 11,8 24,5 24,5 23,5 23,5 15,5 49 102
Profondeur 63 36 39 30 42 45 40 40 19 d' échange
(μηι)
Contrainte 608 608 717 600 624 630 521 559 846 de surface
(MPa)
Tab eau 2
Après un échange ionique de 4h à 440°C sur une éprouvette de formulation conforme à l'exemplel et d'épaisseur 0.7 mm, une contrainte de surface de 552 MPa et une profondeur d'échange de 39 μιτι sont atteintes.
Des vitrages selon la présente invention sont fabriqués en utilisant une première feuille de verre de composition suivante, notée feuille F1:
71,50%
Na20 14,10%
CaO 8,75%
MgO 4,00%
K2O 0,25%
Divers 0,60% Les températures caractéristiques de cette composition sont respectivement 545°C et 725°C pour T(log η=13) et T(log η=7,6). La température T(log η=10,3) vaut donc 635°G Les vitrages feuilletés asymétriques sont fabriquées en utilisant une première feuille de verre de la composition silico-sodo-calcique donnée ci-dessus d'une épaisseur de 1,6 mm, un intercalaire en PVB d'une épaisseur de 0,76 mm et une deuxième feuille de verre d'une épaisseur de 0,55 mm obtenue après amincissement des feuilles de verre dont la composition est donnée dans le tableau 1.
Le tableau 3 suivant précise l'écart entre les températures T(log η=10,3) des feuilles de verre constitutives du vitrage feuilleté. La notation utilisée pour caractériser le vitrage est la suivante « F1/ F2.x » dans laquelle F1 précise qu'il s'agit de l'association d'une première feuille de composition F1 et d'une deuxième feuille de composition x (où x varie de 1 à 9 et correspond aux exemples 1 à 9 donnés dans le tableau 1. Ainsi la feuille F2.1 est la deuxième feuille de verre dont la composition est celle de l'exemple 1).
Tableau 3
Seuls les verres préparés avec une seconde feuille de verre conforme à l'invention permettent d'obtenir des vitrages feuilletés qui répondent àlafois aux critères de résistance mécanique, de résistance à la corrosion du verre avant formage et trempe chimique et de possibilité de bombage simultané.

Claims

REVENDICATIONS
Vitrage feuilleté comprenant au moins une première feuille de verre de type silico-sodo calcique, une deuxième feuille de verre de plus faible épaisseur que la première feuille de verre, et un intercalaire polymérique situé entre les deux feuilles de verre, caractérisé en ce que la deuxième feuille de verre est un verre de type aluminosilicate comprenant les oxydes sui vant s dans I es gammes de t eneurs pondéral es déf i ni es ci -après :
3 O2 ent re 60, 00 et 68, 00%
AI2O3 entre 2,80 et 7,80%
Na20 entre 10, 00 et 15, 80%
MgO entre 4,90 et 10,10%
K2O entre 4,80 et 9,70%
B2O3 entre 0 et 3,20%
CaO entre 0 et 1,00%
Vitrage selon la revendication 1 caractérisé en ce que la première feuille de verre est un verre de type silico-sodo-calcique comprenant les oxydes suivants dans les gammes de teneurs pondérales définies ci-après :
3 O2 ent re 65, 00 et 75, 00%
Na20 entre 10, 00 et 20, 00%
CaO entre 2,00 et 15,00%
AI2O3 entre 0 et 5,00%
MgO entre 0 et 5,00%
K2O entre 0 et 5,00%
Vitrage selon l'une des revendications précédentes caractérisé en ce que la deuxième feuille de verre comprend les oxydes suivants dans les gammes de teneurs pondérales définies ci-après :
3 O2 ent re 60, 00 et 67, 00%
AI2O3 entre 2,80 et 7,80%
Na2O entre 10, 00 et 13, 50%
MgO entre 4,90 et 10,10% K2O entre 8,50 et 9,70%
B2O3 entre 0 et 3,20%
CaO entre 0 et 1,00%
4. Vitrage selon l'une des revendications précédentes caractérisé en ce que la deuxième feuille de verre est renforcée par trempe chimique avec une profondeur d'échange d'ions d'au moins 30 μιτι et possède une contrainte de surface d'au moins 550 MPa, de préférence d'au moins 600 MPa.
5. Vitrage selon l'une des revendications précédentes caractérisé en ce que la deuxième feuille de verre a une résistance hydrolytique telle que la DGG est inférieure à 30mg.
6. Vitrage selon l'une des revendications précédentes caractérisé en ce que l'écart entre les températures T(log η=10,3) de chacune des feuilles de verres pour lesquelles la viscosité vaut 1010,3 Poises est inférieure, en valeur absolue, à 30°C et de préférence inférieure, en valeur absolue, à 23 °G
7. Vitrage selon l'une des revendications précédentes caractérisé en ce que la première feuille de verre a une épaisseur d'au plus 2,1 mm, de préférence d'au plus 1,6 mm.
8. Vitrage selon l'une des revendications précédentes caractérisé en ce que la deuxième feuille de verre qui est plus mince que la première a une épaisseur d'au plus 1,5 mm, de préférence d'au plus 1,1 mm voire inférieure à 1mm.
9. Vitrage selon l'une des revendications précédentes caractérisé en ce que l'intercalaire polymérique placé entre les deux feuilles de verre est constitué d'une ou plusieurs couches de matériau thermoplastique, notamment en polyuréthane, en polycarbonate, en polyvynilbutyral (PVB), en polyméthacrylate de méthyle (PMMA), en éthylène vinyl acétate (EVA) ou en résine ionomère.
10. Vitrage selon la revendication 9 caractérisé en ce que l'épaisseur de l'intercalaire polymérique est comprise entre 50 μιτι et 4 mm.
11. Procédé de fabrication du vitrage selon l'une des revendications 1 à 10 caractérisé en ce qu'il comprend au moins une étape de bombage simultané de la première et la deuxième feuille de verre, une étape d'échange ionique de la deuxième feuille de verre et une étape d'assemblage des deux feuilles de verre avec l'intercalaire polymérique.
12. Procédé selon la revendication 11 caractérisé en ce que l'étape d'échange ionique a lieu à une température inférieure à 490°C, pendant une durée inférieure à 24 heures, de préférence inférieure ou égale à 4h, voire inférieure ou égale à 2h.
13. Procédé selon l'une des revendications 11 ou 12 caractérisé en ce que pendant l'étape de bombage la seconde feuille de verre plus mince que la première feuille est positionnée au-dessus de la première feuille de verre. 14. Vitrage pour automobile, notamment pare-brise, obtenu par le procédé selon l'une des revendications 11 à 13 caractérisé en ce que la deuxième feuille de verre est placée vers l'intérieur de Γ habitacle.
EP16825510.7A 2015-12-17 2016-12-14 Verre feuillete asymetrique Withdrawn EP3390312A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1562665A FR3045595B1 (fr) 2015-12-17 2015-12-17 Verre feuillete asymetrique
PCT/FR2016/053420 WO2017103471A1 (fr) 2015-12-17 2016-12-14 Verre feuillete asymetrique

Publications (1)

Publication Number Publication Date
EP3390312A1 true EP3390312A1 (fr) 2018-10-24

Family

ID=55752427

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16825510.7A Withdrawn EP3390312A1 (fr) 2015-12-17 2016-12-14 Verre feuillete asymetrique

Country Status (12)

Country Link
US (1) US20180370194A1 (fr)
EP (1) EP3390312A1 (fr)
JP (1) JP2019503967A (fr)
KR (1) KR20180094979A (fr)
CN (1) CN107108335A (fr)
AR (1) AR107082A1 (fr)
BR (1) BR112018012088A2 (fr)
CA (1) CA3008317A1 (fr)
FR (1) FR3045595B1 (fr)
MX (1) MX2018007322A (fr)
RU (1) RU2736924C2 (fr)
WO (1) WO2017103471A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11384013B2 (en) * 2017-01-12 2022-07-12 Central Glass Company, Limited Automotive laminated glass, and production method therefor
US10696021B2 (en) * 2017-01-20 2020-06-30 Pittsburgh Glass Works, Llc Asymmetric glazing laminates with high impact resistance
EP3936482A1 (fr) 2017-02-20 2022-01-12 Corning Incorporated Procédé de formation d'un stratifié de verre modelé
EP3658372B1 (fr) 2017-07-28 2021-04-21 Pilkington Group Limited Ensemble fenêtre
CN111278781B (zh) 2017-10-18 2022-10-11 康宁股份有限公司 在共下垂期间控制玻璃之间的分离以减少玻璃之间的最终形状错配的方法
FR3076293B1 (fr) * 2017-12-29 2022-11-18 Saint Gobain Procede de bombage de feuille de verre
FR3077760B1 (fr) * 2018-02-14 2020-02-21 Saint-Gobain Glass France Vitrage feuillete bombe comprenant une feuille exterieure d'un verre colore silico-sodocalcique et une feuille interieure d'un verre clair d'aluminosilicate de sodium trempe chimiquement
WO2019200203A1 (fr) * 2018-04-13 2019-10-17 Corning Incorporated Articles à paire uniforme et stratifiés hybrides
US10773489B2 (en) * 2018-05-31 2020-09-15 Agc Automotive Americas Co. Glass article having perpendicular draw lines
US10981357B2 (en) * 2018-05-31 2021-04-20 Agc Automotive Americas Co. Glass article
CN112512979B (zh) * 2018-07-16 2022-09-20 康宁股份有限公司 利用成核和生长密度以及粘度变化对玻璃进行陶瓷化的方法
CN112437759A (zh) 2018-07-16 2021-03-02 康宁股份有限公司 具有改善的翘曲的玻璃制品的陶瓷化方法
KR102618611B1 (ko) 2018-07-16 2023-12-27 코닝 인코포레이티드 개선된 특성을 갖는 유리 세라믹 물품 및 이의 제조 방법
US20210370646A1 (en) * 2018-07-25 2021-12-02 Saint-Gobain Glass France Glazing unit comprising a chemically toughened thin glass sheet
WO2020083669A1 (fr) * 2018-10-21 2020-04-30 Agc Glass Europe Ensemble stratifié
WO2020112537A1 (fr) * 2018-11-30 2020-06-04 Corning Incorporated Procédés de formation de stratifiés de verre asymétriques à l'aide de poudre de séparation et stratifiés ainsi fabriqués
JP2022522224A (ja) * 2019-04-11 2022-04-14 コーニング インコーポレイテッド Cteの不一致を使用したエッジ強度の向上
FR3103807A1 (fr) * 2019-11-29 2021-06-04 Saint-Gobain Glass France Vitrage feuillete pour camera
CN116409929A (zh) * 2023-02-15 2023-07-11 清远南玻节能新材料有限公司 复合玻璃及其制备方法、应用和汽车车窗

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178977B2 (ja) * 2000-10-03 2013-04-10 日本板硝子株式会社 ガラス組成物
JP4400912B2 (ja) * 2002-09-25 2010-01-20 日本板硝子株式会社 ガラス組成物および合わせガラス
CN102131740B (zh) * 2008-07-11 2015-12-02 康宁股份有限公司 用于消费用途的具有压缩表面的玻璃
US8679599B2 (en) * 2011-03-29 2014-03-25 Corning Incorporated Light-weight strengthened, low-emittance vacuum insulated glass (VIG) windows
JP5929903B2 (ja) * 2011-04-01 2016-06-08 旭硝子株式会社 合わせガラス、およびその製造方法
US10035331B2 (en) * 2011-06-24 2018-07-31 Corning Incorporated Light-weight hybrid glass laminates
US9616641B2 (en) * 2011-06-24 2017-04-11 Corning Incorporated Light-weight hybrid glass laminates
FR3012071B1 (fr) * 2013-10-23 2021-01-01 Saint Gobain Verre feuillete mince
US20160279904A1 (en) * 2013-10-23 2016-09-29 Saint-Gobain Glass France Laminated glass having at least one chemically tempered pane
BR112016022689A2 (pt) * 2014-04-15 2017-08-15 Saint Gobain Vidro composto com vidraça interna fina

Also Published As

Publication number Publication date
RU2736924C2 (ru) 2020-11-23
CN107108335A (zh) 2017-08-29
CA3008317A1 (fr) 2017-06-22
RU2018126065A (ru) 2020-01-17
BR112018012088A2 (pt) 2018-11-27
RU2018126065A3 (fr) 2020-05-14
AR107082A1 (es) 2018-03-21
FR3045595B1 (fr) 2017-12-22
KR20180094979A (ko) 2018-08-24
JP2019503967A (ja) 2019-02-14
MX2018007322A (es) 2018-09-06
FR3045595A1 (fr) 2017-06-23
US20180370194A1 (en) 2018-12-27
WO2017103471A1 (fr) 2017-06-22

Similar Documents

Publication Publication Date Title
EP3390312A1 (fr) Verre feuillete asymetrique
EP3390311B1 (fr) Verre mince coloré renforcé chimiquement
CA2926172C (fr) Verre feuillete mince pour pare-brise
CA2925065C (fr) Verre feuillete mince
EP2616405B1 (fr) Feuille de verre
EP0914298B1 (fr) Composition de verre et substrat en verre trempe chimiquement
FR2697242A1 (fr) Vitrage trempé chimique.
WO2019161261A1 (fr) Couverture lidar avec verres feuilletés
EP3826841A1 (fr) Vitrage feuillete comprenant une feuille de verre mince trempe chimiquement
WO2019129980A1 (fr) Procede de bonbage de feuille de verre
EP3743396B1 (fr) Vitrage feuillete
WO2019158850A1 (fr) Vitrage feuillete
TW202200516A (zh) 具有鉑相容性的可熔合形成及可蒸氣強化的玻璃組成物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20191115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAINT-GOBAIN GLASS FRANCE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603