EP3387040A1 - Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte - Google Patents

Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte

Info

Publication number
EP3387040A1
EP3387040A1 EP16805067.2A EP16805067A EP3387040A1 EP 3387040 A1 EP3387040 A1 EP 3387040A1 EP 16805067 A EP16805067 A EP 16805067A EP 3387040 A1 EP3387040 A1 EP 3387040A1
Authority
EP
European Patent Office
Prior art keywords
basecoat
polyether
reaction product
carboxylic acid
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16805067.2A
Other languages
English (en)
French (fr)
Inventor
Bernhard Steinmetz
Peter Hoffmann
Hardy Reuter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Coatings GmbH
Original Assignee
BASF Coatings GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Coatings GmbH filed Critical BASF Coatings GmbH
Publication of EP3387040A1 publication Critical patent/EP3387040A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C09D167/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to novel carboxy-functional polyether-based reaction products. It further relates to aqueous basecoats containing the reaction products and the use of said reaction products in aqueous basecoats. It also relates to a process for the production of multicoat paint systems using aqueous basecoats and to the multicoat paint systems which can be prepared by means of said process.
  • the properties of the basecoat which is particularly important in this context and the paint coats produced therefrom are determined in particular by the binders and additives contained in the basecoat, for example special reaction products.
  • EP 1 454 971 B1 discloses polyesterpolyols obtainable by reacting at least one polycarboxylic acid and at least one OH compound. At least 45 mol% of the polycarboxylic acid used consist of trimellitic anhydride.
  • the OH compound has an average molecular weight of at least 210 g / mol, and preferably has an average molecular weight of not more than 650 g / mol.
  • Polytetrahydrofuran having a number average molecular weight of 250 g / mol is particularly preferably used as OH compound.
  • the polyester polyol is used to improve the technological, in particular aesthetic properties of multicoat paint systems and is used in basecoats. task
  • the provision of a new reaction product and its use in aqueous base coats should provide the possibility of providing coatings which have excellent adhesion properties and a very good resistance to stone chips and at the same time can be produced in an environmentally friendly manner by the use of even aqueous basecoats.
  • C3 to Ce alkylene radical and n is suitably chosen so that he (b) has a number average molecular weight of 800 to 4000 g / mol, wherein the components (a) and (b) in the reaction in a molar ratio of 0.7 / 2.3 to 1, 6/1, 7 are used and the resulting reaction product has an acid number of 5 to 50 mg KOH / g.
  • n is chosen so that said polyether has a number average molecular weight of 800 to 4000 g / mol is as follows illustrated. If, for example, R is a tetramethylene radical and the number-average molecular weight is 1000 g / mol, then n is between 13 and 14 on average. Based on the given specifications, the person skilled in the art knows without difficulty how to prepare or select a corresponding reaction product. Apart from that, the description below, and in particular the examples, provide additional information further below. The parameter n is therefore to be understood as the statistical average value as well as the number average molecular weight.
  • the new basecoat is referred to below as the invention basecoat.
  • Preferred embodiments of the basecoat according to the invention will become apparent from the following description and the appended claims.
  • the present invention relates to a method for producing a multi-layer coating on a substrate and to a multi-layer coating produced by said method.
  • reaction products according to the invention gives basecoats the use of which in the production of coatings, in particular multicoat paint systems, leads to excellent adhesion properties and very good resistance to chipping.
  • the reaction product according to the invention and the basecoat of the invention can be used in the field of initial coating, in particular in the automotive industry, as well as in the field of automotive refinishing.
  • the reaction product according to the invention is using at least one cyclic carboxylic anhydride containing a free carboxylic acid group (-COOH) and / or the halide, preferably chloride (-COCl), a carboxylic acid group produced.
  • a free carboxylic acid group preferably a free carboxylic acid group (COOH).
  • Component (a) may be aliphatic, aromatic or araliphatic (mixed aliphatic-aromatic) cyclic carboxylic acid anhydrides containing a free carboxylic acid group.
  • cyclic carboxylic anhydrides are meant those in which the anhydride group is present in a ring structure. This is therefore equivalent to the fact that upon reaction of the anhydride and corresponding opening of the anhydride, for example, when reacted with a hydroxyl group and corresponding formation of a free carboxylic acid group and an ester group, the underlying molecule does not decompose into two molecules, but also after the reaction only one Molecule exists.
  • aromatic carboxylic acid anhydrides containing a free carboxylic acid group are therefore compounds which, apart from the free carboxylic acid group and the anhydride group, consist only of aromatic structural units. Very particular preference is given to trimellitic anhydride.
  • the preparation of the reaction products according to the invention can be carried out using at least one polyether of the general structural formula (I)
  • R is a C3 to C6 alkyl radical.
  • the index n is to be chosen in each case so that said polyether has a number average molecular weight of 800 to 4000 g / mol. It preferably has a number-average molecular weight of 950 to 3800 g / mol, particularly preferably from 1050 to 3600 g / mol, in particular from 1200 to 3400 g / mol and very particularly preferably from 1500 to 3200 g / mol. Again preferred is a range of 1 600 to 3000 g / mol, in particular 1800 to 2200 g / mol.
  • the number average molecular weight may be 1000 g / mol, 2000 g / mol or 3000 g / mol.
  • the number average molecular weight is determined in the context of the present invention, unless specifically stated otherwise, by means of steam pressure osmosis.
  • polyether As is known and as explained above, the number average molecular weight is always a statistical average. The same must therefore also apply to the parameter n according to formula (I).
  • polyether to be explained in this connection, which is chosen for component (b), is understood as follows. Polymers, for example polyethers (b), are always mixtures of molecules of different sizes. At least part or all of these molecules are characterized by a sequence of identical or different monomer units (as reacted form of monomers). The polymer or molecule mixture thus basically contains molecules which contain a plurality (ie at least two) identical or different monomer units. Of course, the monomer itself may be proportionally contained in the mixture, that is, in its unreacted form.
  • R is preferably a C 4 -alkylene radical. Particularly preferred is a tetramethylene radical.
  • the polyether to be used according to the invention is an average diol, linear polytetrahydrofuran.
  • the preparation of the reaction product has no special features.
  • the components (a) and (b) are linked to one another by generally known condensation and / or addition reactions of hydroxyl groups with carboxylic anhydrides and carboxylic acids.
  • the reaction can be carried out, for example, in bulk or in solution with typical organic solvents at temperatures of, for example, 100 ° C. to 300 ° C.
  • typical catalysts such as sulfuric acid, sulfonic acids and / or tetraalkyl titanates, zinc or tin alkoxylates, dialkyltin oxides such as, for example, di-n-butyltin oxide or organic dialkyltin oxide salts.
  • An even more preferred ratio range is from 0.45 / 1 to 0.55 / 1.
  • the reaction product is carboxy-functional.
  • the acid number of the reaction product is from 5 to 50 mg KOH / g, preferably 8 to 40 mg KOH / g, more preferably 10 to 35 mg KOH / g and most preferably 12 to 30 mg KOH / g.
  • the acid number is determined according to DIN 53402 and, of course, refers in each case to the product per se (and not to the acid number of an optionally present solution or dispersion of the product in a solvent). If reference is made in the context of the present invention to an official standard, this naturally includes the version of the standard applicable at the filing date or, if no valid version at this time, the last valid version.
  • the resulting reaction product preferably has a number average molecular weight of from 1500 to 15000 g / mol, preferably from 2000 to 10000 g / mol and very particularly preferably from 2200 to 8000 g / mol.
  • the reaction product according to the invention is generally hydroxy-functional, preferably dihydroxy-functional on average. Thus, it preferably has both hydroxyl and carboxy functions.
  • reaction products can be prepared by reacting (a) trimellitic anhydride with (b) a diolic, linear polytetrahydrofuran having a number average molecular weight of 1500 to 3200 g / mol, the components (a) and (b) in one molar ratio of 0.45 / 1 to 0.55 / 1 are used and the reaction products have an acid number of 8 to 40 mg KOH / g and a number average molecular weight of 2000 to 10,000 g / mol.
  • the present invention further relates to a pigmented aqueous basecoat which contains at least one reaction product according to the invention. All above mentioned preferred embodiments with respect to the reaction product of course also apply with respect to the basecoat containing the reaction product.
  • a basecoat is to be understood as meaning a coloring intermediate coating substance used in the automotive finishing and general industrial coating. This is generally applied to a metal or plastic substrate pretreated with a baked (fully cured) filler or primer filler, sometimes directly on the plastic substrate. Even old paints, which may still have to be pretreated (for example, by grinding), can serve as substrates. Meanwhile, it is quite common to apply more than one basecoat. Accordingly, in such a case, a first basecoat film is the substrate for a second. In particular, it is possible to apply the first basecoatcoat directly to a metal substrate provided with a cured electrodeposition paintcoat instead of an application onto a layer of a baked filler and apply the second basecoatcoat directly to apply the first basecoat layer without curing the latter separately.
  • At least one additional clearcoat film is applied to it. This is usually done in the wet-on-wet process, that is, the clear coat is applied without the base coat (s) is (are) cured. The curing then takes place together. Meanwhile, it is also common practice to produce only a basecoat film on a cured electrocoating paint, then to apply a clearcoat and then cure these two coats together. The latter is a preferred embodiment in the context of the present invention. It has been found that when using the reaction product according to the invention despite the production of only one basecoat film and thus given significant process simplification excellent adhesion and resistance to chipping results.
  • the sum of the percentages by weight, based on the total weight of the pigmented aqueous basecoat, of all the reaction products according to the invention is preferably from 0.1 to 20% by weight, more preferably 0.5 to 15% by weight and very particularly preferably 1, 0 to 10% by weight or even 1.5 to 5% by weight.
  • the content of the reaction product according to the invention is less than 0.1% by weight, it may be possible that no further improvement in terms of adhesion and chip resistance is achieved. If the content is more than 20% by weight, disadvantages may arise due to the then numerous potentially anionic groups (carboxylate groups) of the reaction product with regard to the condensation resistance of the finish produced from the basecoat.
  • the abovementioned principle applies to all the components of the basecoat material mentioned and their proportions, for example the pigments, the polyurethane resins as binders or else the crosslinking agents, such as melamine resins.
  • the basecoats used according to the invention contain color and / or effect pigments. Such color pigments and effect pigments are known to the person skilled in the art and are described, for example, in Rompp-Lexikon Lacke und Druckmaschine, Georg Thieme Verlag, Stuttgart, New York, 1998, pages 176 and 451.
  • the proportion of the pigments can be, for example, in the range from 1 to 40% by weight, preferably from 2 to 35% by weight, particularly preferably from 3 to 30% by weight, based on the total weight of the pigmented aqueous basecoat material.
  • basecoats are preferred which comprise as binder physical, thermal or thermal and actinic radiation-curable polymers.
  • the binder according to the relevant DIN EN ISO 4618 is understood as meaning the nonvolatile fraction of a coating composition without pigments and fillers.
  • special binders are, for example, also paint-typical additives, the reaction product according to the invention or the typical crosslinking agent described below, even if the term hereinafter is used mainly with reference to certain polymers which are curable physically, thermally or thermally and with actinic radiation, for example certain polyurethane resins.
  • the pigmented aqueous basecoats according to the invention particularly preferably comprise at least one further polymer other than the reaction product as binder, in particular at least one polymer selected from the group consisting of polyurethanes, polyesters, poly (meth) acrylates and / or copolymers of said polymers, in particular, but not necessarily exclusively, at least one polyurethane-poly (meth) acrylate is preferred.
  • the term "physical curing” means the formation of a film by the release of solvent from polymer solutions or polymer dispersions, usually without the need for crosslinking agents.
  • thermal curing means the heat-initiated crosslinking of a lacquer layer in which either a separately present crosslinking agent or self-crosslinking binder can be applied.
  • the crosslinking agent contains reactive functional groups that are complementary to the reactive functional groups present in the binders. This is usually referred to by experts as extraneous networking. If the complementary reactive functional groups or autoreactive functional groups, that is to say groups which react with groups of the same type, are already present in the binder molecules, self-crosslinking binders are present. Examples of suitable complementary reactive functional groups and autoreactive functional groups are known from German Patent Application DE 199 30 665 A1, page 7, line 28 to page 9, lines 24.
  • actinic radiation means electromagnetic radiation such as near infrared (NIR), UV radiation, in particular UV radiation, and corpuscular radiation such as electron radiation. Curing by UV radiation is usually initiated by free-radical or cationic photoinitiators. When thermal curing and curing are used together with actinic light, this is called dual cure.
  • NIR near infrared
  • UV radiation in particular UV radiation
  • corpuscular radiation such as electron radiation.
  • Curing by UV radiation is usually initiated by free-radical or cationic photoinitiators. When thermal curing and curing are used together with actinic light, this is called dual cure.
  • both basecoats which are both physical and those which are thermally curable are preferred.
  • a physical hardening always takes place proportionally.
  • these paints are referred to as thermally curable.
  • thermosetting basecoats are those which contain as binder a polyurethane resin and / or polyurethane-poly (meth) acrylate, preferably a hydroxyl-containing polyurethane resin and / or polyurethane-poly (meth) acrylate, and as crosslinking agent an aminoplast resin or a blocked or unblocked polyisocyanate , preferably an aminoplast resin.
  • a polyurethane resin and / or polyurethane-poly (meth) acrylate preferably a hydroxyl-containing polyurethane resin and / or polyurethane-poly (meth) acrylate
  • crosslinking agent an aminoplast resin or a blocked or unblocked polyisocyanate , preferably an aminoplast resin.
  • aminoplast resins melamine resins are preferred.
  • the sum of the percentages by weight, based on the total weight of the pigmented aqueous basecoat, of all crosslinking agents, preferably amino resins and / or blocked and / or unblocked polyisocyanate, Particularly preferred melamine resins, is preferably 1 to 20 wt .-%, particularly preferably 1, 5 to 17.5 wt .-% and most preferably 2 to 15 wt .-% or even 2.5 to 10 wt .-%.
  • the preferred polyurethane resin may be ionically and / or non-ionically hydrophilically stabilized.
  • the polyurethane resin is ionically hydrophilically stabilized.
  • the preferred polyurethane resins are linear or contain branching. More preferably, it is a polyurethane resin in the presence of which olefinically unsaturated monomers have been polymerized.
  • the polyurethane resin may be present in addition to the polymer resulting from the polymerization of the olefinically unsaturated monomers without these being covalently bonded to one another.
  • the polyurethane resin may also be covalently bonded to the polymer resulting from the polymerization of the olefinically unsaturated monomers.
  • both groups of the aforementioned resins are mixed polymers which, in the case of the use of (meth) acrylate-containing monomers as olefinically unsaturated monomers, can also be called polyurethanes-poly (meth) acrylates (see also above).
  • Such polyurethane-poly (meth) acrylates, in particular hydroxy-functional polyurethane-poly (meth) acrylates are particularly preferred for use in the context of the present invention.
  • the olefinically unsaturated monomers are therefore preferably monomers containing acrylate and / or methacrylate groups. It is likewise preferred that the monomers containing acrylate and / or methacrylate groups be used in combination with further olefinically unsaturated compounds which contain no acrylate or methacrylate groups.
  • acrylate or methacrylate group-containing monomers are particularly preferably covalently bonded to the polyurethane resin. This form of polyurethane-poly (meth) acrylates is even more preferred.
  • Suitable saturated or unsaturated polyurethane resins or polyurethane-poly (meth) acrylates are described, for example, in German Patent Application DE 199 14 896 A1, column 1, lines 29 to 49 and column 4, line 23 to column 11, line 5, German Patent Application DE 199 48 004 A1, page 4, line 19 to page 13, line 48,
  • the aliphatic, cycloaliphatic, aliphatic-cycloaliphatic, aromatic, aliphatic-aromatic and / or cycloaliphatic-aromatic polyisocyanates known to those skilled in the art are preferably used.
  • the saturated and unsaturated relatively high molecular weight and low molecular weight polyols known to those skilled in the art, and optionally also monoalcohols are preferably used in minor amounts.
  • the low molecular weight polyols used are in particular diols and, in minor amounts, triols for introducing branching.
  • suitable higher molecular weight polyols are saturated or olefinically unsaturated polyester polyols and / or polyether polyols.
  • polyester polyols especially those having a number average molecular weight of 400 to 5000 g / mol.
  • the polyurethane resin preferably contained may contain certain ionic groups and / or groups that can be converted into ionic groups (potentially ionic groups).
  • Such polyurethane resins are referred to in the context of the present invention as ionically hydrophilically stabilized polyurethane resins.
  • nonionic hydrophilic modifying groups are included.
  • the ionically hydrophilically stabilized polyurethanes are preferred.
  • the modifying groups are either um functional groups which can be converted into cations by neutralizing agents and / or quaternizing agents and / or cationic groups (cationic modification)
  • the functional groups for cationic modification are, for example, primary, secondary and / or tertiary amino groups, secondary sulfide groups and / or tertiary phosphine groups, especially tertiary amino groups and secondary sulfide groups (functional groups neutralized by neutralizing agents and / or Quaternizing agents can be converted into cationic groups).
  • cationic groups prepared from the abovementioned functional groups using neutralizing agents and / or quaternizing agents known to those skilled in the art, such as primary, secondary, tertiary and / or quaternary ammonium groups, tertiary sulfonium groups and / or quaternary phosphonium groups, in particular quaternary ammonium groups and tertiary sulfonium groups ,
  • the functional groups for anionic modification are, for example, carboxylic acid, sulfonic acid and / or phosphonic acid groups, in particular carboxylic acid groups (functional groups which can be converted into anionic groups by neutralizing agents), as well as from the abovementioned functional groups using the skilled person anionic groups prepared such as carboxylate, sulfonate and / or phosphonate groups.
  • the functional groups for nonionic hydrophilic modification are preferably poly (oxyalkylene) groups, in particular poly (oxyethylene) groups.
  • the ionic hydrophilic modifications can be introduced into the polyurethane resin by monomers containing the (potentially) ionic groups.
  • the nonionic modifications are introduced, for example, by the incorporation of poly (ethylene oxide) polymers as lateral or terminal groups of the polyurethane molecules.
  • the hydrophilic modifications are introduced, for example, via compounds which contain at least one isocyanate-reactive group, preferably at least one hydroxy group.
  • To introduce the ionic modification it is possible to use monomers which contain at least one hydroxy group in addition to the modifying groups.
  • the polyurethane resin may preferably be a graft polymer grafted by means of olefinically unsaturated monomers.
  • the polyurethane is grafted with side groups and / or side chains based on olefinically unsaturated monomers.
  • these are side chains based on poly (meth) acrylates, which are then the polyurethane poly (meth) acrylates already described above.
  • poly (meth) acrylates are polymers or polymeric radicals which comprise monomers containing acrylate and / or methacrylate groups, preferably consisting of acrylate and / or methacrylate group-containing monomers.
  • Side chains based on poly (meth) acrylates are to be understood as meaning side chains which are built up in the graft polymerization using (meth) acrylate-group-containing monomers.
  • graft polymerization preferably more than 50 mol%, in particular more than 75 mol%, in particular 100 mol%, based on the total amount of monomers used in the graft polymerization, of (meth) acrylate groups-containing monomers.
  • the described side chains are preferably introduced into the polymer after the preparation of a polyurethane resin primary dispersion (see also the description above).
  • this can be done in the primary dispersion present polyurethane resin side and / or terminal olefinically unsaturated groups, then passes through the graft polymerization with the olefinically unsaturated compounds.
  • the polyurethane resin to be grafted may be an unsaturated polyurethane resin.
  • the graft polymerization is then a free-radical polymerization of olefinically unsaturated reactants. It is also possible, for example, that the olefinically unsaturated compounds used for the graft polymerization contain at least one hydroxyl group.
  • olefinically unsaturated compounds with which the polyurethane resin is preferably grafted it is possible to use virtually all radically polymerizable, olefinically unsaturated and organic monomers which are available to the person skilled in the art for these purposes.
  • some preferred monomer classes may be mentioned:
  • Hydroxyalkyl esters of (meth) acrylic acid or other alpha, beta-ethylenically unsaturated carboxylic acids are examples of (meth) acrylic acid or other alpha, beta-ethylenically unsaturated carboxylic acids,
  • Vinyl esters of alpha-branched monocarboxylic acids having 5 to 18 carbon atoms Reaction products of (meth) acrylic acid with the glycidyl ester of an alpha-branched monocarboxylic acid having 5 to 18 carbon atoms,
  • ethylenically unsaturated monomers such as olefins (for example ethylene), (meth) acrylic acid amides, vinylaromatic hydrocarbons (for example styrene), vinyl compounds such as vinyl chloride and / or vinyl ethers such as ethyl vinyl ether.
  • the lateral and / or terminal olefinically unsaturated groups in the polyurethane resin over which the graft polymerization can proceed with the olefinically unsaturated compounds are preferably introduced into the polyurethane resin via certain monomers.
  • These particular monomers contain, in addition to an olefinically unsaturated group, for example, at least one isocyanate-reactive group.
  • Preferred are hydroxy groups as well as primary and secondary amino groups. Especially preferred are hydroxy groups.
  • the described monomers by which the side and / or terminal olefinically unsaturated groups can be introduced into the polyurethane resin, can also be used without the polyurethane resin is then additionally grafted with olefinically unsaturated compounds.
  • the polyurethane resin is grafted with olefinically unsaturated compounds.
  • the polyurethane resin preferably contained may be a self-crosslinking and / or externally crosslinking binder.
  • the polyurethane resin preferably comprises reactive functional groups, by means of which external crosslinking is possible.
  • the pigmented aqueous basecoat preferably contains at least one crosslinking agent.
  • the reactive functional groups, by means of which external crosslinking is possible are hydroxyl groups.
  • Polyhydroxy-functional polyurethane resins can be used particularly advantageously in the context of the process according to the invention. This means, the polyurethane resin contains on average more than one hydroxyl group per molecule.
  • the preparation of the polyurethane resin is carried out by the usual methods of polymer chemistry.
  • this refers to the polymerization of polyisocyanates and polyols to form polyurethanes, and the graft polymerization which is preferably followed by olefinically unsaturated compounds.
  • These methods are known to the person skilled in the art and can be adapted individually.
  • Exemplary production methods and reaction conditions can be found in European Patent EP 0521 928 B1, page 2, line 57 to page 8, line 16.
  • the polyurethane resin preferably contained, for example, has a hydroxyl number of 0 to 250 mg KOH / g, but especially from 20 to 150 mg KOH / g.
  • the acid number of the polyurethane resin is preferably from 5 to 200 mg KOH / g, in particular from 10 to 40 mg KOH / g.
  • the hydroxyl number is determined in the context of the present invention according to DIN 53240.
  • the polyurethane resin content is preferably between 5 and 80 wt .-%, more preferably between 8 and 70 wt .-% and particularly preferably between 10 and 60 wt .-%, each based on the film-forming solids of the basecoat.
  • polyurethanes also called polyurethane resins
  • polyurethane poly (meth) acrylates are mentioned in some places in the context of the present invention
  • polyurethanes as a generic term encompasses the polyurethane-poly (meth) acrylates. If, therefore, a distinction is not made between the two polymer classes at a certain point in the text, but is merely the term polyurethane or polyurethane resin, both polymer classes are considered to be encompassed.
  • the non-volatile weight fraction of the basecoat without pigments and optionally fillers is to be understood.
  • the film-forming solid can be determined as follows: A sample of the pigmented aqueous basecoat material (about 1 g) is mixed with the 50 to 100 times the amount of tetrahydrofuran and then stirred for about 10 minutes. Subsequently, the insoluble pigments and optionally fillers are filtered off, the residue is rinsed with a little THF and the THF removed from the filtrate thus obtained on a rotary evaporator. The residue of the filtrate is dried for two hours at 120 ° C and the resulting film-forming solid is weighed out.
  • the sum of the percentages by weight, based on the total weight of the pigmented aqueous basecoat, of all polyurethane resins is preferably from 2 to 40% by weight, particularly preferably from 2.5 to 30% by weight and very particularly preferably from 3 to 25% by weight.
  • a thickener is preferably included.
  • Suitable thickeners are inorganic thickeners from the group of layered silicates.
  • one or more organic thickeners are preferably selected from the group consisting of (meth) acrylic acid (meth) acrylate copolymer thickeners, such as the commercial product Rheovis AS S130 (BASF) and polyurethane thickeners, such as the commercial product Rheovis PU 1250 (BASF).
  • the thickeners used differ from the binders used.
  • the pigmented aqueous basecoat may contain at least one additional additive.
  • additives are residue-free or essentially residue-free, thermally decomposable salts, resins which are physically, thermally and / or currently curable with actinic radiation as binders, further crosslinking agents, organic solvents, reactive diluents, transparent pigments, fillers, molecularly soluble dyes , Nanoparticles, light stabilizers, antioxidants, deaerators, emulsifiers, slip additives, polymerization inhibitors, radical polymerization initiators, primers, leveling agents, film-forming aids, sag-control agents (SCAs), flame retardants, corrosion inhibitors, waxes, siccatives, biocides and matting agents.
  • SCAs sag-control agents
  • thickeners such as inorganic thickeners from the group of layered silicates or organic thickeners such as (meth) acrylic acid (meth) acrylate copolymer thickener or polyurethane thickeners, which are different from the binders used.
  • Suitable additives of the type mentioned above are, for example
  • German Patent Application DE 199 48 004 A1 page 14, line 4, to page 17, line 5,
  • the solids content of the basecoats according to the invention may vary according to the requirements of the individual case. In the first place, the solids content depends on the viscosity required for application, in particular spray application, so that it can be adjusted by the person skilled in the art on the basis of his general knowledge, if appropriate with the aid of less orienting tests.
  • the solids content of the basecoat materials is preferably from 5 to 70% by weight, more preferably from 8 to 60% by weight and most preferably from 12 to 55% by weight.
  • Solid content is to be understood as the proportion by weight which, under defined conditions, remains as residue on evaporation.
  • the solids are determined according to DIN EN ISO 3251.
  • the basecoat is evaporated for 60 minutes at 130 ° C.
  • this test method is also used, for example, to determine the proportion of various components of the basecoat in the total weight of the basecoat.
  • the solids of a dispersion of a polyurethane resin, which is to be added to the basecoat are determined accordingly to determine the proportion of this polyurethane resin in the overall composition.
  • the basecoat according to the invention is aqueous.
  • aqueous is known to the person skilled in the art in this context, which is basically a basecoat which is not based exclusively on organic solvents, that is not exclusively contains as solvents on an organic basis, but on the contrary contains a significant amount of water as a solvent
  • “aqueous” is to be understood as meaning that the particular coating composition, in particular the basecoat, contains at least 40% by weight, preferably at least 50% by weight, very particularly preferably at least 60% by weight.
  • % Water in each case based on the total amount of the solvent contained (that is, water and organic solvents). Of these, the proportion of water is preferably 40 to 90% by weight, in particular 50 to 80% by weight, very particularly preferably 60 to 75% by weight, in each case based on the total amount of the solvents present.
  • the preparation of the basecoats used according to the invention can be carried out using the mixing methods and mixing units which are customary and known for the production of basecoats.
  • Another aspect of the present invention is a process for producing a multi-layer coating in which
  • step (1) a pigmented aqueous basecoat is used which contains at least one reaction product according to the invention.
  • reaction product according to the invention and the pigmented aqueous basecoat also apply to the process according to the invention. This applies in particular to all preferred, particularly preferred and very particularly preferred features.
  • Said method is preferably used for the production of multicoat color finishes, effect paints and color and effect finishes.
  • the application of the pigmented aqueous basecoat used according to the invention is usually carried out on metal or plastic substrates pretreated with filler or primer filler.
  • said basecoat can also be applied directly to the plastic substrate.
  • a metal substrate is to be coated, it is preferably coated with an electrodeposition coating before application of the filler or primer filler.
  • a plastic substrate is coated, this is preferably pretreated before the application of the filler or Grundier colllers.
  • the most commonly used methods are flaming, plasma treatment and corona discharge.
  • the flaming is used.
  • the application of the pigmented aqueous basecoat according to the invention to metal substrates precoated with cured electrodeposition coatings and / or fillers as described above can take place in the usual thicknesses in the automotive industry in the range of, for example, 5 to 100 microns, preferably 5 to 60 microns (dry film thickness).
  • Spray application methods are used, such as compressed air spraying, airless spraying, high-speed rotation, electrostatic spray application (ESTA), if necessary combined with hot spray application such as hot air hot spraying.
  • ESA electrostatic spray application
  • (1-component) basecoats which are preferred, may be flashed off at room temperature for 1 to 60 minutes, and subsequently preferably dried at optionally slightly elevated temperatures of 30 to 90 ° C.
  • flash drying and drying is understood to mean evaporation of organic solvents and / or water, as a result of which the paint is drier but not yet cured, or a completely crosslinked paint film is not yet formed.
  • a commercial clearcoat is applied by also common methods, the layer thicknesses in turn in the usual ranges, for example 5 to 100 microns (dry film thickness), are.
  • thermosetting basecoats are those which contain a polyurethane resin as additional binder and an aminoplast resin or a blocked or unblocked polyisocyanate as crosslinking agent, preferably an aminoplast resin.
  • aminoplast resins melamine resins are preferred.
  • the method for producing a multilayer coating comprises the following steps:
  • the application of a coating agent directly to a substrate or directly to a previously prepared coating layer is understood as follows.
  • the respective coating agent is applied so that the coating layer made therefrom is disposed on the substrate (the other coating layer) and in direct contact with the substrate (the other coating layer). Between coating layer and substrate (other coating layer), therefore, no other layer is arranged in particular. Without the statement directly, the applied coating layer is indeed on the substrate (the other layer), but there is no need for direct contact. In particular, further layers can be arranged therebetween. In the context of the present invention, the following applies. If no specification is given directly, then there is obviously no restriction on directly given.
  • plastic substrates are basically analogous to that of metal substrates. However, it is generally cured at much lower temperatures of 30 to 90 ° C here. Preference is therefore given to the use of two-component clearcoats.
  • the process according to the invention can also be used for double-coating in the OEM coating. This is to be understood as meaning that a substrate which has been coated with the aid of the method according to the invention is lacquered a second time, likewise with the aid of the method according to the invention.
  • the invention further relates to multi-layer coatings, which can be produced by the method described above. These multicoat paint systems will be referred to below as multicoat paint systems according to the invention.
  • the multicoat paint systems according to the invention are preferably multicoat color finishes, effect paint systems and color and effect paint systems.
  • a further aspect of the invention relates to the process according to the invention, wherein the said substrate from step (1) is a multicoat system which has defects. In this multi-layer substrate coating, which has defects, so it is an original finish, which is to be repaired or completely overpainted.
  • the inventive method is therefore suitable for repairing defects on multi-layer coatings (repair).
  • Defects or film defects are generally termed disturbances on and in the coating, which are usually named according to their shape or appearance.
  • a variety of possible types of such film defects are known to those skilled in the art. These are described, for example, in Rompp-Lexikon Lacke and Druckmaschine, Georg Thieme Verlag, Stuttgart, New York, 1 998, page 235, "film defects".
  • the multicoat paint systems produced by means of the process according to the invention can likewise have such defects.
  • the substrate from stage (1) is therefore a multi-layer coating according to the invention which has defects.
  • the area of automobile refinishing is addressed, that is to say the repair of defects, and in the process a multicoat system which has defects is mentioned as substrate, it is of course meant that this substrate multicoat system Defects (original painting) is usually arranged on a metal substrate or a plastic substrate as described above.
  • the aqueous basecoat used in step (1) of the defect repair process of the invention is the same as that used to prepare the substrate multi-layer finish with defects (US Pat. Original painting) was used.
  • reaction product according to the invention and the aqueous pigmented basecoat thus also apply to the use in question of the method according to the invention for repairing defects on a multilayer coating. This applies in particular to all the preferred, particularly preferred and most preferred features mentioned. It is further preferred that the multi-layer coatings of the invention to be repaired be multicoat color finishes, effect finishes and color and effect finishes.
  • the surface of the multi-layer coating to be repaired can first be sanded.
  • the grinding is preferably carried out in such a way that only the basecoat and the clearcoat, if appropriate only the clearcoat, are abraded off or ground off from the original finish, but the filler coat and primer coat, which is generally arranged underneath, are not abraded or ground. In this way can be dispensed with in the repair, in particular on the re-application of special primers and Grundier shelplin.
  • the pigmented aqueous basecoat is applied to the defect in the original finish by spray application, for example by pneumatic atomization.
  • the basecoat can be dried by known methods.
  • the basecoat can be dried at room temperature for 1 to 60 minutes and subsequently dried at optionally slightly elevated temperatures of 30 to 80 ° C.
  • flash drying and drying is to be understood to mean evaporation of organic solvents and / or water, as a result of which the paint is not yet completely cured.
  • the basecoat contains a polyurethane resin as binder and an aminoplast resin, preferably a melamine resin, as crosslinking agent.
  • a commercial clearcoat is applied by also common methods. After application of the clearcoat, it may be flashed off at room temperature for, for example, 1 to 60 minutes and, if appropriate, dried. Then the clearcoat is cured together with the applied pigmented basecoat.
  • the curing is preferably carried out at temperatures of 20 to 90 ° C.
  • Two-component clearcoats are preferably used here. If, as described above, a polyurethane resin is used as further binder and an aminoplast resin is used as crosslinking agent, only low crosslinking by the aminoplast resin occurs at these temperatures in the basecoat film. In addition to his function as Hardener is the aminoplast resin in this case also the plasticization and can support the pigment wetting. In addition to the aminoplast resins unblocked isocyanates can be used. Depending on the type of isocyanate used, they crosslink at temperatures as low as 20 ° C. Of course, such aqueous basecoats are usually formulated as two-component systems.
  • the curing is preferably carried out at temperatures of 130 to 150 ° C. Both single-component and two-component clearcoats are used here. If, as described above, a polyurethane resin is used as further binder and an aminoplast resin is used as crosslinking agent, crosslinking by the aminoplast resin occurs at these temperatures in the basecoat film.
  • a further aspect of the present invention is the use of the reaction product according to the invention in pigmented aqueous basecoats for improving the adhesion and the chip resistance of coatings which are produced using the basecoat.
  • the number average molecular weight was determined by steam pressure osmosis.
  • ER Reaction Products
  • VR Comparison of Reaction Products
  • the solids content of the resin is 80.2% (measured at 130 ° C for 1 h in a convection oven on a sample of 1 g with the addition of 1 ml of methyl ethyl ketone)
  • the solids content of the resin is 81, 1% (measured at 130 ° C for 1 h in a convection oven on a sample of 1 g with the addition of 1 ml of methyl ethyl ketone)
  • Equipped with anchor stirrer, thermometer, condenser, thermometer to the head temperature measurement and water in a 4 l stainless steel reactor 38.4 g of trimellitic anhydride and 1 1 60 g Terathane2900 ® (INVISTA, Wichita, Kansas, USA) with an OH number of 38.7 mg KOH / g (0.4 mol) slowly heated to 180 ° C and held at this temperature (OH number determination according to DIN 53240). The progress of the reaction was monitored by determining the acid number. After reaching an acid number of 15 mg KOH / g, the melt was cooled and solubilized with butyl glycol to a solids content of about 80%.
  • the solids content of the resin is 81.3% (measured at 130 ° C. for 1 h in a circulating air oven on a sample of 1 g with the addition of 1 ml of methyl ethyl ketone).
  • the solids content of the resin is 100% (measured at 130 ° C for 1 h in a convection oven on a sample of 1 g with the addition of 1 ml of methyl ethyl ketone)
  • the solids content of the resin is 78% (measured at 130 ° C for 1 h in a convection oven on a sample of 1 g with the addition of 1 ml of methyl ethyl ketone)
  • the solids content of the resin is 76.4% (measured at 130 ° C for 1 h in a convection oven on a sample of 1 g with the addition of 1 ml of methyl ethyl ketone)
  • the solids content of the resin is 83.30% (measured at 130 ° C for 1 h in a convection oven on a sample of 1 g with the addition of 1 ml of methyl ethyl ketone)
  • a formulation component has the main designation "melamine-formaldehyde resin" and if a commercial product is indicated for this purpose, the melamine-formaldehyde resin is used as precisely this commercial product, optionally further constituents present in the commercial product, such as solvents are therefore to be taken into account if the amount of active substance (the melamine-formaldehyde resin) is to be deduced.
  • aqueous phase in Table A were stirred together in the order given to form an aqueous mixture, and in the next step an organic mixture was prepared from the components listed under "organic phase".
  • the organic mixture was added to the aqueous mixture.
  • the mixture was then stirred for 10 minutes and with the aid of deionized water and dimethylethanolamine to a pH of 8 and an injection viscosity of 58 mPas at a shear stress of 1000 s ' measured with a rotary viscometer (Rheomat RM 180 from Mettler-Toledo) at 23 ° C, set.
  • Tinuvin® 384-2 (BASF SE) 0.6
  • the blueprint was prepared from 69.8 parts by weight of an acrylated polyurethane dispersion prepared according to International Patent Application WO 91/15528 Binder Dispersion A, 12.5 parts by weight of Paliogen® Blue L 6482, 1, 5 parts by weight of dimethylethanolamine (10% in dem. Water), 1 2 parts by weight of a commercially available polyether (Pluriol® P900 BASF SE) and 15 parts by weight of deionized water.
  • a commercially available polyether Pluriol® P900 BASF SE
  • the carbon black paste was prepared from 25 parts by weight of an acrylated polyurethane dispersion prepared according to International Patent Application WO 91/15528 binder dispersion A, 10 parts by weight of carbon black, 0.1 parts by weight of methyl isobutyl ketone, 1, 36 parts by weight of dimethylethanolamine (10% in deionized water), 2 parts by weight of a commercially available Polyethers (Pluriol® P900 BASF SE) and 61, 45 parts by weight of deionized water.
  • an acrylated polyurethane dispersion prepared according to International Patent Application WO 91/15528 binder dispersion A, 10 parts by weight of carbon black, 0.1 parts by weight of methyl isobutyl ketone, 1, 36 parts by weight of dimethylethanolamine (10% in deionized water), 2 parts by weight of a commercially available Polyethers (Pluriol® P900 BASF SE) and 61, 45 parts by weight of deionized water.
  • the mica slurry was prepared by mixing by means of a stirrer of 1.5 parts by weight of polyurethane-based graft copolymer; prepared analogously to DE 19948004 - A1 (page 27 - Example 2) and 1, 3 parts by weight of the commercially available Mica Mearlin Ext. Fine Violet 539V Merck received.
  • the aqueous basecoat 2 was prepared analogously to Table A, but instead of the polyester; prepared according to Example D, column 1 6, Z. 37-59 of DE-A-4009858 the reaction product VR1 was used. In this case, the same proportion of the reaction product VR1 was used by balancing the amount of solvent or by taking into account the solids of the component to be added.
  • the multicoat paint systems were prepared according to the following general procedure:
  • a 10 x 20 cm steel plate coated with a cathodic electrocoating (KTL) served as a substrate.
  • the respective basecoat material (Table B) was first pneumatically applied to this sheet in a target layer thickness (dry film thickness) of 20 micrometers. After the basecoat had been flashed off at room temperature for 1 minute, the basecoat was dried for 10 minutes at 70 ° C. in a circulating air oven. A conventional two-component clear coat in a target layer thickness (dry film thickness) (ProGloss ® 372 BASF Coatings GmbH Company) was applied from 40 microns to between dried aqueous basecoat film. The resulting clearcoat layer was flashed off at room temperature for 20 minutes. Subsequently, the aqueous basecoat film and the clearcoat film were cured in a convection oven for 30 minutes at 1 60 ° C.
  • dry film thickness dry film thickness
  • the multicoat paint systems obtained in this way were examined for their resistance to chipping.
  • the stone impact test was carried out to DIN 55966-1.
  • the assessment of the results of the stone impact test was performed according to DIN EN ISO 20567-1. Lower values stand for a better stone chip resistance.
  • multicoat paint systems were prepared according to the following general instructions:
  • the respective water-based paint according to Table B was now applied pneumatically in a target layer thickness (dry film thickness) of 20 micrometers.
  • the resulting aqueous basecoat film was flashed off for 2 minutes at room temperature and then between 10 minutes in a convection oven at 70 ° C dried.
  • the resulting clearcoat layer was flashed off at room temperature for 20 minutes.
  • the aqueous basecoat film and the clearcoat film were cured in a circulating air oven at 140 ° C for 20 minutes.
  • the present structure will hereinafter be referred to as original painting.
  • This original finish is sanded to create or simulate defects with sandpaper and then subjected to renewed complete painting with basecoat and clearcoat as described below. In this way, a double coating is simulated as part of the OEM automotive refinish coating.
  • the respective water-based paint according to Table B in a target layer thickness (dry film thickness) of 20 microns is applied pneumatically to the sanded original finish.
  • the resulting aqueous basecoat film was flashed off for 2 minutes at room temperature and then between 10 minutes in a convection oven at 70 ° C dried.
  • a so-called 80 ° C. two-component clearcoat (2-component repair clearcoat, scratch-resistant from BASF Coatings GmbH) in a target layer thickness (dry film thickness) of 40 micrometers was applied to the inter-dried waterborne basecoat.
  • the resulting clearcoat layer was left at room temperature for 20 minutes flashed.
  • the aqueous basecoat film and the clearcoat film were cured in a circulating air oven at 80 ° C for 30 minutes.
  • the number of bubbles was rated by a quantity of 1 to 5, with m1 very few and m5 very many bubbles were designated.
  • the size of the bubbles was also rated by a size of 1 to 5, where with gl very small and g5 very large bubbles were called.
  • mOgO therefore means a bubble-free coating after condensation storage and is an excellent result in terms of blistering.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Polyethers (AREA)
  • Inorganic Chemistry (AREA)

Abstract

Die vorliegende Erfindung betrifft einen pigmentierten wässrigen Basislack enthaltend ein Polyether-basiertes Reaktionsprodukt, welches herstellbar ist durch Umsetzung von (a) mindestens einem cyclischen Carbonsäureanhydrid enthaltend eine freie Carbonsäuregruppe und/oder das Halogenid einer Carbonsäuregruppe mit (b) mindestens einem Polyether der allgemeinen Strukturformel (I) worin R ein C3- bis C6-Alkylenrest ist und n entsprechend so gewählt ist, dass der Polyether (b) ein zahlenmittleres Molekulargewicht von 800 bis 4000 g/mol besitzt, wobei die Komponenten (a) und (b) bei der Umsetzung in einem molaren Verhältnis von 0,7/2,3 bis 1,6/1,7 eingesetzt werden und das resultierende Reaktionsprodukt eine Säurezahl von 10 bis 50 mg KOH/g besitzt.

Description

Carboxyfunktionelle Polyether-basierte Reaktionsprodukte und wässrige Basislacke enthaltend die Reaktionsprodukte
Die vorliegende Erfindung betrifft neuartige carboxyfunktionelle Polyether-basierte Reaktionsprodukte. Sie betrifft ferner wässrige Basislacke, welche die Reaktionsprodukte enthalten sowie die Verwendung der besagten Reaktionsprodukte in wässrigen Basislacken. Sie betrifft auch ein Verfahren zur Herstellung von Mehrschichtlackierungen unter Einsatz von wässrigen Basislacken sowie die mit Hilfe des besagten Verfahrens herstellbaren Mehrschichtlackierungen.
Stand der Technik
Bekannt ist eine Vielzahl von Verfahren zur Herstellung von färb- und/oder effektgebenden mehrschichtigen Lackierungen (auch genannt Mehrschichtbeschichtungen oder Mehrschichtlackierungen). Aus dem Stand der Technik (vergleiche beispielsweise die deutsche Patentanmeldung DE 199 48 004 A1 , Seite 17, Zeile 37, bis Seite 19, Zeile 22, oder das deutsche Patent DE 100 43 405 C1 , Spalte 3, Absatz [0018], und Spalte 8, Absatz [0052], bis Spalte 9, Absatz [0057], in Verbindung mit Spalte 6, Absatz [0039], bis Spalte 8, Absatz [0050]) ist beispielsweise das folgende Verfahren bekannt, bei dem
(1 ) ein pigmentierter wässriger Basislack auf ein Substrat aufgebracht wird,
(2) aus dem in Stufe (1 ) aufgebrachten Lack ein Polymerfilm gebildet wird,
(3) auf die so erhaltene Basislackschicht ein Klarlack aufgebracht wird und anschließend
(4) die Basislackschicht zusammen mit der Klarlackschicht gehärtet wird.
Dieses Verfahren wird beispielsweise in großem Umfang sowohl für die Erstlackierung (OEM) von Automobilen sowie der Lackierung von Metall- und Kunststoffanbauteilen eingesetzt. Die heutigen Anforderungen an die anwendungstechnologischen Eigenschaften solcher Lackierungen (Beschichtungen) sind enorm. Ein immer wieder auftretendes und vom Stand der Technik nach wie vor nicht völlig zufriedenstellend gelöstes Problem ist das Auftreten von Haftungsproblemen bei den hergestellten Mehrschichtlackierungen. Insbesondere hinsichtlich der Haftung zwischen Basislackschicht und der vom Substrat aus betrachtet darunter angeordneten Beschichtung sowie der Haftung zwischen Basislackschicht und Klarlackschicht treten häufiger Probleme auf. Die Haftungsproblematik ist insbesondere dann eklatant, wenn die beschichteten Substrate der Witterung ausgesetzt sind. Eine schlechte Haftung manifestiert sich im Falle einer Belastung durch Witterung besonders auch im Auftreten von Blasen und Quellungen. Insbesondere im Zusammenhang mit der Reparaturlackierung können hier Probleme entstehen. Ein ebenfalls immer wieder auftretendes Problem ist die oft nicht ausreichende mechanische Stabilität, insbesondere gegen Steinschlageinflüsse.
Die Eigenschaften des in diesem Zusammenhang besonders wichtigen Basislacks und den daraus hergestellten Lackschichten werden insbesondere von den im Basislack enthaltenen Bindemitteln und Additiven, beispielsweise speziellen Reaktionsprodukten, bestimmt.
Hinzu kommt, dass heutzutage der Ersatz von Beschichtungsmitteln auf Basis organischer Lösemittel durch wässrige Beschichtungsmittel immer wichtiger wird, um den steigenden Anforderungen an die Umweltverträglichkeit Rechnung zu tragen.
Die EP 1 454 971 B1 offenbart Polyesterpolyole, welche durch Umsetzung mindestens einer Polycarbonsäure und mindestens einer OH-Verbindung erhältlich sind. Mindestens 45 mol-% der eingesetzten Polycarbonsäure bestehen dabei aus Trimellitsäureanhydrid. Die OH-Verbindung hat ein mittleres Molekulargewicht von mindestens 210 g/mol und bevorzugt ein mittleres Molekulargewicht von nicht mehr als 650 g/mol. Besonders bevorzugt wird Polytetrahydrofuran mit einem zahlenmittleren Molekulargewicht von 250 g/mol als OH-Verbindung eingesetzt. Das Polyesterpolyol findet Anwendung zur Verbesserung der technologischen, insbesondere ästhetischen Eigenschaften von Mehrschichtlackierungen und wird in Basislacken eingesetzt. Aufgabe
Der vorliegenden Erfindung lag also die Aufgabe zugrunde, ein Reaktionsprodukt zur Verfügung zu stellen, mit dessen Hilfe sich Beschichtungen herstellen lassen, die die oben bezeichneten Nachteile des Standes der Technik nicht länger aufweisen. Insbesondere sollte durch die Bereitstellung eines neuen Reaktionsprodukts und dessen Einsatz in wässrigen Basislacken die Möglichkeit geschaffen werden, Beschichtungen bereitzustellen, die hervorragende Haftungseigenschaften und eine sehr gute Steinschlagbeständigkeit aufweisen und gleichzeitig durch den Einsatz von eben wässrigen Basislacken auf umweltschonende Weise hergestellt werden können.
Lösung
Die genannten Aufgaben konnten durch einen pigmentierten wässrigen Basislack gelöst werden, welcher ein carboxyfunktionelles Polyether-basiertes Reaktionsprodukt enthält, welches herstellbar ist durch Umsetzung von
(a) mindestens einem Carbonsäureanhydrid enthaltend eine freie Carbonsäuregruppe und/oder das Halogenid einer Carbonsäuregruppe
mit
(b) mindestens einem Polyether der allgemeinen Strukturformel (I)
C3- bis Ce-Alkylenrest ist und n entsprechend so gewählt ist, dass der er (b) ein zahlenmittleres Molekulargewicht von 800 bis 4000 g/mol besitzt, wobei die Komponenten (a) und (b) bei der Umsetzung in einem molaren Verhältnis von 0,7/2,3 bis 1 ,6/1 ,7 eingesetzt werden und das resultierende Reaktionsprodukt eine Säurezahl von 5 bis 50 mg KOH/g besitzt.
Die Bedingung, dass n so gewählt wird, dass der besagte Polyether ein zahlenmittleres Molekulargewicht von 800 bis 4000 g/mol besitzt, sei wie folgt veranschaulicht. Handelt es sich beispielsweise bei R um einen Tetramethylenrest und soll das zahlenmittlere Molekulargewicht 1000 g/mol betragen, so liegt n im Mittel zwischen 13 und 14. Anhand der gegebenen Vorgaben weiß der Fachmann problemlos, ein entsprechendes Reaktionsprodukt herzustellen beziehungsweise auszuwählen. Davon abgesehen geben die weiter unten folgende Beschreibung und insbesondere die Beispiele nochmals zusätzliche Informationen. Der Parameter n ist also genauso wie das zahlenmittlere Molekulargewicht als ein statistischer Mittelwert zu verstehen.
Der neue Basislack wird in der Folge auch als erfindungsgemäßer Basislack bezeichnet. Bevorzugte Ausführungsformen des erfindungsgemäßen Basislacks gehen aus der folgenden Beschreibung sowie den Unteransprüchen hervor.
Ebenfalls Gegenstand der vorliegenden Erfindung ist das Reaktionsprodukt an sich sowie die Verwendung des Reaktionsprodukts in wässrigen Basislacken zur Verbesserung der Haftungseigenschaften und Steinschlagbeständigkeit. Nicht zuletzt betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer mehrschichtigen Lackierung auf einem Substrat sowie eine nach dem genannten Verfahren hergestellte Mehrschichtlackierung.
Durch den Einsatz der erfindungsgemäßen Reaktionsprodukte werden Basislacke erhalten, deren Verwendung bei der Herstellung von Beschichtungen, insbesondere Mehrschichtlackierungen, zu hervorragenden Haftungseigenschaften und einer sehr guten Steinschlagbeständigkeit führt. Das erfindungsgemäße Reaktionsprodukt sowie der erfindungsgemäße Basislack können im Bereich der Erstlackierung, insbesondere dem Bereich der Automobilindustrie, als auch im Bereich der Automobilreparaturlackierung eingesetzt werden.
Komponente (a)
Das erfindungsgemäße Reaktionsprodukt ist unter Einsatz mindestens eines cyclischen Carbonsäureanhydrids enthaltend eine freie Carbonsäuregruppe (-COOH) und/oder das Halogenid, bevorzugt Chlorid (-COCI), einer Carbonsäuregruppe herstellbar. Vorzugsweise handelt es sich um eine freie Carbonsäuregruppe (COOH).
Bei der Komponente (a) kann es sich um aliphatische, aromatische oder araliphatische (gemischt aliphatisch-aromatische) cyclische Carbonsäureanhydride, die eine freie Carbonsäuregruppe enthalten, handeln. Unter cyclischen Carbonsäureanhydriden sind solche zu verstehen, in denen die Anhydridgruppe in einer Ringstruktur vorhanden ist. Dies ist somit gleichbedeutend damit, dass bei Reaktion der Anhydridgruppe und entsprechender Öffnung der Anhydridfunktion, beispielsweise bei Reaktion mit einer Hydroxylgruppe und entsprechender Entstehung einer freien Carbonsäuregruppe und einer Estergruppe, das zugrunde liegende Molekül nicht in zwei Moleküle zerfällt, sondern auch nach der Reaktion lediglich ein Molekül besteht.
Bevorzugt sind aromatische Carbonsäureanhydride, die eine freie Carbonsäuregruppe enthalten. Dabei handelt es sich also um Verbindungen, die abgesehen von der freien Carbonsäuregruppe und der Anhydridgruppe lediglich aus aromatischen Struktureinheiten bestehen. Ganz besonders bevorzugt ist Trimellitsäureanhydrid.
Komponente (b)
Die Herstellung der erfindungsgemäßen Reaktionsprodukte kann unter Einsatz mindestens eines Polyethers der allgemeinen Strukturformel (I)
erfolgen, wobei es sich bei R um einen C3 bis C6-Alkylrest handelt. Der Index n ist jeweils so zu wählen, dass der besagte Polyether ein zahlenmittleres Molekulargewicht von 800 bis 4000 g/mol besitzt. Bevorzugt besitzt er ein zahlenmittleres Molekulargewicht von 950 bis 3800 g/mol, besonders bevorzugt von 1050 bis 3600 g/mol, insbesondere von 1200 bis 3400 g/mol und ganz besonders bevorzugt 1500 bis 3200 g/mol. Nochmals bevorzugt ist ein Bereich von 1 600 bis 3000 g/mol, insbesondere 1800 bis 2200 g/mol. Beispielsweise kann das zahlenmittlere Molekulargewicht bei 1000 g/mol, 2000 g/mol oder 3000 g/mol liegen. Das zahlenmittlere Molekulargewicht wird im Rahmen der vorliegenden Erfindung, sofern nicht spezifisch anders angegeben, mittels Dampfdruckosmose bestimmt. Gemessen wurde im Rahmen der vorliegenden Erfindung mittels eines Dampfdruckosmometers (Modell 10.00, Fa. Knauer) an Konzentrationsreihen der zu untersuchenden Komponente in Toluol bei 50°C mit Benzophenon als Eichsubstanz zur Bestimmung der experimentellen Eichkonstante des eingesetzten Messgeräts (nach E. Schröder, G. Müller, K.-F. Arndt, "Leitfaden der Polymercharakterisierung", Akademie- Verlag, Berlin, S. 47 - 54, 1982, wobei darin Benzil als Eichsubstanz eingesetzt wurde).
Bekanntermaßen und wie bereits weiter oben erläutert, handelt es sich bei dem zahlenmittleren Molekulargewicht immer um einen statistischen Mittelwert. Selbiges muss also auch für den Parameter n gemäß Formel (I) gelten. Die in diesem Zusammenhang zu erläuternde, für die Komponente (b) gewählte Bezeichnung Polyether versteht sich wie folgt. Bei Polymeren, beispielsweise Polyethern (b), handelt es sich immer um Mischungen von verschieden großen Molekülen. Zumindest ein Teil oder alle dieser Moleküle zeichnen sich durch eine Abfolge von gleichen oder verschiedenen Monomereinheiten (als reagierte Form von Monomeren) aus. Das Polymer beziehungsweise Molekülgemisch enthält also grundsätzlich Moleküle, die mehrere (das heißt mindestens zwei) gleiche oder verschiedene Monomereinheiten enthalten. Selbstverständlich können in dem Gemisch auch anteilig die Monomere selbst enthalten sein, das heißt also in ihrer nicht reagierten Form. Dies bedingt bekanntermaßen allein die in der Regel molekular nicht einheitlich ablaufende Herstellungsreaktion, das heißt Polymerisation von Monomeren. Während einem bestimmten Monomer ein diskretes Molekulargewicht zuzuordnen ist, ist ein Polymer also immer eine Mischung von Molekülen, die sich in ihrem Molekulargewicht unterscheiden. Ein Polymer kann daher nicht durch ein diskretes Molekulargewicht beschrieben werden, sondern ihm werden bekanntermaßen immer mittlere Molekulargewichte, beispielsweise das oben genannte zahlenmittlere Molekulargewicht, zugeordnet. In dem erfindungsgemäß einzusetzenden Polyether können alle n Reste R gleich sein. Ebenso ist es aber auch möglich, dass unterschiedliche Arten von Resten R vorhanden sind. Bevorzugt sind alle Reste R gleich.
Bei R handelt es sich bevorzugt um einen C4-Alkylenrest. Besonders bevorzugt handelt es sich um einen Tetramethylenrest.
Ganz besonders bevorzugt handelt es sich bei dem erfindungsgemäß einzusetzenden Polyether um ein im Mittel diolisches, lineares Polytetrahydrofuran.
Das Reaktionsprodukt
Die Herstellung des Reaktionsproduktes weist keine Besonderheiten auf. Die Komponenten (a) und (b) werden über allgemein bekannte Kondensations- und/oder Additionsreaktionen von Hydroxylgruppen mit Carbonsäureanhydriden und Carbonsäuren miteinander verknüpft. Die Umsetzung kann beispielsweise in Masse oder in Lösung mit typischen organischen Lösemitteln bei Temperaturen von beispielsweise 100°C bis 300°C erfolgen. Selbstverständlich können auch typische Katalysatoren wie Schwefelsäure, Sulfonsäuren und/oder Tetraalkyltitanate, Zinkbeziehungsweise Zinnalkoxylate, Dialkylzinnoxide wie beispielsweise Di-n- butylzinnoxid oder organische Salze der Dialkylzinnoxide zum Einsatz kommen. Üblicherweise erfolgt zumindest bei Kondensationsreaktionen zudem der Einsatz eines Wasserabscheiders zum Auffangen des anfallenden Wassers. Zu beachten ist selbstverständlich, dass ein carboxyfunktionelles Reaktionsprodukt zu entstehen hat. Da die Komponente (b) im Überschuss eingesetzt wird, ist darauf zu achten, dass die jeweils gewünschte Menge an Carboxylgruppen im entstehenden Produkt verbleibt. Dies kann vom Fachmann problemlos dadurch erreicht werden, dass die Säurezahl im Verlauf der Reaktion durch entsprechende Messungen kontrolliert wird und nach Erreichen der gewünschten Säurezahl die Umsetzung abgebrochen wird, beispielsweise durch Abkühlen auf eine Temperatur, bei der keine Reaktion mehr stattfinden kann.
Dabei werden die Komponenten (a) und (b) in einem molaren Verhältnis von 0,7/2,3 bis 1 ,6/1 ,7 bevorzugt von 0,8/2,2 bis 1 ,6/1 ,8 und ganz besonders bevorzugt von 0,9/2,1 bis 1 ,5/1 ,8 eingesetzt. Ein nochmals besonders bevorzugter Verhältnisbereich ist von 0,45/1 bis 0,55/1 .
Das Reaktionsprodukt ist carboxyfunktionell. Die Säurezahl des Reaktionsprodukts liegt von 5 bis 50 mg KOH/g, bevorzugt 8 bis 40 mg KOH/g, insbesondere bevorzugt 10 bis 35 mg KOH/g und ganz besonders bevorzugt 12 bis 30 mg KOH/g. Die Säurezahl wird gemäß DIN 53402 bestimmt und bezieht sich selbstverständlich jeweils auf das Produkt an sich (und nicht auf die Säurezahl einer gegebenenfalls vorliegenden Lösung oder Dispersion des Produktes in einem Lösemittel). Wird im Rahmen der vorliegenden Erfindung auf eine offizielle Norm verwiesen, ist hiermit selbstverständlich die zum Anmeldetag geltende Fassung der Norm oder, falls zu diesem Zeitpunkt keine geltende Fassung besteht, die letzte geltende Fassung gemeint.
Das resultierende Reaktionsprodukt besitzt bevorzugt ein zahlenmittleres Molekulargewicht von 1500 bis 15000 g/mol, bevorzugt von 2000 bis 10000 g/mol und ganz besonderes bevorzugt von 2200 bis 8000 g/mol.
Das erfindungsgemäße Reaktionsprodukt ist in der Regel hydroxyfunktionell, bevorzugt im Mittel dihydroxyfunktionell. Bevorzugt besitzt es also sowohl Hydroxyl- als auch Carboxyfunktionen.
Für ganz besonders bevorzugte Reaktionsprodukte gilt, dass sie herstellbar sind durch Umsetzung von (a) Trimellitsäureanhydrid mit (b) einem diolischen, linearen Polytetrahydrofuran mit einem zahlenmittleren Molekulargewicht von 1500 bis 3200 g/mol, die Komponenten (a) und (b) in einem molaren Verhältnis von 0,45/1 bis 0,55/1 eingesetzt werden und die Reaktionsprodukte eine Säurezahl von 8 bis 40 mg KOH/g sowie ein zahlenmittleres Molekulargewicht von 2000 bis 10000 g/mol aufweisen.
Der pigmentierte wässrige Basislack
Die vorliegende Erfindung betrifft ferner einen pigmentierten wässrigen Basislack, welcher mindestens ein erfindungsgemäßes Reaktionsprodukt enthält. Alle oben genannten bevorzugten Ausführungsformen hinsichtlich des Reaktionsprodukts gelten selbstverständlich auch in Bezug auf den Basislack enthaltend das Reaktionsprodukt.
Unter einem Basislack ist ein in der Automobillackierung und allgemeinen Industrielackierung eingesetzter farbgebender Zwischenbeschichtungsstoff zu verstehen. Dieser wird im Allgemeinen auf einem mit einem eingebrannten (vollständig gehärteten) Füller oder Grundierfüller vorbehandelten Metall- oder Kunststoffuntergrund, mitunter auch direkt auf dem Kunststoffuntergrund aufgebracht. Auch Altlackierungen, welche gegebenenfalls noch vorbehandelt werden müssen (beispielsweise durch Anschleifen), können als Untergründe dienen. Mittlerweile ist es durchaus üblich, mehr als eine Basislackschicht aufzutragen. Dementsprechend stellt in einem solchen Fall eine erste Basislackschicht den Untergrund für eine zweite dar. Möglich ist dabei insbesondere, anstatt einer Applikation auf eine Schicht eines eingebrannten Füllers den ersten Basislack direkt auf ein mit einer gehärteten Elektrotauschlackschicht versehendes Metallsubstrat zu applizieren und den zweiten Basislack direkt auf die erste Basislackschicht zu applizieren, ohne das letztere separat gehärtet wird. Um eine Basislackschicht beziehungsweise die oberste Basislackschicht insbesondere gegen Umwelteinflüsse zu schützen, wird auf dieser mindestens noch eine zusätzliche Klarlackschicht appliziert. Dies erfolgt in der Regel im nass-in-nass-Verfahren, das heißt der Klarlack wird appliziert, ohne dass die Basislackschicht(en) gehärtet wird(werden). Die Härtung erfolgt dann abschließend gemeinsam. Verbreitet ist inzwischen auch, nur eine Basislackschicht auf einer gehärteten Elektrotauschlackschicht herzustellen, dann einen Klarlack zu applizieren und diese beiden Schichten dann gemeinsam zu härten. Letzteres ist im Rahmen der vorliegenden Erfindung eine bevorzugte Ausführung. Es hat sich nämlich gezeigt, dass bei Einsatz des erfindungsgemäßen Reaktionsprodukts trotz der Herstellung von nur einer Basislackschicht und einer damit gegebenen deutlichen Prozessvereinfachung eine ausgezeichnete Haftung sowie Steinschlagbeständigkeit resultiert.
Die Summe über die gewichtsprozentualen Anteile, bezogen auf das Gesamtgewicht des pigmentierten wässrigen Basislacks, aller erfindungsgemäßen Reaktionsprodukte beträgt bevorzugt 0,1 bis 20 Gew.-%, besonders bevorzugt 0,5 bis 15 Gew.-% und ganz besonders bevorzugt 1 ,0 bis 10 Gew.-% oder sogar 1 ,5 bis 5 Gew.-%.
Liegt der Gehalt des erfindungsgemäßen Reaktionsprodukts unter 0,1 Gew.-% so ist es gegebenenfalls möglich, dass keine Verbesserung hinsichtlich Haftung und Steinschlagbeständigkeit mehr erzielt wird. Liegt der Gehalt bei mehr als 20 Gew.-% so können unter Umständen aufgrund der dann zahlreichen potentiell anionischen Gruppen (Carboxylatgruppen) des Reaktionsprodukts Nachteile hinsichtlich der Schwitzwasserbeständigkeit der aus dem Basislack hergestellten Lackierung auftreten.
Im Falle einer möglichen Spezifizierung auf Basislacke enthaltend bevorzugte Reaktionsprodukte in einem speziellen Anteilsbereich gilt folgendes. Die Reaktionsprodukte, die nicht in die bevorzugte Gruppe fallen, können selbstverständlich weiterhin im Basislack enthalten sein. Der spezielle Anteilsbereich gilt dann nur für die bevorzugte Gruppe von Reaktionsprodukten. Bevorzugt ist allerdings, dass für den Gesamtanteil von Reaktionsprodukten bestehend aus Reaktionsprodukten aus der bevorzugten Gruppe und Reaktionsprodukten, die nicht in die bevorzugte Gruppe fallen, ebenfalls der spezielle Anteilsbereich gilt.
Würde also eine Beschränkung auf einen Anteilsbereich von 0,5 bis 15 Gew.-% und eine bevorzugte Gruppe von Reaktionsprodukten durchgeführt werden, so gilt dieser Anteilsbereich augenscheinlich zunächst nur für die bevorzugte Gruppe an Reaktionsprodukten. Bevorzugt wäre dann aber, dass insgesamt von allen ursprünglich umfassten Reaktionsprodukten bestehend aus Reaktionsprodukten aus der bevorzugten Gruppe und Reaktionsprodukten, die nicht in die bevorzugte Gruppe fallen, ebenfalls von 0,5 bis 15 Gew.-% enthalten sind. Werden also 5 Gew.-% von Reaktionsprodukten der bevorzugten Gruppe eingesetzt, so können höchstens 10 Gew.-% der Reaktionsprodukte der nicht bevorzugten Gruppe eingesetzt werden.
Das genannte Prinzip gilt im Rahmen der vorliegenden Erfindung für alle genannten Komponenten des Basislacks und deren Anteilsbereiche, beispielsweise die Pigmente, die Polyurethanharze als Bindemittel oder auch die Vernetzungsmittel wie Melaminharze. Die erfindungsgemäß eingesetzten Basislacke enthalten färb- und/oder effektgebende Pigmente. Solche Farbpigmente und Effektpigmente sind dem Fachmann bekannt und werden beispielsweise in Römpp-Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, Seite 176 und 451 , beschrieben. Der Anteil der Pigmente kann beispielsweise im Bereich von 1 bis 40 Gew.-%, bevorzugt 2 bis 35 Gew.-%, besonders bevorzugt 3 bis 30 Gew.-%, bezogen auf das Gesamtgewicht des pigmentierten wässrigen Basislacks, liegen.
Im Rahmen der vorliegenden Erfindung sind Basislacke bevorzugt, die als Bindemittel physikalisch, thermisch oder thermisch und mit aktinischer Strahlung härtbare Polymere enthalten. Als Bindemittel wird im Rahmen der vorliegenden Erfindung gemäß einschlägiger DIN EN ISO 4618 der nichtflüchtige Anteil eines Beschichtungsmittels ohne Pigmente und Füllstoffe verstanden. Spezielle Bindemittel sind demnach beispielsweise auch lacktypische Additive, das erfindungsgemäße Reaktionsprodukt oder weiter unten beschriebene typische Vernetzungsmittel, auch wenn der Ausdruck im Folgenden hauptsächlich in Bezug auf bestimmte physikalisch, thermisch oder thermisch und mit aktinischer Strahlung härtbare Polymere, beispielsweise bestimmte Polyurethanharze, verwendet wird.
Neben dem erfindungsgemäßen Reaktionsprodukt enthalten die erfindungsgemäßen pigmentierten wässrigen Basislacke besonders bevorzugt mindestens ein weiteres, vom Reaktionsprodukt verschiedenes Polymer als Bindemittel, insbesondere mindestens ein Polymer ausgewählt aus der Gruppe bestehend aus Polyurethanen, Polyestern, Poly(meth)acrylaten und/oder Mischpolymerisaten der genannten Polymere, insbesondere bevorzugt jedenfalls, aber nicht zwingend ausschließlich, mindestens ein Polyurethan-Poly(meth)acrylat.
Im Rahmen der vorliegenden Erfindung bedeutet der Begriff „physikalische Härtung" die Bildung eines Films durch Abgabe von Lösemittel aus Polymerlösungen oder Polymerdispersionen. Üblicherweise sind hierfür keine Vernetzungsmittel notwendig.
Im Rahmen der vorliegenden Erfindung bedeutet der Begriff „thermische Härtung" die durch Wärme initiierte Vernetzung einer Lackschicht, bei der in dem zugrunde liegenden Lack entweder ein separat vorliegendes Vernetzungsmittel oder aber selbstvernetzende Bindemittel angewandt werden. Das Vernetzungsmittel enthält reaktive funktionelle Gruppen, die zu den in den Bindemitteln vorhandenen reaktiven funktionellen Gruppen komplementär sind. Üblicherweise wird dies von der Fachwelt als Fremdvernetzung bezeichnet. Sind die komplementären reaktiven funktionellen Gruppen oder autoreaktiven funktionellen Gruppen, das heißt Gruppen, die mit Gruppen derselben Art reagieren, bereits in den Bindemittelmolekülen vorhanden, liegen selbstvernetzende Bindemittel vor. Beispiele geeigneter komplementärer reaktiver funktioneller Gruppen und autoreaktiver funktioneller Gruppen sind aus der deutschen Patentanmeldung DE 199 30 665 A1 , Seite 7, Zeile 28 bis Seite 9, Zeilen 24 bekannt.
Im Rahmen der vorliegenden Erfindung ist unter aktinischer Strahlung elektromagnetische Strahlung wie nahes Infrarot (NIR), UV-Strahlung, insbesondere UV-Strahlung, und Korpuskularstrahlung wie Elektronenstrahlung zu verstehen. Die Härtung durch UV-Strahlung wird üblicherweise durch radikalische oder kationische Photoinitiatoren initiiert. Werden die thermische Härtung und die Härtung mit aktinischem Licht gemeinsam angewandt, spricht man auch von„Dual Cure".
In der vorliegenden Erfindung sind sowohl Basislacke bevorzugt, die physikalisch, als auch solche die thermisch härtbar sind. Selbstverständlich findet bei Basislacken, die thermisch härtbar sind, immer auch anteilig eine physikalische Härtung statt. Diese Lacke werden aber schon aus Gründen der Übersichtlichkeit als thermisch härtbar bezeichnet.
Als thermisch härtende Basislacke sind solche bevorzugt, die als Bindemittel ein Polyurethanharz und/oder Polyurethan-Poly(meth)acrylat, bevorzugt ein hydroxygruppenhaltiges Polyurethanharz und/oder Polyurethan-Poly(meth)acrylat, und als Vernetzungsmittel ein Aminoplastharz oder ein blockiertes oder unblockiertes Polyisocyanat, bevorzugt ein Aminoplastharz, enthalten. Unter den Aminoplastharzen sind Melaminharze bevorzugt.
Die Summe über die gewichtsprozentualen Anteile, bezogen auf das Gesamtgewicht des pigmentierten wässrigen Basislacks, aller Vernetzungsmittel, bevorzugt Aminoplastharze und/oder blockierte und/oder unblockierte Polyisocyanat, insbesondere bevorzugt Melaminharze, beträgt bevorzugt 1 bis 20 Gew.-%, besonders bevorzugt 1 ,5 bis 17,5 Gew.-% und ganz besonders bevorzugt 2 bis 15 Gew.-% oder sogar 2,5 bis 10 Gew.-%.
Das bevorzugt enthaltene Polyurethanharz kann ionisch und/oder nicht ionisch hydrophil stabilisiert sein. In bevorzugten Ausführungsformen der vorliegenden Erfindung ist das Polyurethanharz ionisch hydrophil stabilisiert. Die bevorzugten Polyurethanharze sind linear oder enthalten Verzweigungen. Besonders bevorzugt handelt es sich um ein Polyurethanharz, in dessen Gegenwart olefinisch ungesättigte Monomere polymerisiert wurden. Das Polyurethanharz kann dabei neben dem aus der Polymerisation der olefinisch ungesättigten Monomere hervorgegangenen Polymer vorliegen ohne dass diese kovalent miteinander verbunden sind. Ebenso kann das Polyurethanharz aber auch mit dem aus der Polymerisation der olefinisch ungesättigten Monomere hervorgegangenen Polymer kovalent verbunden sein. Bei beiden Gruppen der vorgenannten Harze handelt es sich also um Mischpolymere, die im Falle des Einsatzes von (Meth)acrylatgruppenhaltigen Monomeren als olefinisch ungesättigte Monomere auch Polyurethan-Poly(meth)acrylate (siehe auch weiter oben) genannt werden können. Solche Polyurethan-Poly(meth)acrylate, insbesondere hydroxyfunktionelle Polyurethan-Poly(meth)acrylate, sind im Rahmen der vorliegenden Erfindung besonders bevorzugt einzusetzen. Bei den olefinisch ungesättigten Monomeren handelt es sich also bevorzugt um Acrylat- und/oder Methacrylatgruppenhaltige Monomere. Ebenfalls bevorzugt ist, dass die Acrylat- und/oder Methacrylatgruppenhaltigen Monomere in Kombination mit weiteren olefinisch ungesättigten Verbindungen eingesetzt werden, welche keine Acrylat- oder Methacrylatgruppen enthalten. Besonders bevorzugt werden als olefinisch ungesättigte Monomere Acrylat- oder Methacrylatgruppen-haltige Monomere an das Polyurethanharz kovalent gebunden. Diese Form von Polyurethan- Poly(meth)acrylaten ist nochmals bevorzugt.
Geeignete gesättigte oder ungesättigte Polyurethanharze beziehungsweise Polyurethan-Poly(meth)acrylate werden beispielsweise beschrieben in der deutschen Patentanmeldung DE 199 14 896 A1 , Spalte 1 , Zeilen 29 bis 49 und Spalte 4, Zeile 23 bis Spalte 1 1 , Zeile 5, der deutschen Patentanmeldung DE 199 48 004 A1 , Seite 4, Zeile 19 bis Seite 13, Zeile 48,
der europäischen Patentanmeldung EP 0 228 003 A1 , Seite 3, Zeile 24 bis Seite 5, Zeile 40,
der europäischen Patentanmeldung EP 0 634 431 A1 , Seite 3, Zeile 38 bis Seite 8, Zeile 9, oder
der internationalen Patentanmeldung WO 92/15405, Seite 2, Zeile 35 bis Seite 10, Zeile 32, oder
der deutschen Patentanmeldung DE 44 37 535 A1 .
Für die Herstellung des Polyurethanharzes werden vorzugsweise die dem Fachmann bekannten aliphatischen, cycloaliphatischen, aliphatisch-cycloaliphatischen, aromatischen, aliphatisch-aromatischen und/oder cycloaliphatisch-aromatischen Polyisocyanate eingesetzt.
Als Alkohol-Komponente für die Herstellung der Polyurethanharze werden bevorzugt die dem Fachmann bekannten, gesättigten und ungesättigten höhermolekularen und niedermolekularen Polyole sowie gegebenenfalls auch Monoalkohole in untergeordneten Mengen eingesetzt. Als niedermolekulare Polyole werden insbesondere Diole und in untergeordneten Mengen Triole zur Einführung von Verzweigungen eingesetzt. Beispiele geeigneter höhermolekularer Polyole sind gesättigte oder olefinisch ungesättigte Polyesterpolyole und/oder Polyetherpolyole. Insbesondere werden als höhermolekulare Polyole Polyesterpolyole, insbesondere solche mit einem zahlenmittleren Molekulargewicht von 400 bis 5000 g/mol.
Zur hydrophilen Stabilisierung beziehungsweise zur Erhöhung der Dispergierbarkeit in wässrigem Medium kann das bevorzugt enthaltene Polyurethanharz bestimmte ionische Gruppen und/oder Gruppen, die in ionische Gruppen überführt werden können (potentiell ionische Gruppen), enthalten. Solche Polyurethanharze werden im Rahmen der vorliegenden Erfindung als ionisch hydrophil stabilisierte Polyurethanharze bezeichnet. Ebenfalls enthalten sein können nicht ionische hydrophil modifizierende Gruppen. Bevorzugt sind aber die ionisch hydrophil stabilisierten Polyurethane. Genauer handelt es sich bei den modifizierenden Gruppen entweder um - funktionelle Gruppen, die durch Neutralisationsmittel und/oder Quaternisierungsmittel in Kationen überführt werden können, und/oder kationische Gruppen (kationische Modifizierung)
oder
- funktionelle Gruppen, die durch Neutralisationsmittel in Anionen überführt werden können, und/oder anionische Gruppen (anionische Modifizierung) und/oder
- nicht ionische hydrophile Gruppen (nicht-ionische Modifizierung).
Wie der Fachmann weiß, handelt es sich bei den funktionellen Gruppen zur kationischen Modifizierung um beispielsweise primäre, sekundäre und/oder tertiäre Aminogruppen, sekundäre Sulfidgruppen und/oder tertiäre Phosphingruppen, insbesondere tertiäre Aminogruppen und sekundäre Sulfidgruppen (funktionelle Gruppen, die durch Neutralisationsmittel und/oder Quaternisierungsmittel in kationische Gruppen überführt werden können). Weiterhin zu nennen sind die aus den vorgenannten funktionellen Gruppen unter Einsatz von dem Fachmann bekannten Neutralisationsmitteln und/oder Quaternisierungsmitteln hergestellte kationische Gruppen wie primäre, sekundäre, tertiäre und/oder quaternäre Ammoniumgruppen, tertiäre Sulfoniumgruppen und/oder quaternäre Phosphoniumgruppen, insbesondere quaternäre Ammoniumgruppen und tertiäre Sulfoniumgruppen.
Bei den funktionellen Gruppen zur anionischen Modifizierung handelt es sich bekanntermaßen um beispielsweise Carbonsäure-, Sulfonsäure- und/oder Phosphonsäuregruppen, insbesondere Carbonsäuregruppen (funktionelle Gruppen, die durch Neutralisationsmittel in anionische Gruppen überführt werden können) sowie aus den vorgenannten funktionellen Gruppen unter Einsatz von dem Fachmann bekannten Neutralisationsmittel hergestellte anionische Gruppen wie Carboxylat-, Sulfonat- und/oder Phosphonatgruppen.
Bei den funktionellen Gruppen zur nicht-ionischen hydrophilen Modifizierung handelt es sich vorzugsweise um Poly(oxyalkylen)-Gruppen, insbesondere Poly(oxyethylen)- Gruppen. Die ionisch hydrophilen Modifizierungen können durch Monomere, welche die (potentiell) ionischen Gruppen enthalten, in das Polyurethanharz eingeführt werden. Die nicht-ionischen Modifizierungen werden beispielsweise durch den Einbau von Poly(ethylen)oxid-Polymeren als laterale oder endständige Gruppen der Polyurethanmoleküle eingeführt. Die hydrophilen Modifizierungen werden beispielsweise über Verbindungen eingeführt, die mindestens eine gegenüber Isocyanatgruppen reaktive Gruppe, vorzugsweise mindestens eine Hydroxygruppe, enthalten. Zur Einführung der ionischen Modifizierung können Monomere eingesetzt werden, die neben den modifizierenden Gruppen mindestens eine Hydroxygruppe enthalten. Zur Einführung der nicht-ionischen Modifizierungen werden bevorzugt die dem Fachmann bekannten Polyetherdiole und/oder Alkoxypoly(oxyalkylen)alkohole eingesetzt.
Wie schon oben angedeutet, kann es sich bei dem Polyurethanharz vorzugsweise um ein mittels olefinisch ungesättigten Monomeren gepfropftes Pfropfpolymer handeln. In diesem Fall ist das Polyurethan also beispielsweise mit Seitengruppen und/oder Seitenketten gepfropft, die auf olefinisch ungesättigten Monomeren basieren. Insbesondere handelt es sich um Seitenketten, die auf Poly(meth)acrylaten basieren, wobei es sich dann um die schon oben beschriebenen Polyurethan- Poly(meth)acrylate handelt. Als Poly(meth)acrylate werden im Rahmen der vorliegenden Erfindung Polymere beziehungsweise polymere Reste bezeichnet, die Acrylat- und/oder Methacrylatgruppen-haltige Monomere umfassen, vorzugsweise aus Acrylat- und/oder Methacrylatgruppen-haltigen Monomeren bestehen. Unter Seitenketten, die auf Poly(meth)acrylaten basieren, sind Seitenketten zu verstehen, die bei der Pfropfpolymerisation unter Einsatz von (Meth)acrylatgruppen-haltigen Monomeren aufgebaut werden. Dabei werden bei der Pfropfpolymerisation vorzugsweise mehr als 50 mol-%, insbesondere mehr als 75 mol-%, insbesondere 100 mol.-%, bezogen auf die Gesamtmenge der bei der Pfropfpolymerisation eingesetzten Monomere, an (Meth)acrylatgruppen-haltigen Monomeren eingesetzt.
Die beschriebenen Seitenketten werden bevorzugt nach der Herstellung einer Polyurethanharz-Primärdispersion in das Polymer eingeführt (siehe auch Beschreibung weiter oben). In diesem Fall kann das in der Primärdispersion vorliegende Polyurethanharz Seiten- und/oder endständige olefinisch ungesättigte Gruppen enthalten, über die dann die Pfropfpolymerisation mit den olefinisch ungesättigten Verbindungen verläuft. Das zu pfropfende Polyurethanharz kann also ein ungesättigtes Polyurethanharz sein. Bei der Pfropfpolymerisation handelt es sich dann um eine radikalische Polymerisation olefinisch ungesättigter Reaktionspartner. Möglich ist beispielsweise auch, dass die zur Pfropfpolymerisation eingesetzten olefinisch ungesättigten Verbindungen mindestens eine Hydroxygruppe enthalten. Dann kann auch zunächst eine Anbindung der olefinisch ungesättigten Verbindungen über diese Hydroxygruppen durch Reaktion mit freien Isocyanatgruppen des Polyurethanharzes erfolgen. Diese Anbindung findet anstelle oder neben der radikalischen Reaktion der olefinisch ungesättigten Verbindungen mit den gegebenenfalls vorhandenen Seiten- und/oder endständigen olefinisch ungesättigten Gruppen des Polyurethanharzes statt. Danach folgt dann wieder die Pfropfpolymerisation über radikalische Polymerisation wie sie weiter oben beschrieben wurde. Erhalten werden jedenfalls mit olefinisch ungesättigten Verbindungen, vorzugsweise olefinisch ungesättigten Monomeren, gepfropfte Polyurethanharze.
Als olefinisch ungesättigte Verbindungen, mit denen das Polyurethanharz bevorzugt gepfropft wird, können praktisch alle radikalisch polymerisierbaren, olefinisch ungesättigten und organischen Monomere eingesetzt werden, die dem Fachmann für diese Zwecke zur Verfügung stehen. Beispielhaft seien einige bevorzugte Monomerklassen genannt:
- Hydroxyalkylester der (Meth)acrylsäure oder anderer alpha, beta -ethylenisch ungesättigter Carbonsäuren,
- (Meth)acrylsäurealkylester und/oder -cycloalkylester mit bis zu 20 Kohlenstoffatomen im Alkylrest,
- Ethylenisch ungesättigte Monomere, enthaltend mindestens eine Säuregruppe, insbesondere genau eine Carboxylgruppe, wie beispielsweise (Meth)acrylsäure,
- Vinylester von in alpha-Stellung verzweigten Monocarbonsäuren mit 5 bis 18 Kohlenstoffatomen, - Umsetzungsprodukte aus (Meth)acrylsäure mit dem Glycidylester einer in alpha-Stellung verzweigten Monocarbonsäure mit 5 bis 18 Kohlenstoffatomen,
- Weitere ethylenisch ungesättigte Monomere wie Olefine (beispielsweise Ethylen), (Meth)acrylsäureamide, vinylaromatische Kohlenwasserstoffe (beispielsweise Styrol), Vinylverbindungen wie Vinylchlorid und/oder Vinylether wie Ethylvinylether.
Bevorzugt werden (Meth)acrylatgruppen-haltige Monomere eingesetzt, sodass das es sich bei den aufgepfropften Seitenketten um Poly(meth)acrylat-basierende Seitenketten handelt.
Die Seiten- und/oder endständigen olefinisch ungesättigten Gruppen in dem Polyurethanharz, über die die Pfropfpolymerisation mit den olefinisch ungesättigten Verbindungen verlaufen kann, werden bevorzugt über bestimmte Monomere in das Polyurethanharz eingeführt. Diese bestimmten Monomere enthalten neben einer olefinisch ungesättigten Gruppe beispielsweise noch mindestens eine gegenüber Isocyanatgruppen reaktive Gruppe. Bevorzugt sind Hydroxygruppen sowie primäre und sekundäre Aminogruppen. Insbesondere bevorzugt sind Hydroxygruppen.
Natürlich können die beschriebenen Monomere, durch welche die Seiten- und/oder endständigen olefinisch ungesättigten Gruppen in das Polyurethanharz eingeführt werden können, auch zum Einsatz kommen, ohne dass das Polyurethanharz danach noch zusätzlich mit olefinisch ungesättigten Verbindungen gepfropft wird. Bevorzugt ist allerdings, dass das Polyurethanharz mit olefinisch ungesättigten Verbindungen gepfropft ist.
Das bevorzugt enthaltene Polyurethanharz kann ein selbst- und/oder fremdvernetzendes Bindemittel sein. Bevorzugt umfasst das Polyurethanharz reaktive funktionelle Gruppen, durch die eine Fremdvernetzung möglich ist. In diesem Fall ist in dem pigmentierten wässrigen Basislack bevorzugt mindestens ein Vernetzungsmittel enthalten. Insbesondere handelt es sich bei den reaktiven funktionellen Gruppen, durch die eine Fremdvernetzung möglich ist, um Hydroxygruppen. Besonders vorteilhaft sind im Rahmen des erfindungsgemäßen Verfahrens polyhydroxyfunktionelle Polyurethanharze einsetzbar. Dies bedeutet, dass das Polyurethanharz im Mittel mehr als eine Hydroxygruppe pro Molekül enthält.
Die Herstellung des Polyurethanharzes erfolgt nach den üblichen Methoden der Polymerchemie. Gemeint sind dabei beispielsweise die Polymerisation von Polyisocyanaten und Polyolen zu Polyurethanen und die bevorzugt dann folgende Pfropfpolymerisation mit olefinisch ungesättigten Verbindungen. Diese Methoden sind dem Fachmann bekannt und können individuell angepasst werden. Beispielhafte Herstellungsverfahren und Reaktionsbedingungen sind der europäischen Patentschrift EP 0521 928 B1 , Seite 2, Zeile 57 bis Seite 8, Zeile 16 zu entnehmen.
Das bevorzugt enthaltene Polyurethanharz besitzt beispielsweise eine Hydroxylzahl von 0 bis 250 mg KOH/g, insbesondere aber von 20 bis 150 mg KOH/g. Die Säurezahl des Polyurethanharzes liegt bevorzugt bei 5 bis 200 mg KOH/g, insbesondere bei 10 bis 40 mg KOH/g. Die Hydroxylzahl wird im Rahmen der vorliegenden Erfindung nach DIN 53240 bestimmt.
Der Polyurethanharzgehalt liegt bevorzugt zwischen 5 und 80 Gew.-%, besonders bevorzugt zwischen 8 und 70 Gew.-% und besonders bevorzugt zwischen 10 und 60 Gew.-%, jeweils bezogen auf den filmbildenden Festkörper des Basislacks.
Unabhängig davon, dass im Rahmen der vorliegenden Erfindung stellenweise sowohl Polyurethane (auch genannt Polyurethanharze), als auch Polyurethan- Poly(meth)acrylate genannt werden, gilt, dass der Ausdruck Polyurethane als Oberbegriff die Polyurethan-Poly(meth)acrylate umfasst. Wird an einer bestimmten Textstelle also nicht zwischen beiden Polymerklassen unterschieden, sondern ist lediglich der Ausdruck Polyurethan oder Polyurethanharz genannt, gelten beide Polymerklassen als umfasst.
Unter filmbildendem Festkörper, welcher letztlich dem Bindemittelanteil entspricht, ist der nichtflüchtige Gewichtsanteil des Basislacks ohne Pigmente und gegebenenfalls Füllstoffe zu verstehen. Der filmbildende Festkörper ist folgendermaßen bestimmbar: Eine Probe des pigmentierten wässrigen Basislacks (etwa 1 g) wird mit der 50 bis 100-fachen Menge Tetrahydrofuran versetzt und dann etwa 10 Minuten gerührt. Anschließend werden die unlöslichen Pigmente und gegebenenfalls Füllstoffe abfiltriert, der Rückstand mit wenig THF nachgespült und von dem so erhaltenen Filtrat das THF am Rotationsverdampfer entfernt. Der Rückstand des Filtrats wird zwei Stunden bei 120°C getrocknet und der dabei resultierende filmbildende Festkörper ausgewogen.
Die Summe über die gewichtsprozentualen Anteile, bezogen auf das Gesamtgewicht des pigmentierten wässrigen Basislacks, aller Polyurethanharze beträgt bevorzugt 2 bis 40 Gew.-%, besonders bevorzugt 2,5 bis 30 Gew.-% und ganz besonders bevorzugt 3 bis 25 Gew.-%.
Bevorzugt ist zudem ein Verdicker enthalten. Als Verdicker eignen sich anorganische Verdicker aus der Gruppe der Schichtsilikate. Neben den anorganischen Verdickern können jedoch auch ein oder mehrere organische Verdicker eingesetzt werden. Diese werden vorzugsweise gewählt aus der Gruppe bestehend aus (Meth)acrylsäure-(Meth)acrylat-Copolymerisat-Verdickern, wie beispielsweise dem Handelsprodukt Rheovis AS S130 (BASF) und Polyurethanverdickern, wie beispielsweise dem Handelsprodukt Rheovis PU 1250 (BASF). Die eingesetzten Verdicker sind von den eingesetzten Bindemitteln verschieden.
Darüber hinaus kann der pigmentierte wässrige Basislack noch mindestens einen Zusatzstoff enthalten. Beispiele für derartige Zusatzstoffe sind rückstandsfrei oder im Wesentlichen rückstandsfrei thermisch zersetzbare Salze, von den oben beschriebenen Polymeren verschiedene physikalisch, thermisch und/oder mit aktinischer Strahlung härtbare Harze als Bindemittel, weitere Vernetzungsmittel, organische Lösemittel, Reaktivverdünner, transparente Pigmente, Füllstoffe, molekulardispers lösliche Farbstoffe, Nanopartikel, Lichtschutzmittel, Antioxidantien, Entlüftungsmittel, Emulgatoren, Slipadditive, Polymerisationsinhibitoren, Initiatoren für radikalische Polymerisationen, Haftvermittler, Verlaufsmittel, filmbildende Hilfsmittel, Sag-Control-Agents (SCAs), Flammschutzmittel, Korrosionsinhibitoren, Wachse, Sikkative, Biozide und Mattierungsmittel. Enthalten sein können auch Verdicker wie anorganische Verdicker aus der Gruppe der Schichtsilikate oder organische Verdicker wie (Meth)acrylsäure-(Meth)acrylat-Copolymerisat-Verdicker oder auch Polyurethanverdicker, welche von den eingesetzten Bindemitteln verschieden sind.
Geeignete Zusatzstoffe der vorstehend genannten Art sind beispielsweise aus
der deutschen Patentanmeldung DE 199 48 004 A1 , Seite 14, Zeile 4, bis Seite 17, Zeile 5,
dem deutschen Patent DE 100 43 405 C1 , Spalte 5, Absätze [0031 ] bis [0033],
bekannt. Sie werden in den üblichen und bekannten Mengen eingesetzt.
Der Festkörpergehalt der erfindungsgemäßen Basislacke kann je nach den Erfordernissen des Einzelfalls variieren. In erster Linie richtet sich der Festkörpergehalt nach der für die Applikation, insbesondere Spritzapplikation, erforderlichen Viskosität, so dass er vom Fachmann aufgrund seines allgemeinen Fachwissens gegebenenfalls unter Zuhilfenahme weniger orientierender Versuche eingestellt werden kann.
Vorzugsweise liegt der Festkörpergehalt der Basislacke bei 5 bis 70 Gew.-%, besonders bevorzugt bei 8 bis 60 Gew.-% und ganz besonders bevorzugt bei 12 bis 55 Gew.-%.
Unter Festkörpergehalt (nicht-flüchtiger Anteil) ist derjenige Gewichtsanteil zu verstehen, der unter festgelegten Bedingungen beim Eindampfen als Rückstand verbleibt. In der vorliegenden Anmeldung wird der Festkörper, sofern nicht explizit anders angegeben, nach DIN EN ISO 3251 bestimmt. Dazu wird der Basislack für 60 Minuten bei 130°C eingedampft.
Diese Prüfmethode wird, sofern nicht anders angegeben, ebenfalls angewandt, um beispielsweise den Anteil verschiedener Komponenten des Basislacks am Gesamtgewicht des Basislacks zu bestimmen. So kann beispielsweise der Festkörper einer Dispersion eines Polyurethanharzes, welches dem Basislack zugegeben werden soll, entsprechend bestimmt werden, um den Anteil dieses Polyurethanharzes an der Gesamtkomposition zu ermitteln. Der erfindungsgemäße Basislack ist wässrig. Der Ausdruck „wässrig" ist dem Fachmann in diesem Zusammenhang bekannt. Gemeint ist grundsätzlich ein Basislack, der nicht ausschließlich auf organischen Lösemitteln basiert, das heißt nicht ausschließlich als Lösemittel solche auf organischer Basis enthält, sondern der im Gegenteil als Lösemittel einen signifikanten Anteil Wasser enthält. Bevorzugt ist „wässrig" im Rahmen der vorliegenden Erfindung so zu verstehen, dass das jeweilige Beschichtungsmittel, insbesondere der Basislack, einen Anteil von mindestens 40 Gew.-%, bevorzugt mindestens 50 Gew.-%, ganz besonders bevorzugt mindestens 60 Gew.-% Wasser, jeweils bezogen auf die Gesamtmenge der enthaltenen Lösemittel (das heißt Wasser und organische Lösemittel), aufweist. Darunter bevorzugt beträgt der Anteil an Wasser 40 bis 90 Gew.-%, insbesondere 50 bis 80 Gew.-%, ganz besonders bevorzugt 60 bis 75 Gew.-%, jeweils bezogen auf die Gesamtmenge der enthaltenen Lösemittel.
Die Herstellung der erfindungsgemäß eingesetzten Basislacke kann unter Einsatz der für die Herstellung von Basislacken üblichen und bekannten Mischverfahren und Mischaggregaten erfolgen.
Das erfindungsgemäße Verfahren und die erfindungsgemäße Mehrschicht- lackierung
Ein weiterer Aspekt der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer mehrschichtigen Lackierung, bei dem
(1 ) ein pigmentierter wässriger Basislack auf ein Substrat aufgebracht wird,
(2) aus dem in Stufe (1 ) aufgebrachten Lack ein Polymerfilm gebildet wird,
(3) auf die so erhaltene Basislackschicht ein Klarlack aufgebracht wird und anschließend
(4) die Basislackschicht zusammen mit der Klarlackschicht gehärtet wird, welches dadurch gekennzeichnet ist, dass in Stufe (1 ) ein pigmentierter wässriger Basislack eingesetzt wird, welcher mindestens ein erfindungsgemäßes Reaktionsprodukt enthält. Alle vorstehend genannten Ausführungen hinsichtlich des erfindungsgemäßen Reaktionsprodukts und des pigmentierten wässrigen Basislacks gelten auch für das erfindungsgemäße Verfahren. Dies gilt insbesondere auch für alle bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Merkmale.
Das besagte Verfahren wird bevorzugt zur Herstellung von farbgebenden Mehrschichtlackierungen, effektgebenden Lackierungen und färb- und effektgebenden Lackierungen eingesetzt.
Die Applikation des erfindungsgemäß eingesetzten pigmentierten wässrigen Basislacks erfolgt üblicherweise auf mit Füller oder Grundierfüller vorbehandelte Metall- oder Kunststoffsubstrate. Gegebenenfalls kann der besagte Basislack auch direkt auf dem Kunststoffuntergrund aufgebracht werden.
Soll ein Metallsubstrat beschichtet werden, so wird dieses vor der Applikation des Füllers oder Grundierfüllers bevorzugt noch mit einer Elektrotauchlackierung beschichtet.
Wird ein Kunststoffsubstrat beschichtet, so wird dieses vor der Applikation des Füllers oder Grundierfüllers bevorzugt noch vorbehandelt. Die hierzu am häufigsten angewendeten Verfahren sind das Beflammen, die Plasmabehandlung und die Corona-Entladung. Bevorzugt wird das Beflammen eingesetzt.
Die Applikation des erfindungsgemäßen pigmentierten wässrigen Basislacks auf wie oben beschriebene mit gehärteten Elektrotauchlackierungen und/oder Füllern vorbeschichtete Metallsubstrate kann in den im Rahmen der Automobilindustrie üblichen Schichtdicken im Bereich von beispielsweise 5 bis 100 Mikrometer, bevorzugt 5 bis 60 Mikrometer erfolgen (Trockenfilmschichtdicke). Dabei werden Spritzapplikationsmethoden angewandt, wie zum Beispiel Druckluftspritzen, Airless- Spritzen, Hochrotation, elektrostatischer Sprühauftrag (ESTA), gegebenenfalls verbunden mit Heissspritzapplikation wie zum Beispiel Hot-Air-Heissspritzen. Nach der Applikation des pigmentierten wässrigen Basislacks kann dieser nach bekannten Methoden getrocknet werden. Beispielsweise können (1 -Komponenten)- Basislacke, welche bevorzugt sind, bei Raumtemperatur für 1 bis 60 Minuten abgelüftet werden und darauf folgend bevorzugt bei gegebenenfalls leicht erhöhten Temperaturen von 30 bis 90°C getrocknet werden. Unter Ablüften und Trocknung ist im Rahmen der vorliegenden Erfindung ein Abdunsten von organischen Lösemitteln und/oder Wasser zu verstehen, wodurch der Lack trockener, aber noch nicht gehärtet wird beziehungsweise noch kein vollständig vernetzter Lackfilm gebildet wird.
Dann wird ein handelsüblicher Klarlack nach ebenfalls gängigen Methoden appliziert, wobei die Schichtdicken wiederum in den gängigen Bereichen, beispielsweise 5 bis 100 Mikrometer (Trockenfilmschichtdicke), liegen.
Nach der Applikation des Klarlacks kann dieser bei Raumtemperatur für beispielsweise 1 bis 60 Minuten abgelüftet und gegebenenfalls getrocknet werden. Dann wird der Klarlack zusammen mit dem applizierten pigmentierten Basislack gehärtet. Dabei finden beispielsweise Vernetzungsreaktionen statt, wodurch eine erfindungsgemäße färb- und/oder effektgebende mehrschichtige Lackierung auf einem Substrat hergestellt wird. Die Härtung erfolgt bevorzugt thermisch bei Temperaturen von 60 bis 200°C. Als thermisch härtende Basislacke sind solche bevorzugt, die als zusätzliches Bindemittel ein Polyurethanharz und als Vernetzungsmittel ein Aminoplastharz oder ein blockiertes oder unblockiertes Polyisocyanat, bevorzugt ein Aminoplastharz, enthalten. Unter den Aminoplastharzen sind Melaminharze bevorzugt.
In einer besonderen Ausführungsform umfasst das Verfahren zur Herstellung einer mehrschichtigen Lackierung die folgenden Schritte:
Herstellung einer gehärteten Elektrotauchlackschicht auf dem metallischen Substrat durch elektrophoretisches Aufbringen eines Elektrotauchlacks auf das Substrat und anschließende Härtung des Elektrotauchlacks, Herstellung (i) einer Basislackschicht oder (ii) mehrerer direkt aufeinander folgender Basislackschichten direkt auf der gehärteten Elektrotauchlackschicht durch (i) Aufbringen eines wässrigen Basislacks direkt auf die Elektrotauchlackschicht oder (ii) direkt aufeinanderfolgendes Aufbringen von mehreren Basislacken auf die Elektrotauchlackschicht,
Herstellung einer Klarlackschicht direkt auf (i) der Basislackschicht oder (ii) der obersten Basislackschicht durch Aufbringen eines Klarlacks direkt auf (i) die eine Basislackschicht oder (ii) die oberste Basislackschicht, wobei (i) der eine Basislack oder (ii) mindestens einer der Basislacke ein erfindungsgemäßer Basislack ist, gemeinsame Härtung der Basislackschicht (i) oder der Basislackschichten (ii) sowie der Klarlackschicht.
In der letztgenannten Ausführungsform wird also im Vergleich zu den oben beschriebenen Standardverfahren auf die Applikation und separate Härtung eines gängigen Füllers verzichtet. Stattdessen werden alle auf die Elektrotauchlackschicht applizierten Schichten gemeinsam gehärtet, wodurch der Gesamtprozess deutlich ökonomischer gestaltet wird. Trotzdem gelingt auf diese Weise und insbesondere durch den Einsatz eines erfindungsgemäßen Basislacks enthaltend ein erfindungsgemäßes Reaktionsprodukt der Aufbau von Mehrschichtlackierungen, die hervorragende mechanische Stabilität und Haftung aufweisen und damit technologisch besonders herausragend sind.
Das Aufbringen eines Beschichtungsmittels direkt auf ein Substrat beziehungsweise direkt auf eine zuvor hergestellte Beschichtungsschicht versteht sich wie folgt. Das jeweilige Beschichtungsmittel wird so aufgebracht, dass die daraus hergestellte Beschichtungsschicht auf dem Substrat (der anderen Beschichtungsschicht) angeordnet ist und in direktem Kontakt mit dem Substrat (der anderen Beschichtungsschicht) steht. Zwischen Beschichtungsschicht und Substrat (anderer Beschichtungsschicht) ist also insbesondere keine andere Schicht angeordnet. Ohne die Angabe direkt ist die aufgebrachte Beschichtungsschicht zwar auf dem Substrat (der anderen Schicht) angeordnet, es muss aber nicht zwingend ein direkter Kontakt vorhanden sein. Insbesondere können weitere Schichten dazwischen angeordnet sein. Im Rahmen der vorliegenden Erfindung gilt also folgendes. Ist keine Spezifizierung von direkt angegeben, so ist augenscheinlich keine Beschränkung auf direkt gegeben.
Die Beschichtung von Kunststoffsubstraten erfolgt im Grunde genommen analog zu der von Metallsubstraten. Allerdings wird hier im Allgemeinen bei deutlich niedrigeren Temperaturen von 30 bis 90 °C gehärtet. Bevorzugt ist daher der Einsatz von Zweikomponentenklarlacken.
Mit Hilfe des erfindungsgemäßen Verfahrens können metallische und nichtmetallische Substrate, insbesondere Kunststoffsubstrate, vorzugsweise Automobilkarosserien oder Teile davon lackiert werden.
Das erfindungsgemäße Verfahren kann ferner zur Doppellackierung in der OEM- Lackierung eingesetzt werden. Darunter ist zu verstehen, dass ein Substrat, welches mit Hilfe des erfindungsgemäßen Verfahrens beschichtet wurde, ein zweites Mal, ebenfalls mit Hilfe des erfindungsgemäßen Verfahrens, lackiert wird.
Die Erfindung betrifft ferner Mehrschichtlackierungen, welche nach dem oben beschriebenen Verfahren herstellbar sind. Diese Mehrschichtlackierungen sollen im Folgenden als erfindungsgemäße Mehrschichtlackierungen bezeichnet werden.
Alle vorstehend genannten Ausführungen hinsichtlich des erfindungsgemäßen Reaktionsprodukts und des pigmentierten wässrigen Basislacks gelten entsprechend auch für die besagte Mehrschichtlackierung sowie für das erfindungsgemäße Verfahren. Dies gilt insbesondere auch für alle bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Merkmale.
Bevorzugt handelt es sich bei den erfindungsgemäßen Mehrschichtlackierungen um farbgebende Mehrschichtlackierungen, effektgebenden Lackierungen und färb- und effektgebenden Lackierungen. Ein weiterer Aspekt der Erfindung betrifft das erfindungsgemäße Verfahren, wobei es sich bei dem besagten Substrat aus Stufe (1 ) um eine Mehrschichtlackierung handelt, welche Fehlstellen besitzt. Bei dieser Substrat-Mehrschichtlackierung, welche Fehlstellen besitzt, handelt es sich also um eine Originallackierung, welche ausgebessert oder komplett überlackiert werden soll.
Das erfindungsgemäße Verfahren eignet sich demnach zur Ausbesserung von Fehlstellen auf Mehrschichtlackierungen (Reparatur). Als Fehlstellen beziehungsweise Filmfehler werden im Allgemeinen Störungen an und in der Beschichtung, die meist nach ihrer Form oder ihrem Aussehen benannt werden, bezeichnet. Dem Fachmann ist eine Vielzahl von möglichen Arten von solchen Filmfehlern bekannt. Diese werden beispielsweise in Römpp-Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1 998, Seite 235, "Filmfehler" beschrieben.
Die mit Hilfe des erfindungsgemäßen Verfahrens hergestellten Mehrschichtlackierungen können ebenfalls solche Fehlstellen aufweisen. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens handelt es sich bei dem Substrat aus Stufe (1 ) daher um eine erfindungsgemäße Mehrschichtlackierung, welche Fehlstellen aufweist.
Diese Mehrschichtlackierungen werden bevorzugt auf Automobilkarossen oder Teilen davon mit Hilfe des oben bezeichneten erfindungsgemäßen Verfahrens im Rahmen der Automobilserienlackierung hergestellt. Treten solche Fehlstellen direkt nach erfolgter OEM-Lackierung auf, so werden diese direkt ausgebessert. Man spricht daher auch von OEM-Automobilreparaturlackierung. Sind nur kleine Fehlstellen auszubessern, so wird nicht die ganze Karosse komplett überlackiert (Doppellackierung), sondern nur der sogenannte„Spot" repariert. Letzterer Prozess wird „Spot Repair" genannt. Besonders bevorzugt ist daher der Einsatz des erfindungsgemäßen Verfahrens zum Ausbessern von Fehlstellen auf erfindungsgemäßen Mehrschichtlackierungen (Originallackierungen) in der OEM- Automobilreparaturlackierung. Sofern im Rahmen der vorliegenden Erfindung der Bereich der Automobilreparaturlackierung angesprochen ist, das heißt also von der Ausbesserung von Fehlstellen die Rede ist, und dabei als Substrat eine Mehrschichtlackierung, welche Fehlstellen besitzt, genannt wird, ist hiermit selbstverständlich gemeint, dass diese Substrat-Mehrschichtlackierung mit Fehlstellen (Originallackierung) in der Regel auf einem wie oben beschriebenen Metallsubstrat oder einem Kunststoffsubstrat angeordnet ist.
Damit die ausgebesserte Stelle sich farblich nicht vom Rest der Originallackierung unterscheidet, ist es bevorzugt, dass der in Stufe (1 ) des erfindungsgemäßen Verfahrens zur Ausbesserung von Fehlstellen eingesetzte wässrige Basislack derselbe ist, wie der, der zur Herstellung der Substrat-Mehrschichtlackierung mit Fehlstellen (Originallackierung) eingesetzt wurde.
Die vorstehend genannten Ausführungen bezüglich des erfindungsgemäßen Reaktionsprodukts und des wässrigen pigmentierten Basislacks gelten somit auch für den in Rede stehenden Einsatz des erfindungsgemäßen Verfahrens zum Ausbessern von Fehlstellen auf einer mehrschichtigen Lackierung. Dies gilt insbesondere auch für alle genannten bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Merkmale. Es ist weiterhin bevorzugt, dass es sich bei den auszubessernden, erfindungsgemäßen Mehrschichtlackierungen um farbgebende Mehrschichtlackierungen, effektgebende Lackierungen und färb- und effektgebende Lackierungen handelt.
Die oben beschriebenen Fehlstellen auf der erfindungsgemäßen Mehrschichtlackierung lassen sich mit Hilfe des vorstehend beschriebenen erfindungsgemäßen Verfahrens ausbessern. Hierzu kann die auszubessernde Oberfläche der Mehrschichtlackierung zunächst angeschliffen werden. Bevorzugt wird das Anschleifen so ausgeführt, dass von der Originallackierung nur die Basislackierung und die Klarlackierung, gegebenenfalls nur die Klarlackierung, ab- oder angeschliffen werden, nicht aber die in der Regel darunter angeordnete Füllerschicht und Grundierungsschicht ab- oder angeschliffen wird. Auf diese Weise kann bei der Reparatur insbesondere auf die erneute Applikation von speziellen Grundierungen und Grundierfüllern verzichtet werden. Diese Form des Anschleifens hat sich insbesondere im Bereich der OEM-Automobilreparaturlackierung bewährt, da hier im Gegensatz zur Reparatur in einer Werkstatt in der Regel nur Fehlstellen im Schichtbereich Basislack und/oder Klarlack auftreten, jedoch insbesondere keine Fehlstellen im Bereich der darunter angeordneten Füller- und Grundierungsschichten auftreten. Fehlstellen in den letztgenannten Schichten sind eher im Bereich der Reparatur in Werkstätten anzutreffen. Beispielhaft seien Lackschäden wie Kratzer genannt, welche beispielsweise durch mechanische Einflüsse erzeugt werden und oft bis auf die Substratoberfläche (Metall- oder Kunststoffsubstrat) reichen.
Nach dem Anschleifen erfolgt die Applikation des pigmentierten wässrigen Basislacks auf die Fehlstelle in der Originallackierung durch Spritzapplikation, beispielsweise durch pneumatische Zerstäubung. Nach der Applikation des pigmentierten wässrigen Basislacks kann dieser nach bekannten Methoden getrocknet werden. Beispielsweise kann der Basislack bei Raumtemperatur für 1 bis 60 Minuten getrocknet werden und darauf folgend bei gegebenenfalls leicht erhöhten Temperaturen von 30 bis 80°C getrocknet werden. Unter Ablüften und Trocknung ist im Rahmen der vorliegenden Erfindung ein Abdunsten von organischen Lösemitteln und/oder Wasser zu verstehen, wodurch der Lack noch nicht vollständig gehärtet wird. Im Rahmen der vorliegenden Erfindung ist es bevorzugt, dass der Basislack als Bindemittel ein Polyurethanharz und als Vernetzungsmittel ein Aminoplastharz, bevorzugt ein Melaminharz, enthält.
Anschließend wird ein handelsüblicher Klarlack nach ebenfalls gängigen Methoden appliziert. Nach der Applikation des Klarlacks kann dieser bei Raumtemperatur für beispielsweise 1 bis 60 Minuten abgelüftet und gegebenenfalls getrocknet werden. Dann wird der Klarlack zusammen mit dem applizierten pigmentierten Basislack gehärtet.
Beim so genannten Niedrigtemperatureinbrennen erfolgt die Härtung vorzugsweise bei Temperaturen von 20 bis 90°C. Hier werden bevorzugt Zweikomponentenklarlacke eingesetzt. Wird, wie oben beschrieben, als weiteres Bindemittel ein Polyurethanharz und als Vernetzungsmittel ein Aminoplastharz eingesetzt, so kommt es bei diesen Temperaturen in der Basislackschicht nur zu einer geringen Vernetzung durch das Aminoplastharz. Neben seiner Funktion als Härter dient das Aminoplastharz hierbei auch der Plastifizierung und kann die Pigmentbenetzung unterstützen. Neben den Aminoplastharzen können auch unblockierte Isocyanate eingesetzt werden. Diese vernetzen je nach Art des eingesetzten Isocyanats schon bei Temperaturen ab 20 °C. Solche Wasserbasislacke werden dann natürlich in der Regel als Zweikomponentensysteme formuliert.
Beim sogenannten Hochtemperatureinbrennen erfolgt die Härtung vorzugsweise bei Temperaturen von 130 bis 150°C. Hier werden sowohl Einkomponenten- als auch Zweikomponentenklarlacke eingesetzt. Wird, wie oben beschrieben, als weiteres Bindemittel ein Polyurethanharz und als Vernetzungsmittel ein Aminoplastharz eingesetzt, so kommt es bei diesen Temperaturen in der Basislackschicht zu einer Vernetzung durch das Aminoplastharz.
Ein weiterer Aspekt der vorliegenden Erfindung ist die Verwendung des erfindungsgemäßen Reaktionsprodukts in pigmentierten wässrigen Basislacken zur Verbesserung der Haftung und der Steinschlagbeständigkeit von Lackierungen, welche unter Einsatz des Basislacks hergestellt werden.
Im Folgenden wird die Erfindung anhand von Beispielen erläutert.
Beispiele
Bestimmung des zahlenmittleren Molekulargewichts:
Das zahlenmittlere Molekulargewicht wurde mittels Dampfdruckosmose bestimmt. Gemessen wurde mittels eines Dampfdruckosmometers (Modell 10.00, Fa. Knauer) an Konzentrationsreihen der zu untersuchenden Komponente in Toluol bei 50°C mit Benzophenon als Eichsubstanz zur Bestimmung der experimentellen Eichkonstante des eingesetzten Messgeräts (nach E. Schröder, G. Müller, K.-F. Arndt, "Leitfaden der Polymercharakterisierung", Akademie- Verlag, Berlin, S. 47 - 54, 1982, wobei darin allerdings Benzil als Eichsubstanz eingesetzt wurde). Herstellung erfindungsgemäßer Reaktionsprodukte (ER) sowie zum Vergleich eingesetzter Reaktionsprodukte (VR):
ER1 :
In einem 4 I Edelstahlreaktor, ausgestattet mit Ankerrührer, Thermometer, Kühler, Thermometer zur Kopftemperaturmessung und Wasserabscheider wurden 138,8 g Trimellitsäureanhydrid und 2890 g PolyTHF2000 (Fa. BASF SE) mit einer OH-Zahl von 56 mg KOH/g(1 ,45 mol) langsam auf 180°C aufgeheizt und bei dieser Temperatur gehalten (OH-Zahl Bestimmung nach DIN 53240). Der Reaktionsfortschritt wurde über die Bestimmung der Säurezahl verfolgt. Nach Erreichen einer Säurezahl von 15 mg KOH/g wurde gekühlt und mit 745g Butylglykol angelöst.
Der Feststoffgehalt des Harzes liegt bei 80,2% (gemessen bei 130°C für 1 h im Umluftofen an einer Probe von 1 g unter Zugabe 1 ml Methylethylketon)
Zahlenmittleres Molekulargewicht: 4500 g/mol
Viskosität (70%ig in Butylglykol): 3300 mPas,
(gemessen bei 23°C mit einem Rotationsviskosimeter der Fa. Brookfield, Typ CAP 2000+, Spindel 3, Scherrate: 750 s"1).
ER2:
In einem 4 I Edelstahlreaktor, ausgestattet mit Ankerrührer, Thermometer, Kühler, Thermometer zur Kopftemperaturmessung und Wasserabscheider wurden 327 g Trimellitsäureanhydrid und 3400 g PolyTHF1000 (Fa. BASF SE) mit einer OH-Zahl von 1 12 mg KOH/g (3,4 mol) langsam auf 180°C aufgeheizt und bei dieser Temperatur gehalten (OH-Zahl Bestimmung nach DIN 53240). Der Reaktionsfortschritt wurde über die Bestimmung der Säurezahl verfolgt. Nach Erreichen einer Säurezahl von 26 mg KOH/g wurde die Schmelze gekühlt und mit 149 g Butylglykol auf einen Feststoffgehalt von etwa 80% angelöst.
Der Feststoffgehalt des Harzes liegt bei 81 ,1 % (gemessen bei 130°C für 1 h im Umluftofen an einer Probe von 1 g unter Zugabe 1 ml Methylethylketon)
Zahlenmittleres Molekulargewicht (Dampfdruckosmose): 2300 g/mol Viskosität (original): 2760 mPas,
(gemessen bei 23°C mit einem Rotationsviskosimeter der Fa. Brookfield, Typ CAP 2000+, Spindel 3, Scherrate: 1250 s"1).
ER3:
In einem 4 I Edelstahlreaktor, ausgestattet mit Ankerrührer, Thermometer, Kühler, Thermometer zur Kopftemperaturmessung und Wasserabscheider wurden 38,4 g Trimellitsäureanhydrid und 1 1 60 g Terathane2900® (INVISTA, Wichita, Kansas, USA) mit einer OH-Zahl von 38,7 mg KOH/g (0,4 mol) langsam auf 180°C aufgeheizt und bei dieser Temperatur gehalten (OH-Zahl Bestimmung nach DIN 53240). Der Reaktionsfortschritt wurde über die Bestimmung der Säurezahl verfolgt. Nach Erreichen einer Säurezahl von 15 mg KOH/g wurde die Schmelze gekühlt und mit Butylglykol auf einen Feststoffgehalt von etwa 80% angelöst.
Der Feststoffgehalt des Harzes liegt bei 81 ,3 % (gemessen bei 130°C für 1 h im Umluftofen an einer Probe von 1 g unter Zugabe 1 ml Methylethylketon)
Zahlenmittleres Molekulargewicht (Dampfdruckosmose): 5400 g/mol
Viskosität (70% ig in Butylglykol): 4460 mPas,
(gemessen bei 23°C mit einem Rotationsviskosimeter der Fa. Brookfield, Typ CAP 2000+, Spindel 3, Scherrate: 750 s"1).
VR1 :
In einem 4 I Edelstahlreaktor, ausgestattet mit Ankerrührer, Thermometer, Kühler, Thermometer zur Kopftemperaturmessung und Wasserabscheider wurden 288,2 g Trimellitsäureanhydrid und 1950 g PolyTHF650 (Fa. BASF SE) mit einer OH-Zahl von 172,6 mg KOH/g (3,0 mol) auf 80°C aufgeheizt (OH-Zahl Bestimmung nach DIN 53240). Nachdem eine klare Schmelze erhalten wurde, wurde langsam auf 1 60°C aufgeheizt und bei dieser Temperatur gehalten. Der Reaktionsfortschritt wurde über die Bestimmung der Säurezahl verfolgt. Nach Erreichen einer Säurezahl von 38 mg KOH/g erhielt man nach Abkühlen bei Raumtemperatur ein zähflüssiges Harz.
Der Feststoffgehalt des Harzes liegt bei 100 % (gemessen bei 130°C für 1 h im Umluftofen an einer Probe von 1 g unter Zugabe 1 ml Methylethylketon)
Zahlenmittleres Molekulargewicht (Dampfdruckosmose): 1300 g/mol Viskosität 80%ig in Butylglykol: 1723 mPas,
(gemessen bei 23°C mit einem Rotationsviskosimeter der Fa. Brookfield, Typ CAP 2000+, Spindel 3, Scherrate: 1250 s"1).
VR2:
In einem 4 I Edelstahlreaktor, ausgestattet mit Ankerrührer, Thermometer, Kühler, Thermometer zur Kopftemperaturmessung und Wasserabscheider wurden 288,2 g Trimellitsäureanhydrid und 1950 g PolyTHF650 (Fa. BASF SE) mit einer OH-Zahl von 172,6 mg KOH/g (3,0 mol) auf 80°C aufgeheizt (OH-Zahl Bestimmung nach DIN 53240). Nachdem eine klare Schmelze erhalten wurde, wurde langsam auf 1 60°C aufgeheizt und bei dieser Temperatur gehalten. Der Reaktionsfortschritt wurde über die Bestimmung der Säurezahl verfolgt. Nach Erreichen einer Säurezahl von 27 mg KOH/g wurde mit Butylglykol auf einen Feststoffgehalt von etwa 80% angelöst.
Der Feststoffgehalt des Harzes liegt bei 78 % (gemessen bei 130°C für 1 h im Umluftofen an einer Probe von 1 g unter Zugabe 1 ml Methylethylketon)
Zahlenmittleres Molekulargewicht (Dampfdruckosmose): 1500 g/mol
Viskosität: 6486 mPas,
(gemessen bei 23°C mit einem Rotationsviskosimeter der Fa. Brookfield, Typ CAP 2000+, Spindel 3, Scherrate: 750 s"1).
VR3:
In einem 4 I Edelstahlreaktor, ausgestattet mit Ankerrührer, Thermometer, Kühler, Thermometer zur Kopftemperaturmessung und Wasserabscheider wurden 384,2 g Trimellitsäureanhydrid und 1000 g PolyTHF250 (Fa. BASF SE) mit einer OH-Zahl von 449 mg KOH/g (4,0 mol) langsam auf 180°C aufgeheizt (OH-Zahl Bestimmung nach DIN 53240) und bei dieser Temperatur gehalten, bis eine Säurezahl von 32 mg KOH/g erreicht wurde. Danach wurde die Schmelze gekühlt und mit Butylglykol auf einen Feststoffgehalt von etwa 80 % angelöst.
Der Feststoffgehalt des Harzes liegt bei 76,4 % (gemessen bei 130°C für 1 h im Umluftofen an einer Probe von 1 g unter Zugabe 1 ml Methylethylketon)
Zahlenmittleres Molekulargewicht (Dampfdruckosmose): 400 g/mol Viskosität: 1 1200 mPas,
(gemessen bei 23°C mit einem Rotationsviskosimeter der Fa. Brookfield, Typ CAP 2000+, Spindel 3, Scherrate: 750 s"1)
VR4:
In einem 4 I Edelstahlreaktor, ausgestattet mit Ankerrührer, Thermometer, Kühler, Thermometer zur Kopftemperaturmessung und Wasserabscheider wurden 384,2 g Trimellitsäureanhydrid und 1000 g PolyTHF250 (Fa. BASF SE) mit einer OH-Zahl von 449 mg KOH/g (4,0 mol) langsam auf 180°C aufgeheizt (OH-Zahl Bestimmung nach DIN 53240) und bei dieser Temperatur gehalten, bis eine Säurezahl von 80 mg KOH/g erreicht wurde. Danach wurde die Schmelze gekühlt und mit Butylglykol auf einen Feststoffgehalt von etwa 80 % angelöst.
Der Feststoffgehalt des Harzes liegt bei 83,30% (gemessen bei 130°C für 1 h im Umluftofen an einer Probe von 1 g unter Zugabe 1 ml Methylethylketon)
Zahlenmittleres Molekulargewicht (Dampfdruckosmose): 300 g/mol
Viskosität (original): 2840 mPas,
(gemessen bei 23°C mit einem Rotationsviskosimeter der Fa. Brookfield, Typ CAP 2000+, Spindel 3, Scherrate: 750 s"1)
Herstellung von wässrigen Basislacken
Hinsichtlich der in den nachstehenden Tabellen angegebenen Formulierungsbestandteile und deren Mengen ist folgendes zu berücksichtigen. Wird auf ein Handelsprodukt oder eine anderswo beschriebene Herstellvorschrift verwiesen, ist unabhängig von der jeweils gewählten Hauptbenennung des Bestandteils genau dieses Handelsprodukt oder genau das im Rahmen der referenzierten Vorschrift hergestellte Produkt gemeint.
Besitzt also ein Formulierungsbestandteil die Hauptbenennung „Melaminformaldehydharz" und ist dazu ein Handelsprodukt angegeben, so wird das Melaminformaldehydharz als genau dieses Handelsprodukt eingesetzt. Gegebenenfalls im Handelsprodukt vorhandene weitere Bestandteile wie Lösemittel sind also zu berücksichtigen, wenn auf die Menge der Wirksubstanz (des Melaminformaldehydharzes) zurückgeschlossen werden soll.
Wird also für einen Formulierungsbestandteil auf eine Herstellvorschrift verwiesen und resultiert bei dieser Herstellung beispielsweise eine Polymer-Dispersion mit einem bestimmten Festkörper, so wird genau diese Dispersion eingesetzt. Es ist nicht maßgeblich, ob als Hauptbenennung der Begriff „Polymer-Dispersion" oder lediglich die Wirksubstanz, beispielsweise „Polymer", „Polyester" oder „polyurethanmodifiziertes Polyacrylat" gewählt wurde. Dies ist zu berücksichtigen, wenn auf die Menge der Wirksubstanz (des Polymers) zurückgeschlossen werden soll.
Alle in den Tabellen angegebenen Anteile sind Gewichtsteile.
Herstellung eines nicht erfindungsgemäßen Wasserbasislacks 1
Die in der Tabelle A unter„wässrige Phase" aufgeführten Komponenten wurden in der angegebenen Reihenfolge zu einer wässrigen Mischung zusammengerührt. Im nächsten Schritt wurde aus den unter „organische Phase" aufgeführten Komponenten eine organische Mischung hergestellt. Die organische Mischung wurde zur wässrigen Mischung hinzugegeben. Sodann wurde 10 Minuten lang gerührt und mit Hilfe von deionisiertem Wasser und Dimethylethanolamin auf einen pH Wert von 8 und eine Spritzviskosität von 58 mPas bei einer Scherbelastung von 1000 s' gemessen mit einem Rotations- Viskosimeter (Gerät Rheomat RM 180 der Firma Mettler-Toledo) bei 23°C, eingestellt.
Tabelle A: Wasserbasislack 1
Komponente
Gewichtsteile
Wässrige Phase
Wässrige Lösung von 3% Natrium-Lithium-Magnesium-Schichtsilikat
27
Laponite® RD (Fa. Altana-Byk) und 3% Pluriol® P900 (Fa. BASF SE)
Deionisiertes Wasser 15,9
Butylglykol (Fa. BASF SE) 3,5 Hydroxyfunktionelles polyurethanmodifiziertes Polyacrylat; hergestellt
2,4 gemäß S. 7, Z. 55 bis S.8, Z. 23 der DE 4437535 A1
50 Gew.-%ige Lösung Rheovis® PU 1250 (BASF SE) in Butylglykol,
0,2
Rheologiemittel
Hydroxyfunktioneller Polyester; hergestellt gemäß Beispiel D, Spalte 16,
2,5
Z. 37-59 der DE-A-4009858
TMDD 50% BG (Fa. BASF SE), 52%ige Lösung von 2,4,7,9-Tetramethyl-
1 ,2
5-decin-4,7-diol in Butylglykol
Luwipal® 052 (Fa. BASF SE), Melamin-Formaldehyd-Harz 4,7
10%ige Lösung von Ν,Ν-Dimethylethanolamin (Fa. BASF SE) in Wasser 0,5
Pfropfmischpolymerisat auf Polyurethanbasis; hergestellt analog DE
19,6
19948004 - A1 (Seite 27 - Beispiel 2)
Isopropanol (Fa. BASF SE) 1 ,4
Byk-347® (Fa. Altana-Byk) 0,5
Pluriol® P 900 (Fa. BASF SE) 0,3
Tinuvin® 384-2 (Fa. BASF SE) 0,6
Tinuvin® 123 (Fa. BASF SE) 0,3
Rußpaste 4,3
Blaupaste 11 ,4
Mica-Schlämme 2,8
Organische Phase
Aluminiumpigment (Fa. Altana-Eckart ) 0,3
Butylglykol (Fa. BASF SE) 0,3
Pfropfmischpolymerisat auf Polyurethanbasis; hergestellt analog DE
0,3
19948004 - A1 (Seite 27 - Beispiel 2)
Herstellung der Blaupaste:
Die Blaupaste wurde aus 69,8 Gewichtsteilen einer gemäß der internationalen Patentanmeldung WO 91 /15528 Bindemitteldispersion A hergestellten acrylierten Polyurethandispersion, 12,5 Gewichtsteilen Paliogen® Blau L 6482, 1 ,5 Gewichtsteilen Dimethylethanolamin (10%ig in VE-Wasser), 1 ,2 Gewichtsteilen eines handelsüblichen Polyethers (Pluriol® P900 der Firma BASF SE) und 15 Gewichtsteilen deionisiertem Wasser hergestellt. Herstellung der Rußpaste:
Die Rußpaste wurde aus 25 Gewichtsteilen einer gemäß der internationalen Patentanmeldung WO 91 /15528 Bindemitteldispersion A hergestellten acrylierten Polyurethandispersion, 10 Gewichtsteilen Ruß, 0,1 Gewichtsteilen Methylisobutylketon, 1 ,36 Gewichtsteilen Dimethylethanolamin (10%ig in VE- Wasser), 2 Gewichtsteilen eines handelsüblichen Polyethers (Pluriol® P900 der Firma BASF SE) und 61 ,45 Gewichtsteilen deionisiertem Wasser hergestellt.
Herstellung der Mica-Schlämme:
Die Mica-Schlämme wurde durch Vermischen mittels eines Rührorgans von 1 ,5 Gewichtsteilen Pfropfmischpolymerisat auf Polyurethanbasis; hergestellt analog DE 19948004 - A1 (Seite 27 - Beispiel 2) und 1 ,3 Gewichtsteilen der handelsüblichen Mica Mearlin Ext. Fine Violet 539V der Firma Merck erhalten.
Herstellung eines nicht erfindungsgemäßen Wasserbasislacks 2
Der Wasserbasislack 2 wurde analog Tabelle A hergestellt, wobei allerdings statt dem Polyester; hergestellt gemäß Beispiel D, Spalte 1 6, Z. 37-59 der DE-A-4009858 das Reaktionsprodukt VR1 eingesetzt wurde. Dabei wurde durch Ausgleich der Lösemittelmenge beziehungsweise durch Berücksichtigung der Festkörper der zuzugebenden Komponente derselbe Anteil des Reaktionsprodukts VR1 eingesetzt.
Herstellung der nicht erfindungsgemäßen Wasserbasislacke 3 bis 5 und der erfindungsgemäßen Wasserbasislacke E1 bis E3
Analog der Herstellung des Wasserbasislacks 2 wurden weitere Basislacke durch Austausch des Polyesters, hergestellt gemäß Beispiel D, Spalte 1 6, Z. 37-59 der DE- A-4009858, hergestellt. Dabei wurde durch Ausgleich der Lösemittelmenge beziehungsweise durch Berücksichtigung der Festkörper der zuzugebenden Komponente derselbe Anteil des Reaktionsprodukts VR1 eingesetzt. Tabelle B zeigt alle Basislacke als Übersicht. Tabelle B: Basislacke
Reaktionsprodukt
Wasserbasislack 1 Polyester gemäß DE-A-4009858
Wasserbasislack 2 VR1
Wasserbasislack 3 VR2
Wasserbasislack 4 VR3
Wasserbasislack 5 VR4
Wasserbasislack E1 ER1
Wasserbasislack E2 ER2
Wasserbasislack E3 ER3
Vergleich zwischen den Wasserbasislacken 1-5 und E1 -E3 Steinschlagbeständigkeit:
Zur Bestimmung der Steinschlagbeständigkeit wurden die Mehrschichtlackierungen nach der folgenden allgemeinen Vorschrift hergestellt:
Ein mit einer KTL (kathodische Elektrotauchlackierung) beschichtetes Stahlblech der Abmessungen 10 x 20 cm diente als Substrat.
Auf dieses Blech wurde zunächst der jeweilige Basislack (Tabelle B) in einer Zielschichtdicke (Trockenfilmschichtdicke) von 20 Mikrometern pneumatisch appliziert. Nach 1 min Ablüften des Basislacks bei Raumtemperatur wurde der Basislack über 10 min bei 70 °C im Umluftofen zwischengetrocknet. Auf die zwischengetrocknete Wasserbasislackschicht wurde ein üblicher Zweikomponentenklarlack (Progloss® 372 der Firma BASF Coatings GmbH) in einer Zielschichtdicke (Trockenfilmschichtdicke) von 40 Mikrometern appliziert. Die resultierende Klarlackschicht wurde während 20 Minuten bei Raumtemperatur abgelüftet. Anschließend wurden die Wasserbasislackschicht und die Klarlackschicht in einem Umluftofen während 30 Minuten bei 1 60°C gehärtet.
Die so erhaltenen Mehrschichtlackierungen wurden hinsichtlich ihrer Steinschlagbeständigkeit untersucht. Dazu wurde der Steinschlagtest wurde DIN 55966-1 durchgeführt. Die Beurteilung der Ergebnisse des Steinschlagtests wurde nach DIN EN ISO 20567-1 durchgeführt. Niedrigere Werte stehen für eine bessere Steinschlagbeständigkeit.
Die Ergebnisse finden sich in der Tabelle 1 . Die Angabe des Wasserbasislacks (WBL) gibt jeweils an, welcher WBL in der jeweiligen Mehrschichtlackierung eingesetzt wurde.
Tabelle 1 : Steinschlagbeständigkeit der Wasserbasislacke 1-5 und E1-E3
WBL Steinschlagergebnis
1 2,5
2 2,5
3 2,0
4 3,5
5 4,0
E1 1 ,0
E2 1 ,5
E3 1 ,0
Die Ergebnisse untermauern, dass der Einsatz der erfindungsgemäßen Reaktionsprodukte in Basislacken die Steinschlagbeständigkeit im Vergleich zu den Wasserbasislacken 1 -5 deutlich erhöht. Die besten Ergebnisse zeigen die Reaktionsprodukte ER1 und ER3.
Haftung:
Zur Bestimmung der Haftungseigenschaften wurde die Stabilität gegen das Auftreten von Blasen und Quellungen nach Schwitzwasserlagerung untersucht. Dabei wurden Mehrschichtlackierungen nach der folgenden allgemeinen Vorschrift hergestellt:
Als Substrat diente ein mit einer Standard-KTL (Cathoguard® 800 der Firma BASF Coatings GmbH) beschichtetes Stahlblech der Abmessungen 10 x 20 cm.
Der jeweilige Wasserbasislack gemäß Tabelle B wurde nun in einer Zielschichtdicke (Trockenfilmschichtdicke) von 20 Mikrometern pneumatisch appliziert. Die resultierende Wasserbasislackschicht wurde 2 Minuten bei Raumtemperatur abgelüftet und anschließend während 10 Minuten im Umluftofen bei 70°C zwischengetrocknet. Auf die zwischengetrocknete Wasserbasislackschicht wurde ein üblicher Zweikomponentenklarlack in einer Zielschichtdicke (Trockenfilmschichtdicke) von 40 Mikrometern appliziert (Progloss® 372 der Firma BASF Coatings GmbH). Die resultierende Klarlackschicht wurde während 20 Minuten bei Raumtemperatur abgelüftet. Anschließend wurden die Wasserbasislackschicht und die Klarlackschicht in einem Umluftofen während 20 Minuten bei 140°C gehärtet. Der vorliegende Aufbau wird im Weiteren als Originallackierung bezeichnet.
Diese Originallackierung wird zur Erzeugung beziehungsweise Simulation von Fehlstellen mit Schleifpapier angeschliffen und dann wie in der Folge beschrieben einer erneuten Komplettlackierung mit Basislack und Klarlack unterworfen. Auf diese Weise wird eine Doppellackierung im Rahmen der OEM-Automobilreparatur- lackierung simuliert.
Zunächst wird der jeweilige Wasserbasislack gemäß Tabelle B in einer Zielschichtdicke (Trockenfilmschichtdicke) von 20 Mikrometern auf die angeschliffene Originallackierung pneumatisch appliziert. Die resultierende Wasserbasislackschicht wurde 2 Minuten bei Raumtemperatur abgelüftet und anschließend während 10 Minuten im Umluftofen bei 70°C zwischengetrocknet. Auf die zwischengetrocknete Wasserbasislackschicht wurde ein so genannter 80°C-Zweikomponentenklarlack (2K-Reparaturklarlack, kratzfest der Firma BASF Coatings GmbH) in einer Zielschichtdicke (Trockenfilmschichtdicke) von 40 Mikrometern aufgebracht. Die resultierende Klarlackschicht wurde während 20 Minuten bei Raumtemperatur abgelüftet. Anschließend wurden die Wasserbasislackschicht und die Klarlackschicht in einem Umluftofen während 30 Minuten bei 80°C gehärtet.
Die so behandelten Stahlbleche beziehungsweise Reparaturaufbauten wurden nun über einen Zeitraum von 10 Tagen in einer Klimakammer nach Prüfklima CH nach DIN EN ISO 6270-2:2005-09 gelagert. Anschließend wurden die Bleche 24 Stunden nach Entnahme aus der Klimakammer visuell bezüglich Blasenbildung und Quellung untersucht.
Das Auftreten von Blasen wurde folgendermaßen durch eine Kombination von 2 Werten beurteilt:
- Die Anzahl der Blasen wurde durch eine Mengenangabe von 1 bis 5 bewertet, wobei mit m1 sehr wenige und m5 sehr viele Blasen bezeichnet wurden.
- Die Größe der Blasen wurde durch eine Größenangabe ebenfalls von 1 bis 5 bewertet, wobei mit gl sehr kleine und g5 sehr große Blasen bezeichnet wurden.
- Die Bezeichnung mOgO bedeutet demzufolge eine blasenfreie Lackierung nach Schwitzwasserlagerung und stellt bezüglich Blasenbildung ein hervorragendes Ergebnis dar.
Die Ergebnisse finden sich in der Tabelle 2.
Tabelle 2: Blasenbildung und Quellung von Wasserbasislack 1-5 und den Wasserbasislacken E1-E3
WBL Blasenbildung Quellung
1 m5g4 keine
2 m5g3 stark
3 m3g2 schwach
4 m5g3 stark
5 m5g5 sehr stark
E1 mOgO keine
E2 mOgO sehr schwach
E3 mOgO keine
Die Ergebnisse untermauern, dass der Einsatz der erfindungsgemäßen Reaktionsprodukte in Basislacken die Haftung im Reparaturaufbau im Vergleich zu den Wasserbasislacken 1 -5 deutlich erhöht. Die besten Ergebnisse zeigen wiederum die Reaktionsprodukte ER1 und ER3.

Claims

Patentansprüche
1 . Pigmentierter wässriger Basislack enthaltend ein Polyether-basiertes Reaktionsprodukt, welches herstellbar ist durch Umsetzung von
(a) mindestens einem cyclischen Carbonsäureanhydrid enthaltend eine freie Carbonsäuregruppe und/oder das Halogenid einer Carbonsäuregruppe
mit
(b) mindestens einem Polyether der allgemeinen Strukturformel (I)
C3- bis Ce-Alkylenrest ist und n entsprechend so gewählt ist, dass der er (b) ein zahlenmittleres Molekulargewicht von 800 bis 4000 g/mol besitzt, wobei die Komponenten (a) und (b) bei der Umsetzung in einem molaren Verhältnis von 0,7/2,3 bis 1 ,6/1 ,7 eingesetzt werden und das resultierende Reaktionsprodukt eine Säurezahl von 5 bis 50 mg KOH/g besitzt.
2. Basislack nach Anspruch 1 , dadurch gekennzeichnet, dass der Polyether (b) ein zahlenmittleres Molekulargewicht von 1200 bis 3400 g/mol besitzt.
3. Basislack nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei der Gruppe R gemäß der allgemeinen Strukturformel (I) um Tetramethylen reste handelt.
4. Basislack nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Komponenten (a) und (b) in einem molaren Verhältnis von 0,45/1 bis 0,55/1 eingesetzt werden.
5. Basislack nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Polyether-basierte Reaktionsprodukt ein zahlenmittleres Molekulargewicht von 1500 bis 15000 g/mol besitzt.
6. Basislack nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Komponente (a) mindestens ein cyclisches, aromatisches Carbonsäureanhydrid, das eine freie Carbonsäuregruppe enthält, bevorzugt Trimellitsäureanhydrid, eingesetzt wird.
7. Pigmentierter wässriger Basislack gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Summe über die gewichtsprozentualen Anteile, bezogen auf das Gesamtgewicht des pigmentierten wässrigen Basislacks, aller Polyether- basierten Reaktionsprodukte 0,1 bis 20 Gew.-% beträgt.
8. Pigmentierter wässriger Basislack nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass er ein mittels olefinisch ungesättigten Monomeren gepfropftes Polyurethanharz, welches zudem Hydroxylgruppen enthält, sowie ein Melaminharz umfasst.
9. Polyether-basiertes Reaktionsprodukt, welches herstellbar ist durch Umsetzung von
(a) mindestens einem Carbonsäureanhydrid enthaltend
Carbonsäuregruppe
mit
(b) mindestens einem Polyether der allgemeinen Strukturformel (I) worin
R ein C3- bis Ce-Alkylenrest ist und n entsprechend so gewählt ist, dass der Polyether (b) ein zahlenmittleres Molekulargewicht von 800 bis 4000 g/mol besitzt, wobei die Komponenten (a) und (b) bei der Umsetzung in einem molaren Verhältnis von 0,7/2,3 bis 1 ,6/1 ,7 eingesetzt werden und das resultierende Reaktionsprodukt eine Säurezahl von 5 bis 50 mg KOH/g besitzt.
10. Verwendung eines Reaktionsprodukts gemäß Anspruch 9 in einem pigmentierten wässrigen Basislack zur Verbesserung der Haftung und der Steinschlagbeständigkeit von Lackierungen, welche unter Einsatz des Basislacks hergestellt werden.
1 1 . Verfahren zur Herstellung einer mehrschichtigen Lackierung, bei dem
(1 ) ein pigmentierter wässriger Basislack auf ein Substrat aufgebracht wird,
(2) aus dem in Stufe (1 ) aufgebrachten Lack ein Polymerfilm gebildet wird,
(3) auf die so erhaltene Basislackschicht ein Klarlack aufgebracht wird und anschließend
(4) die Basislackschicht zusammen mit der Klarlackschicht gehärtet wird, dadurch gekennzeichnet, dass in Stufe (1 ) ein pigmentierter wässriger Basislack gemäß einem der Ansprüche 1 bis 8 eingesetzt wird.
12. Verfahren nach Anspruch 1 1 , dadurch gekennzeichnet, dass das Substrat aus Stufe (1 ) ein mit einer gehärteten Elektrotauchlackschicht beschichtetes metallisches Substrat ist und alle auf die Elektrotauchlackschicht applizierten Schichten gemeinsam gehärtet werden.
13. Verfahren nach Anspruch 1 1 , dadurch gekennzeichnet, dass es sich bei dem Substrat aus Stufe (1 ) um eine Mehrschichtlackierung handelt, welche Fehlstellen besitzt.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Mehrschichtlackierung, welche Fehlstellen besitzt, eine solche ist, die gemäß dem Verfahren nach Anspruch 1 1 hergestellt wurde und im Anschluss daran durch mechanische äußere Einflüsse Fehlstellen erhalten hat.
15. Mehrschichtlackierung, herstellbar nach dem Verfahren gemäß einem der Ansprüche 1 1 bis 14.
EP16805067.2A 2015-12-09 2016-11-30 Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte Withdrawn EP3387040A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15198679.1A EP3178864B1 (de) 2015-12-09 2015-12-09 Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
PCT/EP2016/079192 WO2017097642A1 (de) 2015-12-09 2016-11-30 Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte

Publications (1)

Publication Number Publication Date
EP3387040A1 true EP3387040A1 (de) 2018-10-17

Family

ID=55023861

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15198679.1A Active EP3178864B1 (de) 2015-12-09 2015-12-09 Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
EP16805067.2A Withdrawn EP3387040A1 (de) 2015-12-09 2016-11-30 Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15198679.1A Active EP3178864B1 (de) 2015-12-09 2015-12-09 Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte

Country Status (12)

Country Link
US (2) US10889090B2 (de)
EP (2) EP3178864B1 (de)
JP (1) JP6710760B2 (de)
KR (1) KR102158665B1 (de)
CN (1) CN108368245B (de)
BR (1) BR112018011608B1 (de)
CA (1) CA3006340C (de)
ES (1) ES2701844T3 (de)
MX (1) MX2018007028A (de)
PL (1) PL3178864T3 (de)
RU (1) RU2707886C1 (de)
WO (1) WO2017097642A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016000947A1 (de) * 2014-07-01 2016-01-07 Basf Coatings Gmbh Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
CN108368244B (zh) 2015-12-09 2020-12-29 巴斯夫涂料有限公司 羧基官能的聚醚基反应产物和包含所述反应产物的水性底涂料
PL3178864T3 (pl) * 2015-12-09 2019-05-31 Basf Coatings Gmbh Produkty reakcji na bazie polieteru z karboksylowymi grupami funkcyjnymi i wodne lakiery podstawowe zawierające te produkty reakcji
EP3430067B1 (de) 2016-03-14 2022-05-11 BASF Coatings GmbH Hydroxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
US11274228B2 (en) 2016-10-13 2022-03-15 Basf Coatings Gmbh Coating agent system based on salts of an aliphatic monocarboxylic acid
RU2764181C1 (ru) * 2018-06-11 2022-01-14 Ппг Индастриз Огайо, Инк. Композиции покрытий, отверждаемые при низких температурах, и покрытия, полученные из них
US11104759B2 (en) * 2018-06-15 2021-08-31 Hodogaya Chemical Co., Ltd. Polyol for crosslinkable polyurethane resin composition, and crosslinkable polyurethane resin
US20230408485A1 (en) 2020-10-05 2023-12-21 Basf Coatings Gmbh Screening method using cured coating film properties
JP7458557B2 (ja) 2020-10-05 2024-03-29 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング コーティング組成物特性又は濡れフィルム特性を用いたスクリーニング方法
JP2024518657A (ja) 2021-03-19 2024-05-01 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング トップコート組成物を含有するブロックコポリマーから得られる多層コーティング系
JP2024518658A (ja) 2021-03-19 2024-05-01 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング ベースコート組成物を含有するブロックコポリマーから得られる多層コーティング系
KR20240051222A (ko) 2021-08-30 2024-04-19 바스프 코팅스 게엠베하 높은 LiDAR 반사율을 갖는 암색 프라이머 코팅
WO2023031221A1 (en) 2021-08-30 2023-03-09 Basf Coatings Gmbh LiDAR REFLECTIVE MULTILAYER COATINGS WITH HIGH FLOP INDEX
WO2024074642A1 (en) 2022-10-07 2024-04-11 Basf Coatings Gmbh Multilayer coating systems obtained from block copolymer containing basecoat compositions
EP4353786A1 (de) 2022-10-13 2024-04-17 BASF Coatings GmbH Nachhaltige herstellbare pigmente und farbstoffe für automobilbeschichtungen

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146560B2 (de) 1973-08-28 1976-12-09
DE3545618A1 (de) 1985-12-21 1987-06-25 Basf Lacke & Farben Wasserverduennbares ueberzugsmittel zur herstellung der basisschicht eines mehrschichtueberzuges
DE4009858C2 (de) 1990-03-28 1998-02-05 Basf Lacke & Farben Wäßriger pigmentierter Basislack enthaltend als Bindemittel ein wasserverdünnbares Polyacrylatharz und Verwendung eines solchen Basislacks
DE4010176A1 (de) 1990-03-30 1991-10-02 Basf Lacke & Farben Verfahren zur herstellung einer mehrschichtigen lackierung und waessriger lack
JP2948639B2 (ja) 1990-09-06 1999-09-13 関西ペイント株式会社 鋼板への塗装方法
DE4107136A1 (de) 1991-03-06 1992-09-10 Basf Lacke & Farben Verfahren zur herstellung einer mehrschichtigen, schuetzenden und/oder dekorativen lackierung
CA2127761C (en) 1993-07-16 2005-10-18 Armin Gobel An aqueous dispersion of polyurethane resins, a method of manufacturing them, coating agents containing them and use thereof
US5436314A (en) * 1994-04-18 1995-07-25 Arco Chemical Technology, L.P. Process for making a polyetherester by insertion of a carboxylic acid into a polyether
DE4437535A1 (de) 1994-10-20 1996-04-25 Basf Lacke & Farben Polyurethanmodifziertes Polyacrylat
JPH11207252A (ja) 1998-01-23 1999-08-03 Kansai Paint Co Ltd 複層塗膜形成法
DE19914896A1 (de) * 1999-04-01 2000-10-05 Basf Coatings Ag Thermisch und/oder mit aktinischer Strahlung härtbarer wäßriger Beschichtungsstoff und seine Verwendung
DE19930665A1 (de) 1999-07-02 2001-01-11 Basf Coatings Ag Basislack und seine Verwendung zur Herstellung von farb- und/oder effektgebenden Basislackierungen und Mehrschichtlackierung
DE19948004B4 (de) * 1999-10-06 2006-05-11 Basf Coatings Ag Polyurethane und Pfropfmischpolymerisate auf Polyurethanbasis sowie ihre Verwendung zur Herstellung von Beschichtungsstoffen, Klebstoffen und Dichtungsmassen
DE10043405C1 (de) 2000-09-04 2002-06-27 Basf Coatings Ag Verfahren zur Herstellung farb- und/oder effektgebender Lackierungen
DE10310446A1 (de) 2003-03-07 2004-09-23 Ppg Industries Lacke Gmbh Polyester
US7666951B2 (en) 2005-02-24 2010-02-23 Ppg Industries Ohio, Inc. Coating compositions that include a polyester polyol, related coated substrates, multi-layer coating and methods
US20090269577A1 (en) * 2008-04-24 2009-10-29 Ppg Industries Ohio, Inc. Waterborne anti-chip primer coating composition
JP2012507617A (ja) * 2008-11-06 2012-03-29 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト ジオキサン排出量が少ないポリエステルポリオールの製造方法
US20120082795A1 (en) * 2010-10-01 2012-04-05 Ppg Industries Ohio, Inc. Method for using a primer comprising a self-emulsified polyester microgel
CA2880839A1 (en) * 2012-08-10 2014-02-13 Akzo Nobel Coatings International B.V. Polyester polyol
EP2843017A1 (de) 2013-08-27 2015-03-04 BASF Coatings GmbH Dimerfettsäure-polyether-reaktionsprodukt und beschichtungsmittel enthaltend das reaktionsprodukt
JP6689748B2 (ja) * 2013-12-18 2020-04-28 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH 多層塗装系を製造する方法
PL3178864T3 (pl) * 2015-12-09 2019-05-31 Basf Coatings Gmbh Produkty reakcji na bazie polieteru z karboksylowymi grupami funkcyjnymi i wodne lakiery podstawowe zawierające te produkty reakcji
CN108368244B (zh) * 2015-12-09 2020-12-29 巴斯夫涂料有限公司 羧基官能的聚醚基反应产物和包含所述反应产物的水性底涂料

Also Published As

Publication number Publication date
US20210031496A1 (en) 2021-02-04
WO2017097642A1 (de) 2017-06-15
EP3178864A1 (de) 2017-06-14
US11866563B2 (en) 2024-01-09
BR112018011608B1 (pt) 2022-08-09
BR112018011608A2 (pt) 2018-11-27
KR102158665B1 (ko) 2020-09-22
JP2019505613A (ja) 2019-02-28
PL3178864T3 (pl) 2019-05-31
CN108368245A (zh) 2018-08-03
US10889090B2 (en) 2021-01-12
EP3178864B1 (de) 2018-09-12
ES2701844T3 (es) 2019-02-26
MX2018007028A (es) 2018-08-01
RU2707886C1 (ru) 2019-12-02
CN108368245B (zh) 2023-10-20
JP6710760B2 (ja) 2020-06-17
CA3006340A1 (en) 2017-06-15
US20180362799A1 (en) 2018-12-20
KR20180090345A (ko) 2018-08-10
CA3006340C (en) 2020-07-14

Similar Documents

Publication Publication Date Title
EP3178864B1 (de) Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
EP3402852B1 (de) Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
EP3164433B1 (de) Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
EP3164444B1 (de) Polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
EP2890728A2 (de) Polymer in farb- und/oder effektgebenden mehrschichtigen lackierungen
EP3387039B1 (de) Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
EP3164438B1 (de) Reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
EP3164457B1 (de) Carboxyfunktionelle dimerfettsäure-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
WO2015024710A1 (de) Dimerfettsäure-haltiges reaktionsprodukt und beschichtungsmittel enthaltend das reaktionsprodukt
EP3039090B1 (de) Dimerfettsäure-polyether-reaktionsprodukt und beschichtungsmittel enthaltend das reaktionsprodukt
EP3390487B1 (de) Carboxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
EP3164434B1 (de) Polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
EP3164448B1 (de) Reaktionsprodukt und pigmentierter basislack enthaltend das reaktionsprodukt
EP3039053A1 (de) Dimerfettsäure-dimerdiol-reaktionsprodukt und dessen einsatz in beschichtungsmitteln
EP3430067B1 (de) Hydroxyfunktionelle polyether-basierte reaktionsprodukte und wässrige basislacke enthaltend die reaktionsprodukte
EP2898024A1 (de) Verfahren zur herstellung und ausbesserung einer farb- und/oder effektgebenden mehrschichtigen lackierung
EP3039052B1 (de) Dimerfettsäure-polyesterdiol-reaktionsprodukt und dessen einsatz in beschichtungsmitteln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190627

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191108