EP3385401A1 - Hochfester stahl mit ausgezeichneter sprödbruchstabilität und schweissteilsprödbruchbeständigkeit und herstellungsverfahren dafür - Google Patents
Hochfester stahl mit ausgezeichneter sprödbruchstabilität und schweissteilsprödbruchbeständigkeit und herstellungsverfahren dafür Download PDFInfo
- Publication number
- EP3385401A1 EP3385401A1 EP16871071.3A EP16871071A EP3385401A1 EP 3385401 A1 EP3385401 A1 EP 3385401A1 EP 16871071 A EP16871071 A EP 16871071A EP 3385401 A1 EP3385401 A1 EP 3385401A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- brittle crack
- less
- welding
- steel
- strength steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 160
- 239000010959 steel Substances 0.000 title claims abstract description 160
- 238000003466 welding Methods 0.000 title claims abstract description 46
- 230000000977 initiatory effect Effects 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 46
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 45
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 33
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 15
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 14
- 229910052802 copper Inorganic materials 0.000 claims abstract description 13
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 13
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910001562 pearlite Inorganic materials 0.000 claims abstract description 7
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 6
- 238000005096 rolling process Methods 0.000 claims description 95
- 239000000463 material Substances 0.000 claims description 51
- 230000009467 reduction Effects 0.000 claims description 45
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 41
- 239000010949 copper Substances 0.000 claims description 34
- 239000011572 manganese Substances 0.000 claims description 26
- 239000010955 niobium Substances 0.000 claims description 25
- 238000001816 cooling Methods 0.000 claims description 23
- 239000010936 titanium Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 18
- 230000001186 cumulative effect Effects 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052717 sulfur Inorganic materials 0.000 claims description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- 238000003303 reheating Methods 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 5
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 3
- 230000004907 flux Effects 0.000 claims description 2
- 239000000470 constituent Substances 0.000 abstract 2
- 230000000052 comparative effect Effects 0.000 description 51
- 238000006722 reduction reaction Methods 0.000 description 40
- 230000000694 effects Effects 0.000 description 14
- 239000000203 mixture Substances 0.000 description 8
- 230000009466 transformation Effects 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 230000000593 degrading effect Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present disclosure relates to a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance, and to a method of manufacturing the same.
- microstructures of thick steel plates may be coarse, so that low temperature properties on which grain sizes have the most significant effect may be degraded.
- the microstructure in a HAZ includes low temperature transformation ferrite having high strength, such as bainite, there is a limitation in which HAZ properties, in detail, toughness, is significantly reduced.
- An aspect of the present disclosure may provide a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance.
- a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises, by wt%, carbon (C): 0.05% to 0.09%, manganese (Mn): 1.5% to 2.2%, nickel (Ni): 0.3% to 1.2%, niobium (Nb): 0.005% to 0.04%, titanium (Ti): 0.005% to 0.04%, copper (Cu): 0.1% to 0.8%, silicon (Si): 0.05% to 0.3%, aluminum (Al): 0.005% to 0.05%, phosphorus (P): 100 ppm or less, sulfur (S): 40 ppm or less, iron (Fe) as a residual component thereof, and inevitable impurities, wherein a microstructure of a central portion includes, by area%, a mixed phase of acicular ferrite and granular bainite in an amount of 70% or greater, upper bainite in an amount of 20% or less, and one
- the high-strength steel material may have yield strength of 460 MPa or greater.
- the high-strength steel material may have a Charpy fracture transition temperature of -40°C or lower in a 1/2t position in a steel material thickness direction, where t is a steel sheet thickness.
- a method of manufacturing a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises rough rolling a slab at a temperature of 900°C to 1100°C after reheating the slab at 1000°C to 1100°C, including, by wt%, C: 0.05% to 0.09%, Mn: 1.5% to 2.2%, Ni: 0.3% to 1.2%, Nb: 0.005% to 0.04%, titanium (Ti) : 0.005% to 0.04%, copper (Cu): 0.1% to 0.8%, silicon (Si): 0.05% to 0.3%, aluminum (Al): 0.005% to 0.05%, phosphorus (P): 100 ppm or less, sulfur (S): 40 ppm or less, iron (Fe) as a residual component thereof, and inevitable impurities; obtaining a steel sheet by finish rolling a bar obtained from the rough rolling a slab, at a temperature in a range of Ar 3 + 60
- a reduction ratio per pass of three final passes during the rough rolling a slab may be 5% or greater, and a total cumulative reduction ratio may be 40% or greater.
- a strain rate of three final passes during the rough rolling a slab may be 2/sec or lower.
- a grain size of a central portion in a bar thickness direction before finish rolling after the rough rolling a slab may be 150 ⁇ m or less, in detail, 100 ⁇ m or less, and more specifically, 80 ⁇ m or less.
- a cumulative reduction ratio during the finish rolling may be maintained to be 40% or greater, while the reduction ratio per pass, not including skin pass rolling, may be maintained to be 4% or greater.
- Skin pass rolling refers to a process of rolling a sheet at a relatively low reduction ratio in order to secure flatness of the sheet.
- the cooling the steel sheet may be performed at a cooling rate of the central portion of 2°C/s or higher.
- a high-strength steel material having a relatively high level of yield strength, as well as excellent brittle crack arrestability and welding zone brittle crack initiation resistance.
- the inventors of the present disclosure conducted research and experiments to improve yield strength, brittle crack arrestability, and welding zone brittle crack initiation resistance of a thick steel material and proposed the present disclosure based on results thereof.
- a steel composition, a structure, and manufacturing conditions of a steel material may be controlled, thereby improving yield strength, brittle crack arrestability, and welding zone brittle crack initiation resistance of the thick steel material.
- a main concept of an exemplary embodiment is as follows.
- the high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises, by wt%, carbon (C): 0.05% to 0.09%, manganese (Mn): 1.5% to 2.2%, nickel (Ni): 0.3% to 1.2%, niobium (Nb): 0.005% to 0.04%, titanium (Ti): 0.005% to 0.04%, copper (Cu): 0.1% to 0.8%, silicon (Si): 0.05% to 0.3%, aluminum (Al) : 0.005% to 0.05%, phosphorus (P): 100 ppm or less, sulfur (S) : 40 ppm or less, iron (Fe) as a residual component thereof, and inevitable impurities, wherein a microstructure of a central portion includes, by area%, a mixed phase of acicular ferrite and granular bainite in an amount of 70% or greater, upper bainite in an amount of 20% or less, and
- C Since C is the most significant element used in securing basic strength, C is required to be contained in steel within an appropriate range. In order to obtain an effect of addition, C may be added in an amount of 0.05% or greater.
- the C content may be limited to 0.055% to 0.08%, and more specifically, to 0.06% to 0.075%.
- Mn is a useful element improving strength through solid solution strengthening and increasing hardenability to generate low temperature transformation ferrite.
- Mn since Mn may generate low temperature transformation ferrite even at a relatively low cooling rate due to improved hardenability, Mn is a main element to secure strength of a central portion of a thick steel plate.
- Mn may be added in an amount of 1.5% or greater.
- the Mn content may be limited to 1.5% to 2.2%.
- the Mn content may be limited to 1.6% to 2.0%, and more specifically, to 1.65% to 1.95%.
- Ni is a significant element used in improving impact toughness by facilitating a dislocation cross slip at a relatively low temperature and increasing strength by improving hardenability.
- Ni may be added in an amount of 0.3% or greater.
- hardenability is excessively increased to generate low temperature transformation ferrite, thereby degrading toughness, and a manufacturing cost may be increased due to a relatively high cost of Ni, as compared with other hardenability elements.
- an upper limit value of the Ni content may be limited to 1.2%.
- Nb is educed to have a form of NbC or NbCN to improve strength of a base material.
- Nb solidified when being reheated at a relatively high temperature is significantly finely educed to have the form of NbC during rolling to suppress recrystallization of austenite, thereby having an effect of refining a structure.
- Nb may be added in an amount of 0.005% or greater.
- generation of martensite-austenite in the HAZ may be facilitated to degrade brittle crack initiation resistance and cause a brittle crack in an edge of the steel material.
- an upper limit value of an Nb content may be limited to 0.04%.
- Ti is a component educed to be TiN when being reheated and inhibiting growth of the base material and a grain in the HAZ to greatly improve low temperature toughness.
- Ti may be added in an amount of 0.005% or greater.
- a Ti content may be limited to 0.005% to 0.04%.
- the Si content may be limited to 0.1% to 0.25%, and more specifically, to 0.1% to 0.2%.
- Cu is a main element used in improving hardenability and causing solid solution strengthening to enhance strength of the steel material.
- Cu is a main element used in increasing yield strength through the generation of an epsilon Cu precipitate when tempering is applied.
- Cu may be added in an amount of 0.1% or greater.
- an upper limit value of a Cu content may be limited to 0.8%.
- the Cu content may be limited to 0.2% to 0.6%, and more specifically, to 0.25% to 0.5%.
- Contents of Cu and Ni may be set such that the weight ratio of Cu to Ni may be 0.8 or less, and in more detail, 0.6 or less. More specifically, the weight ratio of Cu to Ni may be limited to 0.5 or less.
- Al is a component functioning as a deoxidizer.
- an inclusion may be formed to degrade toughness.
- an Al content may be limited to 0.005% to 0.05%.
- a residual component of an exemplary embodiment is iron (Fe) .
- a microstructure of a central portion includes, by area%, a mixed phase of acicular ferrite and granular bainite in an amount of 70% or greater, upper bainite in an amount of 20% or less, and one or more selected from a group consisting of ferrite, pearlite, and martensite-austenite (MA), as residual components; a circle-equivalent diameter of an effective grain of the upper bainite having a high angle grain boundary of 15° or greater measured using an electron backscatter diffraction (EBSD) method being 15 ⁇ m or less; a microstructure in a region at a depth of 2 mm or less, directly below a surface, includes, by area%, ferrite in an amount of 20% or greater and one or more of bainite and martensite as residual components; and a heat affected zone (HAZ) formed during welding includes, by area%, martensite-austenite (MA) in an amount of 5% or less.
- EBSD electron backscatter diffraction
- the fraction of the mixed phase of acicular ferrite and granular bainite may be 75% or greater, and more specifically, may be limited to 80% or greater.
- a fraction of acicular ferrite may be 20% to 70%.
- the fraction of acicular ferrite may be limited to 30% to 50%, and more specifically, to 30% to 40%.
- a fraction of granular bainite may be 10% to 60%.
- the fraction of granular bainite may be limited to 20% to 50%, and more specifically, to 30% to 50%.
- a microcrack may be generated in a front end of a crack during brittle crack propagation, thereby degrading brittle crack arrestability.
- the fraction of upper bainite in the central portion may be 20% or less.
- the fraction of upper bainite may be limited to 15% or less, and more specifically, to 10% or less.
- the circle-equivalent diameter of the effective grain of upper bainite in the central portion having a high angle grain boundary of 15° or greater measured using an EBSD method exceeds 15 ⁇ m, there is a problem in which a crack may be easily generated despite a relatively low fraction of upper bainite.
- the circle-equivalent diameter of the effective grain of upper bainite in the central portion may be 15 ⁇ m or less.
- the fraction of ferrite may be limited to 30% or greater, and more specifically, to 40% or greater.
- Ferrite in the microstructure in the central portion and the surface portion refers to polygonal ferrite or elongated polygonal ferrite.
- the fraction of martensite-austenite in the HAZ may be 5% or less.
- Welding heat input during welding may be 0.5 kJ/mm to 10 kJ/mm.
- the steel material may have yield strength of 460 MPa or greater.
- the steel material have a thickness of 50 mm or greater, and in detail, a thickness of 50 mm to 100 mm.
- the method of manufacturing a high-strength steel material having excellent brittle crack arrestability and welding zone brittle crack initiation resistance comprises rough rolling a slab at a temperature of 900°C to 1100°C after reheating the slab at 1000°C to 1100°C, including, by wt%, C: 0.05% to 0.09%, Mn: 1.5% to 2.2%, Ni: 0.3% to 1.2%, Nb: 0.005% to 0.04%, Ti: 0.005% to 0.04%, Cu: 0.1% to 0.8%, Si: 0.05% to 0.3%, Al: 0.005% to 0.05%, P: 100 ppm or less, S: 40 ppm or less, Fe as a residual component thereof, and inevitable impurities; obtaining a steel sheet by finish rolling a bar obtained from the rough rolling a slab, at a temperature in a range of Ar 3 + 60°C to Ar 3 °C, based on a temperature of a central portion; and cooling the steel sheet to 500°
- a slab is reheated before rough rolling.
- a reheating temperature of the slab may be 1000°C or higher so that a carbonitride of Ti and/or Nb, formed during casting, may be solidified.
- an upper limit value of the reheating temperature may be 1100°C.
- a reheated slab is rough rolled.
- a rough rolling temperature may be a temperature Tnr at which recrystallization of austenite is halted, or higher. Due to rolling, a cast structure, such as a dendrite formed during casting, may be destroyed, and an effect of reducing a size of austenite may also be obtained. In order to obtain the effect, the rough rolling temperature may be limited to 900°C to 1100°C.
- the rough rolling temperature may be 950°C to 1050°C.
- a reduction ratio per pass of three final passes during rough rolling may be 5% or greater, and a total cumulative reduction ratio may be 40% or greater.
- the reduction ratio per pass may be 7% to 20%.
- the total cumulative reduction ratio may be 45% or greater.
- the reduction ratio per pass of the three final passes may be limited to 5% or greater.
- the total cumulative reduction ratio during rough rolling may be set to be 40% or greater.
- the strain rate may be limited to 2/sec or lower, thereby refining the grain size of the central portion.
- generation of acicular ferrite and granular bainite may be facilitated.
- a relatively large amount of strain bands may be generated in austenite to secure a relatively large number of ferrite nucleation sites, thereby obtaining an effect of securing a fine structure in the central portion of a steel material.
- a cumulative reduction ratio during finish rolling may be maintained to be 40% or greater.
- the reduction ratio per pass, not including skin pass rolling, may be maintained to be 4% or greater.
- the grain size of the central portion of the bar in a thickness direction after rough rolling before finish rolling may be 150 ⁇ m or less, in detail, 100 ⁇ m or less, and more specifically, 80 ⁇ m or less.
- the grain size of the central portion of the bar in a thickness direction after rough rolling before finish rolling may be controlled depending on a rough rolling condition, or the like.
- the reduction ratio during finish rolling may be set such that a ratio of a slab thickness (mm) to a steel sheet thickness (mm) after finish rolling may be 3.5 or greater, and in detail, 4 or greater.
- an advantage of improving toughness of the central portion may be added by increasing yield strength/tensile strength, improving low temperature toughness, and decreasing the grain size of the central portion in the thickness direction through refinement of the final microstructure.
- the steel sheet may have a thickness of 50 mm or greater, and in detail, 50 mm to 100 mm.
- the steel sheet is cooled to a temperature of 500°C, or lower, after finish rolling.
- a microstructure may not be properly formed, so that sufficient yield strength may be difficult to secure. For example, yield strength of 460 MPa or greater may be difficult to secure.
- the cooling end temperature may be 400°C or lower.
- the steel sheet may be cooled at a cooling rate of the central portion of 2°C/s or higher.
- the cooling rate of the central portion of the steel sheet is lower than 2°C/s, the microstructure may not be properly formed, so that it may be difficult to secure sufficient yield strength. For example, yield strength of 460 MPa or greater may be difficult.
- a thickness of a bar having been rough rolled was 192 mm, while a grain size of a central portion after rough rolling before finish rolling, as illustrated in Table 2, was 66 ⁇ m to 82 ⁇ m.
- a reduction ratio of three final passes during rough rolling was within a range of 7.9% to 14.1%.
- a strain rate during rolling was within a range of 1.22/s to 1.68/s.
- finish rolling was performed at the reduction ratio per pass of 4.2% to 5.6% and at the cumulative reduction ratio of 50% at a temperature equal to a difference between a finish rolling temperature and an Ar 3 temperature, illustrated in Table 2 below to obtain a steel sheet having a thickness illustrated in Table 3 below, and then the steel sheet was cooled to a temperature of 241°C to 378°C at a cooling rate of the central portion of 3.8°C/sec to 5.0°C/sec.
- the Kca value in Table 4 below is a value evaluated by performing an ESSO test on the steel sheet.
- the CTOD value was a result in which a FCAW (1.0 kJ/mm) welding process is performed to carry out structure analysis and a CTOD test on the HAZ.
- Comparative Example 2 Comparative Steel 1 None 90 20.5 39.3 32(18.3) 8.2 59 Comparative Example 3 Comparative Steel 2 None 85 51.2 31 11.3(9.7 ) 6.5 52 Compa rativ e Examp le 4 Comparative Steel 3 None 80 16.8 32.1 43.8(17. 1) 7.3 36 Comparative Example 5 Comparative Steel 4 None 90 13.2 30.6 49.8(19. 0) 6.4 61 Comparative Example 6 Comparative Steel 5 None 75 37.5 41.6 13.7(13.
- the difference between the finish rolling temperature during finish rolling and the Ar 3 temperature was controlled to be 60°C or higher. Rolling was performed at a relatively high temperature, so that sufficient reduction was not applied to the central portion. In addition, cooling was started at a relatively high temperature, so that ferrite of 20% or greater was not generated in a surface portion. Thus, it can be confirmed that the Kca value measured at a temperature of -10°C may not exceed 6000 required in a steel material for shipbuilding of the related art.
- a C content had a value higher than an upper limit value of a C content of an exemplary embodiment. It can be confirmed that a relatively large amount of coarse upper bainite was generated in the central portion during rough rolling, so the Kca value measured at a temperature of -10° C was 6000 or less. It can be confirmed that a relatively large amount of martensite-austenite (MA) was also generated in the HAZ, so the CTOD value was 0.25 mm or less .
- MA martensite-austenite
- a Si content had a value higher than an upper limit value of a Si content of an exemplary embodiment. It can be confirmed that a relatively large amount of Si was added to generate a relatively large amount of an MA structure in the HAZ, so the CTOD value is 0.25 mm or less.
- an Ni content had a value higher than an upper limit value of an Ni content of an exemplary embodiment. It can be confirmed that due to a relatively high level of hardenability, a relatively large amount of upper bainite was generated in the central portion, thereby allowing the Kca value to be 6000 or less at a temperature of -10°C. However, it can be confirmed that due to a relatively high Ni content, the CTOD value was relatively high.
- an Nb and Ti content has a value higher than an upper limit value of an Nb and Ti content of an exemplary embodiment. It can be confirmed that an entirety of other conditions satisfies a condition suggested in an exemplary embodiment, but due to a relatively high Nb and Ti content, a relatively large amount of the MA structure is generated in the HAZ, thereby allowing the CTOD value to be 0.25 mm or less.
- a C and Mn content has a value lower than a lower limit value of a C and Mn content of an exemplary embodiment. It can be confirmed that due to a relatively low level of hardenability, a fraction of AF+GB in the central portion is significantly low, and a relatively large amount of polygonal ferrite and a pearlite structure of 10% or greater are present, thereby allowing the Kca value to be 6000 or less at a temperature of -10°C.
- AF + GB of a microstructure in the central portion was 70% or greater, a fraction of upper bainite in the central portion was 20% or less, a circle-equivalent diameter of an effective grain of upper bainite of the central portion having a high angle grain boundary of 15° or greater was 15 ⁇ m or less, and a fraction of the MA phase in the HAZ was less than 5%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150172689A KR101726082B1 (ko) | 2015-12-04 | 2015-12-04 | 취성균열전파 저항성 및 용접부 취성균열개시 저항성이 우수한 고강도 강재 및 그 제조방법 |
PCT/KR2016/014088 WO2017095175A1 (ko) | 2015-12-04 | 2016-12-02 | 취성균열전파 저항성 및 용접부 취성균열개시 저항성이 우수한 고강도 강재 및 그 제조방법 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3385401A4 EP3385401A4 (de) | 2018-10-10 |
EP3385401A1 true EP3385401A1 (de) | 2018-10-10 |
EP3385401B1 EP3385401B1 (de) | 2020-02-12 |
Family
ID=58580210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16871071.3A Active EP3385401B1 (de) | 2015-12-04 | 2016-12-02 | Hochfester stahl mit ausgezeichneter sprödbruchstabilität und schweissteilsprödbruchbeständigkeit und herstellungsverfahren dafür |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180363081A1 (de) |
EP (1) | EP3385401B1 (de) |
JP (1) | JP6648270B2 (de) |
KR (1) | KR101726082B1 (de) |
CN (1) | CN108368587B (de) |
WO (1) | WO2017095175A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113242910A (zh) * | 2018-12-19 | 2021-08-10 | 株式会社Posco | 具有优异的脆裂萌生抗力的超厚结构钢材及其制造方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019069771A1 (ja) * | 2017-10-03 | 2019-04-11 | 新日鐵住金株式会社 | 鋼板および鋼板の製造方法 |
KR101999015B1 (ko) | 2017-12-24 | 2019-07-10 | 주식회사 포스코 | 취성균열 전파 저항성이 우수한 구조용 강재 및 그 제조방법 |
KR102209561B1 (ko) * | 2018-11-30 | 2021-01-28 | 주식회사 포스코 | 취성균열전파 저항성이 우수한 극후물 강재 및 그 제조방법 |
ES2895456T3 (es) | 2018-12-11 | 2022-02-21 | Ssab Technology Ab | Producto de acero de alta resistencia y método de fabricación del mismo |
KR102200243B1 (ko) * | 2018-12-18 | 2021-01-07 | 주식회사 포스코 | 저온인성이 우수한 대입열 해양구조용강 용접이음부 |
JP7398970B2 (ja) * | 2019-04-22 | 2023-12-15 | 株式会社神戸製鋼所 | 厚鋼板およびその製造方法 |
KR102255818B1 (ko) * | 2019-06-24 | 2021-05-25 | 주식회사 포스코 | 내부식성이 우수한 고강도 구조용 강재 및 그 제조방법 |
KR102237486B1 (ko) * | 2019-10-01 | 2021-04-08 | 주식회사 포스코 | 중심부 극저온 변형시효충격인성이 우수한 고강도 극후물 강재 및 그 제조방법 |
KR102312510B1 (ko) * | 2019-12-17 | 2021-10-14 | 주식회사 포스코 | 내지연파괴 특성이 우수한 냉간압조용 선재, 부품 및 그 제조방법 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0674454B2 (ja) * | 1986-08-19 | 1994-09-21 | 新日本製鐵株式会社 | 低温靭性と溶接性に優れた厚手高張力鋼板の製造方法 |
US5470529A (en) * | 1994-03-08 | 1995-11-28 | Sumitomo Metal Industries, Ltd. | High tensile strength steel sheet having improved formability |
JP3474661B2 (ja) * | 1995-01-24 | 2003-12-08 | 新日本製鐵株式会社 | 亀裂伝播停止特性に優れた耐サワー鋼板 |
JPH10183241A (ja) * | 1996-12-25 | 1998-07-14 | Nippon Steel Corp | 溶接性および低温靭性の優れた低降伏比高張力鋼の製造方法 |
JP4445161B2 (ja) * | 2001-06-19 | 2010-04-07 | 新日本製鐵株式会社 | 疲労強度に優れた厚鋼板の製造方法 |
KR20090006987A (ko) * | 2007-07-13 | 2009-01-16 | 삼성전자주식회사 | 잉크젯 화상형성장치 |
KR100957964B1 (ko) * | 2007-12-26 | 2010-05-17 | 주식회사 포스코 | 용접열영향부의 저온인성과 인장강도가 우수한 고강도저항복비 구조용 강재 및 그 제조방법 |
JP5348386B2 (ja) * | 2008-10-24 | 2013-11-20 | Jfeスチール株式会社 | 低降伏比かつ耐脆性亀裂発生特性に優れた厚肉高張力鋼板およびその製造方法 |
KR20100067509A (ko) * | 2008-12-11 | 2010-06-21 | 주식회사 포스코 | 용접열영향부 ctod 특성이 우수한 해양구조용 강판의 제조방법 |
KR101360737B1 (ko) * | 2009-12-28 | 2014-02-07 | 주식회사 포스코 | 취성 균열 발생 저항성이 우수한 고강도 강판 및 그 제조방법 |
KR20120075274A (ko) * | 2010-12-28 | 2012-07-06 | 주식회사 포스코 | 극저온 인성이 우수한 고강도 강판 및 그 제조방법 |
KR20120097160A (ko) * | 2011-02-24 | 2012-09-03 | 현대제철 주식회사 | 고장력 강판 및 그 제조 방법 |
JP5522084B2 (ja) * | 2011-02-24 | 2014-06-18 | 新日鐵住金株式会社 | 厚鋼板の製造方法 |
JP5612532B2 (ja) * | 2011-04-26 | 2014-10-22 | 株式会社神戸製鋼所 | 低温靭性および溶接継手破壊靭性に優れた鋼板およびその製造方法 |
CN102154587B (zh) * | 2011-05-25 | 2013-08-07 | 莱芜钢铁集团有限公司 | 一种大线能量焊接用管线钢及其制造方法 |
CN102851591B (zh) * | 2011-06-28 | 2016-01-13 | 鞍钢股份有限公司 | 一种高强高韧性船用低温钢及其制造方法 |
JP5733425B2 (ja) * | 2011-12-27 | 2015-06-10 | Jfeスチール株式会社 | 脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法 |
KR20150112489A (ko) * | 2014-03-28 | 2015-10-07 | 현대제철 주식회사 | 강재 및 그 제조 방법 |
CN104789898A (zh) * | 2015-05-07 | 2015-07-22 | 湖南华菱湘潭钢铁有限公司 | 一种超高强度止裂厚钢板的生产方法 |
-
2015
- 2015-12-04 KR KR1020150172689A patent/KR101726082B1/ko active IP Right Grant
-
2016
- 2016-12-02 WO PCT/KR2016/014088 patent/WO2017095175A1/ko active Application Filing
- 2016-12-02 JP JP2018522789A patent/JP6648270B2/ja active Active
- 2016-12-02 CN CN201680070390.7A patent/CN108368587B/zh active Active
- 2016-12-02 US US15/780,175 patent/US20180363081A1/en not_active Abandoned
- 2016-12-02 EP EP16871071.3A patent/EP3385401B1/de active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113242910A (zh) * | 2018-12-19 | 2021-08-10 | 株式会社Posco | 具有优异的脆裂萌生抗力的超厚结构钢材及其制造方法 |
JP2022514019A (ja) * | 2018-12-19 | 2022-02-09 | ポスコ | 脆性亀裂開始抵抗性に優れた構造用極厚物鋼材及びその製造方法 |
EP3901309A4 (de) * | 2018-12-19 | 2022-03-09 | Posco | Ultradicker strukturstahl mit ausgezeichneter sprödbruchbeständigkeit und verfahren zu seiner herstellung |
Also Published As
Publication number | Publication date |
---|---|
EP3385401A4 (de) | 2018-10-10 |
EP3385401B1 (de) | 2020-02-12 |
KR101726082B1 (ko) | 2017-04-12 |
JP6648270B2 (ja) | 2020-02-14 |
JP2019502018A (ja) | 2019-01-24 |
CN108368587B (zh) | 2020-05-26 |
WO2017095175A1 (ko) | 2017-06-08 |
US20180363081A1 (en) | 2018-12-20 |
CN108368587A (zh) | 2018-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3385401B1 (de) | Hochfester stahl mit ausgezeichneter sprödbruchstabilität und schweissteilsprödbruchbeständigkeit und herstellungsverfahren dafür | |
EP3385402B1 (de) | Hochfester stahl mit ausgezeichneter sprödbruchstabilität und schweissteile mit sprödbruchstabilität und herstellungsverfahren dafür | |
KR100957970B1 (ko) | 후물 고강도 고인성 강판 및 그 제조방법 | |
EP2729590B1 (de) | Heissgewalzter hochfester bandstahl mit verbesserter haz-weichmacherbeständigkeit und herstellungsverfahren für diesen stahl | |
EP3239332B1 (de) | Hochfester stahl mit hervorragender sprödbruchstablität und herstellungsverfahren dafür | |
EP3239330B1 (de) | Hochfester stahl mit hervorragender sprödbruchstablität und herstellungsverfahren dafür | |
EP3561111B1 (de) | Dickes stahlblech mit hervorragender kryogener schlagfestigkeit und herstellungsverfahren dafür | |
CN109983146B (zh) | 低屈强比超高强度钢材及其制造方法 | |
CN109923237B (zh) | 具有优异的抗氢致开裂性的压力容器钢及其制造方法 | |
EP3239331B1 (de) | Hochfester stahl mit hervorragender sprödbruchstablität und herstellungsverfahren dafür | |
KR102255821B1 (ko) | 저온 충격인성이 우수한 고강도 극후물 강재 및 이의 제조방법 | |
JP6984319B2 (ja) | 靭性に優れた低温用ニッケル含有鋼板およびその製造方法 | |
CN108474090B (zh) | 低屈强比高强度钢材及其制造方法 | |
EP3395998B1 (de) | Dicke stahlplatte mit hervorragender tieftemperaturzähigkeit und wasserstoffinduzierter rissbeständigkeit sowie verfahren zur herstellung davon | |
EP3872219A1 (de) | Hochfester stahl mit ausgezeichneter beständigkeit gegen sulfidspannungsrissbildung und verfahren zu seiner herstellung | |
EP3467130B1 (de) | Stahlplatte mit hoher zugfestigkeit und ausgezeichneter tieftemperaturzähigkeit | |
KR102209547B1 (ko) | 취성균열개시 저항성이 우수한 구조용 극후물 강재 및 그 제조방법 | |
KR102237486B1 (ko) | 중심부 극저온 변형시효충격인성이 우수한 고강도 극후물 강재 및 그 제조방법 | |
KR101989235B1 (ko) | Tmcp 강재 및 그 제조 방법 | |
KR101715485B1 (ko) | 고강도 후판 및 그 제조 방법 | |
KR20150125142A (ko) | 열연강판 및 그 제조 방법 | |
KR19990042047A (ko) | 강도 및 저온 충격인성이 우수한 500㎫급 고장력 후판의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180605 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180725 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: POSCO |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 8/02 20060101ALI20190725BHEP Ipc: C22C 38/14 20060101ALI20190725BHEP Ipc: C22C 38/08 20060101ALI20190725BHEP Ipc: C22C 38/04 20060101ALI20190725BHEP Ipc: C22C 38/12 20060101ALI20190725BHEP Ipc: C21D 9/46 20060101ALI20190725BHEP Ipc: C22C 38/02 20060101ALI20190725BHEP Ipc: C22C 38/06 20060101ALI20190725BHEP Ipc: C22C 38/16 20060101AFI20190725BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190904 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1232201 Country of ref document: AT Kind code of ref document: T Effective date: 20200215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016029838 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200512 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200612 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200512 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200705 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016029838 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1232201 Country of ref document: AT Kind code of ref document: T Effective date: 20200212 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20201113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201202 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602016029838 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG-SI, KR Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR Ref country code: DE Ref legal event code: R081 Ref document number: 602016029838 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG- SI, KR Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR Ref country code: DE Ref legal event code: R081 Ref document number: 602016029838 Country of ref document: DE Owner name: POSCO HOLDINGS INC., KR Free format text: FORMER OWNER: POSCO, POHANG-SI, GYEONGSANGBUK-DO, KR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20221027 AND 20221102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602016029838 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG-SI, KR Free format text: FORMER OWNER: POSCO HOLDINGS INC., SEOUL, KR Ref country code: DE Ref legal event code: R081 Ref document number: 602016029838 Country of ref document: DE Owner name: POSCO CO., LTD, POHANG- SI, KR Free format text: FORMER OWNER: POSCO HOLDINGS INC., SEOUL, KR |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231120 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231121 Year of fee payment: 8 Ref country code: DE Payment date: 20231120 Year of fee payment: 8 |