EP3382300B1 - Zyklussystem zum heizen und/oder kühlen sowie heiz- und/oder kühlbetriebsverfahren - Google Patents
Zyklussystem zum heizen und/oder kühlen sowie heiz- und/oder kühlbetriebsverfahren Download PDFInfo
- Publication number
- EP3382300B1 EP3382300B1 EP17164213.5A EP17164213A EP3382300B1 EP 3382300 B1 EP3382300 B1 EP 3382300B1 EP 17164213 A EP17164213 A EP 17164213A EP 3382300 B1 EP3382300 B1 EP 3382300B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- heat exchanger
- cycle system
- bypass passage
- connection point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 44
- 238000001816 cooling Methods 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 19
- 239000003507 refrigerant Substances 0.000 claims description 91
- 239000007788 liquid Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 4
- 239000003570 air Substances 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0403—Refrigeration circuit bypassing means for the condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/05—Compression system with heat exchange between particular parts of the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/16—Receivers
Definitions
- the present invention relates to a cycle system for heating and/or cooling and a heating and/or cooling operation method, in particular for partial and low heat load operation.
- a well known problem in cooling or heating operations is that an air-to-water heat pump becomes oversized when working at low heat load even though the compressor is running at its minimum frequency. This especially occurs in tight and well-insulated houses where heat pumps work at a very low water flow temperature.
- An air-to-water heat pump is generally controlled to keep a supply flow temperature at target value, and the supply flow temperature is controlled by changing the frequency of the compressor. If the heat load is lower than the minimum capacity with minimum frequency of the compressor, the heat pump stops running because the supply flow temperature rises above the threshold of detecting overheating and restarts after the supply flow temperature has fallen below the threshold of restarting. This results in the heat pump cycling on and off frequently, deteriorating efficiency, shortening system life and increasing electricity costs for end-users.
- the hot-gas-bypass circuit is connected to the evaporator outlet to either control the evaporator cooling capacity (i.e. outlet bypass circuit) or defrost evaporator (as described in US 6584794B2 ) or prevent freezing of the condenser in the reverse cycle-based defrost cycle (as described in WO 2011/092802 ).
- Document US 2005/0081545 A1 discloses a cycle system for heating and/or cooling according to the preamble of claim 1.
- This document describes an ice cube-making machine that has a noiseless operation at the location where ice cubes are dispensed and be lightweight packages for ease of installation.
- the ice cube-making machine further has an evaporator package, a separate compressor package and a separate condenser package. Each of these packages has a weight that can generally by handled by one or two installers for ease of installation.
- the noisy compressor and condenser packages can be located remotely of the evaporator package.
- a different configuration of a hot-gas-bypass is used to prevent the evaporator from freezing and going off on low pressure by connecting the hot gas-bypass circuit with the evaporator inlet (i.e. inlet bypass circuit).
- inlet bypass circuit For heating application using air source heat pump, both inlet and outlet bypass circuits can be used.
- an inlet bypass circuit enables the heat pump to run at partial or low heat load by bypassing the refrigerant over the condenser during the normal heating operation.
- an auxiliary expansion valve is arranged in the bypass circuit in order to expand hot-gas from the high pressure at compressor discharge to the low-pressure at evaporator inlet.
- This configuration is similar to the bypass-circuit described in JP 4799252 , which is connected after the main expansion valve.
- Another configuration of a bypass circuit is to connect the bypass circuit with the main circuit before the main expansion valve which is similar to the configuration described in JP 2005-300008 .
- a problem of the bypass circuit configurations in the prior art is that high-pressure refrigerant at vapour state (i.e. hot gas) is injected directly from the compressor discharge into the main circuit either after the main expansion valve (bypass-circuit in JP 4799252 ) or before the main expansion valve (bypass circuit JP 2005-300008 ).
- Both bypass circuit configurations cause an increase of refrigerant dryness at the evaporator inlet. This means that the composition of the refrigerant fed into the evaporator exhibits a higher fraction of vapour and causes less heat exchange between the refrigerant inside the evaporator tubes and the ambient air outside the evaporator tubes. This results in the problem that heat transfer efficiency of the evaporator is downgraded.
- the problem to be solved by the present invention is therefore to provide a cycle system for heating and/or cooling and a heating and/or cooling operation method in which the heat transfer efficiency of the evaporator is not downgraded when a part of the refrigerant is bypassed under a low heat load condition wherein the heat load is less than the minimum capacity of the cycle system.
- the cycle system for heating and/or cooling comprises a main circuit for circulating a refrigerant having a compressor, a condenser, a first expansion valve and an evaporator, which are sequentially connected in a flow direction of the refrigerant, and a bypass passage for bypassing a first refrigerant part around the condenser, wherein the bypass passage is connected to the main circuit in a first and a second connection point, wherein the first connection point is arranged between a compressor outlet and a condenser inlet and the second connection point is arranged between a condenser outlet and an evaporator inlet.
- the cycle system for heating and/or cooling is characterized in that the bypass passage includes an internal heat exchanger for exchanging heat between the first refrigerant part and a second refrigerant part, wherein the second refrigerant part is branched off from and fed back into the main circuit between the evaporator outlet and the compressor inlet, and a second expansion valve sequentially connected in the flow direction of the refrigerant, and in that the main circuit further comprises a liquid receiver, which is arranged in the second connection point and connected to the bypass passage or between the second connection point and the evaporator inlet.
- the cycle system for heating and/or cooling according to the present invention enables to condense hot gas in the bypass passage using an internal heat exchanger before mixing the condensed refrigerant of the main circuit at either the condenser outlet or liquid receiver. Due to bypassing a part of the refrigerant over the condenser, the heat capacity is decreased while the compressor is still running at its minimum frequency. This results in a supply flow temperature below the threshold for stopping the compressor.
- the first expansion valve is the main expansion device of the main cycle
- the second expansion valve functions as a bypass passage controlling device for modulating the mass flow rate of the first refrigerant part.
- the first expansion valve is arranged between the second connection point and the evaporator inlet or between the condenser outlet and the second connection point.
- the cycle system according to the present invention might be further modified such that the first expansion valve is arranged between the second connection point and the evaporator inlet, and the main circuit further comprises an additional third expansion valve which is arranged between the condenser outlet and the second connection point.
- the third expansion valve may be used to fine tune the flow rate of the refrigerant together with the second expansion valve.
- the internal heat exchanger comprises at least a first flow channel for conducting the first refrigerant part and a second flow channel for conducting the second refrigerant part.
- the internal heat exchanger is a double-pipe heat exchanger, a twisted-coil-type heat exchanger, a counter-flow heat exchanger, a parallel-flow heat exchanger and/or a heat exchanger comprising or consisting of micro-channels and/or micro-fins on both heat exchange surfaces.
- the internal heat exchanger comprises a feed line for feeding the second refrigerant part into the internal heat exchanger, wherein the feed line comprises a first solenoid valve to control a feed flow of the second refrigerant part.
- the internal heat exchanger comprises a feed line for feeding the second refrigerant part into the internal heat exchanger and a discharge line for feeding back the second refrigerant part into the main circuit, wherein the feed line and the discharge line are connected to the main circuit in a third and fourth connection point, respectively, and wherein the main circuit comprises a second solenoid valve arranged between the third and fourth connection point for opening and closing the section of the main circuit A between the third and fourth connection point and/or for controlling a flow of the refrigerant between the third and fourth connection point.
- the condenser is a refrigerant-water heat exchanger or a refrigerant-air heat exchanger and the evaporator is a refrigerant-air heat exchanger.
- the main circuit comprises a four-way valve arranged between the compressor outlet and the condenser inlet for switching the cycle system between heating operation and cooling operation.
- the invention also includes a heating and/or cooling operation method performed by the above-described cycle system for heating and/or cooling.
- the heating and/or cooling operation method is characterized in that the bypass passage is activated and/or deactivated when one or more predetermined conditions are met.
- the bypass passage is activated by opening the second expansion valve and deactivated by closing the second expansion valve.
- the bypass passage is activated when a number of compressor restarts for a predetermined time interval is higher than a predetermined threshold number, and the bypass passage is deactivated when a room temperature is lower than a predetermined threshold room temperature.
- an opening of the second expansion valve is increased when the bypass passage is activated, the compressor runs at a predetermined minimum frequency and a supply flow temperature of the refrigerant is higher than a first predetermined threshold temperature, and the opening of the second expansion valve is decreased when the bypass passage is activated, the compressor runs at a predetermined minimum frequency and a supply flow temperature of the refrigerant is lower than a second predetermined threshold temperature.
- an average heat supply for a predetermined interval is calculated, a minimum capacity under an operated supply flow temperature and ambient temperature conditions is calculated, and the bypass passage is activated when the average heat supply is lower than the minimum capacity.
- an opening of the second expansion valve is increased by the same percentage as by which the average heat supply is lower than the minimum capacity.
- the cycle system for heating and/or cooling comprises a main cycle A for circulating a refrigerant having a compressor 1 with compressor inlet 1a and outlet 1b, a condenser with condenser inlet 2a and outlet 2b, a first expansion valve LEV-A, a third expansion valve LEV-B, an evaporator 3 with evaporator inlet 3a and outlet 3b, a liquid receiver 5 with liquid receiver inlet 5a and outlet 5b, a second solenoid valve 9 and a four-way valve which are sequentially connected in a flow direction of the refrigerant flowing through the main circuit.
- a main cycle A for circulating a refrigerant having a compressor 1 with compressor inlet 1a and outlet 1b, a condenser with condenser inlet 2a and outlet 2b, a first expansion valve LEV-A, a third expansion valve LEV-B, an evaporator 3 with evaporator inlet 3a and outlet 3b, a liquid receiver 5 with liquid receiver
- the cycle system comprises a bypass passage for bypassing a first refrigerant part over the condenser 2.
- the bypass passage is connected to the main circuit via connection points P1 and P2.
- Connection point P1 is arranged between the compressor outlet 1b and the condenser inlet 2a.
- Connection point P2 is arranged between the third expansion valve LEV-B and the liquid receiver inlet 5a.
- the bypass passage B includes an internal heat exchanger 4 and a second expansion valve LEV-C which are sequentially connected in the flow direction of the first refrigerant part.
- the internal heat exchanger 4 has at least two flow channels, wherein the first flow channel forms a section of the bypass passage B with first internal heat exchanger inlet 4a and first outlet 4b and conducts the first refrigerant part.
- the second channel extends from a second internal heat exchanger inlet 4c to a second internal heat exchanger outlet 4d and conducts a second refrigerant part which is branched off from and fed back into the main circuit A between the evaporator outlet 3b and the compressor inlet 1a.
- the second internal heat exchanger inlet 4c is connected via a feed line 6 with the main circuit A in connection point P3.
- the second internal heat exchanger outlet 4d is connected via a discharge line 8 with the main circuit A in connection point P4.
- Connection point P3 is arranged between the evaporator outlet 3b and the compressor inlet 1a.
- Connection point P4 is arranged between connection point P3 and the compressor inlet 1a.
- the feed line 6 includes a first solenoid valve 7.
- the condenser 2 is a water-refrigerant heat exchanger and functions as an indoor heater, whereas the evaporator 3 is an air-refrigerant heat exchanger functioning as a cooler.
- the internal heat exchanger 4 is a refrigerant-refrigerant heat exchanger, wherein heat is transferred from the bypassed first refrigerant part to the branched off second refrigerant part.
- the internal heat exchanger 4 is preferably a counter-flow or parallel-flow heat exchanging device with hot-gas refrigerant flowing through the first channel and cold-gas or vapor refrigerant escaping from the evaporator outlet 3b flowing through the second channel.
- the first expansion valve LEV-A is the main expansion valve of the main circuit A for expanding the refrigerant before entering the evaporator 3.
- the second expansion valve LEV-C expands the first refrigerant part flowing trough the bypass passage and can be used to control the flow rate of the first refrigerant part.
- the third expansion valve LEV-B is used to fine tune the flow rates of the refrigerant flowing through the main circuit A and the bypass passage B.
- the first solenoid valve 7 is used to open and close the feed line 6 as well as to control the flow rate of the second refrigerant part through the feed line 6, the second channel of the internal heat exchanger 4 and the discharge line 8.
- the second solenoid valve 9 is used to open and close the section of the main circuit A between connection points P3 and P4 as well as to control a flow of the refrigerant in this section of the main circuit A.
- the four-way valve 10 is used to switch between a heating operation and a cooling operation of the cycle system.
- the connection point P1 of the main circuit A and the bypass passage B can be either before or after the four-way valve 10 in the flow direction of the refrigerant.
- the hot compressed refrigerant which is discharged at compressor outlet 1b passes the four-way valve 10.
- a first refrigerant part is branched off into the bypass passage B.
- the high-pressure hot gas refrigerant enters the condenser 2 where it is cooled and condensed emitting heat to an indoor heater.
- the condensed refrigerant is expanded by expansion valve LEV-B and collected as low-pressure cold liquid refrigerant in the liquid receiver 5.
- the high-pressure hot gas first refrigerant part passes the first channel of the internal heat exchanger 4 where it is cooled and condensed.
- the cooling is effected by the low-pressure cold gas second refrigerant part branched off at the evaporator outlet 3b and flowing through the second channel of the internal heat exchanger.
- the condensed first refrigerant part is expanded by expansion valve LEV-C and collected as low-pressure cold liquid refrigerant in the liquid receiver 5.
- the cold liquid refrigerant discharged from the liquid receiver 5 is further expanded by expansion valve LEV-A and enters the evaporator 3.
- the cold liquid refrigerant is evaporized and discharged as low-pressure cold gas refrigerant.
- the second refrigerant is branched off from the main circuit A to be circulated through the internal heat exchanger 4.
- connection point P4 the branched off second refrigerant part, which has been heated up due to the heat exchange with the first refrigerant part in the internal heat exchanger 4, is fed back into the main circuit A.
- the hot gas first refrigerant part is cooled down and condensed in the internal heat exchanger before being expanded in the expansion valve LEV-C to reduce its pressure from the discharge pressure of the compressor 1 to the pressure of the liquid receiver 5.
- the refrigerant which reaches the condenser 2 at a lower flow rate causes a reduction of heating capacity below the minimum capacity of the main circuit A, which is the cycle system without the bypass passage B. This enables the compressor 1 to run continuously without on-off cycling at low heat load.
- the hot gas first refrigerant part in the bypass passage B is condensed before merging with the refrigerant in the main circuit A.
- the condensed refrigerant is collected before fed into the evaporator 3. Due to connecting the bypass passage outlet with the liquid receiver 5 via the main circuit A, excess gas can be stored in the liquid receiver 5 even if the hot gas is not completely condensed. This prevents refrigerant dryness at evaporator inlet from being increased as occurs in the conventional bypass circuit in the prior art, and a reduction of heat transfer efficiency at evaporator 3 can be avoided. Furthermore, due to being heated by the bypassed hot gas first refrigerant part in internal heat exchanger 4, the temperature of the refrigerant coming from the evaporator outlet 3b is increased before reaching the compressor inlet 1a. This helps to increase a superheat degree at the compressor inlet 1a protecting compressor 1 from sucking refrigerant liquid.
- Figure 2 shows a diagram with a sequence of starting and ending a bypass passage operation of the cycle system according to the first embodiment. It is known that supplied heat of cycle systems as in the present invention is controlled based on a temperature difference between a target flow temperature and a measured flow temperature.
- the target flow temperature T target_flow is also determined by an ambient temperature or a temperature difference between a set room temperature and a measured room temperature.
- a frequency range of the compressor is designed to avoid overloading, vibration etc. A maximum frequency is 120Hz and a minimum frequency is 30Hz, for example.
- the room temperature is used to terminate the bypass passage operation when heat load is required to be increased.
- the frequency is fixed at a minimum frequency during bypass passage activation.
- the cycle system as shown in figure 1 is operated in whole compressor frequency range as long as the measured flow temperature is below a target flow temperature.
- the compressor frequency is fixed to the minimum frequency.
- the bypass passage is activated when the measured flow temperature rises above the target flow temperature + ⁇ T 1 and remains activated as long as the measured room temperature is higher than the target room temperature - ⁇ T 2 .
- the bypass passage is deactivated.
- FIG. 3 A specific example of a heating operation carried out by the cycle system according to the first embodiment with the bypass passage is shown in figure 3 .
- This control is based on the control strategy in which the flow temperature and the number of compressor restarts within a predefined interval (5 times per hour for example) are used as a trigger for the bypass passage activation.
- the bypass passage needs to be deactivated to return to normal heat load mode.
- LEV-C is controlled within a predefined control interval, which is every 1 minute for example.
- a ratio of increment and decrement of valve openings is also predefined, which is 10% for example.
- step ST1 it is checked in step ST1, whether the compressor is running at a minimum frequency. If the answer is no (N), the cycle system remains in the normal cycle (i.e. without bypass passage). If the answer is yes (Y), it is checked in step ST2, whether the supply flow temperature is higher than the target flow temperature + ⁇ T 1 . If N, the system remains in the normal cycle. If Y, it is checked in ST3, whether the number of compressor restarts is above a threshold. If N, the system remains in the normal cycle. If Y, the bypass passage is activated and the system proceeds to a control loop including steps ST4 to ST10 for controlling the opening degree of the expansion valve LEV-C.
- step ST4 it is checked, whether the supply flow temperature is lower than a target flow temperature - ⁇ T 2 . If N, the system proceeds to step ST5. If Y, the system proceeds to step ST8. In step ST5, it is checked whether the supply flow temperature is higher than the target flow temperature + ⁇ T 1 . If N, the system proceeds to step ST10. If Y, the system proceeds to step ST6. In step ST6, it is checked whether expansion valve LEV-C is completely open. If Y, the system proceeds to step ST10. If N, the opening of LEV-C is increased (step ST7) and the system proceeds to step ST10.
- step ST8 it is checked, whether expansion valve LEV-C is completely closed. If Y, the system proceeds to step ST10. If N, the opening of LEV-C is decreased (step ST9) and the system proceeds to step ST10.
- step ST10 it is checked whether the room temperature is below the target room temperature - ⁇ T 3 . If N, the bypass passage remains activated and the system returns to step ST4. If Y, expansion valve LEV-C is closed deactivating the bypass passage and the system returns to the normal cycle operation.
- Figures 4 and 5 show a further preferred embodiment of a heating operation carried out by the cycle system of figure 1 .
- the control strategy is based on monitoring supplied heat from the cycle system. This supplied heat is compared with a minimum heat capacity of the cycle system derived from the performance map of the cycle system which is saved in a controller (not shown in figure 1 ) of the cycle system.
- the bypass cycle is started when the calculated average supplied heat within a predefined interval including ON/OFF cycle, 30 minutes for example, is below the minimum capacity of the cycle system at the same operating condition.
- LEV-C opening increases by reduction of supplied heat. For example, LEV-C opening increases by 10% when the supplied heat decreases by 10%.
- the performance map of the cycle system is built based on the cycle system capacity data at minimum frequency under different test conditions of water and ambient temperature.
- FIG. 5 shows a flow diagram of a heating operation according to the second embodiment of the cycle system of the present invention with bypass passage.
- step ST1 normal cycle (i.e. with bypass passage deactivated)
- step ST2 the current supplied heat and minimum capacity are calculated.
- step ST3 it is checked, whether the supplied heat is 10% lower than the minimum capacity. If Y, the system proceeds to step ST4. If N, the system proceeds to step ST6.
- step ST4 it is checked, whether the expansion valve LEV-C is completely open.
- step ST6 it is checked, whether expansion valve LEV-C is completely closed. If N, the opening of LEV-C is decreased and the system returns to step ST2. If Y, bypass passage is deactivated and the system operates in normal cycle.
- Figure 6 shows a third embodiment of the cycle system for heating and/or cooling according to the present invention.
- the internal heat exchanger 4 is reversely connected to the main circuit A.
- the first internal heat exchanger inlet 4a and outlet 4b are connected to the second channel of the internal heat exchanger 4 and the second internal heat exchanger inlet 4c and outlet 4d are connected to the first channel of the internal heat exchanger 4.
- feed line 6, discharge line 8 and solenoid valves 7 and 9 have been omitted in the cycle system of embodiment 3.
- the reversed connection of the internal heat exchanger 4 results in a reversed pressure level for the internal heat exchanger 4.
- the flow rate of the refrigerant is increased compared to the cycle system of the first embodiment.
- the performance of the internal heat exchanger 4 of figure 6 is changed due to the heat transfer coefficient changes.
- the internal heat exchanger 4 of embodiment 3 can be more compact than in embodiment 1.
- the liquid receiver 5 of the third embodiment has one more inlet 5c which enables to merge the refrigerant flows from the condenser 2 and the internal heat exchanger 4 inside the liquid receiver 5. This improves energy conservation within the cycle system.
- the cycle system according to the third embodiment is also configured to carry out the heating operation methods shown in figures 3 and 5 and the associated description.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Claims (15)
- Kreislaufsystem zum Erwärmen und/oder Kühlen, umfassend:einen Hauptkreislauf (A) zum Zirkulieren eines Kältemittels, aufweisend einen Verdichter (1), einen Kondensator (2), ein erstes Expansionsventil (LEV-A) und einen Verdampfer (3), die in einer Strömungsrichtung des Kältemittels sequentiell verbunden sind, undeinen Umleitungsdurchlass (B) zum Leiten eines ersten Kältemittelteils um den Kondensator (2), wobei der Umleitungsdurchlass (B) mit dem Hauptkreislauf (A) an einer ersten und einer zweiten Verbindungsstelle (P1, P2) verbunden ist, wobei die erste Verbindungsstelle (P1) zwischen einem Verdichterauslass (1b) und einem Kondensatoreinlass (2a) angeordnet ist und die zweite Verbindungsstelle (P2) zwischen einem Kondensatorauslass (2b) und einem Verdampfereinlass (3a) angeordnet ist,der Hauptkreislauf (A) ferner einen Flüssigkeitsauffangbehälter (5) umfasst, der an der zweiten Verbindungsstelle (P2) angeordnet und mit dem Umleitungsdurchlass oder zwischen der zweiten Verbindungsstelle (P2) und dem Verdampfereinlass (3a) verbunden ist, dadurch gekennzeichnet, dassder Umleitungsdurchlass (B) einen Innenwärmetauscher (4) zum Austauschen von Wärme zwischen dem ersten Kältemittelteil und einem zweiten Kältemittelteil, wobei der zweite Kältemittelteil zwischen dem Verdampferauslass (3b) und dem Verdichtereinlass (1a) vom Hauptkreislauf (A) abgezweigt und in diesen zurückgeführt wird, und ein zweites Expansionsventil (LEV-C), das in der Strömungsrichtung des Kältemittels sequentiell verbunden ist, aufweist.
- Kreislaufsystem nach dem vorangehenden Anspruch, wobei das erste Expansionsventil (LEV-A) zwischen der zweiten Verbindungsstelle (P2) und dem Verdampfereinlass (3a) oder zwischen dem Kondensatorauslass (2b) und der zweiten Verbindungsstelle (P2) angeordnet ist.
- Kreislaufsystem nach Anspruch 1, wobei das erste Expansionsventil (LEV-A) zwischen der zweiten Verbindungsstelle (P2) und dem Verdampfereinlass (3a) angeordnet ist, und der Hauptkreislauf (A) ferner ein drittes Expansionsventil (LEV-B) umfasst, das zwischen dem Kondensatorauslass (2b) und der zweiten Verbindungsstelle (P2) angeordnet ist.
- Kreislaufsystem nach einem der vorangehenden Ansprüche, wobei der Innenwärmetauscher (4) zumindest einen ersten Strömungskanal zum Führen des ersten Kältemittelteils und einen zweiten Strömungskanal zum Führen des zweiten Kältemittelteils umfasst.
- Kreislaufsystem nach einem der vorangehenden Ansprüche, wobei der Innenwärmetauscher (4) ein Doppelrohrwärmetauscher, ein verdrillter Wärmetauscher vom Spiraltyp, ein Gegenstömungswärmetauscher, ein Parallelströmungswärmetauscher und/oder ein Wärmetauscher ist, der Mikrokanäle und/oder Mikrolamellen auf beiden Wärmetauscheroberflächen umfasst oder aus diesen gebildet ist.
- Kreislaufsystem nach einem der vorangehenden Ansprüche, wobei der Innenwärmetauscher (4) eine Zuführleitung (6) zum Zuführen des zweiten Kältemittelteils in den Innenwärmetauscher (4) umfasst, wobei die Zuführleitung (6) ein erstes Magnetventil (7) umfasst, um einen Zulaufstrom des zweiten Kältemittelteils zu steuern.
- Kreislaufsystem nach einem der vorangehenden Ansprüche, wobei der Innenwärmetauscher (4) eine Zuführleitung (6) zum Zuführen des zweiten Kältemittelteils in den Innenwärmetauscher (4) und eine Abführleitung (8) zum Zurückführen des zweiten Kältemittelteils in den Hauptkreislauf (A) umfasst, wobei die Zuführleitung (6) und die Abführleitung (8) mit dem Hauptkreislauf (A) an einer dritten beziehungsweise vierten Verbindungsstelle (P3, P4) verbunden sind, und wobei der Hauptkreislauf (A) ein zweites Magnetventil (9) umfasst, das zwischen der dritten und vierten Verbindungsstelle (P3, P4) zum Steuern eines Kältemittelstroms zwischen der dritten und vierten Verbindungsstelle (P3, P4) angeordnet ist.
- Kreislaufsystem nach einem der vorangehenden Ansprüche, wobei der Kondensator (2) ein Kältemittel-Wasser-Wärmetauscher oder ein Kältemittel-Luft-Wärmetauscher ist und der Verdampfer (3) ein Kältemittel-Luft-Wärmetauscher ist.
- Kreislaufsystem nach einem der vorangehenden Ansprüche, wobei der Hauptkreislauf (A) ein Vierwegeventil (10) umfasst, das zwischen dem Verdichterauslass (1b) und dem Kondensatoreinlass (2a) angeordnet ist, um das Kreislaufsystem zwischen Erwärmungsbetrieb und Kühlungsbetrieb zu schalten.
- Erwärmungs- und/oder Kühlungsbetriebsverfahren, das durch das Kreislaufsystem gemäß einem der vorangehenden Ansprüche durchgeführt wird, wobei der Umleitungsdurchlass aktiviert und/oder deaktiviert wird, wenn eine oder mehr vorherbestimmte Bedingungen erfüllt sind.
- Erwärmungs- und/oder Kühlungsbetriebsverfahren nach dem vorangehenden Anspruch, wobei der Umleitungsdurchlass aktiviert wird durch Öffnen des zweiten Expansionsventils (LEV-C) und deaktiviert wird durch Schließen des zweiten Expansionsventils (LEV-C).
- Erwärmungsbetriebsverfahren nach einem der zwei vorangehenden Ansprüche, wobei
der Umleitungsdurchlass aktiviert wird, wenn eine Zahl der Verdichter-(1)-Neustarts für ein vorherbestimmtes Zeitintervall höher ist als eine vorherbestimmte Schwellenzahl, und wobei
der Umleitungsdurchlass deaktiviert wird, wenn eine Raumtemperatur niedriger ist als eine vorherbestimmte Schwellenraumtemperatur. - Erwärmungsbetriebsverfahren nach dem vorangehenden Anspruch, wobei
eine Öffnung des zweiten Expansionsventils (LEV-C) vergrößert wird, wenn der Umleitungsdurchlass aktiviert wird, der Verdichter (1) mit einer vorherbestimmten Mindestfrequenz läuft und eine Zufuhrströmungstemperatur des Kältemittels höher ist als eine erste vorherbestimmte Schwellentemperatur, und wobei
die Öffnung des zweiten Expansionsventils (LEV-C) verkleinert wird, wenn der Umleitungsdurchlass aktiviert wird, der Verdichter (1) mit einer vorherbestimmten Mindestfrequenz läuft und eine Zufuhrströmungstemperatur des Kältemittels niedriger ist als eine zweite vorherbestimmte Schwellentemperatur. - Erwärmungsbetriebsverfahren nach Anspruch 11, wobei
eine durchschnittliche Wärmezufuhr für ein vorherbestimmtes Intervall berechnet wird,
eine Mindestkapazität unter einer betriebenen Zufuhrströmungstemperatur und Umgebungstemperaturbedingungen berechnet wird, und
der Umleitungsdurchlass aktiviert wird, wenn die durchschnittliche Wärmezufuhr niedriger ist als die Mindestkapazität. - Erwärmungsbetriebsverfahren nach dem vorangehenden Anspruch, wobei eine Öffnung des zweiten Expansionsventils (LEV-C) um den gleichen Prozentanteil erhöht wird, um den die durchschnittliche Wärmezufuhr niedriger ist als die Mindestkapazität.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17164213.5A EP3382300B1 (de) | 2017-03-31 | 2017-03-31 | Zyklussystem zum heizen und/oder kühlen sowie heiz- und/oder kühlbetriebsverfahren |
JP2018062104A JP2018173260A (ja) | 2017-03-31 | 2018-03-28 | 暖房および/または冷房用の循環システムならびに暖房および/または冷房運転方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17164213.5A EP3382300B1 (de) | 2017-03-31 | 2017-03-31 | Zyklussystem zum heizen und/oder kühlen sowie heiz- und/oder kühlbetriebsverfahren |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3382300A1 EP3382300A1 (de) | 2018-10-03 |
EP3382300B1 true EP3382300B1 (de) | 2019-11-13 |
Family
ID=58464401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17164213.5A Active EP3382300B1 (de) | 2017-03-31 | 2017-03-31 | Zyklussystem zum heizen und/oder kühlen sowie heiz- und/oder kühlbetriebsverfahren |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3382300B1 (de) |
JP (1) | JP2018173260A (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7467827B2 (ja) * | 2019-03-08 | 2024-04-16 | 株式会社富士通ゼネラル | 空気調和機 |
KR102049026B1 (ko) * | 2019-04-12 | 2019-11-27 | 이항식 | 고효율 냉,난방기 |
CN114111087B (zh) * | 2020-08-26 | 2023-01-31 | 广东美的暖通设备有限公司 | 空调系统及其控制方法 |
CN114435060A (zh) * | 2020-10-30 | 2022-05-06 | 上海汉钟精机股份有限公司 | 低温高效制热的空调系统 |
KR102618118B1 (ko) * | 2023-04-11 | 2023-12-27 | (주)하이세이브아시아 | 냉동시스템의 냉매를 증압 순환시키는 냉매액 펌프의 흡입측에 낮은 온도의 냉매를 공급 순환시키기 위한 액상냉매 순환방법 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7017353B2 (en) * | 2000-09-15 | 2006-03-28 | Scotsman Ice Systems | Integrated ice and beverage dispenser |
CN100416191C (zh) * | 2000-09-15 | 2008-09-03 | 迈尔高装备公司 | 安静的制冰设备 |
JP4463466B2 (ja) | 2001-07-06 | 2010-05-19 | 株式会社デンソー | エジェクタサイクル |
JP2005300008A (ja) | 2004-04-12 | 2005-10-27 | Matsushita Electric Ind Co Ltd | ヒートポンプ給湯装置 |
JP4799252B2 (ja) | 2006-04-06 | 2011-10-26 | サンデン株式会社 | 空調装置 |
KR101552618B1 (ko) * | 2009-02-25 | 2015-09-11 | 엘지전자 주식회사 | 공기 조화기 |
EP2530410B1 (de) * | 2010-01-26 | 2018-05-30 | Mitsubishi Electric Corporation | Wärmepumpenvorrichtung |
-
2017
- 2017-03-31 EP EP17164213.5A patent/EP3382300B1/de active Active
-
2018
- 2018-03-28 JP JP2018062104A patent/JP2018173260A/ja active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3382300A1 (de) | 2018-10-03 |
JP2018173260A (ja) | 2018-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3382300B1 (de) | Zyklussystem zum heizen und/oder kühlen sowie heiz- und/oder kühlbetriebsverfahren | |
EP3062031B1 (de) | Klimaanlage | |
EP1967801B1 (de) | Heißwassersystem | |
EP2535674B1 (de) | Kältekreislaufvorrichtung und hydronisches Heizgerät mit Kältekreislaufvorrichtung | |
EP2924375B1 (de) | Kältekreislaufvorrichtung und warmwaterbereitungsvorrichtung damit | |
EP3696480A1 (de) | Klimatisierungsvorrichtung | |
EP2765370A1 (de) | Kühlgerät und Warmwassererzeuger | |
CN103180676A (zh) | 制冷循环装置及制冷循环控制方法 | |
EP3267130B1 (de) | Kältekreislaufvorrichtung | |
CN102419024A (zh) | 制冷循环装置和热水采暖装置 | |
JP6129520B2 (ja) | マルチ型空気調和機及びマルチ型空気調和機の制御方法 | |
EP2522934A2 (de) | Wärmespeichervorrichtung mit Kaskadenkreis und zugehöriges Steuerverfahren | |
EP2592367A2 (de) | Kühlzyklusvorrichtung und Heißwasser erzeugende Vorrichtung | |
EP3040643A1 (de) | Wärmepumpensystem und wärmepumpenwassererhitzer | |
EP2853838B1 (de) | Heißwassererzeuger | |
JP2012220072A (ja) | 冷凍サイクル装置及びそれを備えた温水暖房装置 | |
US20210207834A1 (en) | Air-conditioning system | |
EP3211350B1 (de) | Kältekreislaufvorrichtung sowie warmwasserbereitungsvorrichtung damit | |
JP6379769B2 (ja) | 空気調和装置 | |
US20090044557A1 (en) | Vapor compression system | |
EP2918921B1 (de) | Heisswassererzeuger | |
CN112739966A (zh) | 热泵装置 | |
JP2023509017A (ja) | 空気調和装置 | |
EP1781998B1 (de) | Kühlvorrichtung | |
EP3220078A1 (de) | Kältekreislaufvorrichtung sowie warmwasserbereitungsvorrichtung damit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190329 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190607 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1202079 Country of ref document: AT Kind code of ref document: T Effective date: 20191115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017008572 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200214 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200213 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200313 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200213 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200313 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017008572 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1202079 Country of ref document: AT Kind code of ref document: T Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20200814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191113 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240328 Year of fee payment: 8 Ref country code: GB Payment date: 20240319 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240326 Year of fee payment: 8 |