EP3377404A1 - Aircraft having a thermal insulation component - Google Patents

Aircraft having a thermal insulation component

Info

Publication number
EP3377404A1
EP3377404A1 EP16797544.0A EP16797544A EP3377404A1 EP 3377404 A1 EP3377404 A1 EP 3377404A1 EP 16797544 A EP16797544 A EP 16797544A EP 3377404 A1 EP3377404 A1 EP 3377404A1
Authority
EP
European Patent Office
Prior art keywords
aircraft
thermal insulation
insulation component
component
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16797544.0A
Other languages
German (de)
French (fr)
Inventor
Florian Kurfiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Airbus Defence and Space GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence and Space GmbH filed Critical Airbus Defence and Space GmbH
Publication of EP3377404A1 publication Critical patent/EP3377404A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/40Sound or heat insulation, e.g. using insulation blankets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/52Protection, safety or emergency devices; Survival aids
    • B64G1/58Thermal protection, e.g. heat shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64BLIGHTER-THAN AIR AIRCRAFT
    • B64B1/00Lighter-than-air aircraft
    • B64B1/40Balloons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles

Definitions

  • the present invention relates to an aircraft with a thermal insulation component. Furthermore, the invention relates to a method for operating such an aircraft.
  • temperature-sensitive components such as electronic components, in particular avionics components
  • avionics components at high altitudes Protecting low temperatures of up to -90 ° C.
  • HAPS High Altitude Pseudo Satellites
  • foamed insulation components made of styrofoam or the like, mirror films or with granules, such as. Airgel granules, filled vacuum insulation panels installed.
  • the present invention has for its object to provide an aircraft with a weight and at the same time performance optimized thermal insulation component.
  • the invention is also based on the object of specifying a method for operating such an aircraft.
  • An aircraft comprises at least one thermal insulation component which consists of a nanoporous material whose pore structure is designed to be open-pored such that, during flight operation of the aircraft, a pressure in the pores of the thermal insulation component is established which corresponds to the ambient pressure at the altitude of the aircraft.
  • an increase in the ratio between the mean free path of the gas molecules and the average pore diameter in a nanoporous material results in a reduction in the heat conduction of the gas, since the gas molecules then increasingly collide with the pore walls than with other gas molecules and thus their thermal Energy increasingly transferred to the solid phase of the nanoporous material.
  • Pore diameter can be effected by reducing the pressure of the gas in the pores of the nanoporous material.
  • the thermal insulation component of the aircraft in which for the realization of low thermal conductivities inside the panels contained granules are artificially evacuated and then sealed with corresponding outer shells relative to the ambient atmosphere, in the thermal insulation component of the aircraft, the lying well below the normal atmospheric pressure at sea level ambient pressure in the Flight altitude of the aircraft ge ⁇ uses to reduce the pressure of the gas in the pores of the nanoporous material and thereby the heat conduction of this gas.
  • the thermal insulation component therefore has optimized insulation properties for use under a reduced ambient pressure, without it being necessary to artificially generate a pressure in the insulation component that is lower than the normal atmospheric pressure at sea level and then to seal the insulation component from the ambient atmosphere.
  • the thermal insulation component can therefore be dispensed with an outer shell for sealing the insulation component relative to the ambient atmosphere.
  • the insulation component can therefore be made particularly lightweight.
  • damage caused in conventional vacuum insulation panels by mechanical damage of the outer shell can be avoided.
  • the thermal insulation component is insensitive to pressure fluctuations in the ambient atmosphere, since it is ensured by the structure of the insulating component and in particular its open porosity that always a pressure equalization takes place between the ambient atmosphere and the interior of the insulating component.
  • the thermal insulation component can therefore not only be used at altitudes over 20,000 m, where conventional vacuum insulation panels fail due to the remaining in spite of artificial evacuation and subsequent sealing residual pressure, since the panels due to the pressure difference between the present in their interior residual pressure and the low Bloat pressure of the ambient atmosphere.
  • the thermal insulation component can also be used in aircraft, such as planetary probes, which enter after a long residence time in a vacuum back into the atmosphere of a planet or moon and land there, that should remain in the atmosphere of.
  • the thermal insulation component of the aircraft contains an airgel.
  • Aerogels are characterized by their low weight and their nanoporous structure with open pores, which allows a pressure equalization between the ambient atmosphere and the gas inside the pores of the airgel.
  • the airgel may, for example, contain a solid phase content of not more than 10% by volume.
  • silica aerogels and the solid phase has a comparatively low thermal conductivity.
  • the thermal insulation component contains a polymer airgel.
  • polymer aerogels are prepared by adding a crosslinking agent that covalently bonds with hydroxyl groups to form a silica gel prior to its drying.
  • Polymer aerogels are characterized by excellent mechanical properties and in particular a low brittleness and thus good deformability.
  • Airloy® X130 UL can be used to make the thermal insulation component. The thermal insulation component can then be easily and without damaging the insulating component in the form suitable for its intended use on board the aircraft form and mounted in the aircraft.
  • a solid phase material of the thermal insulation component in the infrared wavelength range is intransparent.
  • the thermal insulation component may for example form a battery insulation of the aircraft.
  • the aircraft equipped with the thermal isolation component may be a HAPS, a weather balloon, a HALE UAV (High Altitude Long
  • Endurance Unmanned Aerial Vehicle a manned aircraft, a stratospheric ⁇ balloon, a planetary probe or the like act. All that is essential is that the aircraft be capable of operating at altitudes where ambient pressure so reduced from normal atmospheric pressure at sea level prevails such that the thermal isolation component has the thermal insulation properties required for the specific application onboard the aircraft.
  • Ambient pressure at the altitude of the aircraft corresponds.
  • the thermal insulation component may contain an airgel, in particular a polymer airgel.
  • a solid phase material of the thermal insulation component is preferably intransparent in the infrared wavelength range.
  • FIG. 1 shows a schematic view of an aircraft equipped with a thermal insulation component.
  • FIG. 1 shows an aircraft 10 in which a thermal insulation component 12 is installed as battery insulation.
  • the aircraft 10 shown in FIG. 1 is a HAPS suitable for operation at an altitude of more than 15,000 m.
  • the aircraft 10 may also be used as a weather balloon, HALE UAV, manned aircraft, stratospheric balloon, planetary probe or the like may be formed.
  • the thermal insulation component 12 consists of a nanoporous material, the pore structure is designed so open-pored that in flight operation of the aviation ⁇ zeugs 10 in the pores of the thermal insulation member 12 sets a pressure corresponding to the ambient pressure at the altitude of the aircraft 10.
  • the thermal insulation member 12 is made of a polymer airgel, such as Airloy® X130 UL
  • the insulation performance of the thermal insulation component 12 exceeds the insulation performance of a conventional vacuum insulation panel already at an altitude of 13,716 m. With increasing altitude, the insulation performance gains even increase compared to the conventional vacuum insulation panel.
  • the thermal insulation component 12 has a weight 41% lower than the conventional vacuum insulation panel.

Abstract

The invention relates to an aircraft (10) comprising at least one thermal insulation component (12) consisting of a nano-porous material whose pore structure is open-pored such that when the aircraft (10) is in flight operation, a pressure in the pores of the thermal insulation component (12) corresponds to the atmospheric pressure at the flight altitude of the aircraft (10).

Description

Luftfahrzeug mit einem thermischen Isolationsbauteil  Aircraft with a thermal insulation component
Die vorliegende Erfindung betrifft ein Luftfahrzeug mit einem thermischen Isolationsbauteil. Ferner betrifft die Erfindung ein Verfahren zum Betreiben eines derartigen Luftfahrzeugs. The present invention relates to an aircraft with a thermal insulation component. Furthermore, the invention relates to a method for operating such an aircraft.
Luftfahrzeuge, die sich zum Betrieb in sehr großen Höhen - beispielsweise oberhalb von 15.000 m - eignen, müssen mit leichten und bauraumsparenden, gleichzeitig aber sehr leistungsfähigen Isolationsbauteilen ausgestattet sein, um temperaturempfindliche Bauteile, wie zum Beispiel elektronische Komponenten, insbesondere Avionikkomponenten vor den in großen Höhen herrschenden tiefen Temperaturen von bis zu -90 °C zu schützen. Derzeit werden in HAPS (High Altitude Pseudo Satellites) geschäumte Isolationsbauteile aus Styropor oder dergleichen, Spiegelfolien oder mit Granulaten, wie z.B. Aerogelgranulaten, gefüllte Vakuumisolierpaneele verbaut. Aircraft capable of operating at very high altitudes - for example, above 15,000 m - must be equipped with lightweight and space-saving but at the same time very high-performance insulation components in order to provide temperature-sensitive components, such as electronic components, in particular avionics components, at high altitudes Protecting low temperatures of up to -90 ° C. At present in HAPS (High Altitude Pseudo Satellites) foamed insulation components made of styrofoam or the like, mirror films or with granules, such as. Airgel granules, filled vacuum insulation panels installed.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Luftfahrzeug mit einem gewichts- und gleichzeitig leistungsoptimierten thermischen Isolationsbauteil bereitzustellen. Ferner liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zum Betreiben eines derartigen Luftfahrzeugs anzugeben. The present invention has for its object to provide an aircraft with a weight and at the same time performance optimized thermal insulation component. The invention is also based on the object of specifying a method for operating such an aircraft.
Diese Aufgabe wird durch ein Luftfahrzeug mit den Merkmalen des Anspruchs 1 sowie ein Verfahren zum Betreiben eines Luftfahrzeugs mit den Merkmalen des Anspruchs 7 gelöst. This object is achieved by an aircraft with the features of claim 1 and a method for operating an aircraft with the features of claim 7.
Ein Luftfahrzeug umfasst mindestens ein thermisches Isolationsbauteil, das aus einem nanoporösen Material besteht, dessen Porenstruktur derart offenporig gestaltet ist, dass sich im Flugbetrieb des Luftfahrzeugs in den Poren des thermischen Isolationsbauteils ein Druck einstellt, der dem Umgebungsdruck in der Flughöhe des Luftfahrzeugs entspricht. An aircraft comprises at least one thermal insulation component which consists of a nanoporous material whose pore structure is designed to be open-pored such that, during flight operation of the aircraft, a pressure in the pores of the thermal insulation component is established which corresponds to the ambient pressure at the altitude of the aircraft.
Während bei normalem Atmosphärendruck auf Meeresspiegelhöhe die Wärmeleitung in Luft durch Konvektion dominiert wird, tritt bei geringeren Drücken zunehmend auch die Wärmestrahlung als Wärmeleitungsmechanismus in den Vordergrund. Bei Drücken zwischen 10 und 100 mBar sind die Anteile der Wärmeleitung durch Konvektion und der Wärmeleitung durch Wärmestrahlung an der Gesamtwärmeleitung in etwa gleich groß. Bei Drücken < 1 mBar ist die Wärmestrahlung der bestimmende Wärmeleitungsmechanismus. Die Wärmeleitfähigkeit nanoporöser Materialien wird wesentlich durch die Wärmeleitung des in den Poren dieser Materialien vorhandenen Gases bestimmt. Die Wärmeleitung dieses Gases hängt ihrerseits vom Verhältnis zwischen der mittleren freien Weglänge der Gasmoleküle und dem mittleren Poren¬ durchmesser ab. While at normal atmospheric pressure at sea level, heat conduction in air is dominated by convection, at lower pressures the heat radiation as heat conduction mechanism increasingly comes to the fore. At pressures between 10 and 100 mBar the proportions of the heat conduction by convection and the heat conduction by heat radiation at the total heat conduction are approximately equal. At pressures <1 mbar, heat radiation is the dominant heat-conducting mechanism. The thermal conductivity of nanoporous materials is essentially determined by the heat conduction of the gas present in the pores of these materials. The heat conduction of this gas in turn depends on the ratio between the mean free path of the gas molecules and the average pore diameter ¬ .
Insbesondere hat eine Erhöhung des Verhältnisses zwischen der mittleren freien Weglänge der Gasmoleküle und dem mittleren Porendurchmesser in einem nanopo- rösen Material eine Verringerung der Wärmeleitung des Gases zur Folge, da die Gasmoleküle dann zunehmend häufiger mit den Porenwänden kollidieren als mit anderen Gasmolekülen und somit ihre thermische Energie zunehmend an die Festphase des nanoporösen Materials übertragen. Eine Erhöhung des Verhältnisses zwi¬ schen der mittleren freien Weglänge der Gasmoleküle und dem mittleren In particular, an increase in the ratio between the mean free path of the gas molecules and the average pore diameter in a nanoporous material results in a reduction in the heat conduction of the gas, since the gas molecules then increasingly collide with the pore walls than with other gas molecules and thus their thermal Energy increasingly transferred to the solid phase of the nanoporous material. An increase in the ratio zwi ¬ tween the mean free path of the gas molecules and the middle
Porendurchmesser kann durch eine Verringerung des Drucks des Gases in den Poren des nanoporösen Materials bewirkt werden. Pore diameter can be effected by reducing the pressure of the gas in the pores of the nanoporous material.
Anders als bei bekannten Vakuumisolierpaneelen, bei denen zur Realisierung niedriger Wärmeleitfähigkeiten im Inneren der Paneele enthaltene Granulate künstlich evakuiert und anschließend mit entsprechenden Außenhüllen gegenüber der Umgebungsatmosphäre abgedichtet werden, wird bei dem thermischen Isolationsbauteil des Luftfahrzeugs der deutlich unter dem normalen Atmosphärendruck auf Meeresspiegelhöhe liegende Umgebungsdruck in der Flughöhe des Luftfahrzeugs dazu ge¬ nutzt, den Druck des Gases in den Poren des nanoporösen Materials und dadurch die Wärmeleitung dieses Gases zu verringern. Das thermische Isolationsbauteil weist daher für eine Anwendung unter einem verringerten Umgebungsdruck optimierte Isolationseigenschaften auf, ohne dass es hierzu erforderlich wäre, künstlich einen gegenüber dem normalen Atmosphärendruck auf Meeresspiegelhöhe verringerten Druck in dem Isolationsbauteil zu erzeugen und das Isolationsbauteil dann gegenüber der Umgebungsatmosphäre abzudichten. Unlike known Vakuumisolierpaneelen, in which for the realization of low thermal conductivities inside the panels contained granules are artificially evacuated and then sealed with corresponding outer shells relative to the ambient atmosphere, in the thermal insulation component of the aircraft, the lying well below the normal atmospheric pressure at sea level ambient pressure in the Flight altitude of the aircraft ge ¬ uses to reduce the pressure of the gas in the pores of the nanoporous material and thereby the heat conduction of this gas. The thermal insulation component therefore has optimized insulation properties for use under a reduced ambient pressure, without it being necessary to artificially generate a pressure in the insulation component that is lower than the normal atmospheric pressure at sea level and then to seal the insulation component from the ambient atmosphere.
Bei dem thermischen Isolationsbauteil kann daher auf eine Außenhülle zur Abdichtung des Isolationsbauteils gegenüber der Umgebungsatmosphäre verzichtet werden. Das Isolationsbauteil kann folglich besonders leichtgewichtig gestaltet werden. Darüber hinaus können Schadensfälle, die in konventionellen Vakuumisolierpaneelen durch eine mechanische Beschädigung der Außenhülle verursacht werden, vermieden werden. Schließlich ist das thermische Isolationsbauteil unempfindlich gegenüber Druckschwankungen in der Umgebungsatmosphäre, da durch die Struktur des Isolationsbauteils und insbesondere dessen offene Porosität gewährleistet wird, dass stets ein Druckausgleich zwischen der Umgebungsatmosphäre und dem Inneren des Isolationsbauteils stattfindet. Das thermische Isolationsbauteil kann daher nicht nur in Höhen über 20.000 m eingesetzt werden, wo konventionelle Vakuumisolierpaneele aufgrund des trotz künstlicher Evakuierung und anschließender Abdichtung in ihrem Inneren verbleibenden Restdrucks versagen, da sich die Paneele aufgrund der Druckdifferenz zwischen dem in ihrem Inneren vorliegenden Restdruck und dem geringen Druck der Umgebungsatmosphäre aufblähen. Vielmehr kann das thermische Isolationsbauteil auch in Luftfahrzeugen, wie zum Beispiel Planetensonden eingesetzt werden, die nach langer Verweildauer im Vakuum wieder in die Atmosphäre eines Planeten oder Mondes eintreten und dort landen, d.h. in der Atmosphäre des verbleiben sollen. In the thermal insulation component can therefore be dispensed with an outer shell for sealing the insulation component relative to the ambient atmosphere. The insulation component can therefore be made particularly lightweight. In addition, damage caused in conventional vacuum insulation panels by mechanical damage of the outer shell can be avoided. Finally, the thermal insulation component is insensitive to pressure fluctuations in the ambient atmosphere, since it is ensured by the structure of the insulating component and in particular its open porosity that always a pressure equalization takes place between the ambient atmosphere and the interior of the insulating component. The thermal insulation component can therefore not only be used at altitudes over 20,000 m, where conventional vacuum insulation panels fail due to the remaining in spite of artificial evacuation and subsequent sealing residual pressure, since the panels due to the pressure difference between the present in their interior residual pressure and the low Bloat pressure of the ambient atmosphere. Rather, the thermal insulation component can also be used in aircraft, such as planetary probes, which enter after a long residence time in a vacuum back into the atmosphere of a planet or moon and land there, that should remain in the atmosphere of.
Vorzugsweise enthält das thermische Isolationsbauteil des Luftfahrzeugs ein Aerogel. Aerogele zeichnen sich durch ihr geringes Gewicht und ihre nanoporöse Struktur mit offenen Poren aus, die einen Druckausgleich zwischen der Umgebungsatmosphäre und dem Gas im Inneren der Poren des Aerogel ermöglicht. Das Aerogel kann beispielsweise einen Festphasenanteil von maximal 10 Vol.% enthalten. Darüber hinaus hat bei Siliziumoxid-Aerogelen auch die Festphase eine vergleichsweise geringe Wärmeleitfähigkeit. Preferably, the thermal insulation component of the aircraft contains an airgel. Aerogels are characterized by their low weight and their nanoporous structure with open pores, which allows a pressure equalization between the ambient atmosphere and the gas inside the pores of the airgel. The airgel may, for example, contain a solid phase content of not more than 10% by volume. In addition, in silica aerogels and the solid phase has a comparatively low thermal conductivity.
In einer besonders bevorzugten Ausführungsform des Luftfahrzeugs enthält das thermische Isolationsbauteil ein Polymer-Aerogel. Polymer-Aerogele werden beispielsweise durch Zugabe eines Vernetzungsmittels, das mit Hydroxylgruppen eine kovalente Bindung eingeht, zu einem Siliziumsoxidgel vor dessen Trocknung hergestellt. Polymer-Aerogele zeichnen sich durch hervorragende mechanische Eigenschaften und insbesondere eine geringe Sprödigkeit und damit gute Verformbarkeit aus. Beispielsweise kann Airloy® X130 UL zur Herstellung des thermischen Isolationsbauteils verwendet werden. Das thermische Isolationsbauteil kann dann auf einfache Weise und ohne das Isolationsbauteil zu beschädigen in die für seinen Einsatzzweck an Bord des Luftfahrzeugs geeignete Form gebracht und in dem Luftfahrzeug montiert werden. In a particularly preferred embodiment of the aircraft, the thermal insulation component contains a polymer airgel. For example, polymer aerogels are prepared by adding a crosslinking agent that covalently bonds with hydroxyl groups to form a silica gel prior to its drying. Polymer aerogels are characterized by excellent mechanical properties and in particular a low brittleness and thus good deformability. For example, Airloy® X130 UL can be used to make the thermal insulation component. The thermal insulation component can then be easily and without damaging the insulating component in the form suitable for its intended use on board the aircraft form and mounted in the aircraft.
In einer bevorzugten Ausführungsform des Luftfahrzeugs ist ein Festphasenmaterial des thermischen Isolationsbauteils im Infrarotwellenlängenbereich intransparent. Dadurch können die Abgabe von Wärme durch die Festphase des thermischen Isolationsbauteils verringert und folglich die Isolationseigenschaften des Isolationsbauteils verbessert werden. Das thermische Isolationsbauteil kann beispielsweise eine Batterieisolierung des Luftfahrzeugs bilden. Es ist jedoch auch denkbar, das thermische Isolationsbauteil an anderen Stellen in dem Luftfahrzeug zu verbauen. Grundsätzlich ist eine Installation des thermischen Isolationsbauteils überall dort denkbar, wo an Bord des Luftfahrzeugs der Verlust von Heizwärme verhindert werden soll. In a preferred embodiment of the aircraft, a solid phase material of the thermal insulation component in the infrared wavelength range is intransparent. Thereby, the discharge of heat by the solid phase of the thermal insulating member can be reduced, and thus the insulating properties of the insulating member can be improved. The thermal insulation component may for example form a battery insulation of the aircraft. However, it is also conceivable to obstruct the thermal insulation component at other locations in the aircraft. Basically, an installation of the thermal insulation component is everywhere conceivable where on board the aircraft, the loss of heat is to be prevented.
Bei dem mit dem thermischen Isolationsbauteil ausgestatteten Luftfahrzeug kann es sich um einen HAPS, einen Wetterballon, ein HALE UAV (High Altitude Long The aircraft equipped with the thermal isolation component may be a HAPS, a weather balloon, a HALE UAV (High Altitude Long
Endurance Unmanned Aerial Vehicle), ein bemannte Fluggerät, einen Stratosphären¬ ballon, eine Planetensonde oder dergleichen handeln. Wesentlich ist lediglich, dass das Luftfahrzeug zum Betrieb in Höhen geeignet ist, in denen ein gegenüber dem normalen Atmosphärendruck auf Meeresspiegelhöhe derart verringerter Umgebungsdruck vorherrscht, bei dem das thermische Isolationsbauteil die für den spezifischen Anwendungsfall an Bord des Luftfahrzeugs erforderlichen thermischen Isolationseigenschaften aufweist. Endurance Unmanned Aerial Vehicle), a manned aircraft, a stratospheric ¬ balloon, a planetary probe or the like act. All that is essential is that the aircraft be capable of operating at altitudes where ambient pressure so reduced from normal atmospheric pressure at sea level prevails such that the thermal isolation component has the thermal insulation properties required for the specific application onboard the aircraft.
Bei einem Verfahren zum Betreiben eines Luftfahrzeugs, das mit mindestens einem thermischen Isolationsbauteil ausgestattet ist, welches aus einem nanoporösen Material mit einer offenporig Porenstruktur besteht, stellt sich im Flugbetrieb des Luftfahrzeugs in den Poren des thermischen Isolationsbauteils ein Druck ein, der dem In a method for operating an aircraft, which is equipped with at least one thermal insulation component, which consists of a nanoporous material with an open-pored pore structure, arises during flight operation of the aircraft in the pores of the thermal insulation component, a pressure that the
Umgebungsdruck in der Flughöhe des Luftfahrzeugs entspricht. Ambient pressure at the altitude of the aircraft corresponds.
Das thermische Isolationsbauteil kann ein Aerogel, insbesondere ein Polymer-Aerogel enthalten. Ein Festphasenmaterial des thermischen Isolationsbauteils ist vorzugsweise im Infrarotwellenlängenbereich intransparent. The thermal insulation component may contain an airgel, in particular a polymer airgel. A solid phase material of the thermal insulation component is preferably intransparent in the infrared wavelength range.
Eine bevorzugte Ausführungsform der Erfindung wird nun anhand der beigefügten schematischen Zeichnung näher erläutert, wobei A preferred embodiment of the invention will now be described with reference to the accompanying schematic drawing, in which
Figur 1 eine schematische Ansicht eines mit einem thermischen Isolationsbauteil ausgestatteten Luftfahrzeugs zeigt. FIG. 1 shows a schematic view of an aircraft equipped with a thermal insulation component.
Figur 1 zeigt ein Luftfahrzeug 10, bei dem ein thermisches Isolationsbauteil 12 als Batterieisolierung verbaut ist. Bei dem in Figur 1 gezeigten Luftfahrzeug 10 handelt es sich um einen HAPS, der zum Betrieb in einer Flughöhe von über 15.000 m geeignet ist. Alternativ dazu kann das Luftfahrzeug 10 jedoch auch als Wetterballon, HALE UAV, bemanntes Fluggerät, Stratosphärenballon, Planetensonde oder dergleichen ausgebildet sein. FIG. 1 shows an aircraft 10 in which a thermal insulation component 12 is installed as battery insulation. The aircraft 10 shown in FIG. 1 is a HAPS suitable for operation at an altitude of more than 15,000 m. Alternatively, however, the aircraft 10 may also be used as a weather balloon, HALE UAV, manned aircraft, stratospheric balloon, planetary probe or the like may be formed.
Das thermische Isolationsbauteil 12 besteht aus einem nanoporösen Material, dessen Porenstruktur derart offenporig gestaltet ist, dass sich im Flugbetrieb des Luftfahr¬ zeugs 10 in den Poren des thermischen Isolationsbauteils 12 ein Druck einstellt, der dem Umgebungsdruck in der Flughöhe des Luftfahrzeugs 10 entspricht. Insbesondere besteht das thermische Isolationsbauteil 12 aus einem Polymer- Aerogel, wie zum Beispiel Airloy® X130 UL The thermal insulation component 12 consists of a nanoporous material, the pore structure is designed so open-pored that in flight operation of the aviation ¬ zeugs 10 in the pores of the thermal insulation member 12 sets a pressure corresponding to the ambient pressure at the altitude of the aircraft 10. In particular, the thermal insulation member 12 is made of a polymer airgel, such as Airloy® X130 UL
Wie aus der nachfolgenden Tabelle hervorgeht, übersteigt die Isolationsleistung des thermischen Isolationsbauteils 12 die Isolationsleistung eines herkömmlichen Vakuumisolierpaneels bereits ab einer Flughöhe von 13.716 m. Mit steigender Flughöhe nehmen die Isolationsleistungsgewinne gegenüber dem herkömmlichen Vakuumiso- lierpaneel sogar noch zu.  As can be seen from the following table, the insulation performance of the thermal insulation component 12 exceeds the insulation performance of a conventional vacuum insulation panel already at an altitude of 13,716 m. With increasing altitude, the insulation performance gains even increase compared to the conventional vacuum insulation panel.
Gleichzeitig weist das thermische Isolationsbauteil 12 aufgrund des Verzichts auf eine druckdichte Außenhülle mit 165 g gegenüber 280 g ein um 41 % geringeres Gewicht auf als das herkömmliche Vakuumisolierpaneel. At the same time, due to the omission of a pressure-tight outer shell of 165 g compared with 280 g, the thermal insulation component 12 has a weight 41% lower than the conventional vacuum insulation panel.

Claims

Patentansprüche claims
1. Luftfahrzeug (10) mit mindestens einem thermischen Isolationsbauteil (12), das aus einem nanoporösen Material besteht, dessen Porenstruktur derart offenporig gestaltet ist, dass sich im Flugbetrieb des Luftfahrzeugs (10) in den Poren des thermischen Isolationsbauteils (12) ein Druck einstellt, der dem Umgebungsdruck in der Flughöhe des Luftfahrzeugs (10) entspricht. 1. Aircraft (10) with at least one thermal insulation component (12), which consists of a nanoporous material, the pore structure is designed open-pore so that in flight operation of the aircraft (10) in the pores of the thermal insulation component (12) adjusts a pressure , which corresponds to the ambient pressure at the altitude of the aircraft (10).
2. Luftfahrzeug nach Anspruch 1, 2. Aircraft according to claim 1,
wobei das thermische Isolationsbauteil (12) ein Aerogel enthält. wherein the thermal insulation component (12) contains an airgel.
3. Luftfahrzeug nach Anspruch 1 oder 2, 3. Aircraft according to claim 1 or 2,
wobei das thermische Isolationsbauteil (12) ein Polymer-Aerogel enthält. wherein the thermal insulation member (12) contains a polymer airgel.
4. Luftfahrzeug nach einem der Ansprüche 1 bis 3, 4. Aircraft according to one of claims 1 to 3,
wobei ein Festphasenmaterial des thermischen Isolationsbauteils (12) im Infrarotwellenlängenbereich intransparent ist. wherein a solid phase material of the thermal insulation member (12) is intransparent in the infrared wavelength range.
5. Luftfahrzeug nach einem der Ansprüche 1 bis 4, 5. Aircraft according to one of claims 1 to 4,
wobei das thermische Isolationsbauteil (12) eine Batterieisolierung bildet. wherein the thermal insulation member (12) forms a battery insulation.
6. Luftfahrzeug nach einem der Ansprüche 1 bis 5, 6. Aircraft according to one of claims 1 to 5,
wobei das Luftfahrzeug ein HAPS, ein Wetterballon, ein HALE UAV, ein bemannte Fluggerät, einStratosphärenballon oder eine Planetensonde ist. wherein the aircraft is a HAPS, a weather balloon, a HALE UAV, a manned aircraft, a stratospheric balloon or a planetary probe.
7. Verfahren zum Betreiben eines Luftfahrzeugs (10), das mit mindestens einem thermischen Isolationsbauteil (12) ausgestattet ist, welches aus einem nanoporösen Material mit einer offenporig Porenstruktur besteht, bei dem sich im Flugbetrieb des Luftfahrzeugs (10) in den Poren des thermischen Isolationsbauteils (12) ein Druck einstellt, der dem Umgebungsdruck in der Flughöhe des Luftfahrzeugs (10) entspricht. 7. A method for operating an aircraft (10), which is equipped with at least one thermal insulation component (12), which consists of a nanoporous material having an open-pored pore structure, in which during flight operation of the aircraft (10) in the pores of the thermal insulation component (12) sets a pressure corresponding to the ambient pressure at the altitude of the aircraft (10).
8. Verfahren nach Anspruch 7, 8. The method according to claim 7,
wobei das thermische Isolationsbauteil (12) ein Aerogel enthält. wherein the thermal insulation component (12) contains an airgel.
9. Verfahren nach Anspruch 7 oder 8, 9. The method according to claim 7 or 8,
wobei das thermische Isolationsbauteil (12) ein Polymer-Aerogel enthält. wherein the thermal insulation member (12) contains a polymer airgel.
10. Verfahren nach einem der Ansprüche 7 bis 9, 10. The method according to any one of claims 7 to 9,
wobei ein Festphasenmaterial des thermischen Isolationsbauteils (12) im Infrarotwellenlängenbereich intransparent ist. wherein a solid phase material of the thermal insulation member (12) is intransparent in the infrared wavelength range.
EP16797544.0A 2015-11-16 2016-11-16 Aircraft having a thermal insulation component Withdrawn EP3377404A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015222528.3A DE102015222528B3 (en) 2015-11-16 2015-11-16 Aircraft with a thermal insulation component
PCT/EP2016/077829 WO2017085107A1 (en) 2015-11-16 2016-11-16 Aircraft having a thermal insulation component

Publications (1)

Publication Number Publication Date
EP3377404A1 true EP3377404A1 (en) 2018-09-26

Family

ID=57282008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16797544.0A Withdrawn EP3377404A1 (en) 2015-11-16 2016-11-16 Aircraft having a thermal insulation component

Country Status (6)

Country Link
US (1) US10793249B2 (en)
EP (1) EP3377404A1 (en)
CN (1) CN108349583B (en)
DE (1) DE102015222528B3 (en)
RU (1) RU2705474C1 (en)
WO (1) WO2017085107A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109533267B (en) * 2018-12-25 2022-01-25 哈尔滨工业大学 Constant-lift inflatable closed-cell micro-structure floating material unit
CN113188653B (en) * 2021-04-25 2022-10-11 机械工业第九设计研究院股份有限公司 Building sound insulation performance detection and evaluation method and system
GB2618162A (en) * 2022-04-28 2023-11-01 Desmond Lewis Stephen Thermal protection venting system for aircraft and spaceplanes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3055831A (en) * 1961-09-25 1962-09-25 Johns Manville Handleable heat insulation shapes
US5154373A (en) 1988-09-26 1992-10-13 Rockwell International Corporation Integral structure and thermal protection system
US6840480B2 (en) * 2001-09-27 2005-01-11 Ernest A. Carroll Miniature, unmanned aircraft with interchangeable data module
US20060248854A1 (en) * 2005-05-05 2006-11-09 Bartley-Cho Jonathan D Thermally insulated structure - tapered joint concept
CN1895885A (en) * 2005-07-12 2007-01-17 上海暄洋纳米材料有限公司 Laminated insulator of low-temperature thermal-insulative composite nanometer material
US7781492B2 (en) * 2006-06-08 2010-08-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Foam/aerogel composite materials for thermal and acoustic insulation and cryogen storage
CA2678221A1 (en) 2007-02-23 2008-08-28 Airbus Operations Gmbh Fuselage of an aircraft or spacecraft and method of actively insulating such a fuselage
WO2012076492A1 (en) * 2010-12-07 2012-06-14 Basf Se Melamine resin foams comprising nanoporous fillers
DE102012001912A1 (en) * 2011-12-22 2013-06-27 Eads Deutschland Gmbh Self-cleaning and superhydrophobic surfaces based on TiO2 nanotubes
DE102012013977A1 (en) * 2012-07-16 2014-01-16 Li-Tec Battery Gmbh Housing assembly, secondary battery with at least two secondary cells and this housing assembly, and method for producing the housing assembly
DE102012214957A1 (en) * 2012-08-23 2014-02-27 Basf Se Heat management system for heat insulation of e.g. electric compact car, has vacuum insulation panels containing nano-porous polymer particles whose specific portion includes particle size of smaller than specific value in sieve analysis
CN203666965U (en) * 2013-09-30 2014-06-25 中国人民解放军国防科学技术大学 Thermal protection mechanism of hypersonic aircraft
EP3020638B1 (en) * 2014-11-11 2017-07-19 Airbus Defence and Space GmbH Device and method for de-icing and/or avoiding ice-buildup and profiled body and aircraft equipped with such a device
DE102015200390A1 (en) * 2015-01-14 2016-07-14 Robert Bosch Gmbh Battery with thermal insulation

Also Published As

Publication number Publication date
WO2017085107A1 (en) 2017-05-26
US10793249B2 (en) 2020-10-06
DE102015222528B3 (en) 2016-12-01
CN108349583B (en) 2021-07-13
CN108349583A (en) 2018-07-31
RU2705474C1 (en) 2019-11-07
US20180257758A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
EP3377404A1 (en) Aircraft having a thermal insulation component
Fisk et al. An interpretation of the observed oxygen and nitrogen enhancements in low-energy cosmic rays
DE102013104712A1 (en) Method for producing vacuum insulation panels
CN107221749A (en) Grapefruit satellite Stealthy reflector Antenna cover based on frequency-selective surfaces and preparation method thereof
DE60010951T2 (en) Method for simulating the external heat fluxes absorbed by the radiating elements of a spacecraft during flight and spacecraft for carrying out this method
DE19915311A1 (en) Vacuum insulating panel, especially for refrigerators, has a microporous core encased in a 7-layer plastic foil with a polyolefin sealing layer, a gas barrier, a polyolefin layer and a metallised polymer layer
CN102191394A (en) Preparation method of porous CuAlMn shape memory alloy with controllable pore structure parameters
DE102014009137A1 (en) Facade system with fire-resistant façade elements with high insulation effect for facade construction in high-rise buildings and method for its production
DE102008019717A1 (en) Composite element for use as composite slab for vacuum insulation plate in building, has heat-insulating layer and film layer covered with plates on both sides, where film layer contains latent heat storage material
DE10123453A1 (en) Vacuum heat insulation system, comprises an insulation plate of an open pore insulating plate covered with first and second films
DE4319763C2 (en) Evacuated, opaque multi-pane insulation panel
DE1629268A1 (en) Process for the thermal insulation of refrigerant containers
WO2011131190A4 (en) Tensile-load spacer arrangement
DE102015007085A1 (en) Switchable vacuum insulation element
DE212015000148U1 (en) Vacuum heat-insulating body and Wärmedämmbehälter and thermal insulation wall, use the same
WO2001023215A1 (en) Face wall insulation
WO2016142480A1 (en) Insulating element
EP3158140B1 (en) Facade system with fireproof facade elements with high insulation properties for facades of skyscrapers and process for producing such facade system
DE202023103880U1 (en) Coating material for gas-tight sealing based on a foam dissolved in a native solvent - CUVApor
DE202012008494U1 (en) Component for facade insulation
DE102020002098A1 (en) Aircraft interior panel with an insulation layer, aircraft cabin with the aircraft interior panel and aircraft with the aircraft cabin and / or the aircraft interior panel
DE202014005033U1 (en) Facade system with fire-resistant façade elements with high insulation for façade construction in high-rise buildings
DE102022003196A1 (en) Vacuum insulation panel VIP
CN108034315B (en) Expanded graphite powder water-based tunnel fireproof coating and using method thereof
DE2722177A1 (en) Heat-insulated chamber with radiation screens and open-cellular spacer - the screens comprising aluminised or gold-plated polyester or aluminium or tantalum foil

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191001

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200212