EP3376037B1 - Kreiselpumpenaggregat - Google Patents

Kreiselpumpenaggregat Download PDF

Info

Publication number
EP3376037B1
EP3376037B1 EP17160836.7A EP17160836A EP3376037B1 EP 3376037 B1 EP3376037 B1 EP 3376037B1 EP 17160836 A EP17160836 A EP 17160836A EP 3376037 B1 EP3376037 B1 EP 3376037B1
Authority
EP
European Patent Office
Prior art keywords
valve element
movable
construction unit
wall
unit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17160836.7A
Other languages
English (en)
French (fr)
Other versions
EP3376037A1 (de
Inventor
Thomas Blad
Christian BLAD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Holdings AS
Original Assignee
Grundfos Holdings AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Holdings AS filed Critical Grundfos Holdings AS
Priority to EP17160836.7A priority Critical patent/EP3376037B1/de
Priority to CN201880018332.9A priority patent/CN110418893B/zh
Priority to PCT/EP2018/056187 priority patent/WO2018167031A1/de
Priority to US16/493,125 priority patent/US11073161B2/en
Publication of EP3376037A1 publication Critical patent/EP3376037A1/de
Application granted granted Critical
Publication of EP3376037B1 publication Critical patent/EP3376037B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0686Mechanical details of the pump control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0016Control, e.g. regulation, of pumps, pumping installations or systems by using valves mixing-reversing- or deviation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0022Control, e.g. regulation, of pumps, pumping installations or systems by using valves throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4293Details of fluid inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/48Fluid-guiding means, e.g. diffusers adjustable for unidirectional fluid flow in reversible pumps
    • F04D29/486Fluid-guiding means, e.g. diffusers adjustable for unidirectional fluid flow in reversible pumps especially adapted for liquid pumps

Definitions

  • the invention relates to a hydraulic structural unit with a centrifugal pump unit and at least one valve element which can be moved by a flow of liquid caused by the centrifugal pump unit.
  • Centrifugal pump units which have valve elements which are moved by the flow in the pump unit.
  • Centrifugal pump units are known in which the flow inside the pump housing can be directed in two different directions by reversing the direction of rotation of the drive motor, so that a switching element can be moved between two outputs or two inputs of the centrifugal pump unit in order to selectively flow through one of these promote.
  • Disadvantages of these known centrifugal pump units are relatively complex mechanics or the occurrence of efficiency losses due to the switching elements required in the flow path or the required reversal of the direction of rotation.
  • Such centrifugal pump units are for example from U.S. 5,924,432 , DE 44 18 153 A1 , EP 0 394 140 A1 and EP 1 403 521 A1 known.
  • the object of the invention is to improve a hydraulic unit with a centrifugal pump unit and a valve element that can be moved via the flow generated by the centrifugal pump unit in such a way that reliable actuation of the valve element with a simple construction of the valve element and a high degree of efficiency is possible .
  • the hydraulic assembly according to the invention has a centrifugal pump unit which has an electric drive motor and at least one impeller which is driven in rotation by this.
  • the electric drive motor is preferably a wet-running motor, that is to say a drive motor with a can or can between the stator and the rotor, so that the rotor can rotate in the liquid to be conveyed.
  • the hydraulic assembly according to the invention has at least one valve element which is arranged and configured such that it can be moved by a fluid flow caused by the impeller, in particular between at least two different switching positions.
  • the hydraulic structural unit preferably includes at least those flow channels or flow paths that are required for connecting the centrifugal pump unit to external elements, for example pipelines of a heating circuit. More preferably, the hydraulic unit comprises at least some of the flow paths that are required for the connection between the centrifugal pump unit and the valve element, the valve element particularly preferably forming an integrated unit with the centrifugal pump unit. So z. B. the valve element in the pump housing, in which the impeller rotates, be arranged.
  • the hydraulic unit is designed for use in a heating and / or air conditioning system, that is, the centrifugal pump assembly is preferably designed for use as a circulating pump assembly to use a liquid heat transfer medium such as in particular water to circulate in a circuit of a heating or air conditioning system.
  • the hydraulic unit can be designed as an integrated hydraulic unit for a heating system, in particular a compact heating system.
  • Such integrated units usually include all essential flow paths and hydraulic components of the compact heating system.
  • a secondary heat exchanger for heating domestic water can also be integrated into the hydraulic structural unit.
  • Such a hydraulic assembly then essentially only has the connections for one or more heating circuits, for at least one heat source and, if necessary, an input for cold service water and an output for heated service water.
  • Required valves, sensors and the centrifugal pump assembly are preferably integrated into the hydraulic structural unit, wherein at least some of the required flow paths can furthermore preferably be formed in one-piece cast components, in particular plastic injection molding.
  • At least a section of a wall delimiting a flow path in the hydraulic structural unit is designed to be movable.
  • This is preferably a flow path through which the liquid conveyed by the centrifugal pump assembly flows.
  • the liquid thus flows along the wall and thus also along the at least one movable section.
  • This movable section of the wall is part of the valve element or is coupled or connected to the valve element for its movement.
  • the movable wall can thus transmit force or kinetic energy directly to the valve element for its movement.
  • the movable section is in turn movable by the liquid flow running along the wall.
  • the liquid flow over the movable section of the wall can bring about a movement of the valve element coupled to this section of the wall.
  • the transfer of kinetic energy from the flow to the movable section of the wall takes place according to the invention at least partially by means of frictional forces between the liquid flow and the wall.
  • the entire force or energy transmission takes place by friction of the liquid flow on the movable section of the wall.
  • Such a configuration has the advantage that essentially only a loss of energy is used for the movement of the valve element, which energy would occur in the interior of the flow path anyway due to the friction that occurs.
  • the surface of the movable section of the wall has a surface configuration or roughness which essentially does not deviate from the properties of the surfaces of the remaining wall of the flow path. Additional elements protruding into the flow and causing resistance are preferably not provided.
  • the valve element can be, for example, a switch valve or a mixing valve.
  • the valve element is preferably movable between two switching positions or end positions, it being able to be moved back and forth between these end positions by the flow.
  • the reversal of direction can be achieved, for example, by changing the direction of the flow, for example, by changing the direction of rotation of the impeller.
  • an additional restoring element for example a spring or a weight, could be provided which, when the flow is switched off, ensures that the valve element moves back into a predetermined starting position.
  • the at least one movable section of the wall is preferably arranged in such a way that it can be moved parallel to the liquid flow running along the wall. This means that the flow can flow along this movable section of the wall as it does on adjacent wall parts, without being more strongly decelerated or impaired by the movable section of the wall.
  • the flow takes the movable section of the wall with it, preferably solely through frictional forces in the flow direction, and thus moves the coupled valve element.
  • the at least one movable section of the wall can delimit a flow path extending from the centrifugal pump unit on the pressure side or a flow path extending from the centrifugal pump unit on the suction side.
  • a flow flowing towards the centrifugal pump unit on the suction side or a flow flowing away from the centrifugal pump unit on the pressure side can move the movable section and thus the valve element.
  • two movable sections are provided in two flow paths, which are both part of the valve element or are coupled to the valve element to drive it.
  • the movable section of the wall is preferably designed and arranged in such a way that it can be moved together with the at least one valve element due to energy loss caused by the frictional forces on the wall of the flow path. There are essentially no losses in efficiency due to the valve element and its actuating elements, which move the valve element via the flow.
  • the at least one section of the wall is rotatably mounted in a pump housing and preferably rotatably mounted together with the at least one valve element in the pump housing.
  • the impeller rotates in the pump housing.
  • the impeller generates a rotating flow in the circumferential area. If the section of the wall and preferably also the valve element are rotatable, this rotating flow can very easily be converted into a movement of the valve element, since the rotating flow can move the rotatably movable section of the wall in the direction of flow by frictional forces.
  • the axis of rotation of the at least one movable section of the wall is particularly preferably aligned with the axis of rotation of the drive motor and the at least one impeller. More preferably, the axis of rotation of a rotatable valve element is also aligned with the axis of rotation of the drive motor and the impeller.
  • the at least one movable section of the wall is expediently designed in such a way that the frictional forces acting on it through the liquid flow are greater than those frictional forces that occur in a bearing or the bearings of the movable section of the wall and the at least one valve element.
  • This can be achieved, for example, by a correspondingly large surface area of the movable section of the wall will.
  • the surface of the movable wall could also be structured in order to cause greater friction. It is essential that the design is such that the forces transmitted by the flow to the movable wall section are greater than the holding or frictional forces which act on the movable section of the wall and the at least one valve element. A movement of the valve element can thus be caused by the flow.
  • the movable section of the wall particularly preferably has a disk-shaped and, in particular, circular outer contour, the outer diameter of the disk preferably being at least as large as the diameter of the impeller in the pump housing.
  • a movable separating element which separates a suction chamber inside a pump housing of the centrifugal pump unit from a pressure chamber surrounding the impeller, a surface facing the pressure chamber and / or a surface of the separating element facing the suction chamber forming or having the at least one movable section of the wall .
  • the separating element can preferably be rotatable about an axis of rotation which is aligned with the axis of rotation of the impeller. More preferably, the separating element is formed directly from the valve element, that is, the separating element is part of the valve element. A direct drive of the valve element on a surface of the valve element which forms the movable section of the wall in the flow path can thus be caused.
  • the separating element surrounds a suction mouth of the impeller in the shape of a ring, wherein the separating element can have a central opening which is aligned with the suction mouth, in particular is in sealing engagement therewith.
  • the separating element thus forms a conventional deflector plate between the suction chamber and pressure chamber of the pump unit and is simultaneously movable in order to be able to drive the valve element when the separating element is moved by the flow acting on it or the flow flowing along it.
  • the valve element is preferably rotatably mounted on a central bearing, the axis of rotation of the valve element, as described, preferably extending in alignment with the axis of rotation of the drive motor.
  • the central bearing has the advantage that the bearing diameter can be made very small, so that the friction losses on the bearing surfaces can be minimized. If the movable section of the wall is part of the valve element, it can also be located radially outside the bearing, preferably at a radial distance from the bearing, so that a greater torque for moving the valve element is caused by the flow acting on the movable section.
  • the valve element can be moved between at least two switching positions, it being possible for these switching positions to be limited or defined by stops, for example. However, it is also conceivable that the valve element can assume more than two switching positions.
  • the valve element can act as a switchover valve between two flow paths, a first flow path then being opened and a second flow path being closed in a first switching position. Conversely, in a second switching position, the first flow path is closed and the second flow path is open.
  • the valve element can alternatively or additionally act as a mixing valve.
  • the valve element can preferably interact with at least two valve openings of two flow channels in such a way that the valve openings of the flow channels are opened differently depending on the switching position of the valve element. In the case of a switching valve, this means that the valve openings are either completely closed or completely open. When designed as a mixing valve, intermediate positions are also possible in which the valve openings are only partially open. When using the mixing valve, the valve element is preferably designed in such a way that, when it moves, it further closes one of the valve openings and at the same time further opens the other valve opening. This is preferably done to the same extent. It can be achieved in a particularly simple manner in that a one-piece valve element is provided which can cover both valve openings. According to the invention, however, a valve element is also to be understood as an arrangement of two valve elements which are coupled to one another in a suitable manner for common movement.
  • the at least two valve openings each span a surface which extends parallel to a direction of movement of the valve element between the at least two switching positions. That is to say, the valve element for opening and closing the valve openings is preferably moved parallel to these or the surfaces spanned by the valve openings and is not moved closer to and away from the valve openings for opening and closing.
  • This enables a very simple structural design of two valve openings to be opened and closed alternately by a valve element.
  • preferably acts on the The pressure prevailing in the valve openings is not in the direction of movement of the valve element.
  • the valve element is designed and arranged in such a way that it can be moved between at least two switching positions by the flow of liquid along a first movement path or a first movement path and, additionally, along a second movement path or along a second movement path as a result of a pressure generated by the impeller Force can be applied or moved, wherein the second movement path is angled to the first movement path.
  • This enables the change between the switching positions to be carried out with very little friction, since in this state the valve element preferably does not rest against the necessary valve seats and / or contact surfaces or against these with relatively little friction.
  • the pressure can apply force to the valve element in such a way that it comes into contact with the valve seats or is pressed against the valve seats and / or contact surfaces with greater force in a sealing manner. In this state, greater friction or holding force then occurs between the valve element and the valve seats or further contact surfaces, which can simultaneously serve to hold the valve element in the switching position that has been reached.
  • the valve element is preferably movable along the second movement path between a first released position in which the valve element can be moved between the at least two switching positions and an adjacent position in which it is in contact with at least one contact surface.
  • a first released position in which the valve element can be moved between the at least two switching positions
  • an adjacent position in which it is in contact with at least one contact surface.
  • the valve element in the first position the valve element can optionally also rest against the contact surface, but in such a way that it can slide along the contact surface with relatively little friction.
  • the valve element In the second position, however, the valve element is pressed against the contact surface in such a way that a stronger one Friction occurs between the valve element and the system, which generates a holding force which prevents further movement of the valve element over the liquid flow, as described above.
  • Such a configuration makes it possible to move the valve element by appropriate drive of the drive motor and formation of a liquid flow, as long as such a liquid pressure is not reached that presses the valve element into contact with the contact surface.
  • a pressure can be achieved by increasing the speed and, in particular, by increasing the speed of the drive motor very quickly, so that the valve element can then be specifically held in a switching position that has been reached.
  • the pressure at which the valve element comes to rest on the contact surface is preferably selected such that it is lower than the lowest operating pressure during normal operation of the centrifugal pump assembly.
  • the pressure can be adjusted by a return element such as a return spring, which is arranged to move the valve element into the released first position at a lower pressure.
  • valve element and the contact surface are preferably designed in such a way that they come into force and / or form-fitting engagement with one another in the adjacent position, whereby a greater force can preferably be transmitted via this engagement than between the liquid flow and the at least one movable section of the wall. This ensures that the valve element, when it is in contact with the contact surface, is held in the switching position that has been reached and cannot be moved further by the flow of liquid. The liquid flow can then continue to flow along the movable section of the wall, this no longer being moved along with it.
  • the exemplary embodiments of the centrifugal pump unit according to the invention described in the following description relate to applications in heating and / or air conditioning systems in which the centrifugal pump unit circulates a liquid heat transfer medium, in particular water.
  • the centrifugal pump unit has a motor housing 2 in which an electric drive motor is arranged.
  • This has, in a known manner, a stator 4 and a rotor 6, which is arranged on a rotor shaft 8.
  • the rotor 6 rotates in a rotor space which is separated from the stator space in which the stator 4 is arranged by a can or can 10. This means that it is a wet-running electric drive motor.
  • the motor housing 2 is connected to a pump housing 12, in which an impeller 14 that is non-rotatably connected to the rotor shaft 8 rotates.
  • an electronics housing 16 is arranged, which contains control electronics or a control device for controlling the electric drive motor in the pump housing 2.
  • the electronics housing 16 could also be arranged on another side of the stator housing 2 in a corresponding manner.
  • a movable valve element 18 is arranged in the pump housing 12.
  • This valve element 18 is rotatably mounted on an axis 20 inside the pump housing 12, specifically in such a way that the axis of rotation of the valve element 18 is aligned with the axis of rotation X of the impeller 14.
  • the axis 20 is fixed in a rotationally fixed manner on the bottom of the pump housing 12.
  • the valve element 18 is not only rotatable about the axis 20, but also movable to a certain extent in the longitudinal direction X. In In one direction, this linear mobility is limited by the pump housing 12 on which the valve element 18 strikes with its outer circumference. In the opposite direction, the mobility is limited by the nut 22 with which the valve element 18 is attached to the axis 20. It is to be understood that instead of the nut 22, another axial fastening of the valve element 18 on the axis 20 could also be selected.
  • the valve element 18 forms a separating element which separates a suction chamber 24 from a pressure chamber 26 in the pump housing 12.
  • the impeller 14 rotates in the pressure chamber 26.
  • the pressure chamber 26 is connected to the pressure connection or pressure connection 28 of the centrifugal pump assembly, which forms the outlet of the centrifugal pump assembly.
  • Two intake-side inlets 28 and 30 open into the suction chamber 24, of which the inlet 28 is connected to a first suction connection 32 and the inlet 30 is connected to a second suction connection 34 of the pump housing 12.
  • the valve element 18 is disc-shaped and at the same time assumes the function of a conventional deflector plate which separates the suction chamber 24 from the pressure chamber 26. That is, it serves to guide the flow in the area of the pressure chamber and forms part of the wall of the pressure chamber 26.
  • the valve element 18 has a central suction opening 36 which has a protruding circumferential collar which engages with the suction mouth 38 of the impeller 14 and is essentially in tight contact with the suction mouth 38. Facing the impeller 14, the valve element 18 is essentially smooth.
  • the valve element On the side facing away from the impeller 14, the valve element has two ring-shaped sealing surfaces 40 which, in this exemplary embodiment, are located on closed tubular connections.
  • the two annular sealing surfaces 40 are at two diametrically opposite positions on the sealing element 18 with respect to it Axis of rotation X arranged so that they can come into tight contact with the bottom of the pump housing 12 in the circumferential area of the inlets 28 and 30 in order to close the inlets 28 and 30.
  • support elements 42 are arranged, which can also come to rest on the circumferential area of the inlets 28, 30, but are spaced from one another so that they then do not close the inlets 28, 30.
  • the inputs 28 and 30 do not lie on a diameter line with respect to the axis of rotation X, but on a radially offset straight line, so that when the valve element 18 is rotated about the axis of rotation X in a first switching position, the input 38 is closed by a sealing surface 40, while the support elements 42 lie at the input 30 and open it.
  • a second switching position the inlet 30 is closed by a sealing surface 40, while the support elements 42 rest in the circumferential area of the inlet 28 and open it.
  • the first switching position, in which the input 38 is closed and the input 30 is open is in FIG Fig. 5 shown.
  • the second switching position, in which the input 30 is closed and the input 28 is open is in FIG Fig. 6 shown. This means that by rotating the valve element by 90 ° around the axis of rotation X, it is possible to switch between the two switching positions.
  • the two switch positions are limited by a stop element 44 which alternately strikes two stops 46 in the pump housing 12.
  • a spring 48 pushes the valve element 18 into a released position in which the outer circumference of the valve element 18 is not close to the pump housing 12 and the sealing surfaces 40 are not close to the circumference of the inlets 28 and 30 rest so that the valve element 18 can rotate about the axis 20.
  • the drive motor is now set in rotation by the control device 17 in the electronics housing 16, so that the impeller 14 rotates, the pressure chamber 26 generates a circulating flow which, via friction on the end face of the valve element 18, rotates the valve element along in the direction of rotation of the flow.
  • the valve element 18 thus forms a movable section of the wall of the pressure chamber 26, which is moved along by the flow.
  • the control device 17 is designed so that it can optionally drive the drive motor in two directions of rotation.
  • the valve element 18 can also be moved in two directions of rotation about the axis of rotation X depending on the direction of rotation of the impeller 14 via the flow set in rotation by the impeller 14, since the flow in the circumferential area of the impeller 14 always runs in its direction of rotation.
  • the valve element 18 can thus be rotated between the two switching positions limited by the stops 46.
  • the support elements 42 come to rest on the other inlet, so that this inlet remains open and a flow path is provided from this inlet 28, 30 to the suction opening 36 and from there into the interior of the impeller 14.
  • a frictional contact between the valve element 18 and the pump housing 12 is created at the same time. This frictional contact ensures that the valve element 18 is held in the switch position that has been reached. This enables the drive motor to be taken out of operation again for a short time and put into operation again in the opposite direction of rotation without the valve element 18 being rotated.
  • the centrifugal pump unit described according to the first embodiment of the invention can be used, for example, in a heating system as shown in FIG Fig. 7 is shown.
  • a heating system is usually used in apartments or houses and is used to heat the building and to provide heated service water.
  • the heating system has a heat source 52, for example in the form of a gas boiler.
  • a heating circuit 54 which, for example, leads through various radiators in a building.
  • a secondary heat exchanger 56 is provided, via which domestic water can be heated.
  • a changeover valve is usually required, which directs the heat transfer medium flow either through the heating circuit 54 or the secondary heat exchanger 56.
  • this valve function is taken over by the valve element 18, which is integrated into the centrifugal pump unit 1.
  • the control takes place by the control device 17 in the electronics housing 16.
  • the heat source 52 is connected to the pressure connection 27 of the pump housing 12.
  • a flow path 58 is connected to the suction connection 32, while a flow path 60 through the suction connection 34 is connected Heating circuit 54 is connected.
  • Heating circuit 54 is connected.
  • the second embodiment according to Figs. 8-10 differs from the first embodiment in the structure of the valve element 18 '.
  • the valve element 18 'as a separating element separates the pressure chamber 26 from a suction chamber 24 of the pump housing 12 and forms a movable section of the flow-guiding wall of the pressure chamber 26.
  • the valve element 18 has a central suction opening 36' into which the suction mouth 38 of the Impeller 14 engages sealingly.
  • the valve element 18 ' Opposite the suction opening 36, the valve element 18 'has an opening 62 which, depending on the switching position of the valve element 18', can optionally be made to coincide with one of the inlets 28, 30.
  • the inlets 28 ', 30' in this exemplary embodiment differ in their shape from the inlets 28, 30 according to the previous embodiment.
  • the valve element 18 ′ has a central projection 64 which engages in a central hole 60 in the bottom of the pump housing 12 and is mounted there to rotate about the axis of rotation X.
  • the projection 64 in the hole 66 also allows an axial movement along the axis of rotation X, which is limited in one direction by the bottom of the pump housing 12 and in the other direction by the impeller 14.
  • the valve element 18 ′ On its outer circumference, has a pin 68 which engages in a semicircular groove 70 on the bottom of the pump housing 12.
  • the ends of the groove 70 serve as stop surfaces for the pin 68 in the two possible switching positions of the valve element 18 ', wherein in a first switching position the opening 62 is above the input 28' and in a second switching position the opening 62 is above the input 30 'and the other entrance is closed by the bottom of the valve element 18 '.
  • the rotary movement of the valve element 18 ′ between the two switching positions also takes place in this exemplary embodiment by the flow caused in the pressure chamber 26 by the impeller 14. In order to transfer this even better to the valve element 18 ′, it is provided with projections 72 directed in the pressure chamber 26.
  • valve element 18 ' is in the Fig. 9 Depressed position shown, in which the valve element 18 'comes to rest on the bottom of the pump housing 12 in the circumferential area of the inlets 28' and 30 'and at the same time the pin 24 is lifted from the end face of the rotor shaft 8. In this position, the impeller 14 then rotates during normal operation of the circulating pump assembly.
  • the third embodiment according to Figures 11 to 13 shows a further possible embodiment of the valve element 18 ".
  • This embodiment differs from the previous embodiments in the structure of the valve element 18".
  • This is designed as a valve drum.
  • the pump housing 12 essentially corresponds to the structure shown in FIG Figs. 1 to 6 , wherein in particular the arrangement of the inputs 28 and 30 corresponds to the arrangement described with reference to the first exemplary embodiment.
  • the valve drum of the valve element 18 ′′ consists of a pot-shaped lower part which is closed by a cover 78.
  • the cover 78 faces the pressure chamber 26 and has the central suction opening 36, which engages the suction mouth 38 of the impeller 14 with its axially directed collar
  • the cover 78 thus forms a movable section the flow-guiding walls of the pressure chamber 26.
  • the bottom of the lower part 36 has an inlet opening 80 which, depending on the switching position, is brought into congruence with one of the inlets 28, 30, while the other inlet 28, 30 passes through the bottom of the Lower part 26 is closed.
  • the valve element 18 ′′ is rotatably mounted on an axis 20 which is fastened in the bottom of the pump housing 12, the axis of rotation defined by the axis 20 corresponding to the axis of rotation X of the impeller 14.
  • the valve element 18 ′′ can be axially displaced by a certain amount along the axis 20, a spring 48 being provided here as well, which in the rest position moves the valve element 18 ′′ into its in Fig. 13 shown released position presses.
  • This axial position is also limited by the nut 22 in this exemplary embodiment.
  • the valve element 18 ′′ as described above, can be rotated by the flow caused by the impeller 14, that is, a hydraulic coupling is established between the impeller 14 and the valve element 18 ′′.
  • the adjacent position which is in Fig. 12 is shown, one of the inputs 28, 30 is tightly closed depending on the switching position.
  • the mounting of the valve element 18 ′′ on the axle 20 is furthermore encapsulated by two sleeves 82 and 84, so that these areas are protected from contamination by the conveyed fluid and, if necessary, can be lubricated beforehand.
  • the aim is to ensure that the mounting is as smooth as possible in order to ensure the easy rotatability of the valve element 18 ′′ by the flow caused by the impeller 14. It is to be understood that the mounting could also be encapsulated accordingly in the other exemplary embodiments described here.
  • Fig. 14 and 15th show a fourth exemplary embodiment in which the structure of the pump housing 12 corresponds to the structure of the pump housing 12 according to the first and third exemplary embodiments.
  • the rotary movement of the valve element 18c is supported by the flow on the suction side, that is, the flow entering the suction mouth 38 of the impeller 14.
  • the valve element 18c is essentially drum-shaped and has a cover 28 facing the pressure chamber 26 with the central suction opening 36 which engages with the suction mouth 38, as described above.
  • the lower part 76b shown here has two inlet openings 80 which, depending on the switching position, can be brought to overlap with one of the inputs 28, 30, the respective other input 28, 30 being tightly closed by the bottom of the lower part 46b, as in the previous one Embodiment has been described.
  • a stator 86 with blades into which the flow enters radially from the inlet openings 80 and exits axially to the central suction opening 36.
  • the stator 86 is a flow-guiding component which, with its walls, serves to guide the flow and can be moved along with the flow as a movable part of the flow-guiding walls.
  • the blades of the stator 86 also generate a torque about the axis 20, by means of which the valve element 18c can be moved between the switching positions. This works essentially as described above.
  • a spring 48 as described above, can also additionally be provided in order to move the valve element 18c into a released position. Since the shape of the blades of the stator 86 always generates a torque in the same direction, regardless of the direction in which the impeller 14 rotates, in this exemplary embodiment the return movement is effected by a weight 88.
  • the centrifugal pump assembly is in operation always in the installation position, which in Fig. 15 is shown in which the axis of rotation X extends horizontally.
  • valve element 18c When the centrifugal pump unit is switched off, the valve element 18c always rotates about the axis 20 so that the weight 88 is below. Due to the torque generated by the stator 86, the valve element 18c can be rotated against this restoring force generated by the weight 88, whereby by very quickly starting up the drive motor in the pressure chamber 26, a pressure can be built up so quickly that the valve element 18c is in its adjacent position occurs, as described above, in which it is held non-rotatably on the pump housing 12 without being moved out of its rest position. It is to be understood that resetting of the valve element by gravity or another resetting force could also be used in the other exemplary embodiments described here, independently of the drive.
  • the fifth embodiment according to Figures 16-18 again differs from the preceding exemplary embodiments in the construction of the valve element.
  • the valve element 18d is conical.
  • the valve element 18d has a conical, pot-shaped lower part 76d which is closed by a cover 78d, with a central suction opening 36 being formed in the cover 78d which engages with the suction mouth 38 of the impeller 14 in the manner described above.
  • the cover 78d adjoins the pressure chamber 26 and there forms a movable section of the flow-guiding wall.
  • inlet openings 90 are formed, which, by rotating the valve element 18d with inlets which are connected to the suction connections 32 and 34, can optionally be brought to overlap in order to create a flow path through the interior of the valve element 18d to the suction opening 36 to manufacture. Between the inlet openings 90 are on the conical lower part sealing surfaces 92 formed which can close the other input.
  • the valve element 18d has a pin-shaped projection 64 which engages in a recess on the bottom of the pump housing 12 and there the valve element 18d rotates about the axis of rotation X.
  • there is an axial movement between a released position as shown in Fig.
  • valve element 18d on the other hand it is held non-positively so that, as long as the pressure in the pressure chamber 26 is sufficiently high, it is not moved between the switching positions even when the direction of rotation of the impeller 14 changes.
  • the pump housing 12 serves as a combined valve and pump housing which is in one piece is trained. It is to be understood, however, that the pump housing 12 could be designed in a corresponding manner in several parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine hydraulische Baueinheit mit einem Kreiselpumpenaggregat sowie zumindest einem Ventilelement, welches von einer von dem Kreiselpumpenaggregat verursachten Flüssigkeitsströmung bewegbar ist.
  • Es sind hydraulische Baueinheiten mit Kreiselpumpenaggregaten bekannt, welche Ventilelemente aufweisen, die durch die Strömung in dem Pumpenaggregat bewegt werden. So sind Kreiselpumpenaggregate bekannt, bei welchen durch Drehrichtungsumkehr des Antriebsmotors die Strömung im Inneren des Pumpengehäuses in zwei verschiedene Richtungen gelenkt werden kann, so dass ein Umschaltelement zwischen zwei Ausgängen oder zwei Eingängen des Kreiselpumpenaggregates bewegt werden kann, um die Strömung wahlweise durch einen von diesen zu fördern. Nachteilig bei diesen bekannten Kreiselpumpenaggregaten ist eine relativ aufwendige Mechanik oder das Auftreten von Wirkungsgradverlusten aufgrund der im Strömungsweg erforderlichen Schaltelemente oder der erforderlichen Drehrichtungsumkehr. Derartige Kreiselpumpenaggregate sind beispielsweise aus US 5,924,432 , DE 44 18 153 A1 , EP 0 394 140 A1 und EP 1 403 521 A1 bekannt.
  • Im Hinblick auf diese Problematik ist es Aufgabe der Erfindung, eine hydraulische Baueinheit mit einem Kreiselpumpenaggregat und einem über die von dem Kreiselpumpenaggregat erzeugte Strömung bewegbaren Ventilelement dahingehend zu verbessern, dass eine zuverlässige Betätigung des Ventilelementes bei gleichzeitig einfachem Aufbau des Ventilelementes und einem hohen Wirkungsgrad möglich is.
  • Diese Aufgabe wird durch eine hydraulische Baueinheit mit den in Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.
  • Die erfindungsgemäße hydraulische Baueinheit weist ein Kreiselpumpenaggregat auf, welches einen elektrischen Antriebsmotor sowie zumindest ein von diesem drehend angetriebenes Laufrad aufweist. Der elektrische Antriebsmotor ist dabei vorzugsweise ein nasslaufender Motor, das heißt ein Antriebsmotor mit einem Spaltrohr oder Spalttopf zwischen Stator und Rotor, so dass der Rotor in der zu fördernden Flüssigkeit rotieren kann. Neben diesem Kreiselpumpenaggregat weist die erfindungsgemäße hydraulische Baueinheit zumindest ein Ventilelement auf, welches so angeordnet und ausgestaltet ist, dass es durch eine von dem Laufrad verursachte Flüssigkeitsströmung bewegbar ist, insbesondere zwischen zumindest zwei verschiedenen Schaltstellungen bewegbar ist. Die hydraulische Baueinheit umfasst neben dem Kreiselpumpenaggregat und dem Ventilelement vorzugsweise zumindest diejenigen Strömungskanäle bzw. Strömungswege, welche zum Anschluss des Kreiselpumpenaggregates an externe Elemente, beispielsweise Rohrleitungen eines Heizungskreislaufes, erforderlich sind. Weiter bevorzugt umfasst die hydraulische Baueinheit zumindest einen Teil der Strömungswege, welche zur Verbindung zwischen dem Kreiselpumpenaggregat und dem Ventilelement erforderlich sind, wobei besonders bevorzugt das Ventilelement mit dem Kreiselpumpenaggregat eine integrierte Baueinheit bildet. So kann z. B. das Ventilelement im Pumpengehäuse, in welchem das Laufrad rotiert, angeordnet sein.
  • Weiter bevorzugt ist die hydraulische Baueinheit zur Verwendung in einer Heizungs- und/oder Klimaanlage ausgebildet, das heißt, das Kreiselpumpenaggregat ist vorzugsweise zur Verwendung als Umwälzpumpenaggregat ausgebildet, um einen flüssigen Wärmeträger wie insbesondere Wasser, in einem Kreislauf einer Heizungs- oder Klimaanlage umzuwälzen. Weiter bevorzugt kann die hydraulische Baueinheit als eine integrierte hydraulische Baueinheit für eine Heizungsanlage, insbesondere eine Kompaktheizungsanlage ausgebildet sein. Solche integrierten Baueinheiten umfassen in der Regel alle wesentlichen Strömungswege und hydraulischen Komponenten der Kompaktheizungsanlage. So kann insbesondere auch ein Sekundärwärmetauscher zum Erwärmen von Brauchwasser in die hydraulische Baueinheit integriert sein. Eine solche hydraulische Baueinheit weist dann im Wesentlichen lediglich noch die Anschlüsse für einen oder mehrere Heizkreise, für mindestens eine Wärmequelle sowie gegebenenfalls einen Eingang für kaltes Brauchwasser sowie einen Ausgang für erwärmtes Brauchwasser auf. Erforderliche Ventile, Sensoren und das Kreiselpumpenaggregat sind vorzugsweise in die hydraulische Baueinheit integriert, wobei weiter bevorzugt zumindest ein Teil der erforderlichen Strömungswege in einstückigen Bauteilen aus Guss, insbesondere Kunststoffspritzguss, ausgebildet sein kann.
  • Erfindungsgemäß ist zumindest ein Abschnitt einer einen Strömungsweg in der hydraulischen Baueinheit begrenzenden Wandung beweglich ausgebildet. Dies ist bevorzugt ein Strömungsweg, durch welchen die von dem Kreiselpumpenaggregat geförderte Flüssigkeit fließt. So strömt die Flüssigkeit an der Wandung und damit auch dem zumindest einen beweglichen Abschnitt entlang. Dieser bewegliche Abschnitt der Wandung ist Teil des Ventilelementes oder mit dem Ventilelement zu dessen Bewegung gekoppelt bzw. verbunden. So kann die bewegliche Wandung eine Kraft- oder Bewegungsenergie direkt auf das Ventilelement zu dessen Bewegung übertragen. Der bewegliche Abschnitt wiederum ist durch die entlang der Wandung verlaufende Flüssigkeitsströmung bewegbar. So kann die Flüssigkeitsströmung über den beweglichen Abschnitt der Wandung eine Bewegung des mit diesem Abschnitt der Wandung gekoppelten Ventilelementes bewirken. Die Übertragung von Bewegungsenergie von der Strömung auf den beweglichen Abschnitt der Wandung erfolgt erfindungsgemäß zumindest teilweise durch Reibungskräfte zwischen der Flüssigkeitsströmung und der Wandung. Besonders bevorzugt erfolgt die gesamte Kraft- bzw. Energieübertragung durch eine Reibung der Flüssigkeitsströmung an dem beweglichen Abschnitt der Wandung. Eine solche Ausgestaltung hat den Vorteil, dass für die Bewegung des Ventilelementes im Wesentlichen nur eine Verlustenergie ausgenutzt wird, welche aufgrund der auftretenden Reibung ohnehin im Inneren des Strömungsweges anfallen würde. Idealerweise weist die Oberfläche des beweglichen Abschnittes der Wandung eine Oberflächengestaltung bzw. Rauheit auf, welche im Wesentlichen nicht von den Eigenschaften der Oberflächen der übrigen Wandung des Strömungsweges abweicht. Zusätzliche in die Strömung ragende und Widerstände verursachende Elemente sind vorzugsweise nicht vorgesehen. So treten auch an dem beweglichen Abschnitt der Wandung im Wesentlichen nur die üblichen Reibungsverluste auf, wobei diese dann zur Bewegung des Ventilelementes genutzt werden können. So kann ein sehr hoher Wirkungsgrad auch bei der Betätigung des Ventilelementes realisiert werden, da hydraulische Verluste minimiert werden. Insbesondere treten nach der Bewegung des Ventilelementes über den beweglichen Abschnitt der Wandung, wenn dieser in einer Endlage verbleibt, beim weiteren Betrieb des Kreiselpumpenaggregates im Wesentlichen keine zusätzlichen Strömungsverluste auf, wie es hingegen beispielsweise bei beweglichen Klappen oder Schaufeln, welche zur Bewegung eines Ventilelementes in die Strömung ragen, der Fall wäre.
  • Das Ventilelement kann beispielsweise ein Umschalt- oder Mischventil sein. Das Ventilelement ist vorzugsweise zwischen zwei Schaltstellungen oder Endlagen bewegbar, wobei es zwischen diesen Endlagen durch die Strömung hin und her bewegt werden kann. Die Richtungsumkehr kann beispielsweise durch Richtungsänderung der Strömung, beispielsweise durch Drehrichtungsänderung des Laufrades, erreicht werden. Alternativ könnte auch ein zusätzliches Rückstellelement, beispielsweise eine Feder oder ein Gewicht vorgesehen sein, welches beim Abschalten der Strömung dafür sorgt, dass das Ventilelement sich in eine vorbestimmte Ausgangslage zurückbewegt.
  • Der zumindest eine bewegliche Abschnitt der Wandung ist vorzugsweise derart angeordnet, dass er parallel zu der entlang der Wandung verlaufenden Flüssigkeitsströmung bewegbar ist. Das bedeutet, dass die Strömung an diesem beweglichen Abschnitt der Wandung wie an angrenzenden Wandungsteilen entlang strömen kann, ohne durch den beweglichen Abschnitt der Wandung stärker abgebremst oder beeinträchtigt zu werden. Die Strömung nimmt den beweglichen Abschnitt der Wandung vorzugsweise allein durch Reibungskräfte in Strömungsrichtung mit und bewegt damit das gekoppelte Ventilelement.
  • Der zumindest eine bewegliche Abschnitt der Wandung kann einen sich druckseitig von dem Kreiselpumpenaggregat erstreckenden Strömungsweg oder aber einen sich saugseitig von dem Kreiselpumpenaggregat erstreckenden Strömungsweg begrenzen. So kann beispielsweise eine saugseitig zu dem Kreiselpumpenaggregat hinströmende Strömung oder eine druckseitig von dem Kreiselpumpenaggregat wegströmende Strömung den beweglichen Abschnitt und damit das Ventilelement bewegen. Es ist auch möglich, das Ventilelement sowohl über eine Strömung an der Druckseite des Kreiselpumpenaggregates als auch eine Strömung an der Saugseite des Kreiselpumpenaggregates anzutreiben. In diesem Falle sind zwei bewegliche Abschnitte in zwei Strömungswegen vorgesehen, welche beide Teil des Ventilelementes sind oder mit dem Ventilelement zu dessen Antrieb gekoppelt sind.
  • Der bewegliche Abschnitt der Wandung ist, wie oben bereits beschrieben, bevorzugt derart ausgebildet und angeordnet, dass er durch eine Verlustenergie, welche von den Reibungskräften an der Wandung des Strömungsweges versursacht wird, gemeinsam mit dem zumindest einen Ventilelement bewegbar ist. So treten im Wesentlichen keine Wirkungsgradverluste durch das Ventilelement und dessen Betätigungselemente, welche das Ventilelement über die Strömung bewegen, auf.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist der zumindest eine Abschnitt der Wandung drehbar in einem Pumpengehäuse gelagert und vorzugsweise gemeinsam mit dem zumindest einen Ventilelement drehbar in dem Pumpengehäuse gelagert. Im Pumpengehäuse rotiert das Laufrad. Dabei erzeugt das Laufrad im Umfangsbereich eine ebenfalls rotierende Strömung. Wenn der Abschnitt der Wandung und vorzugsweise auch das Ventilelement drehbar sind, lässt sich diese rotierende Strömung sehr leicht in eine Bewegung des Ventilelementes umsetzen, da die rotierende Strömung den drehbar beweglichen Abschnitt der Wandung in Strömungsrichtung durch Reibungskräfte mitbewegen kann. Besonders bevorzugt liegt die Drehachse des zumindest einen beweglichen Abschnittes der Wandung fluchtend zu der Drehachse des Antriebsmotors und des zumindest einen Laufrades. Weiter bevorzugt fluchtet auch die Drehachse eines drehbaren Ventilelementes mit der Drehachse des Antriebsmotors und des Laufrades.
  • Zweckmäßigerweise ist der zumindest eine bewegliche Abschnitt der Wandung derart ausgestaltet, dass die an ihm durch die Flüssigkeitsströmung wirkenden Reibungskräfte größer sind als diejenigen Reibungskräfte, welche in einer Lagerung bzw. den Lagerungen des beweglichen Abschnittes der Wandung und des zumindest einen Ventilelementes auftreten. Dies kann beispielsweise durch eine entsprechend große Oberfläche des beweglichen Abschnittes der Wandung erreicht werden. Auch könnte die Oberfläche der beweglichen Wandung strukturiert sein, um eine höhere Reibung zu verursachen. Wesentlich ist, dass die Ausgestaltung so ist, dass die von der Strömung auf den beweglichen Wandabschnitt übertragenen Kräfte größer sind als die Halte- bzw. Reibungskräfte, welche auf den beweglichen Abschnitt der Wandung und des zumindest einen Ventilelements wirken. So kann durch die Strömung eine Bewegung des Ventilelementes verursacht werden. Um ein möglichst großes Drehmoment auf ein drehbares Ventilelement zu erzeugen, ist es bevorzugt, zumindest einen Teil der Oberfläche des beweglichen Abschnittes möglichst weit von einer Drehachse zu beabstanden, um ein möglichst großes Drehmoment zu erzeugen. Besonders bevorzugt hat der bewegliche Abschnitt der Wandung eine scheibenförmige und insbesondere kreisförmige Außenkontur, wobei der Außendurchmesser der Scheibe vorzugsweise zumindest genauso groß wie der Durchmesser des Laufrades in den Pumpengehäuse ist.
  • Erfindungsgemäß ist ein bewegliches Trennelement vorgesehen, welches einen Saugraum im Inneren eines Pumpengehäuses des Kreiselpumpenaggregates von einem das Laufrad umgebenden Druckraum trennt, wobei eine dem Druckraum zugewandte Oberfläche und/oder eine den Saugraum zugewandte Oberfläche des Trennelementes den zumindest einen beweglichen Abschnitt der Wandung bildet oder aufweist. So kann das Trennelement vorzugsweise um eine Drehachse, welche mit der Drehachse des Laufrades fluchtet, drehbar sein. Weiter bevorzugt ist das Trennelement direkt von dem Ventilelement gebildet, das heißt, das Trennelement ist Teil des Ventilelementes. So kann ein direkter Antrieb des Ventilelementes an einer Oberfläche des Ventilelementes, welche den beweglichen Abschnitt der Wandung in dem Strömungsweg bildet, verursacht werden.
  • Weiter bevorzugt umgibt das Trennelement einen Saugmund des Laufrades ringförmig, wobei das Trennelement eine zentrale Öffnung aufweisen kann, welche mit dem Saugmund fluchtet, insbesondere mit diesem dichtend in Eingriff ist. So bildet das Trennelement eine übliche Deflektorplatte zwischen Saugraum und Druckraum des Pumpenaggregates und ist gleichzeitig beweglich, um das Ventilelement antreiben zu können, wenn das Trennelement durch die an ihm angreifende Strömung bzw. die an ihm entlang strömende Strömung mitbewegt wird.
  • Das Ventilelement ist vorzugsweise an einem zentralen Lager drehbar gelagert, wobei sich die Drehachse des Ventilelementes, wie beschrieben vorzugsweise fluchtend zu der Drehachse des Antriebsmotors erstreckt. Die zentrale Lagerung hat den Vorteil, dass der Lagerdurchmesser sehr klein ausgebildet werden kann, so dass die Reibungsverluste an dem Lagerflächen minimiert werden können. Wenn der bewegliche Abschnitt der Wandung Teil des Ventilelementes ist, kann dieser darüber hinaus radial außerhalb des Lagers, vorzugsweise radial beabstandet von dem Lager gelegen sein, so dass ein größeres Drehmoment zur Bewegung des Ventilelementes durch die an dem beweglichen Abschnitt angreifende Strömung verursacht wird.
  • Weiter bevorzugt ist das Ventilelement zwischen zumindest zwei Schaltstellungen bewegbar, wobei diese Schaltstellungen beispielsweise durch Anschläge begrenzt bzw. definiert sein können. Es ist jedoch auch denkbar, dass das Ventilelement mehr als zwei Schaltstellungen einnehmen kann. Das Ventilelement kann gemäß einer ersten Ausführungsform der Erfindung als Umschaltventil zwischen zwei Strömungswegen wirken, wobei dann in einer ersten Schaltstellung ein erster Strömungsweg geöffnet und ein zweiter Strömungsweg geschlossen ist. Umgekehrt ist in einer zweiten Schaltstellung der erste Strömungsweg geschlossen und der zweite Strömungsweg geöffnet. Gemäß einer zweiten Ausführungsform der Erfindung kann das Ventilelement alternativ oder zusätzlich als Mischventil wirken.
  • Vorzugsweise kann das Ventilelement mit zumindest zwei Ventilöffnungen zweier Strömungskanäle derart zusammenwirken, dass die Ventilöffnungen der Strömungskanäle abhängig von der Schaltstellung des Ventilelementes unterschiedlich geöffnet sind. Im Falle eines Umschaltventils bedeutet dies, dass die Ventilöffnungen entweder vollständig geschlossen oder vollständig geöffnet sind. Bei Ausbildung als Mischventil sind auch Zwischenstellungen möglich, bei welchen die Ventilöffnungen nur teilweise geöffnet sind. Bei der Verwendung des Mischventils ist das Ventilelement vorzugsweise so ausgebildet, dass es bei seiner Bewegung jeweils eine der Ventilöffnungen weiter schließt und gleichzeitig die andere Ventilöffnung weiter öffnet. Bevorzugt erfolgt dies um dasselbe Maß. Es kann besonders einfach dadurch erreicht werden, dass ein einstückiges Ventilelement vorgesehen ist, welches beide Ventilöffnungen überdecken kann. Es ist jedoch erfindungsgemäß unter einem Ventilelement auch eine Anordnung zweier Ventilelemente zu verstehen, welche in geeigneter Weise zur gemeinsamen Bewegung miteinander gekoppelt sind.
  • Weiter bevorzugt spannen die zumindest zwei Ventilöffnungen jeweils eine Fläche auf, die sich parallel zu einer Bewegungsrichtung des Ventilelementes zwischen den zumindest zwei Schaltstellungen erstreckt. Das heißt, vorzugsweise wird das Ventilelement zum Öffnen und Schließen der Ventilöffnungen parallel zu diesen bzw. den von den Ventilöffnungen aufgespannten Flächen bewegt und nicht zum Öffnen und Schließen den Ventilöffnungen angenähert und von diesen entfernt. Dies ermöglicht eine sehr einfache konstruktive Ausgestaltung zweier wechselseitig von einem Ventilelement zu öffnenden und zu schließenden Ventilöffnungen. Ferner wirkt vorzugsweise ein an den Ventilöffnungen herrschender Druck nicht in Bewegungsrichtung des Ventilelementes.
  • Weiter bevorzugt ist das Ventilelement derart ausgestaltet und angeordnet, dass es durch die Flüssigkeitsströmung entlang einem ersten Bewegungspfad bzw. einer ersten Bewegungsbahn zwischen zumindest zwei Schaltstellungen bewegbar ist und zusätzlich durch einen von dem Laufrad erzeugten Druck entlang einem zweiten Bewegungspfad bzw. entlang einer zweiten Bewegungsbahn mit Kraft beaufschlagbar oder bewegbar ist, wobei der zweite Bewegungspfad gewinkelt zu dem ersten Bewegungspfad verläuft. Dies ermöglicht es, den Wechsel zwischen den Schaltstellungen sehr reibungsarm durchzuführen, da in diesem Zustand vorzugsweise das Ventilelement nicht an erforderlichen Ventilsitzen und/oder Anlageflächen anliegt oder an diesen relativ reibungsarm anliegt. Durch den Druck kann das Ventilelement so mit Kraft beaufschlagt werden, dass es an den Ventilsitzen zur Anlage kommt bzw. mit größerer Kraft dichtend gegen die Ventilsitze und/oder Anlageflächen gedrückt wird. In diesem Zustand tritt dann eine größere Reibung bzw. Haltekraft zwischen dem Ventilelement und den Ventilsitzen bzw. weiteren Anlageflächen auf, welche gleichzeitig dazu dienen können, das Ventilelement in der erreichten Schaltstellung zu halten.
  • So ist das Ventilelement bevorzugt entlang dem zweiten Bewegungspfad zwischen einer ersten gelösten Position, in welcher das Ventilelement zwischen den zumindest zwei Schaltstellungen bewegbar ist, und einer anliegenden Position, an welcher es an zumindest einer Anlagefläche anliegt, bewegbar. Darunter ist zu verstehen, dass das Ventilelement in der ersten Position gegebenenfalls ebenfalls an der Anlagefläche anliegen kann, jedoch so, dass es an der Anlagefläche relativ reibungsarm entlanggleiten kann. In der zweiten Position hingegen wird das Ventilelement so an die Anlagefläche angedrückt, dass eine stärkere Reibung zwischen dem Ventilelement und der Anlage auftritt, welche eine Haltekraft erzeugt, welche eine weitere Bewegung des Ventilelementes über die Flüssigkeitsströmung, wie es vorangehend beschrieben wurde, unterbindet. Durch eine solche Ausgestaltung ist es möglich, das Ventilelement durch entsprechenden Antrieb des Antriebsmotors und Ausbildung einer Flüssigkeitsströmung zu bewegen, solange nicht ein solcher Flüssigkeitsdruck erreicht wird, welcher das Ventilelement in Anlage mit der Anlagefläche drückt. Ein solcher Druck kann durch Drehzahlerhöhung und insbesondere sehr schnelle Drehzahlerhöhung des Antriebsmotors erreicht werden, so dass das Ventilelement dann gezielt in einer erreichten Schaltstellung gehalten werden kann. Vorzugsweise ist der Druck, bei welchem das Ventilelement an der Anlagefläche haltend zur Anlage kommt, so gewählt, das er niedriger als der niedrigste Betriebsdruck im Normalbetrieb des Kreiselpumpenaggregates ist. Der Druck kann durch ein Rückstellelement wie eine Rückstellfeder eingestellt sein, welche so angeordnet ist, dass sie das Ventilelement bei niedrigerem Druck in die gelöste erste Position bewegt.
  • Das Ventilelement und die Anlagefläche sind vorzugsweise so ausgestaltet, dass sie in der anliegenden Position miteinander kraft- und/oder formschlüssig in Eingriff treten, wobei über diesen Eingriff vorzugsweise eine größere Kraft übertragbar ist als zwischen der Flüssigkeitsströmung und dem zumindest einen beweglichen Abschnitt der Wandung. So wird sichergestellt, dass das Ventilelement, wenn es mit der Anlagefläche in Anlage ist, in der erreichten Schaltstellung gehalten wird und von der Flüssigkeitsströmung nicht weiterbewegt werden kann. Die Flüssigkeitsströmung kann dann weiter entlang dem beweglichen Abschnitt der Wandung strömen, wobei dieser nicht mehr mitbewegt wird.
  • Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:
  • Fig. 1
    eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer ersten Ausführungsform der Erfindung,
    Fig. 2
    eine perspektivische Ansicht der Unterseite des Ventilelementes des Kreiselpumpenaggregates gemäß Fig. 1,
    Fig. 3
    eine perspektivische Ansicht des Pumpengehäuses des Kreiselpumpenaggregates gemäß Fig. 1 im geöffneten Zustand,
    Fig. 4
    eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 1,
    Fig. 5
    eine Schnittansicht des Pumpengehäuses des Kreiselpumpenaggregates gemäß Fig. 4 mit dem Ventilelement in einer ersten Schaltstellung,
    Fig. 6
    eine Schnittansicht entsprechend Fig. 5 mit dem Ventilelement in einer zweiten Schaltstellung,
    Fig. 7
    schematisch den hydraulischen Aufbau mit einer Heizungsanlage mit einem Kreiselpumpenaggregat gemäß Fig. 1 bis 6,
    Fig. 8
    eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer zweiten Ausführungsform der Erfindung,
    Fig. 9
    eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 8 mit dem Ventilelement in einer ersten Position,
    Fig. 10
    eine Schnittansicht entsprechend Fig. 9 mit dem Ventilelement in einer zweiten Position,
    Fig. 11
    eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer dritten Ausführungsform der Erfindung,
    Fig. 12
    eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 11 mit dem Ventilelement in einer ersten Position,
    Fig. 13
    eine Schnittansicht entsprechend Fig. 12 mit dem Ventilelement in einer zweiten Position,
    Fig. 14
    eine Explosionsansicht eines Pumpengehäuses mit einem Ventilelement gemäß einer vierten Ausführungsform der Erfindung,
    Fig. 15
    eine Schnittansicht eines Kreiselpumpenaggregates gemäß der vierten Ausführungsform der Erfindung,
    Fig. 16
    eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer fünften Ausführungsform der Erfindung,
    Fig. 17
    eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 16 mit dem Ventilelement in einer ersten Position, und
    Fig. 18
    eine Schnittansicht entsprechend Fig. 17 mit dem Ventilelement in einer zweiten Position.
  • Die in der nachfolgenden Beschreibung beschriebenen Ausführungsbeispiele des erfindungsgemäßen Kreiselpumpenaggregates betreffen Anwendungen in Heizungs- und/oder Klimasystemen, in welchen von dem Kreiselpumpenaggregat ein flüssiger Wärmeträger, insbesondere Wasser, umgewälzt wird.
  • Das Kreiselpumpenaggregat gemäß der ersten Ausführungsform der Erfindung weist ein Motorgehäuse 2 auf, in welchem ein elektrischer Antriebsmotor angeordnet ist. Dieser weist in bekannter Weise einen Stator 4 sowie einen Rotor 6 auf, welcher auf einer Rotorwelle 8 angeordnet ist. Der Rotor 6 dreht in einem Rotorraum, welcher von dem Statorraum, in welchem der Stator 4 angeordnet ist, durch ein Spaltrohr bzw. einen Spalttopf 10 getrennt ist. Das heißt, es handelt sich hierbei um einen nasslaufenden elektrischen Antriebsmotor. An einem Axialende ist das Motorgehäuse 2 mit einem Pumpengehäuse 12 verbunden, in welchem ein mit der Rotorwelle 8 drehfest verbundenes Laufrad 14 rotiert.
  • An dem dem Pumpengehäuse 12 entgegengesetzten Axialende des Motorgehäuses 2 ist ein Elektronikgehäuse 16 angeordnet, welches eine Steuerelektronik bzw. Steuereinrichtung zur Ansteuerung des elektrischen Antriebsmotors in dem Pumpengehäuse 2 beinhaltet. Das Elektronikgehäuse 16 könnte in entsprechender Weise auch an einer anderen Seite des Statorgehäuses 2 angeordnet sein.
  • In dem Pumpengehäuse 12 ist darüber hinaus ein bewegliches Ventilelement 18 angeordnet. Dieses Ventilelement 18 ist auf einer Achse 20 im Inneren des Pumpengehäuses 12 drehbar gelagert, und zwar so, dass die Drehachse des Ventilelementes 18 mit der Drehachse X des Laufrades 14 fluchtet. Die Achse 20 ist am Boden des Pumpengehäuses 12 drehfest fixiert. Das Ventilelement 18 ist nicht nur um die Achse 20 drehbar, sondern um ein gewisses Maß in Längsrichtung X bewegbar. In einer Richtung wird diese lineare Bewegbarkeit durch das Pumpengehäuse 12, an welches das Ventilelement 18 mit seinem Außenumfang anschlägt, begrenzt. In der entgegengesetzten Richtung wird die Bewegbarkeit durch die Mutter 22 begrenzt, mit welcher das Ventilelement 18 auf der Achse 20 befestigt ist. Es ist zu verstehen, dass statt der Mutter 22 auch eine andere axiale Befestigung des Ventilelementes 18 auf der Achse 20 gewählt werden könnte.
  • Das Ventilelement 18 bildet ein Trennelement, welches in dem Pumpengehäuse 12 einen Saugraum 24 von einem Druckraum 26 trennt. In dem Druckraum 26 rotiert das Laufrad 14. Der Druckraum 26 ist mit dem Druckanschluss bzw. Druckstutzen 28 des Kreiselpumpenaggregates verbunden, welcher den Auslass des Kreiselpumpenaggregates bildet. In den Saugraum 24 münden zwei saugseitige Eingänge 28 und 30, von welchen der Eingang 28 mit einem ersten Sauganschluss 32 und der Eingang 30 mit einem zweiten Sauganschluss 34 des Pumpengehäuses 12 verbunden ist.
  • Das Ventilelement 18 ist scheibenförmig ausgebildet und übernimmt gleichzeitig die Funktion einer üblichen Deflektorplatte, welche den Saugraum 24 von dem Druckraum 26 trennt. Das heißt, es dient im Bereich des Druckraums der Strömungsführung und bildet einen Teil der Wandung des Druckraumes 26. Das Ventilelement 18 weist eine zentrale Saugöffnung 36 auf, welche einen vorstehenden umfänglichen Kragen aufweist, der mit dem Saugmund 38 des Laufrades 14 in Eingriff ist und im Wesentlichen mit dem Saugmund 38 in dichter Anlage ist. Dem Laufrad 14 zugewandt ist das Ventilelement 18 im Wesentlichen glatt ausgebildet. An der dem Laufrad 14 abgewandten Seite weist das Ventilelement zwei ringförmige Dichtflächen 40 auf, welche in diesem Ausführungsbeispiel auf geschlossenen rohrförmigen Stutzen gelegen sind. Die beiden ringförmigen Dichtflächen 40 sind an zwei diametral entgegengesetzten Positionen auf dem Dichtelement 18 bezüglich dessen Drehachse X angeordnet, so dass sie im Umfangsbereich der Eingänge 28 und 30 am Boden des Pumpengehäuses 12 in dichte Anlage treten können, um die Eingänge 28 und 30 zu verschließen. In einer Winkelposition 90° versetzt zu den Dichtflächen 40 sind Stützelemente 42 angeordnet, welche ebenfalls am Umfangsbereich der Eingänge 28, 30 zur Anlage kommen können, aber so voneinander beabstandet sind, dass sie die Eingänge 28, 30 dann nicht verschließen. Die Eingänge 28 und 30 liegen nicht auf einer Durchmesserlinie bezüglich der Drehachse X, sondern auf einer radial versetzten Geraden, so dass bei Drehung des Ventilelementes 18 um die Drehachse X in einer ersten Schaltstellung der Eingang 38 von einer Dichtfläche 40 verschlossen ist, während die Stützelemente 42 an dem Eingang 30 liegen und diesen öffnen. In einer zweiten Schaltstellung ist der Eingang 30 von einer Dichtfläche 40 verschlossen, während die Stützelemente 42 im Umfangsbereich des Einganges 28 anliegen und diesen öffnen. Die erste Schaltstellung, in welcher der Eingang 38 verschlossen und der Eingang 30 geöffnet ist, ist in Fig. 5 gezeigt. Die zweite Schaltstellung, in welcher der Eingang 30 verschlossen und der Eingang 28 geöffnet ist, ist in Fig. 6 dargestellt. Das bedeutet, durch eine Drehung des Ventilelementes um 90° um die Drehachse X kann zwischen den beiden Schaltstellungen umgeschaltet werden. Die beiden Schaltstellungen werden durch ein Anschlagelement 44, welches abwechselnd an zwei Anschlägen 46 in dem Pumpengehäuse 12 anschlägt, begrenzt.
  • In einer Ruhestellung, das heißt, wenn das Kreiselpumpenaggregat nicht in Betrieb ist, drückt eine Feder 48 das Ventilelement 18 in eine gelöste Stellung, in welcher der Außenumfang des Ventilelementes 18 nicht dicht an dem Pumpengehäuse 12 und die Dichtflächen 40 nicht dicht im Umfangsbereich der Eingänge 28 und 30 anliegen, so dass das Ventilelement 18 um die Achse 20 drehen kann. Wenn nun von der Steuereinrichtung 17 in dem Elektronikgehäuse 16 der Antriebsmotor in Drehung versetzt wird, so dass das Laufrad 14 rotiert, wird in dem Druckraum 26 eine umlaufende Strömung erzeugt, welche über Reibung an der Stirnseite des Ventilelementes 18 dieses in Drehrichtung der Strömung mitdreht. Das Ventilelement 18 bildet somit einen beweglichen Abschnitt der Wandung des Druckraumes 26, welcher durch die Strömung mitbewegt wird. Die Steuereinrichtung 17 ist so ausgebildet, dass sie den Antriebsmotor wahlweise in zwei Drehrichtungen antreiben kann. So kann das Ventilelement 18 um die Drehachse X je nach Drehrichtung des Laufrades 14 über die von dem Laufrad 14 in Rotation versetzte Strömung ebenfalls in zwei Drehrichtungen bewegt werden, da die Strömung im Umfangsbereich des Laufrades 14 stets in dessen Drehrichtung verläuft. So kann das Ventilelement 18 zwischen den beiden durch die Anschläge 46 begrenzten Schaltstellungen gedreht werden.
  • Wenn das Laufrad 14 mit ausreichender Drehzahl rotiert, baut sich in dem Druckraum 26 ein Druck auf, welcher an der Oberfläche des Ventilelementes 18, welche die Saugöffnung 36 umgibt, eine Druckkraft erzeugt, welche der Federkraft der Feder 48 entgegengesetzt ist, so dass das Ventilelement 18 gegen die Federkraft der Feder 48 in axialer Richtung X so bewegt wird, dass es an seinem Außenumfang an einer ringförmigen Anlageschulter 50 an dem Pumpengehäuse 12 dichtend zur Anlage kommt. Gleichzeitig kommt je nach Schaltstellung eine der Dichtflächen 40 im Umfang eines der Eingänge 28 und 30 dichtend zur Anlage, so dass einer der Eingänge 28, 30 verschlossen wird. An dem anderen Eingang kommen die Stützelemente 42 zur Anlage, so dass dieser Eingang offen bleibt und ein Strömungsweg von diesem Eingang 28, 30 zu der Saugöffnung 36 und von dort in das Innere des Laufrades 14 gegeben ist. Durch die Anlage des Ventilelementes 18 an der Anlageschulter 50 und der Dichtfläche 40 im Umfangsbereich eines der Eingänge 28, 30 wird gleichzeitig eine reibschlüssige Anlage zwischen Ventilelement 18 und Pumpengehäuse 12 geschaffen. Diese reibschlüssige Anlage sorgt dafür, dass das Ventilelement 18 in der erreichten Schaltstellung gehalten wird. Dies ermöglicht es, den Antriebsmotor kurzzeitig wieder außer Betrieb zu nehmen und in der entgegengesetzten Drehrichtung wieder in Betrieb zu nehmen, ohne dass das Ventilelement 18 gedreht wird. Erfolgt das Ausschalten und wieder in Betrieb nehmen des Motors schnell genug, verringert sich der Druck in dem Druckraum 26 nicht so weit, dass das Ventilelement 18 sich wieder in axialer Richtung in seine gelöste Position bewegen kann. Dies ermöglicht es, das Laufrad beim Betrieb des Kreiselpumpenaggregates stets in seiner bevorzugten Drehrichtung, für welche die Schaufeln ausgelegt sind, anzutreiben und die entgegengesetzte Drehrichtung lediglich zum Bewegen des Ventilelementes 18 in die entgegengesetzte Drehrichtung zu nutzen.
  • Das beschriebene Kreiselpumpenaggregat gemäß der ersten Ausführungsform der Erfindung kann beispielsweise in einem Heizungssystem eingesetzt werden, wie es in Fig. 7 gezeigt ist. Ein derartiges Heizungssystem findet üblicherweise in Wohnungen oder Wohnhäusern Verwendung und dient zur Erwärmung des Gebäudes und zur Bereitstellung von erwärmtem Brauchwasser. Die Heizungsanlage weist eine Wärmequelle 52, beispielsweise in Form eines Gasheizkessels, auf. Ferner ist ein Heizkreis 54 vorhanden, welcher beispielsweise durch verschiedene Heizkörper eines Gebäudes führt. Darüber hinaus ist ein Sekundärwärmetauscher 56 vorgesehen, über welchen Brauchwasser erwärmt werden kann. In derartigen Heizungsanlagen ist üblicherweise ein Umschaltventil erforderlich, welches den Wärmeträgerstrom wahlweise durch den Heizkreis 54 oder Sekundärwärmetauscher 56 lenkt. Mit dem erfindungsgemäßen Kreiselpumpenaggregat 1 wird diese Ventilfunktion durch das Ventilelement 18, welches in das Kreiselpumpenaggregat 1 integriert ist, übernommen. Die Steuerung erfolgt von der Steuereinrichtung 17 in dem Elektronikgehäuse 16. An den Druckanschluss 27 des Pumpengehäuses 12 ist die Wärmequelle 52 angeschlossen. An den Sauganschluss 32 ist ein Strömungsweg 58 angeschlossen, während an den Sauganschluss 34 ein Strömungsweg 60 durch den Heizkreis 54 angeschlossen ist. So kann je nach Schaltstellung des Ventilelementes 18 zwischen dem Strömungsweg 58 durch den Sekundärwärmetauscher 56 oder dem Strömungsweg 60 durch den Heizkreis 54 umgeschaltet werden, ohne dass ein Ventil mit einem zusätzlichen Antrieb erforderlich wäre.
  • Das zweite Ausführungsbeispiel gemäß Fig. 8 bis 10 unterscheidet sich von dem ersten Ausführungsbeispiel im Aufbau des Ventilelementes 18'. Auch in diesem Ausführungsbeispiel trennt das Ventilelement 18' als Trennelement den Druckraum 26 von einem Saugraum 24 des Pumpengehäuses 12 und bildet einen beweglichen Abschnitt der strömungsführenden Wandung des Druckraumes 26. Das Ventilelement 18 weist eine zentrale Saugöffnung 36' auf, in welche der Saugmund 38 des Laufrades 14 dichtend eingreift. Der Saugöffnung 36 entgegengesetzt weist das Ventilelement 18' eine Öffnung 62 auf, welche abhängig von der Schaltstellung des Ventilelementes 18' wahlweise mit einem der Eingänge 28, 30 zur Deckung gebracht werden kann. Die Eingänge 28',30' unterscheiden sich in diesem Ausführungsbeispiel in ihrer Formgebung von den Eingängen 28, 30 gemäß der vorangehenden Ausführungsform. Das Ventilelement 18' weist einen zentralen Vorsprung 64 auf, welcher in ein zentrales Loch 60 im Boden des Pumpengehäuses 12 eingreift und dort um die Drehachse X drehend gelagert ist. Gleichzeitig lässt der Vorsprung 64 in dem Loch 66 ebenfalls eine Axialbewegung entlang der Drehachse X zu, welche in einer Richtung durch den Boden des Pumpengehäuses 12 und in der anderen Richtung durch das Laufrad 14 begrenzt wird. An seinem Außenumfang weist das Ventilelement 18' einen Stift 68 auf, welcher in einer halbkreisförmigen Nut 70 am Boden des Pumpengehäuses 12 eingreift. Die Enden der Nut 70 dienen als Anschlagflächen für den Stift 68 in den beiden möglichen Schaltstellungen des Ventilelementes 18', wobei in einer ersten Schaltstellung die Öffnung 62 über dem Eingang 28' und in einer zweiten Schaltstellung die Öffnung 62 über dem Eingang 30' liegt und der jeweils andere Eingang durch den Boden des Ventilelementes 18' verschlossen wird. Die Drehbewegung des Ventilelementes 18' zwischen den beiden Schaltstellungen erfolgt auch in diesem Ausführungsbeispiel durch die in dem Druckraum 26 von dem Laufrad 14 verursachte Strömung. Um diese noch besser auf das Ventilelement 18' zu übertragen, ist es mit in dem Druckraum 26 gerichteten Vorsprüngen 72 versehen. Wenn das Kreiselpumpenaggregat 1 außer Betrieb genommen wird, drückt die Feder 48 das Ventilelement 18' in die in Fig. 10 gezeigte gelöste Stellung, in welcher es nicht am Boden im Umfang der Eingänge 28' und 30' anliegt. In dieser stößt es axial mit einem zentralen Zapfen 74 an der Stirnseite der Motorwelle 8 an und wird durch diesen Anschlag in seiner axialen Bewegung begrenzt. Wenn der Druck in dem Druckraum 26 ausreichend groß ist, wird das Ventilelement 18' in die in Fig. 9 gezeigte anliegende Position gedrückt, in welcher das Ventilelement 18' am Boden des Pumpengehäuses 12 im Umfangsbereich der Eingänge 28' und 30' zur Anlage kommt und gleichzeitig der Zapfen 24 von der Stirnseite der Rotorwelle 8 abgehoben ist. In dieser Position rotiert das Laufrad 14 dann im Normalbetrieb des Umwälzpumpenaggregates.
  • Das dritte Ausführungsbeispiel gemäß Fig. 11 bis 13 zeigt eine weitere mögliche Ausgestaltung des Ventilelementes 18". Dieses Ausführungsbeispiel unterscheidet sich von den vorangehenden Ausführungsbeispielen im Aufbau des Ventilelementes 18". Dieses ist als Ventiltrommel ausgebildet. Das Pumpengehäuse 12 entspricht im Wesentlichen dem Aufbau gemäß Fig. 1 bis 6, wobei insbesondere die Anordnung der Eingänge 28 und 30 der anhand des ersten Ausführungsbeispiels beschriebenen Anordnung entspricht. Die Ventiltrommel des Ventilelementes 18" besteht aus einem topfförmigen Unterteil, welches durch einen Deckel 78 verschlossen ist. Der Deckel 78 ist dem Druckraum 26 zugewandt und weist die zentrale Saugöffnung 36 auf, welche mit ihrem axial gerichteten Kragen in den Saugmund 38 des Laufrades 14 eingreift. Der Deckel 78 bildet somit einen beweglichen Abschnitt der strömungsführenden Wandungen des Druckraumes 26. An der entgegengesetzten Seite weist der Boden des Unterteils 36 eine Eintrittsöffnung 80 auf, welche je nach Schaltstellung mit einem der Eingänge 28, 30 zur Deckung gebracht wird, während der jeweils andere Eingang 28, 30 durch den Boden des Unterteils 26 verschlossen wird. Das Ventilelement 18'' ist drehbar auf einer Achse 20 gelagert, welche im Boden des Pumpengehäuses 12 befestigt ist, wobei die Drehachse, die durch die Achse 20 definiert wird, der Drehachse X des Laufrades 14 entspricht. Auch in diesem Ausführungsbeispiel ist das Ventilelement 18'' entlang der Achse 20 um ein gewisses Maß axial verschiebbar, wobei auch hier eine Feder 48 vorgesehen ist, welche in der Ruhelage das Ventilelement 18'' in seine in Fig. 13 gezeigte gelöste Stellung drückt. Diese axiale Stellung wird auch in diesem Ausführungsbeispiel durch die Mutter 22 begrenzt. In der gelösten Stellung ist das Ventilelement 18'', wie vorangehend beschrieben, durch die Strömung, welche von dem Laufrad 14 verursacht wird, drehbar, das heißt, es wird eine hydraulische Kupplung zwischen Laufrad 14 und Ventilelement 18'' hergestellt. In der anliegenden Position, welche in Fig. 12 gezeigt ist, wird je nach Schaltstellung zum einen einer der Eingänge 28, 30 dicht verschlossen. Zum anderen erfolgt auch eine Abdichtung zwischen Saugraum 24 und Druckraum 26 durch die Anlage des Ventilelementes 18'' an der Anlageschulter 50.
  • In diesem Ausführungsbeispiel ist die Lagerung des Ventilelementes 18'' auf der Achse 20 darüber hinaus durch zwei Hülsen 82 und 84 gekapselt, so dass diese Bereiche vor Verunreinigungen durch das geförderte Fluid geschützt sind und gegebenenfalls vorab geschmiert werden können. Es wird eine möglichst leichtgängige Lagerung angestrebt, um die leichte Drehbarkeit des Ventilelementes 18" durch die von dem Laufrad 14 verursachte Strömung zu gewährleisten. Es ist zu verstehen, dass auch bei den anderen hier beschriebenen Ausführungsbeispielen die Lagerung entsprechend gekapselt sein könnte.
  • Fig. 14 und 15 zeigen ein viertes Ausführungsbeispiel, bei welchem der Aufbau des Pumpengehäuses 12 dem Aufbau des Pumpengehäuses 12 gemäß dem ersten und dem dritten Ausführungsbeispiel entspricht. In diesem Ausführungsbeispiel wird die Drehbewegung des Ventilelementes 18c durch die saugseitige Strömung, das heißt, die in den Saugmund 38 des Laufrades 14 eintretende Strömung, unterstützt. Auch in diesem Ausführungsbeispiel ist das Ventilelement 18c im Wesentlichen trommelförmig ausgebildet und weist einen dem Druckraum 26 zugewandten Deckel 28 mit der zentralen Saugöffnung 36 auf, welche mit dem Saugmund 38, wie vorangehend beschrieben wurde, in Eingriff ist. Das hier gezeigte Unterteil 76b weist zwei Eintrittsöffnungen 80 auf, welche je nach Schaltstellung mit einem der Eingänge 28, 30 zur Überdeckung gebracht werden können, wobei der jeweils andere Eingang 28, 30 durch den Boden des Unterteils 46b dicht verschlossen wird, wie es beim vorangehenden Ausführungsbeispiel beschrieben wurde. Zwischen dem Unterteil 76b und dem Deckel 78 ist ein Leitrad 86 mit Schaufeln angeordnet, in welches die Strömung aus den Eintrittsöffnungen 80 radial eintritt und axial zu der zentralen Saugöffnung 36 austritt. Das Leitrad 86 ist ein strömungsführendes Bauteil, welches mit seinen Wandungen der Strömungsführung dient und von der Strömung als beweglicher Teil der strömungsführenden Wandungen mitbewegt werden kann. Durch die Schaufeln des Leitrades 86 wird ebenfalls ein Drehmoment um die Achse 20 erzeugt, durch welches das Ventilelement 18c zwischen den Schaltstellungen bewegt werden kann. Dies funktioniert im Wesentlichen so, wie es vorangehend beschrieben wurde. Es kann auch zusätzlich eine Feder 48, wie sie vorangehend beschrieben wurde, vorgesehen sein, um das Ventilelement 18c in eine gelöste Stellung zu bewegen. Da durch die Formgebung der Schaufeln des Leitrades 86 stets ein Drehmoment in derselben Richtung erzeugt wird, unabhängig davon, in welcher Richtung das Laufrad 14 rotiert, erfolgt bei diesem Ausführungsbeispiel die Rückstellbewegung durch ein Gewicht 88. Im Betrieb befindet sich das Kreiselpumpenaggregat stets in der Einbaulage, welche in Fig. 15 gezeigt ist, in welcher sich die Drehachse X horizontal erstreckt. Wenn das Kreiselpumpenaggregat ausgeschaltet ist, dreht sich das Ventilelement 18c um die Achse 20 stets so, dass das Gewicht 88 unten liegt. Durch das von dem Leitrad 86 erzeugte Drehmoment kann das Ventilelement 18c gegen diese von dem Gewicht 88 erzeugte Rückstellkraft gedreht werden, wobei durch sehr schnelle Inbetriebnahme des Antriebsmotors in dem Druckraum 26 so schnell ein Druck aufgebaut werden kann, dass das Ventilelement 18c in seine anliegende Stellung tritt, wie sie oben beschrieben wurde, in welcher es kraftschlüssig drehfest am Pumpengehäuse 12 gehalten wird, ohne aus seiner Ruhelage herausbewegt zu werden. Es ist zu verstehen, dass eine Rückstellung des Ventilelementes durch Schwerkraft oder eine andere Rückstellkraft unabhängig vom Antrieb auch bei den anderen hier beschriebenen Ausführungsbeispielen zur Anwendung kommen könnte.
  • Das fünfte Ausführungsbeispiel gemäß Fig. 16 bis 18 unterscheidet sich von den vorangehenden Ausführungsbeispielen wiederum im Aufbau des Ventilelementes. Bei diesem Ausführungsbeispiel ist das Ventilelement 18d konisch ausgebildet. Das Ventilelement 18d weist ein konisches topfförmiges Unterteil 76d auf, welches durch einen Deckel 78d verschlossen ist, wobei in dem Deckel 78d wiederum eine zentrale Saugöffnung 36 ausgebildet ist, welche in der vorangehend beschriebenen Weise mit dem Saugmund 38 des Laufrades 14 in Eingriff ist. Der Deckel 78d grenzt an den Druckraum 26 an und bildet dort einen beweglichen Abschnitt der strömungsführenden Wandung. In der konischen Umfangsfläche des Unterteiles 76b sind Eintrittsöffnungen 90 ausgebildet, welche durch Drehung des Ventilelementes 18d mit Eingängen, welche mit den Sauganschlüssen 32 und 34 verbunden sind, wahlweise zur Überdeckung gebracht werden können, um einen Strömungsweg durch das Innere des Ventilelementes 18d zu der Saugöffnung 36 herzustellen. Zwischen den Eintrittsöffnungen 90 sind an dem konischen Unterteil Dichtflächen 92 ausgebildet, welche den jeweils anderen Eingang verschließen können. Wie auch das Ausführungsbeispiel 2 gemäß Fig. 8 bis 10 weist hier das Ventilelement 18d einen stiftförmigen Vorsprung 64 auf, welcher in einer Ausnehmung am Boden des Pumpengehäuses 12 eingreift und dort das Ventilelement 18d um die Drehachse X drehend lagert. Dabei ist auch hier eine axiale Bewegung zwischen einer gelösten Position, wie sie in Fig. 18 gezeigt ist, und einer anliegenden Position, wie sie in Fig. 17 gezeigt ist, möglich. In der gelösten Position liegt das Unterteil 76d des Ventilelementes 18d im Wesentlichen nicht an dem Pumpengehäuse 12 an, so dass es durch die Strömung im Druckraum 26 drehbar ist, wie es bei den vorangehend beschriebenen Ausführungsbeispielen beschrieben wurde. Dabei kann hier abhängig von der Drehrichtung des Laufrades 14 wiederum ein Hin-und-Her-Bewegen des Ventilelementes 18d erreicht werden, wobei die Drehbewegung des Ventilelementes 18d auch hier wieder durch nicht gezeigte Anschläge begrenzt werden kann. In der anliegenden Position gemäß Fig. 17 erfolgt zum einen eine dichte Anlage des Ventilelementes 18d, zum anderen wird es kraftschlüssig gehalten, so dass es wiederum, solange der Druck im Druckraum 26 ausreichend groß ist, auch bei einem Drehrichtungswechsel des Laufrades 14 nicht zwischen den Schaltstellungen bewegt wird.
  • In den beschriebenen Ausführungsbeispielen dient das Pumpengehäuse 12 als kombiniertes Ventil- und Pumpengehäuse, welches einteilig ausgebildet ist. Es ist jedoch zu verstehen, dass das Pumpengehäuse 12 in entsprechender Weise mehrteilig ausgebildet sein könnte.
  • Bezugszeichenliste
  • 1
    Kreiselpumpenaggregat
    2
    Motorgehäuse
    4
    Stator
    6
    Rotor
    8
    Rotorwelle
    10
    Spaltrohr
    12
    Pumpengehäuse
    14
    Laufrad
    16
    Elektronikgehäuse
    17
    Steuereinrichtung
    18,18', 18", 18c, 18d
    Ventilelement
    20
    Achse
    22
    Mutter
    24
    Saugraum
    26
    Druckraum
    27
    Druckanschluss
    28, 30
    Eingänge
    28', 30'
    Eingänge
    32, 34
    Sauganschlüsse
    36, 36'
    Saugöffnung
    38
    Saugmund
    40
    Dichtflächen
    42
    Stützelemente
    44
    Anschlagelement
    46
    Anschläge
    48
    Feder
    50
    Anlageschulter
    52
    Wärmequelle
    54
    Heizkreis
    56
    Sekundärwärmetauscher
    58, 60
    Strömungswege
    62
    Öffnung
    64
    Vorsprung
    66
    Loch
    68
    Stift
    70
    Nut
    72
    Vorsprünge
    74
    Zapfen
    76, 76b, 76d
    Unterteil
    78, 78d
    Deckel
    80
    Eintrittsöffnung
    82, 84
    Hülsen
    86
    Leitrad
    90
    Gewicht
    90
    Eintrittsöffnung
    92
    Dichtflächen
    X
    Drehachse

Claims (16)

  1. Hydraulische Baueinheit mit einem Kreiselpumpenaggregat, welches einen elektrischen Antriebsmotor (4, 6) sowie zumindest ein von diesem angetriebenes Laufrad (14) aufweist, sowie zumindest einem Ventilelement (18), welches derart angeordnet ist, dass es durch eine von dem Laufrad (14) verursachte Flüssigkeitsströmung bewegbar ist,
    wobei
    zumindest ein Abschnitt (18; 78) einer einen Strömungsweg in der hydraulischen Baueinheit begrenzenden Wandung beweglich ausgebildet ist,
    dieser bewegliche Abschnitt (18; 78; 86) der Wandung Teil des Ventilelementes (18) ist oder mit dem Ventilelement (18) zu dessen Bewegung verbunden ist, und
    dieser bewegliche Abschnitt (18; 78; 86) zumindest teilweise bewirkt durch Reibungskräfte von der entlang der Wandung verlaufenden Flüssigkeitsströmung bewegbar ist, gekennzeichnet durch ein bewegliches Trennelement (18; 78), welches einen Saugraum (24) im Inneren eines Pumpengehäuses (12) des Kreiselpumpenaggregates von einem das Laufrad (14) umgebenden Druckraum (26) trennt, wobei eine dem Druckraum (26) zugewandte Oberfläche und/oder eine dem Saugraum (24) zugewandte Oberfläche des Trennelementes (18; 78) den zumindest einen beweglichen Abschnitt der Wandung bildet.
  2. Hydraulische Baueinheit nach Anspruch 1, dadurch gekennzeichnet, dass der zumindest eine bewegliche Abschnitt (18; 78; 86) der Wandung derart angeordnet ist, dass er parallel zu der entlang der Wandung verlaufenden Flüssigkeitsströmung bewegbar ist.
  3. Hydraulische Baueinheit nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der zumindest eine bewegliche Abschnitt (18; 78) der Wandung einen sich druckseitig von dem Kreiselpumpenaggregat erstreckenden Strömungsweg (26) begrenzt.
  4. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der zumindest eine bewegliche Abschnitt der Wandung einen sich saugseitig von dem Kreiselpumpenaggregat (1) erstreckenden Strömungsweg (86) begrenzt.
  5. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der bewegliche Abschnitt (18; 78; 86) der Wandung derart ausgebildet und angeordnet ist, dass er durch eine Verlustenergie, welche von den Reibungskräften an der Wandung des Strömungsweges verursacht wird, gemeinsam mit dem zumindest einen Ventilelement (18) bewegbar ist.
  6. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der zumindest eine Abschnitt (18; 78; 86) der Wandung drehbar in einem Pumpengehäuse (12) gelagert ist und vorzugsweise gemeinsam mit dem zumindest einen Ventilelement (18) drehbar in dem Pumpengehäuse (12) gelagert ist.
  7. Hydraulische Baueinheit nach Anspruch 6, dadurch gekennzeichnet, dass der zumindest eine bewegliche Abschnitt (18; 78; 86) derart ausgestaltet ist, dass die an ihm durch die Flüssigkeitsströmung wirkenden Reibungskräfte größer sind als diejenigen Reibungskräfte, welche in einer Lagerung des beweglichen Abschnittes (18; 78; 86) und des zumindest einen Ventilelementes (18) auftreten.
  8. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Trennelement (18; 78) einen Saugmund (38) des Laufrades (14) ringförmig umgibt.
  9. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche , dadurch gekennzeichnet, dass das Trennelement (18; 78) von dem Ventilelement (18) gebildet wird.
  10. Hydraulische Baueinheit nach Anspruch 9 , dadurch gekennzeichnet, dass das Ventilelement (18) an einem zentralen Lager (20) drehbar gelagert ist, wobei sich die Drehachse (X) des Ventilelementes (18) vorzugsweise fluchtend zu der Drehachse (X) des Antriebsmotors (4, 6) erstreckt.
  11. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Ventilelement (18) zwischen zumindest zwei Schaltstellungen bewegbar ist.
  12. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Ventilelement (18) mit zumindest zwei Ventilöffnungen (28, 30) zweier Strömungskanäle derart zusammenwirkt, dass die Ventilöffnungen (28, 30) der Strömungskanäle abhängig von der Schaltstellung des Ventilelementes (18) unterschiedlich geöffnet sind.
  13. Hydraulische Baueinheit nach Anspruch 12 , dadurch gekennzeichnet, dass die zumindest zwei Ventilöffnungen (28, 30) jeweils eine Fläche aufspannen, welche sich parallel zu einer Bewegungsrichtung des Ventilelementes (18) zwischen den zumindest zwei Schaltstellungen erstreckt.
  14. Hydraulische Baueinheit nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Ventilelement (18) derart ausgestaltet und angeordnet ist, dass es durch die Flüssigkeitsströmung entlang einem ersten Bewegungspfad zwischen zumindest zwei Schaltstellungen bewegbar ist und zusätzlich durch einen von dem Laufrad (14) erzeugten Druck entlang einem zweiten Bewegungspfad mit Kraft beaufschlagbar oder bewegbar ist, wobei der zweite Bewegungspfad gewinkelt zu dem ersten Bewegungspfad verläuft.
  15. Hydraulische Baueinheit nach Anspruch 14 , dadurch gekennzeichnet, dass das Ventilelement (18) entlang dem zweiten Bewegungspfad zwischen einer ersten gelösten Position, in welcher das Ventilelement (18) zwischen den zumindest zwei Schaltstellungen bewegbar ist, und einer anliegenden Position, an welcher es an zumindest einer Anlagefläche anliegt, bewegbar ist.
  16. Hydraulische Baueinheit nach Anspruch 15 , dadurch gekennzeichnet, dass das Ventilelement (18) und die Anlagefläche derart ausgestaltet sind, dass sie in der anliegenden Position miteinander kraft- und/oder formschlüssig in Eingriff treten, wobei über diesen Eingriff vorzugsweise eine größere Kraft übertragbar ist als zwischen der Flüssigkeitsströmung und dem zumindest einen beweglichen Abschnitt (18; 78; 86) der Wandung.
EP17160836.7A 2017-03-14 2017-03-14 Kreiselpumpenaggregat Active EP3376037B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17160836.7A EP3376037B1 (de) 2017-03-14 2017-03-14 Kreiselpumpenaggregat
CN201880018332.9A CN110418893B (zh) 2017-03-14 2018-03-13 离心泵机组
PCT/EP2018/056187 WO2018167031A1 (de) 2017-03-14 2018-03-13 Kreiselpumpenaggregat
US16/493,125 US11073161B2 (en) 2017-03-14 2018-03-13 Centrifugal pump assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17160836.7A EP3376037B1 (de) 2017-03-14 2017-03-14 Kreiselpumpenaggregat

Publications (2)

Publication Number Publication Date
EP3376037A1 EP3376037A1 (de) 2018-09-19
EP3376037B1 true EP3376037B1 (de) 2021-01-27

Family

ID=58347146

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17160836.7A Active EP3376037B1 (de) 2017-03-14 2017-03-14 Kreiselpumpenaggregat

Country Status (4)

Country Link
US (1) US11073161B2 (de)
EP (1) EP3376037B1 (de)
CN (1) CN110418893B (de)
WO (1) WO2018167031A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023165900A1 (en) 2022-03-01 2023-09-07 Grundfos Holding A/S Method for controlling a hydronic system
WO2024061892A1 (en) 2022-09-21 2024-03-28 Grundfos Holding A/S Control method for a hydronic system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376051B1 (de) * 2017-03-14 2022-08-24 Grundfos Holding A/S Pumpenaggregat
EP3904689A1 (de) * 2020-04-28 2021-11-03 Grundfos Holding A/S Kreiselpumpenaggregat
US20240227502A9 (en) * 2022-10-20 2024-07-11 Cooper-Standard Automotive Inc Pump with integrated valve and temperature sensor and a thermal management system including such a pump

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2646212B1 (fr) * 1989-04-21 1994-04-15 Icf Appareil de circulation et de distribution de fluide
US5261786A (en) * 1991-03-05 1993-11-16 A. R. Wilfley & Sons, Inc. Actuator mechanism for pump sealing apparatus
DE4418153A1 (de) * 1994-05-25 1995-11-30 Wilo Gmbh Kreiselpumpe
US5924432A (en) * 1995-10-17 1999-07-20 Whirlpool Corporation Dishwasher having a wash liquid recirculation system
JP4313557B2 (ja) * 2002-09-26 2009-08-12 日本電産シバウラ株式会社 ポンプ
DE102011086934A1 (de) * 2011-11-23 2013-05-23 Schaeffler Technologies AG & Co. KG Regelbare Kühlmittelpumpe mit einer elektro-hydraulischen Leitblechverstellung
EP2818726B1 (de) * 2013-06-27 2017-08-23 Grundfos Holding A/S Kreiselpumpe mit axial verschiebbarem Laufrad zur Förderung unterschiedlicher Strömungswege
EP3150923B2 (de) * 2015-10-02 2022-06-08 Grundfos Holding A/S Hydraulisches system
EP3156659B1 (de) * 2015-10-12 2020-09-16 Grundfos Holding A/S Pumpenaggregat und hydraulisches system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023165900A1 (en) 2022-03-01 2023-09-07 Grundfos Holding A/S Method for controlling a hydronic system
WO2024061892A1 (en) 2022-09-21 2024-03-28 Grundfos Holding A/S Control method for a hydronic system

Also Published As

Publication number Publication date
CN110418893A (zh) 2019-11-05
US20200116161A1 (en) 2020-04-16
WO2018167031A1 (de) 2018-09-20
US11073161B2 (en) 2021-07-27
EP3376037A1 (de) 2018-09-19
CN110418893B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
EP3376037B1 (de) Kreiselpumpenaggregat
EP3156659B1 (de) Pumpenaggregat und hydraulisches system
EP3540233A1 (de) Kreiselpumpenaggregat mit drehbarem ventilelement
EP1529937B1 (de) Kühlsystem für Verbrennungskraft in Maschinen, insbesondere für Automobile
EP3267042B1 (de) Pumpenaggregat
WO2015070955A1 (de) Elektromotorische kühlmittelpumpe
WO2018167043A1 (de) Pumpenaggregat
EP2818726B1 (de) Kreiselpumpe mit axial verschiebbarem Laufrad zur Förderung unterschiedlicher Strömungswege
WO2008058779A1 (de) Regelvorrichtung für eine verbrennungskraftmaschine
EP3376038A1 (de) Pumpenaggregat
EP3376036A1 (de) Pumpenaggregat
EP2818725B1 (de) Kreiselpumpe mit axial verschiebbarem, schliessbarem Laufrad
DE102016118133A1 (de) Drehschieberventil
WO2018166967A1 (de) Kreiselpumpenaggregat
EP3376051B1 (de) Pumpenaggregat
DE102013019299B4 (de) Elektromotorische Kühlmittelpumpe mit im Pumpengehäuse angeordnetem und vom Kühlmittel betätigten Stellaktor
WO1989002027A1 (en) Thermostatted hydraulic fan clutch
EP2659169B1 (de) Ventil zur steuerung von volumenströmen
DE102017223576A1 (de) Kühlmittelpumpe zum Fördern eines Kühlmittels
EP3376082B1 (de) Ventileinrichtung
EP3596342B1 (de) Kreiselpumpenaggregat
EP3376039B1 (de) Kreiselpumpenaggregat
WO2024184527A1 (de) Pumpenventilanordnung
WO2012089500A1 (de) Ventil zur steuerung von volumenströmen
DE102013019298A1 (de) Stelleinrichtung einer elektrischen Kühlmittelpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190319

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200616

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20201105

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1358590

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009193

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210427

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009193

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

26N No opposition filed

Effective date: 20211028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210314

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017009193

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1358590

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210127

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170314

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 8

Ref country code: GB

Payment date: 20240320

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 8

Ref country code: FR

Payment date: 20240328

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210127