EP3375571B1 - Ensemble de capteurs pour un tournevis électrique permettant de classifier les processus de vissage au moyen d'un capteur de champ magnétique - Google Patents

Ensemble de capteurs pour un tournevis électrique permettant de classifier les processus de vissage au moyen d'un capteur de champ magnétique Download PDF

Info

Publication number
EP3375571B1
EP3375571B1 EP18158384.0A EP18158384A EP3375571B1 EP 3375571 B1 EP3375571 B1 EP 3375571B1 EP 18158384 A EP18158384 A EP 18158384A EP 3375571 B1 EP3375571 B1 EP 3375571B1
Authority
EP
European Patent Office
Prior art keywords
max1
min1
max2
min2
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18158384.0A
Other languages
German (de)
English (en)
Other versions
EP3375571A2 (fr
EP3375571A3 (fr
Inventor
Christian Nickel
Jochen Seitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3375571A2 publication Critical patent/EP3375571A2/fr
Publication of EP3375571A3 publication Critical patent/EP3375571A3/fr
Application granted granted Critical
Publication of EP3375571B1 publication Critical patent/EP3375571B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for

Definitions

  • Exemplary embodiments of the present invention relate to a sensor system for an electric screwdriver and to a corresponding method for classifying screwdriving processes.
  • Preferred exemplary embodiments relate to a sensor system with a magnetic field sensor to complement an electric screwdriver, such as a cordless screwdriver.
  • manufacturers e.g. automobile manufacturers
  • corded screwing tools it is common in professional use that the number of screw connections is recorded and the torque is monitored during the screwing process.
  • cordless screwdrivers products are also available in the professional and high-priced segment, so-called EC screwdrivers.
  • simpler, cheaper and lighter cordless screwdrivers can also be used for a large number of screw connections.
  • Patent No. 5,220,839 issued 06/22/1993 .
  • the electrode layer, the top layer on the screw head with a contact pin and the screw head with a screwing tool are contacted and a high-frequency low-voltage signal is fed in.”
  • the DE 10 2006 053091 A1 discloses a sensor system with a magnetic field sensor, which is designed to detect a magnetic field of an electric motor, which results from the movement of the electric motor, in order to output a signal indicating the magnetic field strength; and with an evaluation unit which is designed to derive, for example, the rotational speed or direction of rotation of the electric motor based on the course of the signal with regard to the magnetic field strength over time.
  • the object of the present invention is to create a concept that creates a cost-effective add-on solution for existing electric screwdrivers, by means of which a reliable, good classification of screwing processes is possible.
  • Embodiments of the present invention create a sensor system for an electric screwdriver.
  • This includes a magnetic field sensor and an evaluation unit.
  • the magnetic field sensor such as a one- or three-axis magnetic field sensor, is designed to detect a magnetic field resulting from the activity of an electric motor of the electric screwdriver.
  • the sensor emits a corresponding signal that indicates the current magnetic field strength.
  • the evaluation unit is designed to classify screwdriving processes based on the time profile of the signal with regard to the magnetic field strength.
  • Embodiments of the present invention is based on the finding that in an electric screwdriver such.
  • B. a cordless screwdriver the magnetic field - due to the operation / the electromagnetic induction of the electric motor - has characteristics or varies characteristically, so that starting from an evaluation of the magnetic field strength, a classification of screwing operations is made possible.
  • Classification is generally understood to mean the distinction between screwing and unscrewing processes. Here, for example, it can also be differentiated whether it is a (torque-free) screwing process or a tightening process.
  • the magnetic field is measured by means of a magnetic field sensor, e.g.
  • This sensor kit or the sensor system in general therefore includes at least the magnetic field sensor and the corresponding evaluation unit for classification.
  • the advantage is that the tightening processes are made transparent and it is clear whether a tightening case or a sequence of tightening processes was OK or not. This can be communicated directly to the user and/or reported to a production system. This can increase process reliability, reduce the error rate and thus increase the quality of an end product.
  • a screwing process can be classified as a tightening process or a double screwing process if a maximum or a first extreme value is present before a minimum or a second extreme value opposite to the first. Particularly in the case of the double screwing process, no further maximum or minimum follows the minimum in the course.
  • a screwing-in process can be classified if the course is a maximum/first extreme value before a minimum/second extreme value, before a further maximum/further second extreme value and before a further minimum/further first extreme value (etc.).
  • a boring process can be classified if the course has a minimum/second extreme value before a maximum/first extreme value (and possibly also a further minimum before a further maximum). All in all, this means that if the curve shows only a few maxima and minima (extreme values), then it is not a matter of continuous rotation, but of a tightening and loosening process, while screwing in and out is based on a large number of maxima and Minimum is detectable. According to further exemplary embodiments, the distinction can also be obtained on the basis of the duration of the course during the screwing-in and screwing-out processes.
  • a differentiation between screwing in and screwing out is determined, for example, on the basis of the order of maximum and minimum.
  • a simple evaluation of the magnetic field strength or variation of the magnetic field strength advantageously enables a classification of screwing processes in terms of screwing in and unscrewing as well as tightening and loosening.
  • additional information such as e.g. B. the rotational speed, change in speed (e.g. based on the frequency of the succession of maximum and minimum) and / or the prevailing torque (e.g. based on the amplitude) recognizable.
  • a conclusion can also be drawn about the wear of the electric screwdriver, e.g. B. in the detection of misfires can be detected.
  • the counting can also be carried out in such a way that screwing processes are added up and unscrewing processes are subtracted in order to advantageously detect the actual total number of screws screwed in and not just to detect how many screwing processes have taken place in total.
  • the magnetic field sensor is designed with three axes, for example. It should also be noted that the signal from the magnetic field sensor, which indicates the magnetic field strength, before evaluation can be filtered in the evaluation unit.
  • the magnetic field sensor includes a filter according to one embodiment.
  • the sensors can be integrated into a bracelet that is arranged close to the electric screwdriver.
  • the sensor system can also be mechanically coupled directly to the electric screwdriver, for example by the magnetic field sensor being glued or generally attached to the housing.
  • every electric screwdriver or every cordless screwdriver has slightly different characteristics.
  • the sensor system can also have a calibration unit which is designed to determine the corresponding calibration parameters for the respective cordless screwdriver and make them available to the evaluation unit. so that it carries out the evaluation taking into account the calibration parameters.
  • the sensor system can also have a wireless interface or, in general, an interface in order to output the evaluation results.
  • parts of the sensor system namely the magnetic field sensor, can also be connected to the external evaluation electronics via this wireless interface or interface.
  • the sensor system includes an acceleration sensor or, in general, a position sensor, which, in addition to the individual classification, also enables the prevailing position of the electric screwdriver to be determined and saved for the classified screwdriving process, in order to be able to determine at a later point in time whether the screw is vertical, for example (up or down) or horizontally.
  • Additional exemplary embodiments relate to a method for classifying screwdriving processes using an electric screwdriver.
  • the method includes the steps "determining the prevailing magnetic field on or in the vicinity of the electric motor of the electric screwdriver” and “classifying the screwdriving processes based on the course of the magnetic field strength over time”. This procedure can also be computer-assisted run, so that individual steps can be implemented as a computer program.
  • FIG. 1 shows a cordless screwdriver 10 with a screw head 12 and an electric motor 16 integrated into the housing 14 of the cordless screwdriver.
  • a sensor system 20 is attached to the cordless screwdriver 10 (electric screwdriver in general).
  • This sensor system 20 includes, as shown in the enlargement, a magnetic field sensor 22 (e.g. the single-axis or multi-axis magnetic field sensor) and evaluation electronics 24.
  • the sensor 20 is arranged on the housing 14 of the electric screwdriver 10 in such a way that the magnetic field sensor 22 from the electric motor 16 outgoing (induced) magnetic field or in particular the change in magnetic field can be detected.
  • a magnetic field emanates from it in one direction (x, y or z), so that a single-axis magnetic field sensor is sufficient, particularly if it is positioned appropriately opposite the electric motor 16 .
  • this means that the sensor system 20 and in particular the magnetic field sensor 22 is also aligned with respect to the electric motor 16, ie parallel to the same or orthogonal to the same.
  • the magnetic field sensor 22, such as. B. a Hall effect sensor is designed to output a corresponding signal indicating the magnetic field strength upon detection of a magnetic field strength.
  • This signal or the course of the same over time is then received by the evaluation unit 24 and classified accordingly.
  • the classification can be based, for example, on the order of the successive minima and maxima or maxima and minima of the magnetic field strength curve or based on the duration of the change in the magnetic field strength curve or the duration of the curve (cf. plateaus plateaus at the extreme points of D1, D2 and D3 in the compared to E1, E2 and E3). At these plateaus, for example, the sensor goes into the limit for a certain time. In Fig.2 this characteristic is no longer visible due to the filtering.
  • the frequency possibly in combination with the amplitude, gives an indication of the speed of the motor 16, for example, while the amplitude values/amounts give an indication of the torque.
  • the classification of the screwing direction is particularly relevant.
  • Figure 2a shows a diagram of a filtered signal of the magnetic field sensor (cf. reference number 20 in 1 ), where the time in seconds is plotted on the x-axis and the magnetic field strength in arbitrary units is plotted on the y-axis. It should be noted that the x-axis of the magnetic field sensor was evaluated in the diagram because it the magnetic field sensor used is a multi-axis magnetic field sensor.
  • FIG. 2a three screwing processes, namely screwing or screwing-in processes E1 to E3 are shown. It is characteristic of each turning process that a maximum max1_E1, max1_E2 and max1_E3 precedes a minimum min1_E1, min1_E2 and min1_E3.
  • Each screwing process E1, E2 and E3 also has additional maxima max2_E1, max2_E2 and max2_E3 as well as additional minima min2_E1, min2_E2 and min2_E3. This means that a high level of dynamics in the signal from the magnetic field sensor is observed during a screwing process.
  • the offset is due, for example, to other magnetic fields, e.g. B. the earth's magnetic field or interference fields in the area.
  • the magnetic field sensor therefore measures all the existing magnetic fields and can also differentiate the magnetic field from the torque generator from the other magnetic fields due to the change over time in order to then extract the magnetic field from the torque generator (drive, electric motor).
  • a calibration can be carried out here in order to zero the relevant magnetic field and eliminate the offset.
  • the processing of the magnetic field sensor signals can be done by filtering to extract the relevant features.
  • FIG. 2b shows another diagram with three double tightening operations D1, D2 and D3.
  • each process D1 to D3 also has a first maximum max1_D1 to max1_D3 as well as following minima min1_D1 to min1_D3 after the maximum.
  • the double screwing process D1 to D3 is characterized in comparison to the screwing process E1 to E3 in that there are no further maxima.
  • the background to this is that in the case of a double screw connection, the screw is tightened but not significantly rotated.
  • Figure 2c shows turning or loosening processes L1 to L3. These also have minima and maxima, with each curve always beginning with a minimum min1_L1 to min1_L3.
  • the second turning point per curve L1 to L3 is then a maximum max1_L1 to max1_L3.
  • further minima and maxima then follow the maxima max1_L1 or max1_L3 (cf. max2_L1 to max2_L3 or min2/3_L1 to min2/3_L3.
  • the characteristic curves E1 to E3, D1 to D3 and L1 to L3 from the Figures 2a to 2c each represents the filtered magnetic field sensor data (here from the x-axis of the magnetic field sensor). These sensor data originate from the raw data, which, with reference to the Figures 3a to 3c be explained.
  • Figure 3a illustrates the three turning processes E1 to E3, Figure 3b , three double tightening operations D1 to D3, while 3c illustrates the three boring processes L1 to L3.
  • the diagrams from Figures 3a to 3c each comprise three values, namely a signal SX for the x-axis, a signal SZ for the z-axis and a signal SY for the y-axis.
  • the y-axis does not provide any information regarding the tightening operations E1 to L3, since the value in the y-axis over the total time from 5 to 55 seconds (across the three diagrams Figures 3a to 3c ) remains constant.
  • the diagram for the z-axis signal SZ does show variations that can also be assigned to the individual events E1 to L3, with the SX signal being preferred for the evaluation. With the SX signal, the individual events E1 to L3 can be clearly identified. With this signal in the raw version (unfiltered version) some further insights regarding the classification can be gleaned.
  • the signal for turning in and out can look the other way around, i.e. first Max then Min and then first Min and then Max again.
  • the magnetic field of the motor can vary depending on the arrangement and structure of a screwdriver generate different magnetic field orientations. In general, turning in and turning out occurs when opposite behavior is observed, for example in relation to the extreme points. So that means that the signal course when turning out is a mirror image of turning in.
  • a further finding can be drawn by comparing the diagrams for the screwing processes E1 to E3 with the double screwing processes D1 to D3 from diagrams 3a and 3b, namely that the time for the double screwing processes D1 to D3 is significantly reduced compared to the complete screwing processes E1 to E3.
  • the time of the turning operations E1 to E3 is approximately as long as the time of the turning operations L1 to L3, which, for example, provides an indication that a similar number of thread turns occurs here when turning in as well as when turning out.
  • the consideration of the relative values is always based on a zero value which, for example, over the plateau between the individual processes E1/E2, E2/E3, ... L2/L3 or the initial plateau (cf. reference numeral A0) is defined.
  • the initial plateaus symbolize no rotation.
  • the background is that the magnetic field hardly changes when there is no rotation, see plateau between the screwing processes in E1, E2, E3.
  • a change in speed for example, essentially affects the amplitude. Deflections are to be expected at the time of the change (e.g. due to jerking of the mechanics).
  • the reference to 1 explained sensors also to other individual sensors, such.
  • an acceleration sensor which is designed to determine the gravitational acceleration and thus the position of the cordless screwdriver, can be expanded. This makes it possible to draw conclusions about the screw location (down or up or to the side). By evaluating the position when screwing, the direction of the intensity of the magnetic field can be determined much more precisely which screw it is that was classified in the current screwing process.
  • acceleration and yaw rate sensors as an extension for the exemplary embodiments can lead to increased accuracy and robustness.
  • the background to this is that, based on acceleration values (e.g. determination with the acceleration sensors/inertial sensors), a classification can also take place, as explained below.
  • a correct screwing process consists of two phases, the screwing phase and the tightening phase.
  • the tightening phase was essentially recorded by the jerky rotary movement of the cordless screwdriver around the screw axis when the maximum torque was reached.
  • the screwing-in phase was essentially recorded by estimating the screwing time. It was found that the estimation of the screw duration and thus determining the screwing-in phase with the industrial-grade sensors is a lot more reliable than with the low-cost sensors.
  • a double screw connection i.e. a screw that has already been tightened is tightened again
  • a double tightening is not recognizable if the tightening time is unknown.
  • the estimation of the screwing time is not very reliable with the characteristics examined so far using low-cost sensors.
  • An artificially jerky rotary movement of the cordless screwdriver around the (optionally defined) rotation axis of the screw can trigger an incorrect classification of a correct screwing process (without information on the screwing time). Knowing whether the screw is being screwed out or in is helpful for successfully detecting a correct screwing operation and provides important information for determining the number of correct screwings.
  • an additional locating system can be added to the system, so that the whereabouts of the tool (the sensor element that is attached to the power tool) can also be included in the consideration of whether a screw connection is in order or not.
  • the sensor system can also have a communication interface, such as e.g. B. have a wireless interface or a USB interface, via which the classification data can be read.
  • the readout can take place either directly during the classification or at a later point in time. If the reading takes place at a later point in time, the sensor kit also has a memory for logging the classifications that have taken place, in which the type, time or number of the classified screwing processes is then stored.
  • screwing-in processes can be distinguished from unscrewing processes, in order to determine the number of screwing-in processes, rather than the number of screwing-in processes, more precisely.
  • the turning processes are added up, while any existing turning processes (e.g. to correct the corresponding screw connection) must be deducted from the total.
  • additional information e.g. B. the operating time of the electric screwdriver, the usage behavior in general, the wear and tear can be determined. It is advantageously possible in this way to create statistics or to plan maintenance work on the power tool.
  • the magnetic field sensor is attached directly to the electric screwdriver, e.g. B. by gluing or using a clamp, Velcro or other fasteners, it should be noted at this point that the magnetic field sensor and / or any other sensors do not have to be attached directly to the electric screwdriver, but should preferably be placed nearby.
  • One possible location would be the wrist, or integration into a smartwatch. The closer the sensor kit or the sensor element is placed to the tool or the motor of the tool, the higher the accuracy, but other areas of application can also be opened up by such flexible units, which can be set up as a smartwatch. Examples include additional power tools, such as a rivet gun.
  • further exemplary embodiments relate to a method for classifying screwing processes with the steps of “determining a magnetic field” in order to output information about the magnetic field strength, and classifying based on the course of the magnetic field strength over time for the respective screwing process.
  • aspects have been described in the context of a device, it is understood that these aspects also represent a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Similarly, aspects described in connection with or as a method step also constitute a description of a corresponding block or detail or feature of a corresponding device.
  • Some or all of the method steps may be performed by hardware apparatus (or using a hardware Apparatus), such as a microprocessor, a programmable Computer or electronic circuit run. In some embodiments, some or more of the essential process steps can be performed by such an apparatus.
  • embodiments of the invention may be implemented in hardware or in software. Implementation can be performed using a digital storage medium such as a floppy disk, DVD, Blu-ray Disc, CD, ROM, PROM, EPROM, EEPROM or FLASH memory, hard disk or other magnetic or optical memory, on which electronically readable control signals are stored, which can interact or interact with a programmable computer system in such a way that the respective method is carried out. Therefore, the digital storage medium can be computer-readable.
  • a digital storage medium such as a floppy disk, DVD, Blu-ray Disc, CD, ROM, PROM, EPROM, EEPROM or FLASH memory, hard disk or other magnetic or optical memory, on which electronically readable control signals are stored, which can interact or interact with a programmable computer system in such a way that the respective method is carried out. Therefore, the digital storage medium can be computer-readable.
  • some embodiments according to the invention comprise a data carrier having electronically readable control signals capable of interacting with a programmable computer system in such a way that one of the methods described herein is carried out.
  • embodiments of the present invention can be implemented as a computer program product according to claim 16, wherein the program code is operative to perform one of the methods when the computer program product runs on a computer.
  • the program code can also be stored on a machine-readable carrier, for example.
  • a programmable logic device e.g., a field programmable gate array, an FPGA
  • a field programmable gate array may cooperate with a microprocessor to perform any of the methods described herein.
  • the methods are performed on the part of any hardware device. This can be hardware that can be used universally, such as a computer processor (CPU), or hardware that is specific to the method, such as an ASIC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)

Claims (16)

  1. Système de capteur (20) pour un tournevis électrique (10), aux caractéristiques suivantes:
    un capteur de champ magnétique (22) qui est conçu pour détecter un champ magnétique du moteur électrique (16) du tournevis électrique (10) qui résulte du mouvement du moteur électrique (16) du tournevis électrique (10), pour générer un signal qui indique l'intensité du champ magnétique; et
    une unité d'évaluation (24), qui est conçue pour classifier, au moyen du déroulement du signal en ce qui concerne l'intensité du champ magnétique dans le temps, les processus de vissage dans le sens d'un processus de vissage au moyen d'une phase de vissage et d'une phase de serrage, ainsi que pour classifier un processus de dévissage au moyen d'un desserrage initial de la vis.
  2. Système de capteur (20) selon la revendication 1, dans lequel un processus de vissage est classifié comme processus de dévissage (L1, L2, L3) lorsque le déroulement présente un minimum (min1_E1, min2_E1 min1_E2, min2_E2, min1_E3, min2_E3, min1_D1, min1_D2, min1_D3, min1_L1, min2_L1, min3_L1, min1_L2, min2_L2, min3_L2, min1_L3, min2_L3, min3_L3) avant un maximum (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2, max2_L2, max1_L3, max2_L3); ou
    dans lequel un processus de vissage est classifié comme processus de dévissage (L1, L2, L3) lorsque le déroulement présente une deuxième valeur extrême (min1_E1, min2_E1 min1_E2, min2_E2, min1_E3, min2_E3, min1_D1, min1_D2, min1_D3, min1_L1, min2_L1, min3_L1, min1_L2, min2_L2, min3_L2, min1_L3, min2_L3, min3_L3) avant une première valeur extrême (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2,max2_L2, max1_L3, max2_L3) opposée à la deuxième valeur extrême.
  3. Système de capteur (20) selon l'une des revendications précédentes, dans lequel un processus de vissage est classifié comme processus de double vissage (D1, D2, D3) ou processus de serrage (E1, E2, E3) lorsque le déroulement présente un maximum (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2,max2_L2, max1_L3, max2_L3) avant un minimum (min1_E1, min2_E1 min1_E2, min2_E2, min1_E3, min2_E3, min1_D1, min1_D2, min1_D3, min1_L1, min2_L1, min3_L1, min1_L2, min2_L2, min3_L2, min1_L3, min2_L3, min3_L3); ou
    dans lequel un processus de vissage est classifié comme processus de double vissage (D1, D2, D3) ou processus de serrage (E1, E2, E3) lorsque le déroulement présente une première valeur extrême (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2,max2_L2, max1_L3, max2_L3) avant une deuxième valeur extrême (min1_E1, min2_E1 min1_E2, min2_E2, min1_E3, min2_E3, min1_D1, min1_D2, min1_D3, min1_L1, min2_L1, min3_L1, min1_L2, min2_L2, min3_L2, min1_L3, min2_L3, min3_L3) opposée à la première valeur extrême.
  4. Système de capteur (20) selon l'une des revendications précédentes, dans lequel un processus de vissage est classifié comme processus de vissage lorsque le déroulement présente un maximum (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2, max2_L2, max1_L3,max2_L3) et un autre maximum (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2, max2_L2, max1_L3, max2_L3) avant un autre minimum (min1_E1, min2_E1 min1_E2, min2_E2, min1_E3, min2_E3, min1_D1, min1_D2, min1_D3, min1_L1, min2_L1, min3_L1, min1_L2, min2_L2, min3_L2, min1_L3, min2_L3, min3_L3); ou
    dans lequel un processus de vissage est classifié comme processus de vissage lorsque le déroulement présente une première valeur extrême (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2, max2_L2, max1_L3,max2_L3) et une autre première valeur extrême (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2, max2_L2, max1_L3, max2_L3) avant une autre deuxième valeur extrême (min1_E1, min2_E1 min1_E2, min2_E2, min1_E3, min2_E3, min1_D1, min1_D2, min1_D3, min1_L1, min2_L1, min3_L1, min1_L2, min2_L2, min3_L2, min1_L3, min2_L3, min3_L3) opposée à la première valeur extrême.
  5. Système de capteur (20) selon l'une des revendications précédentes, dans lequel un processus de vissage est classifié comme double vissage (D1, D2, D3) lorsqu'est présent un maximum (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2, max2_L2, max1_L3, max2_L3) avant un minimum (min1_E1, min2_E1 min1_E2, min2_E2, min1_E3, min2_E3, min1_D1, min1_D2, min1_D3, min1_L1, min2_L1, min3_L1, min1_L2, min2_L2, min3_L2, min1_L3, min2_L3, min3_L3) sans un autre maximum (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2, max2_L2, max1_L3, max2_L3) ou minimum (min1_E1, min2_E1 min1_E2, min2_E2, min1_E3, min2_E3, min1_D1, min1_D2, min1_D3, min1_L1, min2_L1, min3_L1, min1_L2, min2_L2, min3_L2, min1_L3, min2_L3, min3_L3); ou
    dans lequel un processus de vissage est classifié comme double vissage (D1, D2, D3) lorsqu'est présente une première valeur extrême (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2, max2_L2, max1_L3, max2_L3) avant une deuxième valeur extrême (min1_E1, min2_E1 min1_E2, min2_E2, min1_E3, min2_E3, min1_D1, min1_D2, min1_D3, min1_L1, min2_L1, min3_L1, min1_L2, min2_L2, min3_L2, min 1_L,3, min2_L3, min3_L3) opposée à la première valeur extrême sans une autre valeur extrême (max1_E1, max2_E1, max1_E2, max2_E2, max2_E3, max1_D1, max1_D2, max1_D3, max1_L1, max2_L1, max1_L2, max2_L2, max1_L3, max2_L3, min1_E1, min2_E1 min1_E2, min2_E2, min1_E3, min2_E3, min1_D1, min1_D2, min1_D3, min1_L1, min2_L1, min3_L1, min1_L2, min2_L2, min3_L2, min1_L3, min2_L3, min3_L3).
  6. Système de capteur (20) selon l'une des revendications 3 à 5, dans lequel un processus de vissage sous forme d'un double vissage (D1, D2, D3) est différencié au moyen de la durée du déroulement et/ou de plateaux dans le déroulement des processus de vissage et/ou des processus de serrage (E1, E2, E3).
  7. Système de capteur (20) selon l'une des revendications précédentes, dans lequel le système de capteur (20) présente un filtre qui est conçu pour filtrer un signal qui représente l'information sur l'intensité du champ magnétique.
  8. Système de capteur (20) selon l'une des revendications précédentes, dans lequel le capteur de champ magnétique (22) est un capteur de champ magnétique à trois axes (22).
  9. Système de capteur (20) selon l'une des revendications précédentes, dans lequel l'unité d'évaluation (24) est conçue pour détecter, au moyen du déroulement, une vitesse de rotation actuelle et/ou un couple actuellement dominant; et/ou
    dans lequel l'unité d'évaluation (24) est conçue pour reconnaître, au moyen du déroulement, l'usure dans le tournevis électrique (10); et/ou
    dans lequel l'unité d'évaluation (24) est conçue pour compter les processus de vissage classifiés; ou
    dans lequel l'unité d'évaluation (24) est conçue pour compter les processus de vissage classifiés et, lors du comptage des processus de vissage, pour additionner les processus de vissage et soustraire les processus de dévissage (L1, L2, L3).
  10. Système de capteur (20) selon l'une des revendications précédentes, dans lequel le tournevis électrique (10) est un tournevis sans fil.
  11. Système de capteur (20) selon l'une des revendications précédentes, qui est réalisé comme un module de rehaussement séparé pour le tournevis électrique (10) et le système de capteur (20) peut être couplé mécaniquement au tournevis électrique (10); ou
    dans lequel le système de capteur (20) peut être couplé mécaniquement au tournevis électrique (10).
  12. Système de capteur (20) selon l'une des revendications précédentes, dans lequel le système de capteur (20) est intégré dans un bracelet; et/ou
    dans lequel le système de capteur (20) présente une interface sans fil par l'intermédiaire de laquelle le capteur de champ magnétique (22) communique avec l'unité d'évaluation (24) et/ou par l'intermédiaire de laquelle une information sur la classification des processus de vissage et/ou de perçage qui ont eu lieu peuvent être sorties pour l'unité d'évaluation (24).
  13. Système de capteur (20) selon l'une des revendications précédentes, dans lequel le système de capteur (20) comporte en outre un capteur d'accélération, et l'unité d'évaluation (24) est conçue pour déterminer une position du système de capteur (20) et/ou du tournevis électrique (10) dans l'espace par l'évaluation d'une accélération gravitationnelle dominante au moyen du capteur d'accélération.
  14. Système de capteur (20) selon l'une des revendications précédentes, dans lequel le système de capteur (20) présente une unité de calibrage qui est conçue pour déterminer les paramètres de calibrage pour les processus de vissage et/ou de perçage à l'aide du tournevis électrique respectif (10).
  15. Procédé permettant de classifier les processus de vissage au moyen d'un tournevis électrique (10), aux étapes suivantes consistant à:
    détecter, au moyen d'un capteur de champ magnétique, un champ magnétique du moteur électrique (16) du tournevis électrique (10) qui résulte du mouvement du moteur électrique (16) du tournevis électrique (10), pour sortir une information sur l'intensité du champ magnétique; et
    classifier au moyen d'une unité d'évaluation sur base d'un déroulement de l'intensité du champ magnétique dans le temps d'un processus de vissage d'une vis au moyen d'une phase de vissage et d'une phase de serrage ainsi que d'un processus de dévissage au moyen d'un desserrage initial de la vis.
  16. Programme d'ordinateur avec un code de programme qui amène le système de capteur selon la revendication 1 à réaliser le procédé selon la revendication 15 lorsque le programme est exécuté sur un ordinateur.
EP18158384.0A 2017-02-23 2018-02-23 Ensemble de capteurs pour un tournevis électrique permettant de classifier les processus de vissage au moyen d'un capteur de champ magnétique Active EP3375571B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017202976.5A DE102017202976A1 (de) 2017-02-23 2017-02-23 Sensorik für einen Elektroschrauber zur Klassifizierung von Schraubvorgängen mittels eines Magnetfeldsensors

Publications (3)

Publication Number Publication Date
EP3375571A2 EP3375571A2 (fr) 2018-09-19
EP3375571A3 EP3375571A3 (fr) 2019-01-09
EP3375571B1 true EP3375571B1 (fr) 2023-07-05

Family

ID=61274178

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18158384.0A Active EP3375571B1 (fr) 2017-02-23 2018-02-23 Ensemble de capteurs pour un tournevis électrique permettant de classifier les processus de vissage au moyen d'un capteur de champ magnétique

Country Status (3)

Country Link
EP (1) EP3375571B1 (fr)
DE (1) DE102017202976A1 (fr)
ES (1) ES2962378T3 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020209809A1 (de) 2020-08-04 2022-02-10 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Trainieren eines Klassifikators zur Ermittlung eines Handwerkzeugmaschinengerätezustands
CN117955263B (zh) * 2024-03-27 2024-06-07 深圳市金致卓科技有限公司 智能设备的无线充电方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177751A1 (fr) * 2011-06-21 2012-12-27 Ansell Limited Procédé et appareil permettant de contrôler l'activation d'équipement

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7613590B2 (en) * 1992-11-17 2009-11-03 Health Hero Network, Inc. Modular microprocessor-based power tool system
US8004664B2 (en) * 2002-04-18 2011-08-23 Chang Type Industrial Company Power tool control system
DE102006053091A1 (de) * 2006-11-10 2008-05-15 Siemens Ag Elektromotor mit einer Drehzahlerfassung
DE102009027587A1 (de) * 2009-07-09 2011-01-13 Hilti Aktiengesellschaft System zur Vibrationserfassung
DE102009046789A1 (de) * 2009-11-17 2011-05-19 Robert Bosch Gmbh Handwerkzeugmaschinenvorrichtung
DE102010030410B4 (de) 2010-06-23 2012-05-10 Hilti Aktiengesellschaft Schrauber und Steuerungsverfahren
JP5796816B2 (ja) * 2010-09-30 2015-10-21 日立工機株式会社 動力工具
DE102011087361B3 (de) * 2011-11-29 2013-01-31 Hilti Aktiengesellschaft Absaugvorrichtung und Steuerungsverfahren
DE102012208855A1 (de) 2012-05-25 2013-11-28 Robert Bosch Gmbh Handwerkzeugmaschine
DE102012224407A1 (de) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Elektrowerkzeug mit Mikrocontroller und Sensor
WO2015038684A1 (fr) * 2013-09-10 2015-03-19 Polyera Corporation Article à attacher comportant une signalisation, un affichage divisé et des fonctionnalités de messagerie
EP2871029B1 (fr) * 2013-11-09 2023-09-20 Illinois Tool Works Inc. Procede pour faire fonctionner un outil electrique portatif et outil electrique portatif
US10193422B2 (en) * 2015-05-13 2019-01-29 Makita Corporation Power tool
DE102015215362A1 (de) * 2015-08-12 2017-02-16 Robert Bosch Gmbh Verfahren zum Einstellen mindestens eines Parameters einer Handwerkzeugmaschine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177751A1 (fr) * 2011-06-21 2012-12-27 Ansell Limited Procédé et appareil permettant de contrôler l'activation d'équipement

Also Published As

Publication number Publication date
ES2962378T3 (es) 2024-03-18
EP3375571A2 (fr) 2018-09-19
EP3375571A3 (fr) 2019-01-09
DE102017202976A1 (de) 2018-08-23

Similar Documents

Publication Publication Date Title
DE102013200602B4 (de) Elektrowerkzeug mit verbesserter Bedienbarkeit
DE112017002300T5 (de) Anomaliefeststellungsvorrichtung und Anomaliefeststellungsverfahren
EP3303987B1 (fr) Dispositif goniométrique électronique pour cintreuse, permettant de mesurer l'angle de cintrage entre les côtés d'une tôle
DE102016003316A1 (de) Robotersteuerung mit roboterstörungsdiagnose
EP3375571B1 (fr) Ensemble de capteurs pour un tournevis électrique permettant de classifier les processus de vissage au moyen d'un capteur de champ magnétique
DE4316332C2 (de) Schraubvorrichtung mit Erfassung, Überwachung und Regelung meßbarer Schraubenparameter während des Schraubvorganges und Verfahren zum Herstellen qualitativ hochwertiger Schraubverbindungen
DE102016112647A1 (de) Magnetsensor mit positionseinstellbarem detektionsabschnitt und motor, der diesen aufweist
EP0753717A2 (fr) Méthode pour mesurer les coordonnées de pièces usinées
DE102019215417A1 (de) Verfahren zum Betrieb einer Handwerkzeugmaschine
DE102019204071A1 (de) Verfahren zur Erkennung eines ersten Betriebszustandes einer Handwerkzeugmaschine
DE102004014914A1 (de) Vorrichtung und Verfahren zur Abnormitätserfassung eines Vibrationswinkelgeschwindigkeitssensors, Abnormitätserfassungsprogramm und betreffendes Fahrzeugsteuersystem
WO2022128388A1 (fr) Procédé de fonctionnement d'un outil électrique portatif
DE102017215951A1 (de) Werkzeugmaschine
DE10228389B4 (de) Schwingungssensor und Verfahren zur Zustandsüberwachung von rotierenden Bauteilen und Lagern
DE3221658A1 (de) Verfahren und vorrichtung zum pruefen des festziehdrehmoments von schrauben u. dgl. verbindungselementen
WO2021018538A1 (fr) Procédé pour faire fonctionner un outil électrique portatif
WO2021018539A1 (fr) Procédé de détection de la progression de travail d'un outil électrique portatif
DE102014003844A1 (de) Verfahren zum Überprüfen eines mindestens zwei Schneiden aufweisenden Werkzeugs
DE112020001795T5 (de) Numerische steuervorrichtung und lernende vorrichtung
DE102021100466A1 (de) Sensorelement und Sensorvorrichtung zum Erfassen eines axialen Längenausgleichs in einem Längenausgleichsfutter beim Bearbeiten eines Werkstücks mit einem Werkzeug
WO2021069208A1 (fr) Procédé d'apprentissage d'arrêts d'applications par la recherche de formes de signaux caractéristiques
EP3393710B1 (fr) Procédé permettant de faire fonctionner un outil électrique
EP4041496B1 (fr) Procédé d'apprentissage d'arrêts d'applications par la recherche de formes de signaux caractéristiques
DE102015206632A1 (de) Messung der mechanischen Spannung eines Antriebselements
DE2904877C2 (de) Selbsttätig kontrollierende Einrichtung zum Messen von Drehmomenten an mechanischen Verbindungselementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B25B 21/00 20060101AFI20181204BHEP

Ipc: B25F 5/00 20060101ALI20181204BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190709

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200917

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1584394

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018012591

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2962378

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240318

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018012591

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240301

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240209

Year of fee payment: 7

Ref country code: GB

Payment date: 20240221

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240227

Year of fee payment: 7

Ref country code: FR

Payment date: 20240227

Year of fee payment: 7

26N No opposition filed

Effective date: 20240408