EP3374614A1 - Système de motorisation et véhicule automobile associé - Google Patents

Système de motorisation et véhicule automobile associé

Info

Publication number
EP3374614A1
EP3374614A1 EP16794326.5A EP16794326A EP3374614A1 EP 3374614 A1 EP3374614 A1 EP 3374614A1 EP 16794326 A EP16794326 A EP 16794326A EP 3374614 A1 EP3374614 A1 EP 3374614A1
Authority
EP
European Patent Office
Prior art keywords
lubricant
engine
pump
main
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16794326.5A
Other languages
German (de)
English (en)
Inventor
Anthony PELLETIER
Philippe CHINA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Publication of EP3374614A1 publication Critical patent/EP3374614A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/14Lubrication of pumps; Safety measures therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/02Arrangements of lubricant conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0207Pressure lubrication using lubricating pumps characterised by the type of pump
    • F01M2001/0215Electrical pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0207Pressure lubrication using lubricating pumps characterised by the type of pump
    • F01M2001/023Piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0207Pressure lubrication using lubricating pumps characterised by the type of pump
    • F01M2001/0246Adjustable pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • F01M2001/0253Pressure lubrication using lubricating pumps characterised by the pump driving means
    • F01M2001/0269Pressure lubrication using lubricating pumps characterised by the pump driving means driven by the crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/02Arrangements of lubricant conduits
    • F01M2011/021Arrangements of lubricant conduits for lubricating auxiliaries, e.g. pumps or turbo chargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M9/00Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00
    • F01M9/02Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00 having means for introducing additives to lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N39/00Arrangements for conditioning of lubricants in the lubricating system

Definitions

  • the present invention relates to a motorization system for a motor vehicle and a motor vehicle comprising such a motorization system.
  • the majority of current motor vehicles are equipped with a motorization system including a two-part internal combustion engine:
  • a so-called “low-motor” part comprising a movable coupling (connecting rods, pistons and crankshaft) within an “engine block”, containing the cylinders, and a housing containing the engine lubricant.
  • high-engine consisting of the or, breech (s) which are assembled on the low-motor.
  • the cylinder head is the seat of the distribution of the intake gases in the combustion chamber, through the intake duct and intake valves, and the discharge of the combustion gases, via a exhaust duct and exhaust valves.
  • the combustion chamber, seat of the combustion of an air-fuel mixture is the volume between the top of the piston when it is in the high position, named "top dead center” and the cylinder head.
  • FR-A-2 605 677 discloses a lubrication system for an internal combustion engine which comprises a main lubrication circuit of the lower engine incorporating an oil pump mounted at the end of the crankshaft, and a secondary circuit for lubricating the engine.
  • high-motor that is independent of the main circuit and incorporates itself a pump mounted at the end of the engine camshaft.
  • the lubrication system is thus separated into two separate circuits, so that the oil to lubricate the high-engine is not polluted by the oil used to lubricate the lower-engine, which improves the life of the engine .
  • the lubrication of the built-in engine is only performed when the engine is running, so that the starting and stopping phases of the motor cause significant wear of the components of the built-in engine.
  • the motorization system of certain motor vehicles further comprises a compressor designed to compress the air to form the air-fuel mixture before admission to the combustion chambers to improve the power of the engine.
  • a compressor is traditionally operated either by the crankshaft of the engine, or using the kinetic energy contained in the exhaust gas emitted by the engine.
  • the compressor is equipped with a drive turbine, which is placed in the path of the exhaust gas, so as to form a turbocharger.
  • the lubrication of the latter is also stopped when the engine is stopped, since the operation of the lubricant pump depends on that of the crankshaft.
  • lubricant residues still present in the lubrication system of the turbocharger are found in contact with hot metal surfaces in the body of the latter. Indeed, the proximity of the hot exhaust gas side of the turbine generates an increase in temperature of the metal parts of the body of the turbocharger by conduction. This phenomenon is sometimes referred to as "coking" of the lubricant.
  • the invention relates to a motorization system according to claim 1.
  • the lubrication of the compressor and / or the high-engine is performed independently of the operation of the engine and in particular of its drive kinematic chain.
  • the secondary lubrication system can for example be actuated before starting the engine so as to pre-lubricate the compressor and / or the high-engine and thus prevent wear of the latter when starting the engine.
  • the lubrication of these elements can be extended after stopping the engine, especially for cooling purposes.
  • a lubricant suitable for the compressor that is to say, resistant to temperature and with good friction characteristics, makes it possible to limit losses by pumping the motor by facilitating admission of the intake fluid. while limiting the back pressure to the exhaust. This results in an increase in power, at the same fuel consumption, or in a decrease in consumption at identical power.
  • the reactivity of the compressor in the transient phases, such as accelerations, is also improved with the use of this suitable lubricant, which allows to optimize the fuel consumption during these transient phases.
  • the configuration of the lubrication system of the invention then makes it possible to optimize the supply of lubricant as a function of the contact to be lubricated by the drive system.
  • the pressure can be adjusted to the maximum value of the minimums required for the lubrication of each of the lubricated contacts via the circuit in question. This results in a lower drive force of the pumps than in the case of a motorization system in which a single global lubrication circuit would be provided, so that an overall energy saving is achieved.
  • the secondary lubricant can be chosen to be particularly adapted to the lubrication of the compressor and / or the high-engine, and in particular to the physical, mechanical and thermal stresses of these parts of the engine system, while the main lubricant is particularly suitable for the lubrication of the low-engine and its own mechanical and thermal physical constraints.
  • the choice of a lubricant specifically adapted to the low-engine allows, at equal power, to obtain a reduced fuel consumption.
  • the invention also relates to a motor vehicle defined in claim 12.
  • FIG. 1 is a schematic view of a motorization system according to a first embodiment according to the invention.
  • FIG. 2 is a schematic view of a motorization system according to a second embodiment according to the invention.
  • the drive system 1 of Figure 1 is designed to equip a motor vehicle, for example land, such as a car.
  • top In what follows, the terms “top”, “top” and their equivalents, are used to designate a direction oriented vertically towards the top of the vehicle when it is in a position of use, in which it rests for example on the ground.
  • the expressions “low” and “lower” and their equivalents designate an opposite direction.
  • the drive system 1 of Figure 1 comprises an internal combustion engine 3, equipped with a compressor 35.
  • the internal combustion engine 3 forms a mechanical assembly which is intended to rotate a crankshaft and a feed system in air comprising the compressor 35, which forms for example a turbocharger.
  • the internal combustion engine 3 comprises a high-engine 5 and a low-engine 7 coupled.
  • the lower engine 7 includes a crankshaft 9 which is rotatable relative to a housing 11 of the lower engine 7, includes a motor block 17 or "cylinder block” in which the crankshaft 9 is mounted.
  • the lower engine 7 also includes connecting rods 13 and pistons 15, each connecting rod 13 being rotatably mounted on one of the pistons 15 and on the crankshaft 9.
  • the engine block 17, belonging to the lower engine 7, defines cylinders 19 in which slide the pistons 15.
  • the engine block 17 is closed, downwards, by the housing 1 1, and upwards, by the upper motor 7.
  • the housing 1 1 forms a pocket closed by the bottom , and is assembled from above with the engine block 17.
  • the pistons 15 are driven in an alternating translational movement within the cylinders 19 in order to drive the crankshaft 9 via the connecting rods 13.
  • the lower engine 7 comprises a single piston 15, a single connecting rod 13 and a single associated cylinder 19, or a greater number of pistons 15, connecting rods 13 and associated cylinders 19.
  • the high-engine 5 includes a cylinder head 21, equipped with a distribution system including air and fuel distribution members to the cylinders 19.
  • the cylinder head 21 caps the engine block 17 via a cylinder head gasket 23 3.
  • the cylinder head gasket 23 constitutes the boundary between the high-engine 5 and the low-engine 7.
  • Each combustion chamber 24 comprises one, and preferably several, orifice (s) intake, through which the intake of air and fuel is carried out.
  • intake fluid air and fuel are admitted separately or already mixed in the combustion chambers, and are therefore generally designated in the following by "intake fluid".
  • intake fluid air and fuel are admitted separately or already mixed in the combustion chambers, and are therefore generally designated in the following by "intake fluid".
  • intake fluid air and fuel are admitted separately or already mixed in the combustion chambers, and are therefore generally designated in the following by "intake fluid".
  • Each combustion chamber 24 includes also at least one product exhaust port of the combustion of this intake fluid.
  • Each combustion chamber 24 is the seat of combustion reactions of the intake fluid, this reaction being carried out above the piston 15 concerned, in order to generate the reciprocating translation movement of the piston 15 to drive the crankshaft 9.
  • the dispensing system of the high-engine 5 includes in particular valves 25 which each evolve between an open position or closure of one of the inlet or exhaust ports of the combustion chambers 24.
  • the distribution system includes also a shaft 27, of the camshaft type, for controlling the valves 25.
  • the control shaft 27 is parallel to the crankshaft 9 and is driven by the latter through a timing belt 29 of the engine 3.
  • the drive system 1 comprises a timing chain or a gear.
  • the high-engine 5 is provided with several control shafts, preferably driven by the crankshaft 9.
  • the valves 25 may be controlled by actuators, for example electromagnetic, or electropneumatic, or electrohydraulic.
  • the crankshaft 9, the rods 13, the pistons 15, the valves 25, the control shaft 27 and the timing belt 29, or its mechanical variants defined above, belong to a driving kinematic chain of the engine 3.
  • the chain driving kinematics of the engine 3 may comprise additional movable elements belonging to the engine 3, such as for example a second control shaft, a lower or upper number of valves, a lower or upper number of pistons of the two connecting rods.
  • the driving kinematic chain of the engine 3 includes all the moving components of the engine which are driven mechanically, directly or via transmission means, under the action of the combustion reaction of the intake fluid. Any mobile component of the engine 3 not mentioned in the present description, and which would be moved by means distinct from this combustion reaction of the intake fluid, such as pneumatic, hydraulic or electrical means do not belong to the drive kinematic chain of the engine system 1.
  • An intake manifold 31 of the engine system 1 is connected to the cylinder head 21 so as to distribute the intake fluid into the combustion chambers 24 of the lower engine 7 via valves 25, called “valves”. admission “. In general, the intake fluid is admitted into the low-engine 7 through the high-engine 5.
  • An exhaust manifold 33 of the engine system 1 is also connected to the built-in engine 5 to collect combustion chambers 24 the products of the combustion reaction of the intake fluid, through valves 25 called “exhaust valves". These products form, for example, exhaust gases.
  • the path of the intake fluid in the intake manifold 31 is symbolized by the arrow A and the path of the products of combustion within the exhaust manifold 33 is symbolized by the arrow E.
  • the motorization system 1 comprises a compressor 35, which is designed to compress the intake fluid before it enters the combustion chamber 24, for example upstream of the intake manifold 31.
  • the compressor compresses the air for entering the intake fluid composition, fuel being itself added to that air after the air has been compressed by the compressor before or during its admission into the intake fluid composition.
  • the compressor 35 is thus designed to compress, at least in part, the intake fluid for supplying the high-engine 5.
  • the compressor 35 comprises a compression member 36, of the centrifugal pump type, for compressing the intake fluid, and in particular for compressing all or part of the air entering into the composition of this intake fluid.
  • the compressor 35 preferably forms a turbocharger.
  • the compressor 35 comprises a turbine 37 driving the compression member 36.
  • the turbine 37 is disposed downstream of the exhaust manifold 33, or at least in the path of the products of the combustion E, so as to capture a portion of the enthalpy and / or kinetic energy of these products E to drive the member 36 and thus compress the intake fluid.
  • the compressor 35 may be driven by the driving kinematic chain of the engine 3, and for example by the crankshaft 9.
  • the engine system 1 further comprises a main lubrication system for lubricating the low-engine 7.
  • this main lubrication system comprises a main circuit 105 and a main pump 103, which are shown schematically in FIG.
  • the main pump 103 has for example a displacement of between about 5 cc / revolution (cubic centimeters per revolution) and 20 cc / revolution, preferably between about 7 cc / revolution and 12 cc / revolution, more preferably of the order of 10 , 7 cc / turn.
  • the main pump 103 circulates a main lubricant, of the oil type, within the main circuit 105, to feed the lower engine 7 with this main lubricant and lubricate various bodies of the lower engine 7, belonging in particular to the drive kinematic chain .
  • the main circuit 105 extends partly within the lower motor 7 in order to lubricate in particular the connections in rotation between the crankshaft 9 and the connecting rods 13.
  • the main circuit 105 includes a main lubricant reserve 107 and possibly an oil filter not shown.
  • the main circuit 105 is designed to lubricate, with the main lubricant, in particular a segment-piston-liner zone of the lower engine 7, which designates the parts in sliding contact of each piston 15 against its respective cylinder 19.
  • the main circuit 105 comprises for example means for emitting a main lubricant mist, not shown, at the segment-piston-liner zone, which main lubricant mist is emitted by means of bearings
  • the main lubricant supply is preferably by bearings of the crankshaft 9, which are directly connected to a feed ramp belonging to the main circuit 105.
  • the main circuit 105 comprises lubricant bottles. main, not shown, which spit oil under the pistons 15 for the purpose of cooling them.
  • the main pump 103 is actuated by the drive kinematic chain of the engine 3, and in particular by the crankshaft 9.
  • the crankshaft 9 rotates and drives the main pump 103 so that systematic.
  • the main pump 103 is preferably variable flow and controlled pressure, so that its energy consumption is particularly low for pumping the main lubricant.
  • the motorization system 1 also comprises a secondary lubrication system, which comprises a secondary circuit 1 15 which is separate and distinct from the main circuit 105.
  • the secondary circuit 1 15 supplies both the compressor 35 and the high-engine 5 with a secondary lubricant, which is different from the main lubricant in its nature and / or composition and / or characteristics.
  • the main lubricant is a lubricating composition having a grade, according to the classification SAEJ300, defined by the formula (X) W- (Y) in which X represents 0 or 5 and Y represents 4, 8, 12, 16 or 20.
  • the main lubricant is for example the Quartz 9000 Future OW-20 or Quartz V-drive OW-20 lubricant, marketed by TOTAL SA.
  • Other lubricants can be implemented for the main lubricant in place of those defined above.
  • the secondary lubricant is the lubricant Quartz Ineo MC3 5W-30, or Quartz 9000 5W-40 marketed by TOTAL SA.
  • Other lubricants may be used for the secondary lubricant in place of those defined above, as long as the main lubricant is of different composition than the secondary lubricant, these compositions being adapted respectively to the lubricating stresses of the lubricant. lower-motor 7, and of the assembly including the high-engine 5 and the compressor 35.
  • the main lubricant and the secondary lubricant are of identical composition.
  • the secondary lubrication system also comprises a secondary pump 1 13, of the hydraulic pump type, for circulating the secondary lubricant in the secondary circuit 1 15.
  • the secondary circuit feeds both the top -motor 5 and the compressor 35 with the secondary lubricant.
  • the secondary circuit 1 15 preferably includes a reserve of secondary lubricant 1 17 which is distinct from the main lubricant reserve 107.
  • the secondary circuit 1 15 extends partly within the upper motor 5 in order to lubricate the connections in particular. rotation between the control shaft 27 and the cylinder head 23 and the valves 25.
  • the secondary circuit 1 15 extends partly within the compressor 35 in order to lubricate in particular the rotational links of the member 36, and if necessary , of the turbine 37.
  • the term "separate circuits" means that a first lubricant circulating in a first circuit separated from a second circuit, does not come into contact with a second lubricant flowing in the second circuit, the two circuits being separated by sealed separation means such as seals or walls.
  • the secondary lubrication system comprises an electric motor 1 19, or at least one actuator supplied with electrical energy, driving the secondary pump 1 13, to supply the high-motor 5 and the compressor 35 with the secondary lubricant. .
  • the pump 1 13 is thus an electrically driven pump.
  • the electric power supply of the electric motor 1 19 is for example provided by an electric battery of the motorization system 1.
  • the electric motor 1 19 thus constitutes a secondary actuator of the secondary pump 1 13, which is mechanically independent of the drive kinematic chain. Indeed, the electric motor 1 19 can be operated independently of the movement of the crankshaft 9, rods 13, pistons 15, valves 25, the control shaft 27 or the timing belt 29.
  • the secondary pump 1 13 is controlled by means of the electric motor 1 19 to lubricate, with the secondary lubricant, the high-engine 5 and the compressor 35 when the engine 3 is stopped. If necessary, it is possible to control and vary the flow rate of the secondary pump 1 13 by controlling the speed of the actuator 1 19. Preferably, whatever the power supply of the actuator 1 19, it is expected that the secondary pump 1 13 is variable flow by choosing an actuator 1 19 whose speed can be controlled.
  • the secondary pump 1 13 is preferably actuated with the secondary actuator 1 19 to lubricate the high-engine 5 and the compressor 35 with the secondary lubricant just before starting the engine 3, which corresponds to the setting in motion of its kinematic chain. driving.
  • the secondary pump 1 13 is preferably controlled with the secondary actuator 1 19 to lubricate the high-engine 5 and the compressor 35 with the secondary lubricant for a predetermined time starting after a shutdown of the engine 3, which corresponds to immobilization of his driving kinematic chain.
  • the secondary pump 1 13 is actuated with the secondary actuator 1 19 to lubricate the high-engine 5 and the compressor 35 with the secondary lubricant during the operation of the engine 3, that is to say when the drive kinematic chain is moving.
  • the wear of the high-engine 5 and the compressor 35 is thus particularly reduced, especially in the case where it is a turbocharger, as well as coking.
  • a secondary actuator operating with pneumatic or hydraulic energy in place of the aforementioned electric motor, as long as the operation of the secondary actuator is independent of the operation of the driving kinematic chain.
  • This secondary actuator would then for example be a cylinder, a pneumatic motor or a hydraulic motor.
  • the secondary pump 1 13 has a smaller capacity than the main pump 103, which, while meeting the lubrication needs of the compressor 35 and the high-engine 5, optimize the amount of energy consumed by the system lubrication. This has the effect of reducing the fuel consumption of the engine system 1.
  • the low-engine 7 undergoes heavy loads, caused in particular by the action of the pistons 15 on the crankshaft 9.
  • the loads experienced by the compressor 35 are lower, and are caused in particular by the action of the organ compression 36 on the intake fluid, and by the combustion products E on the turbine 37.
  • the loads undergone by the high-engine 5 are even lower, and are caused by the particular action of the tree 27 on the valves 25.
  • the lubricant pressure is higher in the circuit.
  • main 105 that in the secondary circuit 1 15.
  • FIG. 2 illustrates a second embodiment of a motorization system 100 according to the invention. Similar elements between the system 1 of Figure 1 and the system 100 of Figure 2 have been assigned the same reference numbers.
  • the engine system 100 comprises an internal combustion engine 3, with a built-in engine 5 and a low-engine 7.
  • the low-engine 7 includes a crankshaft 9, a housing 1 1, connecting rods 13, pistons 15, a motor unit 17 with cylinders 19 and combustion chambers 24 defined between the top of the pistons 15 and the bottom of the cylinder head 21.
  • the high-engine 5 is separated from the low-engine 7 by a cylinder head gasket 23 of the engine 3, and includes a cylinder head 21, including, in particular, valves 25, and a control shaft 27.
  • the engine 3 also comprises a belt of distribution 29, or its variants defined above, and a driving kinematic chain corresponding to the same definition as that of the embodiment of FIG. 1.
  • the system 100 comprises an intake manifold 31 and an exhaust manifold 33, a compressor 35 with a compression member 36 and a turbine 37.
  • the system 100 includes a main lubrication system with a main circuit 105, a main pump 103 and a main lubricant reservoir 107 for supplying a main lubricant to the lower engine 7 when the drive kinematic chain is in motion.
  • the system 100 of Figure 2 differs from the system 1 of Figure 1 in that it comprises two separate secondary circuits, including a first secondary circuit 125 and a second secondary circuit 135 separated.
  • the system 100 also includes two separate secondary pumps 123 and 133, including a first secondary pump 123, which supplies the high-engine 5 with a first secondary lubricant through the first secondary circuit 125, and a second secondary pump 133, which is distinct from the first secondary pump 123 and which supplies the compressor 35 with a second secondary lubricant through the second secondary circuit 135.
  • the first secondary lubricant and the second secondary lubricant are of different composition, that is to say are of different nature and different characteristics.
  • the first secondary lubricant and the second secondary lubricant are also of different composition from that of the main lubricant.
  • the first secondary lubricant is Quartz Ineo MC3 5W-30 lubricant, the second secondary lubricant being the Quartz 9000 5W-40 lubricant marketed by TOTAL SA.
  • the first secondary lubricant is chosen to be particularly adapted to the lubrication constraints of the high-engine 7
  • the second secondary lubricant being chosen to be particularly adapted to the lubrication constraints of the compressor 35.
  • the main lubricant the first secondary lubricant and the second secondary lubricant
  • two lubricants are of identical composition, the third being of different composition from the other two.
  • the three lubricants are of identical composition.
  • the secondary circuit 125 preferably includes a first supply of the first secondary lubricant 127 which is distinct from the main lubricant supply 107.
  • the second secondary circuit 135 preferably includes a second supply of the second secondary lubricant 137 which is distinct from the lubricant supply. 107 and Reserve 127.
  • a first secondary actuator 129 mechanically independent of the driving kinematic chain, drives the first secondary pump 123 to supply the high-engine 5 with the first secondary lubricant.
  • a second secondary actuator 139 separate from the first secondary actuator 129, and mechanically independent of the driving kinematic chain, drives the second secondary pump 133 to supply the compressor 35 with the second secondary lubricant.
  • the operation of the two secondary actuators 129 and 139 is independent of each other, so that: the secondary pump 123 supplies the high-engine 5 with the first secondary lubricant for a predetermined duration before starting the engine 3 and / or during the operation of the engine 3;
  • the secondary pump 133 supplies the compressor 35 with the second secondary lubricant during operation of the engine 3 and / or for a predetermined duration after the engine 3 has been stopped.
  • the secondary pump 133 feeds the compressor 35 with the second secondary lubricant for a predetermined time before starting the engine 3, to facilitate the starting of the compressor 35 and thus limit its wear.
  • the first secondary circuit 125 extends in part within the built-in motor 5 in order to lubricate in particular the rotational connections between the control shaft 27 and the cylinder head 23 and the valves 25.
  • the second secondary circuit 135 extends in part within the compressor 35 to lubricate in particular the rotational connections of the member 36, and if necessary, the turbine 37.
  • the lubrication, as well as the lubricant composition of the low-motor 5 and the compressor 35, can thus be optimized according to the lubrication requirements specific to each of these two members of the motorization system 100.
  • the secondary actuators 129 and 139 operate either with the same energy, for example electrical, or with two separate energies, for example one being powered by electrical energy and the other with the pneumatic energy.
  • the first secondary pump 123 has a cylinder capacity lower than that of the second secondary pump 133, so that the secondary pumps 123 and 133 provide a quantity of lubricants suitable on the one hand for the high-engine 5 and on the other hand The energy required to operate the secondary pumps 123 and 133 is thus optimized.
  • the first secondary pump 123 has a displacement of between 3 and 15 cc / revolution and the second secondary pump 133 has a displacement of between 1 and 10 cc / revolution.
  • a common actuator independent of the driving kinematic chain, is provided for driving both the pump 123 and the pump 133, rather than two separate actuators 129 and 139, as is the case in Figure 2.
  • the two pumps 123 and 133 are preferably combined to form a two-stage pump.
  • the fuel consumption of the system 100 is thus reduced, insofar as the number of actuators is reduced.
  • the invention also applies to engines whose spatial configuration is different from that of the examples of motorization systems described above, in particular so-called "flat" engines. It is understood that in the case of these particular engines, the built-in motor is not necessarily placed above the lower motor.
  • the term "built-in motor” defined above designates the cylinder head equipped in particular with, or control shaft (s) and the distribution system
  • the invention has been tested on a diesel engine of 2L displacement, namely the DW10 engine of the company PSA Feli Citro ⁇ n. It has resulted in a fuel economy gain of at least 3% on stabilized operating points under load conditions, representing the NEDC ("New European Driving Cycle") standardized cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)

Abstract

Système de motorisation et véhicule automobile associé Ce système de motorisation (1) pour un véhicule automobile comprend un haut- moteur (5) et un bas-moteur (7) accouplés, une chaîne cinématique motrice, un compresseur (35), un système de lubrification principal, qui comprend un circuit principal (105) et une pompe principale (103), laquelle alimente au moins le bas-moteur avec un lubrifiant principal par l'intermédiaire du circuit principal, et un système de lubrification secondaire, qui comprend au moins un circuit secondaire (115) séparé du circuit principal et au moins une pompe secondaire (113) distincte de la pompe principale, la pompe secondaire alimentant le haut-moteur et/ou le compresseur avec un lubrifiant secondaire par l'intermédiaire du circuit secondaire (115). Le système de lubrification secondaire comprend au moins un actionneur secondaire (119) mécaniquement indépendant de la chaîne cinématique motrice et qui entraîne la pompe secondaire (113) pour alimenter le haut-moteur (5) et/ou le compresseur (35) avec le lubrifiant secondaire.

Description

Système de motorisation et véhicule automobile associé
La présente invention concerne un système de motorisation pour un véhicule automobile ainsi qu'un véhicule automobile comprenant un tel système de motorisation.
La majorité des véhicules automobiles actuels sont équipés d'un système de motorisation incluant un moteur à combustion interne en deux parties :
Une partie dite « bas-moteur », comprenant un attelage mobile (bielles, pistons et vilebrequin) au sein d'un « bloc moteur », contenant les cylindres, et d'un carter contenant le lubrifiant moteur.
- Une partie dite « haut-moteur » constituée de la, ou des, culasse(s) qui sont assemblées sur le bas-moteur. La culasse est le siège de la distribution des gaz d'admission dans la chambre de combustion, par l'intermédiaire du conduit d'admission et de soupapes d'admission, et du refoulement des gaz de combustion, par l'intermédiaire d'un conduit d'échappement et de soupapes d'échappement.
La limitation entre le « bas-moteur » et le, ou les, « haut(s)-moteur(s) » est matérialisée par le, ou les, joint(s) de culasse.
La chambre de combustion, siège de la combustion d'un mélange air- carburant, est le volume compris entre le haut du piston lorsqu'il est en position haute, nommé « point mort haut » et la culasse.
FR-A-2 605 677 décrit un système de lubrification pour un moteur à combustion interne qui comprend un circuit principal de graissage du bas-moteur incorporant une pompe à huile montée au bout du vilebrequin, ainsi qu'un circuit secondaire de graissage pour le haut-moteur qui est indépendant du circuit principal et incorpore lui-même une pompe montée au bout de l'arbre à cames du moteur. Le système de lubrification est ainsi séparé en deux circuits distincts, de sorte que l'huile pour lubrifier le haut-moteur n'est pas polluée par l'huile utilisée pour lubrifier le bas-moteur, ce qui améliore la durée de vie du moteur.
Néanmoins, la lubrification du haut-moteur n'est effectuée que lorsque le moteur est en fonctionnement, de sorte que les phases de démarrage et d'arrêt du moteur entraînent une usure importante des composants du haut-moteur.
Le système de motorisation de certains véhicules automobiles comprend, en outre, un compresseur conçu pour compresser l'air destiné à former le mélange air- carburant avant son admission dans les chambres de combustion afin d'améliorer la puissance du moteur. Un tel compresseur est traditionnellement actionné soit par le vilebrequin du moteur, soit à l'aide de l'énergie cinétique contenue dans les gaz d'échappement émis par le moteur. Dans le deuxième cas, le compresseur est équipé d'une turbine d'entraînement, qui est placée sur le trajet des gaz d'échappement, de manière à former un turbocompresseur.
Dans le cas des moteurs équipés d'un turbocompresseur, la lubrification de ce dernier est également stoppée lorsque le moteur est arrêté, dans la mesure où le fonctionnement de la pompe de lubrifiant dépend de celui du vilebrequin. A l'arrêt, les résidus de lubrifiants encore présents dans le système de lubrification du turbocompresseur se retrouvent au contact de surfaces métalliques chaudes dans le corps de ce dernier. En effet, la proximité des gaz d'échappement chauds du côté de la turbine engendre une augmentation de température des parties métalliques du corps du turbocompresseur par conduction. Ce phénomène est parfois dénommé « cokéfaction » du lubrifiant.
D'autre part, les contraintes économiques, législatives et environnementales poussent les concepteurs et utilisateurs de moteurs à combustion interne à diminuer la consommation en carburant de ces moteurs. Par exemple, les normes européennes prévoient un niveau d'émission de C02 inférieur ou égal à 95g/km à partir de 2021 .
C'est à ces problématiques qu'entend répondre l'invention en proposant un nouveau système de motorisation à durée de vie améliorée et à consommation de carburant réduite.
A cet effet, l'invention a pour objet un système de motorisation selon la revendication 1 .
Grâce à l'invention, la lubrification du compresseur et/ou du haut-moteur est effectuée de façon indépendante du fonctionnement du moteur et en particulier de sa chaîne cinématique motrice. Le système de lubrification secondaire peut par exemple être actionné avant le démarrage du moteur de façon à pré-lubrifier le compresseur et/ou le haut-moteur et ainsi prévenir l'usure de ces derniers lors du démarrage du moteur. Egalement, la lubrification de ces éléments peut être prolongée après l'arrêt du moteur, notamment à des fins de refroidissement.
L'utilisation d'un lubrifiant adapté pour le compresseur, c'est-à-dire résistant à la température et avec de bonnes caractéristiques en frottement, permet de limiter les pertes par pompage du moteur en facilitant l'admission du fluide d'admission tout en limitant la contre pression à l'échappement. Ceci se traduit par une augmentation de la puissance, à consommation de carburant identique, ou par une diminution de consommation à puissance identique. La réactivité du compresseur dans les phases transitoires, telles que les accélérations, se trouve également améliorée avec l'utilisation de ce lubrifiant adapté, ce qui permet d'optimiser la consommation de carburant lors de ces phases transitoires.
Par ailleurs, la mise en circulation de ce lubrifiant après l'arrêt du moteur permet d'en évacuer les calories et de limiter la stagnation du lubrifiant sur les parties chaudes, corrigeant de fait les problématiques de cokéfaction.
La configuration du système de lubrification de l'invention permet alors d'optimiser l'alimentation en lubrifiant en fonction du contact à lubrifier du système de motorisation. Pour chacun des circuits, il peut être réalisé une adaptation de la pression à la valeur maximum des minimums requis pour la lubrification de chacun des contacts lubrifiés par l'intermédiaire du circuit considéré. Il en résulte un effort d'entraînement des pompes plus faible que dans le cas d'un système de motorisation dans lequel un seul circuit de lubrification global serait prévu, de sorte qu'un gain d'énergie global est réalisé.
Enfin, le lubrifiant secondaire peut être choisi pour être particulièrement adapté à la lubrification du compresseur et/ou du haut-moteur, et en particulier aux contraintes physiques, mécaniques et thermiques de ces parties du système de motorisation, alors que le lubrifiant principal est particulièrement adapté à la lubrification du bas-moteur et à ses propres contraintes physiques mécaniques et thermiques. Le choix d'un lubrifiant adapté spécifiquement au bas-moteur permet, à puissance égale, d'obtenir une consommation de carburant réduite.
D'autres caractéristiques avantageuses de l'invention sont définies dans les revendications 2 à 1 1 .
L'invention concerne également un véhicule automobile défini dans la revendication 12.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et non exhaustif et faite en se référant aux dessins dans lesquels :
- la figure 1 est une vue schématique d'un système de motorisation selon un premier mode de réalisation conforme à l'invention, et
- la figure 2 est une vue schématique d'un système de motorisation selon un deuxième mode de réalisation conforme à l'invention.
Le système de motorisation 1 de la figure 1 est conçu pour équiper un véhicule automobile, par exemple terrestre, tel qu'une voiture.
Dans ce qui suit, les expressions « haut », « supérieur » et leurs équivalentes, sont utilisées pour désigner une direction orientée verticalement vers le haut du véhicule dans lorsqu'il est dans une position d'utilisation, dans laquelle il repose par exemple sur le sol. Les expressions « bas », « inférieur » et leurs équivalentes désignent une direction opposée.
Le système de motorisation 1 de la figure 1 comprend un moteur à combustion interne 3, équipé d'un compresseur 35. Le moteur à combustion interne 3 forme un assemblage mécanique qui a pour but de mettre en rotation un vilebrequin et un système d'alimentation en air comprenant le compresseur 35, qui forme par exemple un turbocompresseur.
De façon connue en tant que telle, le moteur à combustion interne 3 comprend un haut-moteur 5 et un bas-moteur 7 accouplés.
Le bas-moteur 7 inclut un vilebrequin 9 qui est rotatif par rapport à un carter 1 1 du bas-moteur 7, inclut un bloc-moteur 17 ou « bloc-cylindres », au sein duquel le vilebrequin 9 est monté.
Le bas-moteur 7 inclut également des bielles 13 et des pistons 15, chaque bielle 13 étant montée rotative sur l'un des pistons 15 et sur le vilebrequin 9. Le bloc-moteur 17, appartenant au bas-moteur 7, définit des cylindres 19 au sein desquels coulissent les pistons 15. Le bloc-moteur 17 est obturé, vers le bas, par le carter 1 1 , et vers le haut, par le haut-moteur 7. Le carter 1 1 forme une poche fermée par le bas, et est assemblé par le haut avec le bloc-moteur 17. Les pistons 15 sont animés d'un mouvement de translation alternatif au sein des cylindres 19 afin d'entraîner le vilebrequin 9 par l'intermédiaire des bielles 13. Dans l'exemple de la figure 1 , quatre pistons 15 et quatre bielles 13 sont représentés. Toutefois, en variante, le bas-moteur 7 comporte un seul piston 15, une seule bielle 13 et un seul cylindre 19 associé, ou un nombre supérieur de pistons 15, de bielles 13 et de cylindres 19 associées.
Le haut-moteur 5 comprend quant à lui une culasse 21 , équipée d'un système de distribution incluant des organes de distribution d'air et de carburant vers les cylindres 19. La culasse 21 coiffe le bloc-moteur 17 par l'intermédiaire d'un joint de culasse 23 du moteur 3. Le joint de culasse 23 constitue la limite entre le haut-moteur 5 et le bas-moteur 7.
L'espace compris entre le haut de chaque piston 15 dans son cylindre 19, au point mort haut, et la culasse 21 , représente une chambre de combustion 24. Chaque chambre de combustion 24 comprend un, et de préférence plusieurs, orifice(s) d'admission, par l'intermédiaire desquels l'admission d'air et de carburant est effectuée. En fonction du type du moteur à combustion 3, l'air et le carburant sont admis séparément ou déjà mélangés dans les chambres de combustion, et sont donc désignés de manière générale dans ce qui suit par « fluide d'admission ». Chaque chambre de combustion 24 comprend également au moins un orifice d'échappement de produit de la combustion de ce fluide d'admission. Chaque chambre de combustion 24 est le siège de réactions de combustion du fluide d'admission, cette réaction étant effectuée au-dessus du piston 15 concerné, afin de générer le mouvement de translation alternatif du piston 15 pour entraîner le vilebrequin 9.
Le système de distribution du haut-moteur 5 inclut notamment des soupapes 25 qui évoluent chacune entre une position d'ouverture ou de fermeture de l'un des orifices d'admission ou d'échappement des chambres de combustion 24. Le système de distribution inclut également un arbre 27, du genre arbre à cames, de commande des soupapes 25. L'arbre de commande 27 est parallèle au vilebrequin 9 et est entraîné par ce dernier par l'intermédiaire d'une courroie de distribution 29 du moteur 3. En variante, à la place de la courroie de distribution, le système de motorisation 1 comprend une chaîne de distribution ou une pignonnerie. En variante, le haut-moteur 5 est pourvu de plusieurs arbres de commande, préférentiellement entraînés par le vilebrequin 9. En variante, les soupapes 25 peuvent être commandées par des actionneurs, par exemple électromagnétiques, ou électropneumatiques, ou électrohydrauliques.
Le vilebrequin 9, les bielles 13, les pistons 15, les soupapes 25, l'arbre de commande 27 et la courroie de distribution 29, ou ses variantes mécaniques définies ci- avant, appartiennent à une chaîne cinématique motrice du moteur 3. La chaîne cinématique motrice du moteur 3 peut comprendre des éléments mobiles supplémentaires appartenant au moteur 3, tels que par exemple un deuxième arbre de commande, un nombre inférieur ou supérieur de soupapes, un nombre inférieur ou supérieur de pistons des deux bielles. En définitif, la chaîne cinématique motrice du moteur 3 inclut tous les composants mobiles du moteur qui sont entraînés mécaniquement, de façon directe ou par l'intermédiaire de moyens de transmission, sous l'action de la réaction de combustion du fluide d'admission. Tout composant mobile du moteur 3 non mentionné dans la présente description, et qui serait mû par des moyens distincts de cette réaction de combustion du fluide d'admission, tel que des moyens pneumatiques, hydrauliques ou électriques n'appartiennent pas à la chaîne cinématique motrice du système de motorisation 1 .
Un collecteur d'admission 31 du système de motorisation 1 est connecté à la culasse 21 de façon à distribuer le fluide d'admission dans les chambres de combustion 24 du bas-moteur 7 par l'intermédiaire de soupapes 25, dites « soupapes d'admission ». De manière générale, le fluide d'admission est admis dans le bas-moteur 7 en passant par le haut-moteur 5. Un collecteur d'échappement 33 du système de motorisation 1 est également connecté au haut-moteur 5 pour recueillir des chambres de combustion 24 les produits de la réaction de combustion du fluide d'admission, par l'intermédiaire de soupapes 25 dites « soupapes d'échappement ». Ces produits forment par exemple des gaz d'échappement. Le trajet du fluide d'admission au sein du collecteur d'admission 31 est symbolisé par la flèche A et le trajet des produits de la combustion au sein du collecteur d'échappement 33 est symbolisé par la flèche E.
Le système de motorisation 1 comprend un compresseur 35, qui est conçu pour compresser le fluide d'admission avant son admission dans la chambre de combustion 24, par exemple en amont du collecteur d'admission 31 . De préférence, le compresseur 35 compresse l'air destiné à entrer dans la composition de fluide d'admission, du carburant étant lui-même ajouté à cet air après que ce dernier ait été compressé par le compresseur 35 avant ou pendant son admission dans les chambres de combustion 24. Le compresseur 35 est ainsi conçu pour compresser, au moins en partie, le fluide d'admission destiné à alimenter le haut-moteur 5.
Plusieurs configurations pour l'admission du fluide d'admission sont donc possibles. Par exemple, dans le cas d'un système de motorisation 1 fonctionnant avec un carburant de type essence, ce carburant peut être injecté soit en amont dans des conduits d'admission, soit directement dans les chambres de combustion 24. Dans le deuxième cas, on parle de motorisation à « Injection Directe Essence ». Dans le cas d'un système de motorisation 1 diesel, le carburant est soit injecté directement dans les chambres de combustion 24, soit admis dans une pré-chambre du système de motorisation 1 , en amont de la chambre de combustion 24 et connectée à cette dernière, où la combustion est initiée.
Le compresseur 35 comprend un organe de compression 36, du genre pompe centrifuge, pour compresser le fluide d'admission, et en particulier pour compresser tout ou partie de l'air entrant dans la composition de ce fluide d'admission. Le compresseur 35 forme de préférence un turbocompresseur. Dans ce cas, le compresseur 35 comprend une turbine 37 d'entraînement de l'organe de compression 36. La turbine 37 est disposée en aval du collecteur d'échappement 33, ou pour le moins sur le trajet des produits de la combustion E, de façon à capter une portion de l'enthalpie et/ou de l'énergie cinétique de ces produits E pour entraîner l'organe 36 et ainsi compresser le fluide d'admission. A titre de variante, le compresseur 35 peut être entraîné par la chaîne cinématique motrice du moteur 3, et par exemple par le vilebrequin 9.
Le système de motorisation 1 comprend en outre un système de lubrification principal pour lubrifier le bas-moteur 7. En l'espèce, ce système de lubrification principal comprend un circuit principal 105 et une pompe principale 103, qui sont représentés schématiquement à la figure 1 . La pompe principale 103 présente par exemple une cylindrée comprise entre environ 5 cc/tour (centimètres cubes par tour) et 20 cc/tour, de préférence entre environ 7cc/tour et 12 cc/tour, de préférence encore de l'ordre de 10,7 cc/tour. La pompe principale 103 met en circulation un lubrifiant principal, du genre huile, au sein du circuit principal 105, pour alimenter le bas-moteur 7 avec ce lubrifiant principal et lubrifier différents organes du bas-moteur 7, appartenant notamment à la chaîne cinématique motrice. Le circuit principal 105 s'étend en partie au sein du bas-moteur 7 afin de lubrifier notamment les liaisons en rotation entre le vilebrequin 9 et les bielles 13. Le circuit principal 105 inclut une réserve de lubrifiant principal 107 et éventuellement un filtre à huile non représenté. Le circuit principal 105 est conçu pour assurer la lubrification, avec le lubrifiant principal, notamment d'une zone segment-piston-chemise du bas-moteur 7, qui désigne les parties en contact glissant de chaque piston 15 contre son cylindre 19 respectif. Pour cela, le circuit principal 105 comprend par exemple des moyens d'émission d'un brouillard de lubrifiant principal, non représentés, au niveau de la zone segment- piston-chemise, lequel brouillard de lubrifiant principal est émis par l'intermédiaire de paliers des bielles 13. L'alimentation en lubrifiant principal se fait de préférence par des paliers du vilebrequin 9, qui sont directement connectés à une rampe d'alimentation appartenant au circuit principal 105. De manière optionnelle, le circuit principal 105 comprend des pissettes de lubrifiant principal, non illustrées, qui crachent de l'huile sous les pistons 15 dans le but de les refroidir.
De préférence, la pompe principale 103 est actionnée par la chaîne cinématique motrice du moteur 3, et en particulier par le vilebrequin 9. Ainsi, lorsque le moteur 3 est en marche, le vilebrequin 9 entre en rotation et entraine la pompe principale 103 de façon systématique. La pompe principale 103 est préférentiellement à débit variable et à pression pilotée, de sorte que sa consommation d'énergie est particulièrement faible pour le pompage du lubrifiant principal.
Le système de motorisation 1 comprend également un système de lubrification secondaire, qui comprend un circuit secondaire 1 15 qui est séparé et distinct du circuit principal 105. Le circuit secondaire 1 15 alimente à la fois le compresseur 35 et le haut- moteur 5 avec un lubrifiant secondaire, qui est différent du lubrifiant principal dans sa nature et/ou sa composition et/ou ses caractéristiques.
De façon préférentielle, le lubrifiant principal est une composition lubrifiante présentant un grade, selon la classification SAEJ300, définie par la formule (X)W-(Y) dans laquelle X représente 0 ou 5 et Y représente 4, 8, 12, 16 ou 20.. Le lubrifiant principal est par exemple le lubrifiant Quartz 9000 Future OW-20 ou Quartz V-drive OW-20, commercialisés par la société TOTAL SA. D'autres lubrifiants peuvent être mis en œuvre pour le lubrifiant principal en lieu et place de ceux définis ci-avant.
Par exemple, le lubrifiant secondaire est le lubrifiant Quartz Ineo MC3 5W-30, ou Quartz 9000 5W-40 commercialisés par la société TOTAL SA. D'autres lubrifiants peuvent être mis en œuvre pour le lubrifiant secondaire en lieu et place de ceux définis ci-avant, tant que le lubrifiant principal est de composition différente que le lubrifiant secondaire, ces compositions étant adaptées respectivement aux contraintes en matière de lubrification du bas-moteur 7, et de l'ensemble incluant le haut-moteur 5 et le compresseur 35.
En variante, le lubrifiant principal et le lubrifiant secondaire sont de composition identique.
Le système de lubrification secondaire comprend également une pompe secondaire 1 13, du genre pompe hydraulique, pour mettre en circulation le lubrifiant secondaire dans le circuit secondaire 1 15. Dans l'exemple de la figure 1 , le circuit secondaire alimente à la fois le haut-moteur 5 et le compresseur 35 avec le lubrifiant secondaire.
Le circuit secondaire 1 15 inclut de préférence une réserve de lubrifiant secondaire 1 17 qui est distincte de la réserve de lubrifiant principal 107. Le circuit secondaire 1 15 s'étend en partie au sein du haut-moteur 5 afin de lubrifier notamment les liaisons en rotation entre l'arbre de commande 27 et la culasse 23 et les soupapes 25. Le circuit secondaire 1 15 s'étend en partie au sein du compresseur 35 afin de lubrifier notamment les liaisons en rotation de l'organe 36, et le cas échéant, de la turbine 37.
Dans le présent document, on entend par « circuits séparés », qu'un premier lubrifiant circulant au sein d'un premier circuit séparé d'un deuxième circuit, n'entre pas en contact avec un deuxième lubrifiant circulant dans le deuxième circuit, les deux circuits étant séparés par des moyens de séparation étanches tels que des joints ou des parois.
Le système de lubrification secondaire comprend un moteur électrique 1 19, ou pour le moins un actionneur alimenté à l'énergie électrique, d'entraînement de la pompe secondaire 1 13, pour alimenter le haut-moteur 5 et le compresseur 35 avec le lubrifiant secondaire. La pompe 1 13 est ainsi une pompe à entraînement électrique. L'énergie électrique d'alimentation du moteur électrique 1 19 est par exemple fournie par une batterie électrique du système de motorisation 1 . Le moteur électrique 1 19 constitue ainsi un actionneur secondaire de la pompe secondaire 1 13, qui est mécaniquement indépendant de la chaîne cinématique motrice. En effet, le moteur électrique 1 19 peut être mis en fonctionnement indépendamment du mouvement du vilebrequin 9, des bielles 13, des pistons 15, des soupapes 25, de l'arbre de commande 27 ou de la courroie de distribution 29.
Dans ces conditions, on commande la pompe secondaire 1 13 par l'intermédiaire du moteur électrique 1 19 pour lubrifier, avec le lubrifiant secondaire, le haut-moteur 5 et le compresseur 35 lorsque le moteur 3 est à l'arrêt. Si nécessaire, on peut piloter, et faire varier, le débit de la pompe secondaire 1 13 par pilotage de la vitesse de l'actionneur 1 19. De préférence, quelle que soit l'énergie d'alimentation de l'actionneur 1 19, on prévoit que la pompe secondaire 1 13 est à débit variable en choisissant un actionneur 1 19 dont la vitesse peut être pilotée. On actionne de préférence la pompe secondaire 1 13 avec l'actionneur secondaire 1 19 pour lubrifier le haut-moteur 5 et le compresseur 35 avec le lubrifiant secondaire juste avant le démarrage du moteur 3, qui correspond à la mise en mouvement de sa chaîne cinématique motrice. On commande de préférence la pompe secondaire 1 13 avec l'actionneur secondaire 1 19 pour lubrifier le haut-moteur 5 et le compresseur 35 avec le lubrifiant secondaire pendant une durée prédéterminée débutant après une mise à l'arrêt du moteur 3, qui correspond à une immobilisation de sa chaîne cinématique motrice. En tout état de cause, on actionne la pompe secondaire 1 13 avec l'actionneur secondaire 1 19 pour lubrifier le haut-moteur 5 et le compresseur 35 avec le lubrifiant secondaire pendant le fonctionnement du moteur 3, c'est-à-dire lorsque la chaîne cinématique motrice est en mouvement. L'usure du haut-moteur 5 et du compresseur 35 est ainsi particulièrement réduite, notamment dans le cas où il s'agit d'un turbocompresseur, ainsi que la cokéfaction.
Dans le cas d'un véhicule qui comporterait une source d'énergie hydraulique, tel qu'un circuit hydraulique avec une pompe, ou une source d'énergie pneumatique, tel qu'un circuit d'air avec un compresseur, on peut prévoir un actionneur secondaire fonctionnant à l'énergie pneumatique ou hydraulique à la place du moteur électrique susmentionné, tant que le fonctionnement de l'actionneur secondaire est indépendant du fonctionnement de la chaîne cinématique motrice. Cet actionneur secondaire serait alors par exemple un vérin, un moteur pneumatique ou un moteur hydraulique.
La pompe secondaire 1 13 présente une cylindrée inférieure à celle de la pompe principale 103, ce qui permet, tout en répondant aux besoins de lubrification du compresseur 35 et du haut-moteur 5, d'optimiser la quantité d'énergie consommée par le système de lubrification. Cela a pour effet de réduire la consommation de carburant du système de motorisation 1 . En fonctionnement, le bas-moteur 7 subit de fortes charges, causées notamment par l'action des pistons 15 sur le vilebrequin 9. Les charges subies par le compresseur 35 sont plus faibles, et sont notamment causées par l'action de l'organe de compression 36 sur le fluide d'admission, ainsi que par les produits de combustion E sur la turbine 37. Les charges subies par le haut-moteur 5 sont encore plus faibles, et sont par notamment causées par l'action de l'arbre de commande 27 sur les soupapes 25.
Le bas-moteur 7 étant soumis à de plus fortes charges que le haut-moteur 5 et que le compresseur 35, il est souhaitable, pour effectuer une lubrification efficace du bas- moteur 7, que la pression de lubrifiant soit plus élevée dans le circuit principal 105 que dans le circuit secondaire 1 15. La pompe principale 103 présentant une cylindrée plus importante que la pompe secondaire 1 13, il est aisé d'obtenir une pression de pompage plus élevée dans le circuit principal 105 que dans le circuit secondaire 1 15, de sorte que la lubrification du système 1 est optimisée.
La figure 2 illustre un second mode de réalisation d'un système de motorisation 100 conforme à l'invention. Les éléments similaires entre le système 1 de la figure 1 et le système 100 de la figure 2 ont été affectés des mêmes numéros de référence.
En substance, le système de motorisation 100 comprend un moteur à combustion interne 3, avec un haut-moteur 5 et un bas-moteur 7. Le bas-moteur 7 inclut un vilebrequin 9, un carter 1 1 , des bielles 13, des pistons 15, un bloc-moteur 17 avec des cylindres 19 et des chambres de combustion 24 définies entre le haut des pistons 15 et le bas de la culasse 21 . Le haut-moteur 5 est séparé du bas-moteur 7 par un joint de culasse 23 du moteur 3, et inclut une culasse 21 , avec notamment, des soupapes 25, et un arbre de commande 27. Le moteur 3 comprend également une courroie de distribution 29, ou ses variantes définies ci-avant, et une chaîne cinématique motrice répondant à la même définition que celle du mode de réalisation de la figure 1 .
Le système 100 comprend un collecteur d'admission 31 et un collecteur d'échappement 33, un compresseur 35 avec un organe de compression 36 et une turbine 37.
Le système 100 comprend un système de lubrification principal avec un circuit principal 105, une pompe principale 103 et une réserve de lubrifiant principale 107 pour alimenter avec un lubrifiant principal le bas-moteur 7 lorsque la chaîne cinématique motrice est en mouvement.
Le système 100 de la figure 2 diffère du système 1 de la figure 1 en ce qu'il comprend deux circuits secondaires distincts, dont un premier circuit secondaire 125 et un deuxième circuit secondaire 135 séparés. Le système 100 comprend également deux pompes secondaires 123 et 133 distinctes, dont une première pompe secondaire 123, qui alimente le haut-moteur 5 avec un premier lubrifiant secondaire par l'intermédiaire du premier circuit secondaire 125, et une deuxième pompe secondaire 133, qui est distincte de la première pompe secondaire 123 et qui alimente le compresseur 35 avec un deuxième lubrifiant secondaire par l'intermédiaire du deuxième circuit secondaire 135. Le premier lubrifiant secondaire et le deuxième lubrifiant secondaire sont de composition différente, c'est-à-dire sont de nature différente et de caractéristiques différentes. Le premier lubrifiant secondaire et le deuxième lubrifiant secondaire sont également de composition différente de celle du lubrifiant principal.
Par exemple, le premier lubrifiant secondaire est le lubrifiant Quartz Ineo MC3 5W- 30, le deuxième lubrifiant secondaire étant le lubrifiant Quartz 9000 5W-40 commercialisés par TOTAL SA. De manière générale, le premier lubrifiant secondaire est choisi pour être particulièrement adapté aux contraintes en matière de lubrification du haut-moteur 7, le deuxième lubrifiant secondaire étant choisi pour être particulièrement adapté aux contraintes en matière de lubrification du compresseur 35.
En variante, parmi le lubrifiant principal, le premier lubrifiant secondaire et le deuxième lubrifiant secondaire, deux lubrifiants sont de composition identique, le troisième étant de composition différente des deux autres. En variante encore, les trois lubrifiants sont de composition identique.
Le circuit secondaire 125 inclut de préférence une première réserve du premier lubrifiant secondaire 127 qui est distincte de la réserve de lubrifiant principal 107. Le deuxième circuit secondaire 135 inclut de préférence une deuxième réserve du deuxième lubrifiant secondaire 137 qui est distincte de la réserve de lubrifiant principal 107 et de la réserve 127.
Dans l'exemple de la figure 2, un premier actionneur secondaire 129, mécaniquement indépendant de la chaîne cinématique motrice, entraîne la première pompe secondaire 123 pour alimenter le haut-moteur 5 avec le premier lubrifiant secondaire. Un deuxième actionneur secondaire 139 distinct du premier actionneur secondaire 129, et mécaniquement indépendant de la chaîne cinématique motrice, entraîne la deuxième pompe secondaire 133 pour alimenter le compresseur 35 avec le deuxième lubrifiant secondaire.
De préférence, le fonctionnement des deux actionneurs secondaires 129 et 139 est indépendant l'un de l'autre, de sorte que : - la pompe secondaire 123 alimente le haut-moteur 5 avec le premier lubrifiant secondaire pendant une durée prédéterminée avant le démarrage du moteur 3 et/ou pendant le fonctionnement du moteur 3 ;
- la pompe secondaire 133 alimente le compresseur 35 avec le deuxième lubrifiant secondaire pendant le fonctionnement du moteur 3 et/ou pendant une durée prédéterminée après l'arrêt du moteur 3.
En variante, la pompe secondaire 133 alimente le compresseur 35 avec le deuxième lubrifiant secondaire pendant une durée prédéterminée avant le démarrage du moteur 3, afin de faciliter le démarrage du compresseur 35 et donc limiter son usure.
Le premier circuit secondaire 125 s'étend en partie au sein du haut-moteur 5 afin de lubrifier notamment les liaisons en rotation entre l'arbre de commande 27 et la culasse 23 et les soupapes 25. Le deuxième circuit secondaire 135 s'étend en partie au sein du compresseur 35 afin de lubrifier notamment les liaisons en rotation de l'organe 36, et le cas échéant, de la turbine 37.
La lubrification, ainsi que la composition du lubrifiant du bas-moteur 5 et du compresseur 35, peut ainsi être optimisée en fonction des besoins en lubrification propres à chacun de ces deux organes du système de motorisation 100.
Les actionneurs secondaires 129 et 139 fonctionnent soit à l'aide de la même énergie, par exemple électrique, soit à l'aide de deux énergies distinctes, par exemple l'un étant alimenté à l'énergie électrique et l'autre à l'énergie pneumatique.
De préférence, la première pompe secondaire 123 présente une cylindrée inférieure à celle de la deuxième pompe secondaire 133, de sorte que les pompes secondaires 123 et 133 fournissent une quantité de lubrifiants adaptée d'une part au haut- moteur 5 et d'autre part au compresseur 35. L'énergie nécessaire pour actionner les pompes secondaires 123 et 133 est ainsi optimisée.
De préférence, la première pompe secondaire 123 présente une cylindrée comprise entre 3 et 15 cc/tour et la deuxième pompe secondaire 133 présente une cylindrée comprise entre 1 et 10 cc/tour.
En variante, notamment dans le cas où l'on prévoit des cylindrées différentes pour la pompe 123 et la pompe 133, on prévoit un actionneur commun, indépendant de la chaîne cinématique motrice, pour entraîner à la fois la pompe 123 et la pompe 133, plutôt que deux actionneurs 129 et 139 séparés, comme c'est le cas sur la figure 2. Dans cette variante, les deux pompes 123 et 133 sont préférentiellement combinés pour former une pompe bi-étagée. La consommation de carburant du système 100 est ainsi réduite, dans la mesure où le nombre d'actionneurs est réduit. En variante, l'invention s'applique également aux moteurs dont la configuration spatiale est différente de celle des exemples de systèmes de motorisation décrits ci- avant, en particulier les moteurs dits « à plat ». On comprend que dans le cas de ces moteurs particuliers, le haut-moteur n'est pas nécessairement placé au-dessus du bas- moteur. Ainsi, dans le cas de ces moteurs particuliers, le terme « haut-moteur » défini ci- avant désigne la culasse équipée notamment de, ou des, arbre(s) de commande et du système de distribution, le terme « bas-moteur » désignant le carter et le bloc-moteur, équipé notamment des pistons, des bielles, du vilebrequin, des cylindres et des chambres de combustion.
L'invention a été expérimentée sur un moteur diesel de cylindrée 2L, à savoir le moteur DW10 de la société PSA Peugeot Citroën. Elle a permis d'obtenir un gain de consommation de carburant d'au moins 3% sur des points de fonctionnement stabilisé en régime de charge, représentant le cycle normalisé NEDC (« New European Driving Cycle »).
Les modes de réalisation et variantes décrits dans ce qui précède peuvent être combinés pour générer de nouveaux modes de réalisation.

Claims

REVENDICATIONS
1 . - Système de motorisation (1 ) pour un véhicule automobile, le système comprenant :
- un moteur à combustion interne (3), qui comprend un haut-moteur (5) et un bas-moteur (7) accouplés, ainsi qu'une chaîne cinématique motrice incluant au moins un piston (15) et un vilebrequin (9),
- un compresseur (35), qui équipe le moteur à combustion interne, et qui est conçu pour compresser, au moins en partie, un fluide d'admission (A) destiné au remplissage de cylindres du bas-moteur,
- un système de lubrification principal, qui comprend un circuit principal (105) et une pompe principale (103), laquelle alimente au moins le bas-moteur avec un lubrifiant principal par l'intermédiaire du circuit principal, et
- un système de lubrification secondaire, qui comprend au moins un circuit secondaire (1 15; 125, 135) séparé du circuit principal et au moins une pompe secondaire (1 13 ; 123, 133) distincte de la pompe principale, la pompe secondaire alimentant le haut-moteur et/ou le compresseur avec un lubrifiant secondaire par l'intermédiaire du circuit secondaire (1 15; 125, 135),
le système étant caractérisé en ce que le système de lubrification secondaire comprend au moins un actionneur secondaire (1 19 ; 129, 139) mécaniquement indépendant de la chaîne cinématique motrice et qui entraîne la pompe secondaire (1 13 ; 123, 133) pour alimenter le haut-moteur (5) et/ou le compresseur (35) avec le lubrifiant secondaire et en ce que la pompe principale (103) présente une cylindrée supérieure à la cylindrée de chaque pompe secondaire (123, 133).
2. - Système de motorisation (1 ) selon la revendication précédente, caractérisé en ce que l'actionneur secondaire (1 19 ; 129, 139) fonctionne à l'énergie électrique.
3.- Système de motorisation (1 ) selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que deux circuits secondaires distincts sont prévus, dont un premier circuit secondaire (125) et un deuxième circuit secondaire (135) séparés, et en ce que deux pompes secondaires sont prévues, dont : - une première pompe secondaire (123), qui alimente le haut-moteur (5) avec un premier lubrifiant secondaire par l'intermédiaire du premier circuit secondaire, et
- une deuxième pompe secondaire (133), qui est distincte de la première pompe secondaire et qui alimente le compresseur (35) avec un deuxième lubrifiant secondaire par l'intermédiaire du deuxième circuit secondaire.
4. - Système de motorisation (1 ) selon la revendication 3, caractérisé en ce que la première pompe secondaire (123) présente une cylindrée inférieure à celle de la deuxième pompe secondaire (133).
5. - Système de motorisation (1 ) selon l'une quelconque des revendications 3 ou 4, caractérisé en ce que la composition du premier lubrifiant secondaire est différente de celle du deuxième lubrifiant secondaire.
6. - Système de motorisation (1 ) selon l'une quelconque des revendications précédentes, caractérisé en ce que la pompe principale (103) présente une cylindrée comprise entre environ 5 cc/tour et 20 cc/tour, de préférence entre environ 7cc/tour et 12 cc/tour, de préférence encore de l'ordre de 10,7 cc/tour .
7. - Système de motorisation (1 ) selon l'une quelconque des revendications précédentes, caractérisé en ce que la pompe principale (103) est actionnée par la chaîne cinématique motrice.
8.- Système de motorisation (1 ) selon l'une quelconque des revendications précédentes, caractérisé en ce que la pompe secondaire (1 13 ; 123, 133) est une pompe à débit variable.
9.- Système de motorisation (1 ) selon l'une quelconque des revendications précédentes, caractérisé en ce que le lubrifiant principal est une composition lubrifiante présentant un grade, selon la classification SAEJ300, définie par la formule (X)W-(Y) dans laquelle X représente 0 ou 5 et Y représente 4, 8, 12, 16 ou 20.
10. - Système de motorisation (1 ) selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition du lubrifiant principal est différente de celle du lubrifiant secondaire.
1 1 . - Système de motorisation (1 ) selon l'une quelconque des revendications précédentes, caractérisé en ce que le compresseur (35) est un turbocompresseur.
12. - Véhicule automobile comprenant un système de motorisation (1 ) conforme à l'une quelconque des revendications précédentes.
EP16794326.5A 2015-11-13 2016-11-10 Système de motorisation et véhicule automobile associé Withdrawn EP3374614A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1560874A FR3043717B1 (fr) 2015-11-13 2015-11-13 Systeme de motorisation et vehicule automobile associe
PCT/EP2016/077251 WO2017081142A1 (fr) 2015-11-13 2016-11-10 Système de motorisation et véhicule automobile associé

Publications (1)

Publication Number Publication Date
EP3374614A1 true EP3374614A1 (fr) 2018-09-19

Family

ID=55072995

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16794326.5A Withdrawn EP3374614A1 (fr) 2015-11-13 2016-11-10 Système de motorisation et véhicule automobile associé

Country Status (7)

Country Link
US (1) US10513953B2 (fr)
EP (1) EP3374614A1 (fr)
JP (1) JP2018535349A (fr)
KR (1) KR20180081553A (fr)
CN (1) CN108307644A (fr)
FR (1) FR3043717B1 (fr)
WO (1) WO2017081142A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3043718B1 (fr) * 2015-11-13 2019-07-26 Total Marketing Services Methode de lubrification separee d'un systeme de motorisation pour vehicule automobile

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115926U (fr) * 1981-01-09 1982-07-17
JPS58104377U (ja) * 1982-01-07 1983-07-15 川崎重工業株式会社 オイルポンプの吐出量調節装置
JPS62193140U (fr) * 1986-05-30 1987-12-08
FR2605677B1 (fr) 1986-10-24 1990-09-14 Renault Dispositif de graissage pour moteur a combustion interne
JPH04111505U (ja) 1991-03-15 1992-09-28 本田技研工業株式会社 内燃機関における給油装置
JPH0771216A (ja) * 1993-08-30 1995-03-14 Yamaha Motor Co Ltd エンジンの潤滑装置
JPH07208191A (ja) * 1994-01-10 1995-08-08 Ishikawajima Harima Heavy Ind Co Ltd ターボチャージャー
JP2001241313A (ja) * 2000-02-29 2001-09-07 Yanmar Diesel Engine Co Ltd 内燃機関の潤滑油給油装置
US6408812B1 (en) * 2000-09-19 2002-06-25 The Lubrizol Corporation Method of operating spark-ignition four-stroke internal combustion engine
JP2002295219A (ja) * 2001-03-29 2002-10-09 Toyota Motor Corp 機関の潤滑装置
JP4244597B2 (ja) 2002-08-27 2009-03-25 トヨタ自動車株式会社 内燃機関
JP2006083713A (ja) * 2004-09-14 2006-03-30 Yamaha Marine Co Ltd 過給装置の潤滑構造
US20090000592A1 (en) * 2007-06-29 2009-01-01 Caterpillar Inc. Engine pre-lubrication system
DE202010016974U1 (de) * 2010-12-27 2011-03-03 Lincoln Gmbh Schmierstoffverteiler
WO2013080600A1 (fr) * 2011-12-01 2013-06-06 トヨタ自動車株式会社 Moteur à combustion interne équipé d'un compresseur de suralimentation
JP5716845B2 (ja) * 2011-12-26 2015-05-13 トヨタ自動車株式会社 油圧制御装置及び車両制御装置
GB2511315B (en) * 2013-02-27 2016-08-10 Ford Global Tech Llc Oil pump drive
JP6259688B2 (ja) * 2014-03-14 2018-01-10 大豊工業株式会社 潤滑油供給機構
US9644506B2 (en) * 2014-03-25 2017-05-09 Ford Global Technologies, Llc Method and system of oil delivery in a combustion engine
CN204344190U (zh) * 2014-11-13 2015-05-20 北汽福田汽车股份有限公司 发动机及具有该发动机的车辆

Also Published As

Publication number Publication date
WO2017081142A1 (fr) 2017-05-18
JP2018535349A (ja) 2018-11-29
US20180328241A1 (en) 2018-11-15
CN108307644A (zh) 2018-07-20
FR3043717A1 (fr) 2017-05-19
FR3043717B1 (fr) 2019-09-13
US10513953B2 (en) 2019-12-24
KR20180081553A (ko) 2018-07-16

Similar Documents

Publication Publication Date Title
EP0980466B1 (fr) Dispositif permettant de faire varier la cylindree et/ou le rapport volumetrique effectifs d'un moteur a pistons pendant son fonctionnement
FR2950863A1 (fr) Circuit d'alimentation en carburant d'un moteur d'aeronef
FR2980516A1 (fr) Actionneur de soupape electro-hydraulique a came alternative
FR3043717B1 (fr) Systeme de motorisation et vehicule automobile associe
FR2765635A1 (fr) Pompe d'injection directe de combustible pour moteur a allumage commande et systeme d'injection comportant une telle pompe
EP0587479A1 (fr) Moteur à deux temps à injection pneumatique et à équilibrage du premier ordre des masses alternatives
WO2018037101A1 (fr) Système de motorisation et procédé de lubrification et de refroidissement associé
FR2673676A1 (fr) Procede de lubrification a carter sec pour moteur a combustion interne et dispositif pour sa mise en óoeuvre.
FR3067386B1 (fr) Machine de detente
EP2093393B1 (fr) Circuit de lubrification et pompe associée
BE1023256B1 (nl) Cilindereenheid en verbrandingsmotor met dergelijke cilindereenheid
EP2167795A2 (fr) Dispositif et procédé d'ouverture de soupape, de lubrification et de refroidissement des moteurs à pistons alternatifs
EP2905444B1 (fr) Ensemble d'électrovanne à double découplage
FR3053388A1 (fr) Lubrification du dos des cames par recuperation d'huile
FR3028563A1 (fr) Piston alternatif et contenant faisant moteur thermique, pneumatique, hybride et recuperateur d'energie pneumatique
EP2956637B1 (fr) Circuit d'huile pour moteur a combustion interne avec moyen d'actionnement optimise
FR2821643A1 (fr) Chambre d'expansion de moteur a air comprime
FR3085440A1 (fr) Procede de controle d'un moteur a combustion interne avec double admission
FR3043721A1 (fr) Moteur a explosion a cylindres de combustion incurves
FR2673677A1 (fr) Procede de lubrification pour moteur a combustion interne et dispositif pour sa mise en óoeuvre.
EP2201233A2 (fr) Moteur a combustion interne a chambre de combustion a geometrie variable
FR2922951A1 (fr) Moteur a combustion interne a chambre de combustion a geometrie variable.
FR2937380A1 (fr) Dispositif et procede d'ouverture de soupape pour moteurs a pistons alternatifs.
FR2984954A1 (fr) Moteur a cylindre de compression d'air
FR2922953A1 (fr) Procede de controle du rapport volumetrique d'un moteur a combustion interne.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHINA, PHILIPPE

Inventor name: PELLETIER, ANTHONY

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210413