EP3374308B1 - Unite de surveillance d'ascenseur et procede - Google Patents

Unite de surveillance d'ascenseur et procede Download PDF

Info

Publication number
EP3374308B1
EP3374308B1 EP16794601.1A EP16794601A EP3374308B1 EP 3374308 B1 EP3374308 B1 EP 3374308B1 EP 16794601 A EP16794601 A EP 16794601A EP 3374308 B1 EP3374308 B1 EP 3374308B1
Authority
EP
European Patent Office
Prior art keywords
monitoring
unit
value
monitoring unit
operating parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16794601.1A
Other languages
German (de)
English (en)
Other versions
EP3374308A1 (fr
Inventor
Astrid Sonnenmoser
Adrian KNECHT
Ivo LUSTENBERGER
Kurt Heinz
Thomas Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Publication of EP3374308A1 publication Critical patent/EP3374308A1/fr
Application granted granted Critical
Publication of EP3374308B1 publication Critical patent/EP3374308B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3407Setting or modification of parameters of the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/22Operation of door or gate contacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0043Devices enhancing safety during maintenance
    • B66B5/005Safety of maintenance personnel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/027Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions to permit passengers to leave an elevator car in case of failure, e.g. moving the car to a reference floor or unlocking the door

Definitions

  • the invention relates to a monitoring unit for an elevator installation and to a method for operating this monitoring unit.
  • An elevator installation essentially comprises an elevator cage, an elevator shaft in which the elevator cage moves, and a drive unit for moving the elevator cage.
  • elevator systems have a safety circuit in which a plurality of safety elements, such as safety contacts and switches, are arranged in a series circuit.
  • the contacts monitor, for example, whether a shaft door or the car door is open.
  • the elevator car can only be moved if the safety circuit and thus also all safety contacts integrated in it are closed.
  • the safety circuit is connected to the drive or the brake unit of an elevator installation in order to interrupt the driving operation if the safety circuit is opened.
  • the WO2003008316A1 describes that today's elevator systems are designed for safety reasons, that at the bottom of the shaft a shelter in the form of a pit is provided to ensure that maintenance personnel in the shaft is not endangered when the elevator car moves to the lowest position in the shaft.
  • a shelter is usually provided at the top of the manhole - called the manhole head - so that maintenance personnel performing maintenance on the roof of the car will not be endangered when the car is in the topmost position in the manhole.
  • An elevator system with a shelter at the lower and upper shaft ends is several meters longer than the actual floor height of the building, which is served by the elevator. This applies to the most diverse types of elevator dispositions, such as cable lifts, hydraulic lifts, linear motor lifts.
  • elevator installation disclosed a detection device which detects whether a person is staying in a critical zone of the shaft, in particular within the shaft pit or the shaft head. The detection can be done by means of any sensors, such as photoelectric sensors. This detection device is connected to the drive unit of the elevator installation such that the elevator installation can be converted into a special operating state if a person is in the critical zone or is about to enter it.
  • WO 2014/124779 A discloses a monitoring unit according to the preamble of claim 1 and a method for operating a monitoring unit according to the preamble of claim 9.
  • the detection device and the special control device are safety-relevant designed to prevent in all circumstances, the retraction of the elevator car in the critical zone, if a person is located therein.
  • the safety-relevant design requires, for example, that important components are present redundantly, important functions of the control device are executed in parallel and their results are compared with one another and the data transmission takes place via parallel lines.
  • the safety-relevant design of the elevator system is therefore associated with considerable effort.
  • elevator systems are typically modular. For future elevator systems therefore modules are prefabricated and often stored temporarily. The storage of these modules often causes a great deal of effort since e.g. individual modules must be checked and configured before use.
  • the present invention is therefore based on the object to overcome the disadvantages of the prior art and to provide an improved monitoring unit for an elevator system. Furthermore, a method for operating this monitoring unit must be specified.
  • the monitoring unit should be able to be stored for a long time after production and complete assembly, without their operational readiness being impaired.
  • the monitoring unit should be removed from the warehouse even after a long period of storage and can be used without further testing.
  • the monitoring unit with device parts that are to be operated manually to configure the monitoring unit.
  • the monitoring unit which serves to monitor an elevator installation comprises a circuit arrangement which has a power supply unit which is provided for outputting a network-dependent first operating voltage and at least one processor-controlled first monitoring module which serves to actively and / or passively determine status data of the elevator installation.
  • the monitoring unit may e.g. read and store existing status data of the elevator installation or sensor data.
  • the monitoring unit can actively feed test signals into the elevator installation and for this purpose register and evaluate corresponding response signals.
  • a first monitoring module provided for outputting a test signal and a second monitoring module provided for receiving the response signal are provided.
  • the monitoring unit comprises an energy storage unit which serves to deliver a network-independent second operating voltage, and a first switching device by means of which the first operating voltage can be supplied during normal operation of the elevator installation and the second operating voltage can be supplied to the at least one first monitoring module in the event of a power failure.
  • a non-volatile data memory which serves to store a variable operating parameter, and a second switching device are provided, by means of which parts of the circuit arrangement can be switched off.
  • the at least one first monitoring module is designed to actuate the second switching device as a function of the stored operating parameter, which has a first value before the startup of the monitoring unit and a second value after startup of the monitoring unit.
  • the energy storage unit is an autonomous energy source, such as e.g. a battery, an accumulator, a supercapacitor or ultracapacitor (English: Supercapacitor, short Supercap). It is essential that the energy storage unit can store electrical energy for a long time virtually without loss.
  • An autonomous energy storage unit may also be an accumulator, e.g. powered by solar cells by light energy.
  • the operating behavior of the monitoring unit can be determined.
  • the monitoring unit can Therefore, already equipped with an energy storage unit during production and without manual operation of a switch for switching off the second operating voltage, battery voltage may be put into storage. Since the energy removal from the energy storage unit is automatically restricted by the monitoring unit, the monitoring unit can be stored for a very long time, without the energy storage unit must be checked or replaced when removing the monitoring unit from the camp. In this way, the management of the stored monitoring units simplified significantly. Likewise, a monitoring unit, which is taken from an elevator system, provided again with the first value of the operating parameter and put back to the camp without removing the energy storage unit.
  • the monitoring unit does not have to be provided with switching devices in order to protect the energy storage unit from premature discharge.
  • Manually actuated switching devices have a relatively high error frequency compared to semiconductor circuits, which is why with the inventive solution, a significant improvement in this respect is achieved.
  • the monitoring unit is provided with automatically controllable semiconductor devices that have no signs of wear even after a long period of operation.
  • the monitoring module or the monitoring modules provided on the monitoring unit can advantageously be formed by programmed microcontrollers, which preferably have a processor unit, a volatile main memory, the nonvolatile data memory and interface units. Furthermore, the microcontrollers may include further modules, such as timer units and converter modules.
  • an operating program is preferably stored, according to which the value of the operating parameter can preferably be read out periodically and the second switching device can be actuated as a function of the read-out operating parameter.
  • the first value of the operating parameter is preferably an initialisation value which is transmitted to the monitoring unit, e.g. is impressed during production. This first value can preferably also be impressed on a monitoring unit which is removed from an elevator installation and placed back into storage with the energy storage unit.
  • the first initialization value may e.g. have the format of a network address, wherein an invalid network address is preferably selected for the first initialization value.
  • the second value of the operating parameter is a value different from the first value. If an elevator installation has several monitoring units and these with a Communicate computer and have corresponding communication addresses or network addresses, as the second value of the operating parameter, the corresponding network address can be stored.
  • the corresponding programming of the monitoring unit, ie the impressing of the first or second value of the operating parameter can be done by a connected computer.
  • this address will be translated into all smart modules, i. imprinted in all monitoring modules provided on the monitoring unit.
  • these can be assigned individual subaddresses in addition to the main address.
  • each of the monitoring modules can monitor this operating parameter and make appropriate shutdowns.
  • each monitoring module can be assigned a second switching device, which is actuated when the first value of the operating parameter is present, in order to completely or partially switch off the relevant monitoring module if the network-dependent first operating voltage fails.
  • the monitoring module Unless the monitoring module is completely switched off, it can be advantageously provided that it is put into a sleep mode repeatedly and in each case after a period of time of e.g. a few seconds or minutes into a full or partial operating state to carry out control measures, such as checking the value of the operating parameter.
  • the monitoring module has a timer unit, each counting a sleep period.
  • Such configured monitoring units are therefore briefly active during storage, but need only for a very short duration low electrical energy. By this energy extraction, the life of the energy storage unit is only slightly reduced.
  • the second switching device can be advantageously integrated into the monitoring module.
  • the second switching device can also be constructed discretely.
  • the second switching device has a switching transistor controlled by one of the monitoring modules.
  • the circuit arrangement can thus be partially disconnected from the power supply to save energy. Furthermore, a complete separation of the energy storage unit can be provided by the second switching device, for example a switching transistor, completely separating the energy storage unit from the circuit arrangement.
  • the second Switching device is opened in the presence of the first value of the operating parameter and interrupts, for example, a connection line of the energy storage unit. In the presence of the second value of the operating parameter, the second switching device is closed, however, so that the energy storage unit is connected to the circuit arrangement or to the switch, which switches through either the first or the second operating voltage to the monitoring modules.
  • the monitoring units can monitor the state of at least part of the elevator installation and determine and register corresponding status data and transmit them to a central computer.
  • At least one of the doors is assigned a monitoring unit and a monitoring sensor by means of which state changes, such as the unlocking or the opening of the door, are detected.
  • the equipped with an energy storage unit monitoring unit is switched to full or partial decommissioning of the elevator system in an autonomous operation and registered during autonomous operation based on the monitoring sensor corresponding state data.
  • These state data are read out and evaluated after commissioning of the elevator installation by a safety unit or a higher-level computer from all monitoring units, according to which the transfer of the elevator installation to normal operation is prevented if a change of state has been detected for one of the monitored doors.
  • a critical state change is detected or detected by the fuse unit, For example, this is signaled to a control computer.
  • the control unit can intervene directly in the elevator system and, for example, interrupt the power supply or put the drive unit out of operation.
  • the security unit may for example be integrated as a software module in the control computer or be designed as a separate module that interacts with the control computer or other parts of the elevator system.
  • the fuse unit can thus communicate with the installed monitoring units and impress them with the communication address or network address as operating parameters during commissioning. On the other hand, if one of the monitoring units is removed from the elevator installation, the safety unit can reset the operating parameter back to the first value that was assigned during production.
  • Fig. 1 shows an elevator system 3 with a drive unit 38, by means of which an elevator car 35 arranged in an elevator car 35 between two elevator doors 30A, 30B is movable.
  • the elevator installation 3, which is fed by a central power supply unit 2, is equipped with a control device 100 by means of which the elevator installation 3, in particular the drive unit 38, can be controlled.
  • the control apparatus 100 comprises a securing unit 1 which is connected or connectable to monitoring units 10A, 10B by means of which a respective latch 31A, 31B of an associated elevator door 30A, 30B or a monitoring sensor 11A or 11B coupled thereto are monitored can.
  • the monitoring units 10A, 10B are, for example, populated circuit boards.
  • the security unit 1 is in the present embodiment, an independent computer system that communicates with a system computer 1000.
  • the fuse unit 1 can also be integrated into the system computer 1000 as a software module or hardware module.
  • the fuse unit 1 can, as in Fig. 1 shown, engage directly in the elevator system 3 and control or switch off the power supply 2 or the drive unit 38, for example.
  • the security unit 1 can only be connected to the system computer 1000, which in turn executes the secure control of the elevator installation 3 taking into account state data which are determined on the basis of the monitoring units 10A, 10B.
  • the security unit 1 and / or the system computer 1000 may also be wireless or wired to external computer units, e.g. be connected to a host computer.
  • the monitoring sensors 11A, 11B are formed as switching contacts each mechanically coupled to a door lock 31A, 31B that can be operated by maintenance personnel by means of a tool, as shown in FIG Fig. 1 for the switching contact 11B is shown.
  • the maintenance personnel can thus operate a door lock 31A, 31B, manually open an elevator door 30A, 30B and enter the elevator shaft 35.
  • Fig. 1 shows that after a power failure or shutdown, the lower elevator door 31B has been opened and a service technician has entered the hoistway 35 to check an electrical installation 8 which might have caused the power failure, for example.
  • the maintenance technician stands on the shaft floor in a shaft pit, which has only a small depth.
  • the elevator system 3 must not be operated. In the upper floor, a building occupant moves toward the first elevator door 30A, behind which the elevator car 36 stands. If the elevator installation 3 is supplied with electricity again at this moment and put into normal operation, the building occupant can enter the elevator cage 36 and put it into motion. This is prevented by the switching contacts 11A; 11B are monitored and the transition to normal operation is prevented if one of the switching contacts 11A, 11B has been actuated. So that this monitoring can also be performed after a power failure, the monitoring units 10A; 10B equipped with an energy storage unit 14 and automatically switched off in an autonomous operation in complete or partial decommissioning of the elevator system 3 or a power failure.
  • Fig. 1 shows further that the two identically formed monitoring units 10A, 10B each have a local power supply unit 12 and an energy storage unit 14, which can be connected via a controllable switching unit 13, for example a voltage-controlled relay, with a first and optionally a second monitoring module 15, 16.
  • a controllable switching unit 13 for example a voltage-controlled relay
  • the power supply unit 12 is connected via the contacts 132, 133 or the energy storage unit 14 via the contacts 131, 133 of the switching unit 13 to the at least one monitoring module 15.
  • the at least one monitoring module 15 of the Power supply unit 12 either a network-dependent first operating voltage or supplied from the energy storage unit 14, a network-independent second operating voltage.
  • the switching unit 13 is supplied by the power supply unit 12 with a switching voltage us, by which the switching unit 13 is activated and the power supply unit 12 is connected to the monitoring modules 15, 16 as soon as the first operating voltage is present. In the event of a power failure, the switching voltage us and the switching unit 13 drops back to the rest position, in which the energy storage unit 14 is connected to the monitoring modules 15, 16, if the switch 19 shown is closed. Due to the identical configuration of the monitoring units 10A, 10B, reference will now be made only to the first monitoring unit 10A, which comprises at least the processor-controlled first monitoring module 15.
  • the energy storage unit 14 which is connected to earth on one side, remains constantly connected to the circuit arrangement of the monitoring unit 10A when the switch 19 is closed. If the monitoring unit 10A is removed from the elevator installation 3 in this state, the energy storage unit 14 would remain permanently connected to the associated circuit arrangement. Likewise, after the manufacture of the monitoring unit 14A and the onset of the energy storage unit 14, it would be permanently connected to the circuitry. This insertion or removal of the monitoring unit 10A is in Fig. 1 symbolically represented with one hand. If the monitoring unit 10A is placed in the warehouse after production and the circuit arrangement is permanently supplied by the energy storage unit 14, this would be at least partially discharged during a longer storage period.
  • the monitoring unit 10A can be put into storage with built-in energy storage unit 14 and the energy removal from the energy storage unit 14 is automatically interrupted or reduced by actuating the switch 19 shown by way of example or a corresponding switching unit during this time.
  • the switch 19 shown by way of example or a corresponding switching unit during this time.
  • the switch 19 is provided, which can be actuated by the first monitoring module 15.
  • the actuation of the switch 19 takes place as a function of a variable operating parameter which is stored in a nonvolatile data memory 151, preferably in a register of the Monitoring module 15, is stored and is preferably checked periodically by the monitoring module 15.
  • This variable operating parameter has a first value before the startup of the monitoring unit 10A and a second value after the startup of the monitoring unit 10A. If the first value is present, the switch 19 is opened. If the second value is present, the switch 19 is closed.
  • the first value of the operating parameter is stored in the data memory 151. After removal from the warehouse and installation of the monitoring unit 10A in the elevator installation 3, this first value is overwritten by the second value. This can be done by a higher-level computer, e.g. the fuse unit 1 or by the monitoring module 15 itself are executed. If the monitoring module 15 is e.g. recognizes that the installation has been made in the elevator system 3 and the network-dependent first operating voltage is present, the first value of the operating parameter can be overwritten by the second value, in whose presence the switch 19 is closed and also remains closed, if the network-dependent first operating voltage drops.
  • the first value of the operating parameter is preferably an initialization value ID0 which is impressed on all monitoring unit 10A during production.
  • the second value ID1 of the operating parameter (or ID2 for the second monitoring unit 10B) is preferably a network address assigned to the monitoring unit 10A, which is allocated only once within the elevator installation and is unique in this area.
  • the switch 19 is, for example, a switching transistor which is arranged discretely on the monitoring unit 10A or integrated in the monitoring module 15. If the switch 19 is integrated in the monitoring module 15, preferably parts of the monitoring module 15 are switched off, which are not required for the wake-up of the monitoring module 15. If a plurality of monitoring modules 15, 16 are provided, the solution according to the invention is optionally implemented identically in both monitoring modules 15, 16. In principle, the monitoring unit 10A can also have a plurality of switches 19, via which different subregions of the circuit arrangement are supplied with current.
  • the second switching device according to the invention therefore has one or more discrete or integrated switching transistors.
  • Fig. 2a shows the first monitoring unit 10A of Fig. 1 which changes depending on the set operating parameter ID0 and the presence of a network-dependent operating voltage between two symbolically represented operating states, a network mode M1 and a deep sleep mode M3.
  • the first monitoring unit 10A In the absence of the mains-dependent first operating voltage, the first monitoring unit 10A is always in the deep sleep mode M3, in which little or no energy is required by the energy storage unit 14.
  • the switch 19 at the monitoring unit of Fig. 1 is opened, the monitoring unit 10A can be stored for a long time without the energy storage unit 14 is discharged.
  • the monitoring unit 10A If the monitoring unit 10A is installed in the elevator installation in this state and the operating parameter is left at the first value ID0, the monitoring unit 10A changes to the network mode M1 in the presence of the network-dependent first operating voltage in which it can fulfill all functions.
  • the monitoring module 15 checks the operating parameter ID0 and allows the switch 19 to be opened. As soon as the mains-dependent first operating voltage fails, the monitoring unit 10A again switches to the deep sleep mode M3, in which the monitoring unit 10A does not fulfill a function for monitoring the elevator installation 3.
  • Fig. 2b shows the first monitoring unit 10A of Fig. 1 after installation in the elevator installation 3 and setting the operating parameter to the second value ID1.
  • the state of the monitoring unit 10A has changed from the deep sleep mode M3 to the network mode M1.
  • the operating parameter is set either automatically by the monitoring unit 10A or by the security unit 1 to the second value ID1.
  • the monitoring module 15 subsequently determines that the second value ID1 is present and closes the switch 19. If the mains-dependent first operating voltage fails, the first monitoring unit 10A changes to the battery mode M2, in which the energy storage unit 14 supplies the mains-independent second operating voltage to the battery Monitoring module 15 outputs.
  • the first monitoring unit 10A When the mains-dependent operating voltage is switched on and off, the first monitoring unit 10A therefore switches between the mains mode M1 and the battery mode M2. If the monitoring unit 10A is removed from the elevator installation in this configuration and the operating parameter is not changed, the monitoring unit 10A remains in the battery mode M2. When the monitoring unit 10A is removed from the elevator installation, the switch 19 is therefore first opened by changing the operating parameter to the first value ID0, so that the monitoring unit 10A, after the mains-dependent first operating voltage has been switched off, is switched off Deep sleep mode M3 falls back and can be put into storage.
  • the operating states M1, M2 and M3 are in Fig. 2a and 2b associated symbols, a utility grid, an energy storage unit and a warehouse, which illustrate the state changes.
  • an autonomous energy storage unit 14 may also be an accumulator, e.g. powered by solar cells by light energy.
  • any modules of an electrical system such as circuit boards can also be provided with this autonomous energy storage unit 14. When these modules are put into storage in the deep sleep mode M3, it is provided that they are exposed to artificial or natural light and the accumulator 14 is therefore charged regularly.
  • the solution according to the invention can also be designed to be particularly advantageous for automatic warehouse management and warehouse control in preferred embodiments.
  • the monitoring units 10A, 10B or any modules preferably regularly from the deep sleep mode M3 switch to a report mode M4 and transmit status messages or status messages wirelessly to a storage computer L1.
  • the monitoring units 10A, 10B may be operated at preferably selectable intervals, e.g. weekly or monthly, switch to report mode M4 and report its status. This status report can contain the report for an audit that was previously performed. Subsequently, if appropriate after an acknowledgment of receipt from the storage computer L1, the monitoring units 10A, 10B fall back into the deep sleep mode M3.
  • an inventory list can thus be created automatically for the entire warehouse. This inventory list can be compared with the updated stock book. If a status report reports the defect of a module, it can be removed from the warehouse and repaired. Due to the large time intervals, the energy consumption for operating the modules in report mode M4 is practically negligible.
  • the corresponding circuit units are activated and provided with the second operating voltage.
  • an interface for wireless communication with a transmitting unit and preferably a receiving unit is provided.
  • a communication protocol may be implemented which assigns each module a time slot for transmission. The delivery of the status reports can therefore take place at time intervals, controlled by a timer.
  • time slots can be used in time intervals be opened within which the monitoring units 10A or any modules can be addressed and queried.
  • temporal intervals are preferably provided in the range of days, weeks or months.
  • the monitoring units 10A and 10B according to the invention can fulfill any desired monitoring functions in an elevator installation 3 which is in operation or inactive due to a power failure. It will be shown below by way of example that the access to the elevator shaft 35 can be monitored by means of the monitoring units 10A and 10B.
  • each of the monitoring units 10A, 10B of Fig. 1 generates a monitoring signal, which via an output port of the monitoring unit 10A; 10B and the associated switching contact 11A, 11B back to an input of the monitoring unit 10A; 10B and evaluated in the first monitoring module 15 and / or in a second monitoring module 16.
  • the first monitoring unit 10A therefore actively initiates a monitoring signal in the elevator installation 3 to be monitored and checks whether relevant changes of this monitoring signal occur.
  • the first monitoring unit with 10A could also passively record signals that are output by the elevator installation 3.
  • the monitoring sensors or the switching contacts 11A, 11B are monitored to detect a change of state or an operation of the associated door closure 31A; 31B to register. Monitoring is preferably also carried out in network mode M1. If an actuation of one of the switching contacts 11A, 11B is detected while in the network mode M1, the elevator installation is preferably switched off.
  • the elevator system 3 is powered by the central power supply unit 2 again with energy.
  • An operating voltage is again supplied to the local power supply units 12 in the monitoring units 10A, 10B, after which they in turn generate the switching voltage us and activate the switching unit 13.
  • the state data collected in the monitoring units 10A, 10B or status messages already derived therefrom can subsequently be retrieved by the security unit 1 and further processed.
  • the securing unit 1 will determine from the status data of the second monitoring unit 10B that the associated door lock 31B has been actuated and possibly a person in the Elevator shaft 35 is located (see Fig. 1 ).
  • the security unit 1 therefore prevents the commissioning of the elevator system 3 by direct intervention in the elevator system 3, for example by switching off the power supply 2 or by communication to a higher-level computer or the system computer 1000, which in turn prevents the commissioning of the elevator system 3.
  • Fig. 3a shows the first monitoring unit 10A of Fig. 1 comprising only a processor-controlled first monitoring module 15 which transmits a monitoring signal s TX from an output port op via the switch contact 11A associated with and mechanically coupled to the door latch 31A of the first elevator door 30a to an input port ip.
  • the monitoring module 15 is e.g. a microcontroller with the lowest power consumption in the operating state (preferably ⁇ 100 ⁇ A) and in the idle state (preferably ⁇ 500nA), short delay times in the transition from the idle state to the operating state (preferably ⁇ 1 microseconds); and all the essential functions for signal processing.
  • a microcontroller is used as described in the documentation "MSP Low-Power Microcontrollers" by Texas Instruments Incorporated from the year 2015.
  • Monitoring module 15 shown is a microcontroller with a CPU 150, one or more registers 151, a random access memory 152 an optionally provided digital / analog converter 153, at least one output module 154, an interface module 155, a watchdog timer 156, at least one other timer T1, an analog / digital converter 158 and at least one input module 159.
  • the individual modules are connected via a system bus with each other and via the interface module 155 with the fuse unit 1 or connectable.
  • the second monitoring module 16 of Fig. 1 is preferably identical in construction to the first monitoring module 15, but provided with correspondingly adapted software.
  • An operating program BP and preferably a filter program FP are stored in the main memory 152.
  • the values of the operating parameter can be read from the data memory 151.
  • the switch or switching transistor 19 is driven via the output port 1541.
  • the second value ID1 is stored, in the presence of which the switch 19 is closed and the monitoring unit 10A falls into the battery mode M2 as soon as the mains-dependent first operating voltage fails.
  • the state of the switching unit 13 shows that the current has actually failed and the monitoring module 15 of the Energy storage unit 14 is powered.
  • a monitoring signal s TX which is generated in the monitoring module 15, can be transmitted via the switching contact 11A to an input port ip of the monitoring module 15.
  • Fig. 3b shows an exemplary output at the output port op monitoring signal s TX1 of Fig. 2a in the state M1 or M2 as a pulse train with a duty cycle of 50%.
  • a comparison of the output at the output port op monitoring signal s TX with the received at the input port monitoring signal s RX indicates whether the switching contact 11A was opened during the transfer. If some of the pulses are not transmitted, a change of state of the switching contact 11A and thus a possible opening of the elevator door 30A is registered and reported. For example, the number of transmitted pulses and the number of received pulses are stored in the register 151 and compared with each other prior to the start-up of the elevator installation 3 to detect a door opening.
  • Fig. 3c shows a signal output at the output port op monitoring signal s TX2 of Fig. 2a in the state M1 or M2 as a pulse sequence with a pulse duty factor of approximately 7% and a factor 7 times longer period T compared to the signal from Fig. 2b ,
  • the monitoring module 15 can be placed in an idle state, in which the power consumption is minimal and only circuit parts are required, which are required for the transition from the idle state to the operating state.
  • external stimuli or wake-up signals are monitored.
  • a wake-up signal can also be generated within the monitoring module 15, for example by a timer 156, 157.
  • This sleep mode differs from deep sleep mode M3 in that more circuit modules remain in an active mode. For example, the watch dog remains active, which is not needed in the deep sleep mode M3.
  • Fig. 4a shows the first monitoring unit of Fig. 3a in the battery mode M2 with the first monitoring module 15, which transmits a monitoring signal s TX from the output port op via the switching contact 11A to the input port ip of a second processor-controlled monitoring module 16.
  • Both monitoring modules 15, 16 are fed by the energy storage unit 14.
  • the first monitoring module 15 the number of transmitted pulses is registered in the register 151.
  • the second monitoring module 16 the number of received pulses is registered in a register 161.
  • Fig. 4b shows the monitoring signal s TX of Fig. 4a as a pulse train with a duty cycle of 50% before transmission via the switching contact 11A.
  • Fig. 4c shows the monitoring signal s RX of Fig. 4a after the transmission via the switching contact 11A, which was opened during the transmission of two pulses, which were thus not registered in the register 161 of the second monitoring module 16.
  • the state change of the switching contact 11A can be detected.
  • the comparison of the contents of the registers 151, 161 can be made in one of the monitoring modules 15, 16 in a local comparator 17 or centrally in the backup unit 1, which reads out all register contents from the monitoring units 10A, 10B.
  • the transition to the deep sleep mode M3 for both monitoring modules 15, 16 takes place.
  • the operating parameters in each of the monitoring modules 15, 16 can be stored and monitored.
  • the control of the operating states M1, M2 and M3 can also be performed centrally only by one of the processor-controlled monitoring module 15, 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Elevator Control (AREA)

Claims (15)

  1. Unité de surveillance (10A ; 10B) pour surveiller une installation d'ascenseur (3) comprenant une unité d'entraînement (38), au moyen de laquelle une cabine d'ascenseur (36) disposée dans une cage d'ascenseur (35) peut se déplacer, comportant un agencement de circuit, qui est une unité d'alimentation en énergie (12) prévue pour délivrer une première tension de fonctionnement dépendante du réseau, et au moins un premier module de surveillance (15) commandé par processeur, lequel sert à la détermination active et/ou passive de données d'état de l'installation d'ascenseur (3), une unité de stockage d'énergie (14) servant à délivrer une seconde tension de fonctionnement indépendante du réseau et un premier dispositif de commutation (13) étant prévus, dispositif au moyen duquel, en fonctionnement normal, la première tension de fonctionnement et, en cas de panne de courant, la seconde tension de fonctionnement peuvent être fournies à l'au moins un premier module de surveillance (15), caractérisée en ce qu'une mémoire de données non volatile (151), qui sert à la mémorisation d'un paramètre de fonctionnement variable, et un second dispositif de commutation (19) sont prévus, au moyen desquels des parties de l'agencement de circuit peuvent être désactivées, et en ce que l'au moins un premier module de surveillance (15) est conçu pour l'actionnement du second dispositif de commutation (19) en fonction du paramètre de fonctionnement mémorisé, lequel présente une première valeur avant le démarrage de l'unité de surveillance (10A ; 10B), et une seconde valeur après le démarrage de l'unité de surveillance (10A ; 10B).
  2. Unité de surveillance (10A ; 10B) selon la revendication 1, caractérisée en ce que l'au moins un premier module de surveillance (15) est un microcontrôleur présentant au moins une unité de traitement (150), une mémoire vive volatile (152), la mémoire de données non volatile (151), ainsi que des unités d'interface (154, 1541, 155, 159).
  3. Unité de surveillance (10A ; 10B) selon la revendication 1 ou 2, caractérisée en ce qu'au moins un programme de fonctionnement est enregistré dans le premier module de surveillance (15), programme selon lequel la valeur du paramètre de fonctionnement est de préférence lisible périodiquement et le second dispositif de commutation (19) peut être actionné sur la base du paramètre de fonctionnement lu.
  4. Unité de surveillance (10A ; 10B) selon la revendication 1, 2 ou 3, caractérisée en ce que la première valeur du paramètre de fonctionnement est de préférence une valeur d'initialisation, telle qu'une adresse réseau invalide déterminée, imprimée sur toutes les unités de surveillance (10A ; 10B) lors de la production, et en ce que la seconde valeur du paramètre de fonctionnement est une adresse réseau associée à l'unité de surveillance (10A; 10B).
  5. Unité de surveillance (10A ; 10B) selon l'une des revendications 1 à 4, caractérisée en ce que le second dispositif de commutation (19) est de préférence intégré dans chacun des modules de surveillance (15, 16) ou en ce que le second dispositif de commutation (19) est logé de manière discrète dans l'agencement de circuit.
  6. Unité de surveillance (10A, 10B) selon l'une des revendications 1 à 5, caractérisée en ce que le second dispositif de commutation (19) comprend au moins un transistor de commutation qui peut être commandé par le module de surveillance associé (15 ; 16).
  7. Unité de surveillance (10A ; 10B) selon l'une des revendications 1 à 6, caractérisée en ce que le second dispositif de commutation (19) est ouvert en présence de la première valeur du paramètre de fonctionnement et interrompt une ligne de connexion de l'unité de stockage d'énergie (14), et en ce que le second dispositif de commutation (19) est fermé en présence de la seconde valeur du paramètre de fonctionnement, et raccorde, en présence de la seconde valeur du paramètre de fonctionnement, l'unité de stockage d'énergie (14) à l'agencement de circuit.
  8. Unité de surveillance (10A ; 10B) selon l'une des revendications 1 à 7, caractérisée en ce que l'unité de surveillance (10A ; 10B) est raccordée à un capteur de surveillance (11A ; 11B) au moyen duquel des changements d'état de l'installation d'ascenseur (3), tels que le déverrouillage ou l'ouverture d'une porte d'ascenseur (30A ; 30B), peuvent être détectés.
  9. Procédé de fonctionnement d'une unité de surveillance (10A ; 10B) servant à surveiller une installation d'ascenseur (3) présentant une unité d'entraînement (38), au moyen de laquelle une cabine d'ascenseur (36) disposée dans une cage d'ascenseur (35) peut se déplacer, et comportant un agencement de circuit, qui est une unité d'alimentation en énergie (12) prévue pour délivrer une première tension de fonctionnement dépendante du réseau, et au moins un premier module de surveillance (15) commandé par processeur, lequel détermine de manière active et/ou passive des données d'état de l'installation d'ascenseur (3), une unité de stockage d'énergie (14) servant à délivrer une seconde tension de fonctionnement indépendante du réseau et un premier dispositif de commutation (13) étant prévus, au moyen desquels, en fonctionnement normal, la première tension de fonctionnement et, en cas de panne de courant, la seconde tension de fonctionnement peuvent être fournies à l'au moins un premier module de surveillance (15), caractérisée en ce qu'une mémoire de données non volatile (151), dans laquelle un paramètre de fonctionnement variable est mémorisé, et un second dispositif de commutation (19) sont prévus, au moyen desquels des parties de l'agencement de circuit peuvent être désactivées, et en ce que l'au moins un premier module de surveillance (15) actionne le second dispositif de commutation (19) en fonction du paramètre de fonctionnement mémorisé, lequel est défini à une première valeur avant le démarrage de l'unité de surveillance (10A ; 10B) et à une seconde valeur après le démarrage de l'unité de surveillance (10A ; 10B).
  10. Procédé selon la revendication 9, caractérisé en ce que l'au moins un premier module de surveillance (15) est un microcontrôleur présentant au moins une unité de traitement (150), une mémoire vive volatile (152), la mémoire de données non volatile (151), ainsi que des unités d'interface (154, 1541, 155, 159), et dans lequel un programme de fonctionnement est enregistré, programme selon lequel la valeur du paramètre de fonctionnement est de préférence lue périodiquement et le second dispositif de commutation (19) est actionné en réponse au paramètre de fonctionnement lu.
  11. Procédé selon la revendication 9 ou 10, caractérisé en ce que, en présence de la première valeur du paramètre de fonctionnement et en cas de coupure de la première tension de fonctionnement, l'unité de surveillance (10A ; 10B) bascule dans un mode de veille prolongée (M3), raison pour laquelle au moins une partie de l'agencement de circuit est déconnectée de l'alimentation en énergie, et en ce que, en présence de la seconde valeur du paramètre de fonctionnement et en cas de mise hors tension de la première tension de fonctionnement, l'unité de surveillance (10A ; 10B) bascule dans un mode de batterie (M2) par activation de la seconde tension de fonctionnement pour l'alimentation en énergie de l'unité de surveillance (10A ; 10B).
  12. Procédé selon la revendication 11, caractérisé en ce que la première valeur du paramètre de fonctionnement est de préférence une valeur d'initialisation qui est imprimée sur toutes les unités de surveillance (10A ; 10B) lors de la production ou de l'extraction de l'installation d'ascenseur (3), et en ce que la seconde valeur du paramètre de fonctionnement est une adresse réseau associée à l'unité de surveillance (10A ; 10B), laquelle est imprimée sur l'unité de surveillance (10A ; 10B) après son incorporation dans l'installation d'ascenseur (3) par un ordinateur associé (1).
  13. Procédé selon l'une des revendications 9 à 12, caractérisé en ce que le second dispositif de commutation (19) est disposé à l'intérieur de l'au moins un module de surveillance (15) et déconnecte au moins une partie du circuit électrique à l'intérieur du premier module de surveillance (15) en présence de la première valeur du paramètre de fonctionnement ainsi que de la seconde tension de fonctionnement.
  14. Procédé selon la revendication 11, caractérisé en ce que l'au moins un module de surveillance (15) présente au moins un temporisateur (157) et est mis à plusieurs reprises en mode de veille prolongée (M3) et en mode de batterie (M2), et est transféré à chaque fois, après un certain temps, dans un état de fonctionnement complet ou partiel pour procéder à des mesures de contrôle telles que la vérification de la valeur du paramètre de fonctionnement, une transition du mode de veille profonde (M3) vers un mode de rapport (M4) ayant de préférence lieu pour la fourniture des rapports d'état.
  15. Procédé selon l'une des revendications 9 à 14, caractérisé en ce que l'unité de surveillance (10A ; 10B) est raccordée à un capteur de surveillance (11A ; 11B) au moyen duquel des changements d'état de l'installation d'ascenseur (3), tels que le déverrouillage ou l'ouverture d'une porte d'ascenseur (30A ; 30B), sont détectés à l'état de fonctionnement normal ou en mode de batterie.
EP16794601.1A 2015-11-12 2016-11-10 Unite de surveillance d'ascenseur et procede Active EP3374308B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15194347 2015-11-12
PCT/EP2016/077195 WO2017081113A1 (fr) 2015-11-12 2016-11-10 Unité de surveillance pour une installation d'ascenseur et procédé associé

Publications (2)

Publication Number Publication Date
EP3374308A1 EP3374308A1 (fr) 2018-09-19
EP3374308B1 true EP3374308B1 (fr) 2019-08-28

Family

ID=54540979

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16794601.1A Active EP3374308B1 (fr) 2015-11-12 2016-11-10 Unite de surveillance d'ascenseur et procede

Country Status (4)

Country Link
US (1) US11292691B2 (fr)
EP (1) EP3374308B1 (fr)
CN (1) CN108349692B (fr)
WO (1) WO2017081113A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10926974B2 (en) * 2015-09-30 2021-02-23 Inventio Ag Method and apparatus for controlling an elevator system
CN110817665A (zh) 2018-08-13 2020-02-21 奥的斯电梯公司 电梯调试方法、电梯调试系统和电梯系统
EP3653557B1 (fr) 2018-11-14 2022-04-20 Otis Elevator Company Systèmes d'alarme d'ascenseur
CN110104516A (zh) * 2019-03-18 2019-08-09 深圳市广和通无线股份有限公司 电梯监测系统和方法
WO2020254605A1 (fr) * 2019-06-21 2020-12-24 Inventio Ag Dispositif de raccordement d'un dispositif de commande d'une installation de transport de personnes
CN110879585A (zh) * 2019-12-03 2020-03-13 上海市建筑科学研究院有限公司 基于能耗监测平台非运行时段建筑电梯支路用能诊断方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207282A (ja) * 1990-01-09 1991-09-10 Mitsubishi Electric Corp エレベータ制御装置
DE19849238C1 (de) * 1998-10-26 2000-03-09 O & K Rolltreppen Gmbh Verfahren zur Abschaltung von Personenförderanlagen sowie Sicherheitskreis für Personenförderanlagen
SG87902A1 (en) * 1999-10-01 2002-04-16 Inventio Ag Monitoring device for drive equipment for lifts
SG85215A1 (en) 1999-10-08 2001-12-19 Inventio Ag Safety circuit for an elevator installation
US20030052544A1 (en) * 2000-03-08 2003-03-20 Eiji Yamamoto Pwm cycloconverter and power fault detector
BR0210892B1 (pt) 2001-07-09 2011-01-11 instalação de elevador com zona de proteção virtual na base do poço e/ou no topo do poço e processo para ativação da mesma.
CN100337895C (zh) * 2001-09-28 2007-09-19 东芝电梯株式会社 电梯的远程监视装置
DK1638880T4 (da) 2003-06-30 2013-10-14 Inventio Ag Sikkerhedssystem til et elevatoranlæg
CN201842552U (zh) * 2010-09-28 2011-05-25 北京升华电梯集团有限公司 电梯运行安全监控仪
FI122425B (fi) * 2010-11-18 2012-01-31 Kone Corp Sähkönsyötön varmennuspiiri, hissijärjestelmä sekä menetelmä
WO2012164597A1 (fr) * 2011-05-27 2012-12-06 三菱電機株式会社 Dispositif de commande pour ascenseur
US9601945B2 (en) * 2013-01-29 2017-03-21 Reynolds & Reynolds Electronics, Inc. Emergency back-up power system for traction elevators
US10012696B2 (en) * 2013-02-12 2018-07-03 Inventio Ag Battery-assisted safety circuit monitoring system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017081113A1 (fr) 2017-05-18
US20180354747A1 (en) 2018-12-13
CN108349692A (zh) 2018-07-31
US11292691B2 (en) 2022-04-05
CN108349692B (zh) 2019-11-12
EP3374308A1 (fr) 2018-09-19

Similar Documents

Publication Publication Date Title
EP3374308B1 (fr) Unite de surveillance d'ascenseur et procede
DE60029312T2 (de) Elektronische sicherheitsschaltung für aufzüge
EP2011214B1 (fr) Circuit de batterie dans un appareil d'éclairage de secours
EP2954340A1 (fr) Installation photovoltaïque
EP3356273A1 (fr) Procédé et dispositif de commande d'un système d'ascenseur
EP1741172A2 (fr) Dispositif d'alimentation electrique
DE102005014804A1 (de) Bordnetzsystem für ein Kraftfahrzeug sowie Steuergerät und intelligentes Energieversorgungsgerät für ein Bordnetzsystem eines Kraftfahrzeugs
EP2931643A1 (fr) Dispositif de surveillance pour une installation de transport de personnes
DE102016201390A1 (de) Versorgungseinheit für einen Bus
EP0688083A2 (fr) Appareil et procédé de commande sans contact du débit d'eau dans une installation sanitaire
EP3351056B1 (fr) Unité d'alimentation d'un bus
AT512993B1 (de) Wechselrichter einer Photovoltaik-Anlage und Verfahren zum Betrieb desselben
DE10121935A1 (de) Rücksetz-Anordnung für einen Mikrokontroller
EP2599265A1 (fr) Procédé de fonctionnement d'un appareil de commande de bus et appareil de commande de bus
DE102017127081A1 (de) Verfahren zum Schwarzstart einer Energieversorgungseinrichtung, bidirektionaler Wechselrichter und Energieversorgungseinrichtung mit einem bidirektionalen Wechselrichter
DE102006016080A1 (de) Energieversorgungsvorrichtung für eine Vielzahl von daran anzuschließenden Energieverbrauchern
EP3332304A1 (fr) Gestion de l'alimentation et protection contre une décharge totale
EP2448000B1 (fr) Installation photovoltaïque et son procédé d'opération
DE102008054088A1 (de) Elektrisches Gerät und Verfahren zu dessen Betrieb
DE202011110552U1 (de) Elektrisches Gerät
EP3161359B1 (fr) Dispositif de fermeture de vanne et procédé de réalisation d'un dispositif de fermeture de vanne
WO2007147580A1 (fr) Appareil électronique, notamment commutateur ETHERNET, comprenant des moyens pour une télémaintenance fiable
DE102015217835A1 (de) Versorgungseinheit für einen Bus
EP3696935A1 (fr) Source d'énergie dans un réseau à tension continue, procédé de fonctionnement d'une telle source d'énergie, réseau à tension continue doté d'un pluralité de telles sources d'énergie et procédé de fonctionnement d'un tel réseau à tension continue
EP4338393A1 (fr) Dispositif de surveillance pour un routeur de données et procédé de surveillance d'un routeur de données

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190423

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1172154

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006345

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190828

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191230

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006345

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161110

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211123

Year of fee payment: 6

Ref country code: FR

Payment date: 20211126

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211119

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190828

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1172154

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211110

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221110

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231127

Year of fee payment: 8

Ref country code: CH

Payment date: 20231201

Year of fee payment: 8