EP3373601B1 - Method for frequency distortion of an audio signal and a hearing aid carrying out this method - Google Patents

Method for frequency distortion of an audio signal and a hearing aid carrying out this method Download PDF

Info

Publication number
EP3373601B1
EP3373601B1 EP18154220.0A EP18154220A EP3373601B1 EP 3373601 B1 EP3373601 B1 EP 3373601B1 EP 18154220 A EP18154220 A EP 18154220A EP 3373601 B1 EP3373601 B1 EP 3373601B1
Authority
EP
European Patent Office
Prior art keywords
frequency
signal
frequency band
band
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18154220.0A
Other languages
German (de)
French (fr)
Other versions
EP3373601A1 (en
Inventor
Tobias Daniel Rosenkranz
Tobias Wurzbacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP3373601A1 publication Critical patent/EP3373601A1/en
Application granted granted Critical
Publication of EP3373601B1 publication Critical patent/EP3373601B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0272Voice signal separating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/353Frequency, e.g. frequency shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems

Definitions

  • the invention relates to a method for frequency distortion of an audio signal, wherein different frequency distortions are applied to different signal components of the audio signal, and a frequency-distorted signal is thereby generated.
  • Controlling acoustic feedback often plays a central role in the operation of acoustic systems, by means of which sound signals from the environment are reproduced in an electrically amplified manner in the broadest sense, ie also for the operation of hearing aids, for example.
  • the acoustic feedback can occur when an output sound signal generated by the acoustic system is partially coupled into an input transducer of the acoustic system, which is provided for picking up the sound signal from the environment and for correspondingly generating an electrical input signal.
  • signal components of the output sound signal can be electrically amplified again by the acoustic system, so that interference noises are formed in the output sound signal, which can completely superimpose possible useful signals in the sound signal of the environment until they are completely inaudible.
  • Suppression or compensation for acoustic feedback is therefore often provided in the electrical signal path of the acoustic system.
  • Such a compensation often takes place by means of an adaptive filter, to which the fully amplified output signal, from which the output sound signal is generated, is supplied as an input variable. A compensation signal is generated from this, which is supplied to the input signal, which has not yet been amplified, to compensate for the feedback.
  • Adaptive filter control usually takes place via an error signal, which is formed from the difference between the input signal and the compensation signal.
  • the fully amplified output signal in the acoustic system is often subjected to frequency distortion, as a result of which the output signal is decorrelated from the input signal, so that the signal cancellation described can largely be avoided.
  • the frequency distortion is usually only applied to a specific frequency range of the amplified signal, for which the latter is filtered at a given division frequency into a signal component to be distorted and a signal component not to be distorted.
  • the division frequency In order to suppress the occurrence of artefacts in the output signal as far as possible, the division frequency is mostly adapted to a determined acoustic feedback.
  • the implementation of the division frequency usually takes place via high-pass and low-pass filters, which lead to additional latency in the acoustic system.
  • the EP 2 244 491 B2 whose priority application as DE 10 2009 018 812 A1 is published, calls a method for operating a hearing aid, which provides for the division of an input signal into a high-frequency and a low-frequency signal component, wherein a frequency distortion is applied to the high-frequency signal component.
  • a limit frequency for the division into the high-frequency and low-frequency signal components is determined by analyzing the input signal in such a way that artifacts in an output signal, which is formed using the low-frequency and the frequency-distorted high-frequency signal component, are reduced as far as possible.
  • the US 2016 / 0 057 548 A1 describes a method for a hearing aid in which, to suppress acoustic feedback, the frequency spectrum transmitted by the hearing aid is divided into a high-frequency and a low-frequency component at a dividing frequency, with the transfer function of the feedback loop being determined in the high-frequency component of the frequency spectrum, using this Transfer function in the range above the division frequency, the behavior of a transfer function for the low-frequency component is estimated in an environment below the division frequency, and the division frequency is adjusted, if necessary, based on the result of this estimation.
  • the invention is therefore based on the object of specifying a method for frequency distortion of an audio signal, which is intended to minimize the latency as far as possible and, in so doing, to suppress the formation of artefacts as far as possible.
  • the stated object is achieved according to the invention by the method defined in claim 1 for frequency distortion of an audio signal in a signal processing process in a hearing aid, the audio signal being divided into a plurality of predetermined frequency bands by means of a filter bank, with a band limit frequency being defined by two immediately adjacent frequency bands in each case is determined, based on the audio signal first a target frequency for a boundary between two frequency ranges with different distortion of the frequencies is determined, wherein the target frequency is determined as a critical frequency, which is given by an acoustic feedback to be suppressed on the hearing aid, and based on the target frequency a first frequency band and a second frequency band lying directly above the first frequency band are determined, with that frequency band being determined as the first frequency band, the upper band limit frequency of which is formed by the band limit frequency located directly below the target frequency, and with signal components in the first frequency band having a different distortion of the Frequencies is applied to signal components in the second frequency band.
  • the frequency-distorted signal is given in the frequency domain.
  • An audio signal generally includes an electrical signal whose signal profile can serve as a carrier of acoustic information and which can be converted into a corresponding sound signal by a suitable output converter.
  • the audio signal is divided into a plurality of predefined frequency bands by means of a filter bank.
  • the individual frequency bands in particular the band characteristics of the individual frequency bands, such as the respective center frequency and/or bandwidth, are specified here, for example, by a higher-level application, in which the audio signal is used.
  • the higher-level application is given, for example, by a signal processing process in a hearing device.
  • the individual frequency bands are specified in particular on the basis of the requirements for the signal processing by frequency band in the hearing device.
  • Two frequency bands are to be regarded as immediately adjacent in particular if there is no further characteristic frequency of another frequency band between the two characteristic frequencies, which in each case define the position of a frequency band in the frequency space.
  • a center frequency of a frequency band or a maximum frequency of the magnitude frequency response is used as such a characteristic frequency.
  • the band limit frequency of two immediately adjacent frequency bands should preferably be set so that information about the filter behavior of each of the two frequency bands concerned is provided in the frequency range in which the two frequency bands concerned are adjacent, i.e. in particular in a possible overlapping area.
  • the band limit frequency is determined as that frequency for which the two immediately adjacent frequency bands have the same magnitude frequency response, or as the arithmetic or geometric mean between the characteristic frequencies determining the two immediately adjacent frequency bands,
  • a (first) target frequency which is a desired limit between two frequency ranges, is initially determined on the basis of the audio signal with different distortion.
  • the first and second frequency bands are then indirectly determined on the basis of this target frequency. Since the target frequency is derived from the properties of the audio signal, this target frequency only coincides exactly with one of the band limit frequencies in exceptional cases. As a rule, it is more or less distant from the nearest band cut-off frequency.
  • the first target frequency is determined in particular within the framework of the higher-level application of the audio signal, e.g. in the case of a signal processing process in a hearing aid depending on the need for frequency-distorted signals in a specific frequency range occurring in the hearing aid.
  • the first target frequency is preferably determined in such a way that it meets the requirements for the desired frequency distortion of the audio signal by the higher-level application particularly well, so that in particular the first target frequency for the higher-level application of the audio signal represents a critical value in terms of frequency distortion, at which suitably a change in the frequency distortion of the audio signal has to take place preferentially.
  • such a critical frequency for the frequency distortion is given, for example, by acoustic feedback on the hearing aid that is to be suppressed, which is preferably to be carried out in the smallest possible frequency range, with frequency distortion being used as part of the suppression of the acoustic feedback becomes.
  • the critical frequency selected is, for example, the minimum frequency for which acoustic feedback must be suppressed in order to ensure an overall gain of less than one in the closed loop formed from the acoustic feedback path and the signal processing.
  • the first frequency band and the second frequency band lying directly above the first frequency band are preferably determined solely on the basis of the first target frequency, for example by using those directly as the first frequency band and the second frequency band lying directly above it adjacent frequency bands are selected whose band limit frequency is in particular directly below the first target frequency, i.e. that in particular there is no further band limit frequency of other frequency bands between the first target frequency and the band limit frequency below it, at which the first frequency band and the second frequency band are adjacent .
  • further parameters are used in addition to the first target frequency. For example, the respective signal components in the individual frequency bands are also taken into account, and thus only those frequency bands are permitted as the first frequency band and second frequency band for whose signal components a predetermined maximum level is not exceeded.
  • the first target frequency is defined as a maximum critical frequency with regard to frequency distortion as part of the higher-level application of the audio signal
  • the signal level is taken into account, for example, in such a way that two adjacent frequency bands with a band limit frequency below the first target frequency are determined, the signal components of which not exceed the specified maximum level.
  • the signal components in the first frequency band or in the second frequency band, to which the mutually different distortion of frequencies is to be applied are not necessarily identical to the signal components of the audio signal when divided into the individual frequency bands.
  • further signal processing steps can follow the frequency distortion.
  • the respective distortion of the frequencies is not only limited to the signal components of the first frequency band or the second frequency band, but can also extend to others, from the band limit frequency between the first frequency band and the second frequency band extend distant frequency bands with.
  • the "different frequency distortion" of the signal components in the first or second frequency band (and possibly further associated frequency bands) also includes in particular the case that the signal components in one of these two frequency bands (and possibly the associated further frequency bands) are not distorted, see above that the output frequency of this frequency band or these frequency bands corresponds to the respective input frequency.
  • an audio signal is to be distorted as a function of frequency
  • a division into individual frequency bands that takes place as part of the higher-level application of the audio signal can now be used for said frequency distortion, so that the already existing infrastructure of the higher-level application of the audio signal can be used to implement the frequency dependency of the frequency distortion itself can be.
  • this saves resources in the higher-level application and, on the other hand, saves an additional filter process that is independent for the distribution of the frequencies for frequency distortion, whereby additional latencies are avoided.
  • that frequency band is determined as the first frequency band, the upper band limit frequency of which is formed by the band limit frequency located directly below the first target frequency.
  • the most common implementations of dividing an audio signal into a plurality of predefined frequency bands are designed in such a way that the resulting frequency bands each have an absolute value frequency response with a defined maximum and/or without local minima.
  • the range between the two band limit frequencies to the respective immediately adjacent frequency bands is specified as the range of the frequency band in which usually construction-related the magnitude frequency response has its maximum and/or the magnitude frequency response is greater than beyond one of the band limit frequencies.
  • This area is now specifically identified as the core area of the frequency band.
  • the proposed determination of the first frequency band as the frequency band whose upper band limit frequency is formed by the band limit frequency located directly below the first target frequency means that for the configuration of the frequency bands described, the first target frequency is in the core range of the second frequency band.
  • the selection mentioned and the associated classification of the first target frequency in the core range of the second frequency band can be Frequency distortion of the second frequency band can be advantageously achieved in the context of the invention that this desired minimum property of the first target frequency is taken into account in any case.
  • a different third frequency band is determined instead of the first frequency band.
  • a different distortion of the frequencies is applied to signal components in this third frequency band than to signal components in a frequency band directly adjacent to (in particular directly above) the third frequency band.
  • a second target frequency is initially determined on the basis of the audio signal instead of the first target frequency.
  • the third frequency band is then indirectly determined on the basis of this target frequency.
  • the second target frequency also generally does not coincide with one of the band limit frequencies, but is regularly spaced more or less from the next band limit frequency.
  • the determination of the third frequency band (and possibly also the determination of the second target frequency) is carried out here in particular by an ongoing, periodic or event-controlled update within the framework of the higher-level application for the audio signal.
  • the distortion of frequencies of signal components in the third frequency band or the immediately adjacent frequency band takes place in particular analogously to the above-described form of distortion of the frequencies of signal components in the first or second frequency band.
  • the boundary between two frequency ranges different in terms of frequency distortion is shifted depending on the audio signal by switching frequency bands between different types of frequency distortion.
  • a distortion of the frequencies initially adjusted as described above with regard to the signal components in the first frequency band and in the second frequency band can be achieved simply by shifting the application range towards the third frequency band and the frequency band lying directly above the third frequency band.
  • the adaptation of the distortion of frequencies to the second target frequency which is assigned to a different frequency band and thus a different band limit frequency than the first target frequency in the manner mentioned, makes it possible to react to changed requirements for the frequency distortion of the audio signal in the higher-level application, i.e for example, to changes in a feedback to be suppressed during signal processing in a hearing aid.
  • the second target frequency is directly above the upper limit frequency of a further frequency band that is different from the first frequency band, with the further frequency band being determined as the third frequency band as a function of this check, and with different distortion being applied to the signal components in the third frequency band of the frequencies is applied than to the signal components of the frequency band immediately above the third frequency band.
  • the second target frequency is assigned to the third frequency band in such a way that the core area of the frequency band lying directly above the third frequency band second target frequency includes. This is particularly advantageous when the second target frequency is determined based on the audio signal according to the requirements of the higher-level application as a minimum frequency for a desired frequency distortion.
  • the classification of the second target frequency in the core area of the frequency band immediately above the third frequency band and the corresponding application of the desired frequency distortion at least to said frequency band and, if necessary, to other frequency bands above and exclusively the third frequency band then takes this minimum property of the second target frequency into account.
  • the distortion of frequencies is given in each case by a shift by an amount that is constant over the frequency range and/or a frequency value that is modulated as a function of time.
  • the time-dependent modulated frequency value is constant over the frequency.
  • a frequency distortion to be applied in a different way to the signal components of the first frequency band than to the signal components of the second frequency band is then achieved in particular by a difference in the constant amount.
  • the amount of the frequency shift can also be zero within the scope of the invention, so that the relevant frequencies are effectively not shifted.
  • the frequency distortion is correlated with a time-dependent phase modification of the frequency-distorted signal component.
  • the signal component carried in each of the frequency bands concerned is multiplied in particular by a complex-valued pointer e i ⁇ t , as a result of which the frequency distortion is achieved.
  • the variable ⁇ characterizes the strength of the frequency distortion for the respective frequency band.
  • the quantity t designates the time. If ⁇ is the same for several frequency bands, this amounts to a constant frequency shift of these frequency bands.
  • a change in the frequency distortion to be applied to the signal component in a frequency band is preferably always carried out in such a way that this change in the frequency distortion does not change the phase of the frequency-distorted signal component or only changes it in jumps (ie changes in leaps and bounds) to an extent below a threshold.
  • the change in the frequency distortion is undertaken only at a zero crossing or in a predetermined vicinity of a zero crossing of the phase modification correlated with the distortion.
  • the change in frequency distortion thus occurs only when the phase modification phasor e i ⁇ t described above is on or near the real axis of the complex plane (ie for ⁇ t ⁇ 0,2 ⁇ ,4 ⁇ ,... and e i ⁇ t ⁇ 1).
  • audible artifacts e.g., "pops" in the frequency-distorted signal as the frequency distortion is changed are advantageously avoided.
  • phase modification of the relevant signal components is checked for a change in a frequency distortion to be applied to the signal components in a frequency band, with a change in the frequency distortion only being permitted at or in the vicinity of the zero crossing of the phase modification.
  • a change in a distortion to be applied to the signal components in a frequency band includes in particular a change such that as a result of an update of the first target frequency towards a second target frequency for signal components of frequency bands whose core range is at least partially between the first target frequency and the second target frequency, the applied distortion of frequencies changes.
  • the change can also consist in a complete activation or deactivation of a frequency distortion for one or more frequency bands.
  • Switching off the frequency distortion is expressed numerically in that the vector e i ⁇ t presenting the frequency distortion changes to a phase modification term of the value 1.
  • this transition would then lead to audible artefacts if the pointer e i ⁇ t had a value significantly different from 1 at the time of switching off.
  • switching off the frequency distortion in the advantageous embodiment of the Invention only permitted at times when the amount of the product term ⁇ t representing the phase modification falls below a predetermined limit value of, for example, ⁇ /8 or even ⁇ /16.
  • the first frequency band is additionally filtered with a low-pass filter and/or the second frequency band is additionally filtered with a high-pass filter.
  • the respective filtering takes place here in particular at the band limit frequency between the first frequency band and the second frequency band.
  • the overlap between the first frequency band and the second frequency band can be reduced.
  • the respective different distortion of frequencies of signal components of the first frequency band and the second frequency band leads to a superimposition of in a subsequent synthesis and inverse transformation of the frequency-distorted signal from the frequency domain into the time domain two differently frequency distorted contributions of the same signal component. This can lead to audible artefacts and/or beats.
  • the low-pass filter is preferably applied only to the first frequency band and/or the high-pass filter is only applied to the second frequency band.
  • the additional latency that occurs as a result of the low-pass filter and/or the high-pass filter can be limited to a small frequency range.
  • the band limit frequency between the first frequency band and the second frequency band is preferably shifted from the value specified by the division of the frequency bands towards the first target frequency by means of the filter characteristic of the low-pass filter and/or by means of the filter characteristic of the high-pass filter.
  • the high-pass filter preferably has a steeper edge on as the low pass filter.
  • the distortion of frequencies is only applied to signal parts of frequency bands on one side of the band cutoff frequency between the first frequency band and the second frequency band.
  • this is particularly easy to implement in terms of signal processing technology.
  • the distortion of frequencies is only applied to signal components of those frequency bands in which frequency distortion is considered desirable or necessary.
  • An embodiment of the invention is also a method for suppressing acoustic feedback in a hearing aid, with an input converter of the hearing aid generating an input signal from a sound signal from the environment, with an intermediate signal being generated on the basis of the input signal, which is subjected to signal processing with a filter bank for dividing the frequency band by frequency intermediate signal is supplied, with an output signal being generated from a frequency-distorted signal, which output signal is converted into an output sound signal by an output converter of the hearing device, with the frequency-distorted signal being used to suppress acoustic feedback in the hearing device that occurs as a result of the output sound signal being coupled into the input converter, and with to the intermediate signal according to the invention as described above Method for frequency distortion is applied, and thereby the frequency-distorted signal is generated.
  • An input converter generally includes an acousto-electric converter, which is set up to convert the sound signal from the environment into a corresponding electrical or electromagnetic signal, ie a microphone, for example.
  • An output transducer generally includes an electro-acoustic transducer which is set up to generate an output sound signal from an electrical and/or electromagnetic signal, ie for example a loudspeaker or a sound generator for bone sound conduction.
  • signal processing is to be understood in particular as a processing of the input signal or of a signal derived from the input signal, ie in particular a frequency band-dependent amplification and/or noise suppression.
  • Generating the intermediate signal based on the input signal means in particular that the signal processing receives a signal that is directly dependent on the input signal, for example the input signal that has been corrected by a compensation signal to compensate for acoustic feedback.
  • the method for frequency distortion can then be applied to the intermediate signal in particular in such a way that the intermediate signal is divided into individual predefined frequency bands at the filter bank of the signal processing unit, and after a frequency band-dependent processing of the signal components in the individual frequency bands by the signal processing, the different distortion of frequencies the processed signal components in the first frequency band or in the second frequency band is applied in order to generate the frequency-distorted signal. From this, the output signal is then generated, among other things, by synthesizing the individual frequency band components.
  • the feedback can then be suppressed by an adaptive filter based on the frequency-distorted signal, ie in particular also by the output signal as a reference variable of the adaptive filter, via a corresponding compensation signal.
  • the invention also relates to a hearing aid, comprising an input converter for generating an input signal from a sound signal from the environment, and a signal processing unit with a filter bank for dividing an audio signal derived from the input signal using the input signal and a control unit which is set up to implement the method described above to distort an audio signal.
  • a hearing aid comprising an input converter for generating an input signal from a sound signal from the environment, and a signal processing unit with a filter bank for dividing an audio signal derived from the input signal using the input signal and a control unit which is set up to implement the method described above to distort an audio signal.
  • the signal processing unit and filter bank are parts of the control unit.
  • the audio signal is an intermediate signal in the control unit.
  • a method 1 for suppressing acoustic feedback g in an acoustic system is shown schematically in a block diagram.
  • the acoustic system is given by a hearing aid 2.
  • the hearing aid 2 comprises an input converter 4, which generates an input signal 8 from a sound signal 6 of the environment, and in the present case is given by a microphone.
  • a compensation signal 10 is subtracted from the input signal 8 and is generated in an electrical feedback loop 12 in a manner to be described below.
  • the intermediate signal 14 resulting from the input signal 8 and the compensation signal 10 is fed to a signal processing unit 16 in which the signal processing processes specific to the hearing aid 2 are carried out (in particular a frequency band-dependent amplification of the intermediate signal 14).
  • the signal processing 16 includes a filter bank 18, on which the intermediate signal is divided into individual frequency bands, which are then processed in a user-specific manner.
  • the signal processor 16 now outputs a processed signal 20 resolved by frequency band, to which a frequency distortion 22 is applied in a method that is yet to be described.
  • the frequency-distorted signal 24 in the time-frequency domain resulting from the frequency distortion 22 is now converted in a synthesis filter bank 26 into a broadband output signal 28 in the time domain, which in turn is converted into an output sound signal 32 by an output converter 30.
  • the output converter 30 is provided by a loudspeaker.
  • the output signal 28 is branched off into the electrical feedback loop 12 and fed there to an adaptive filter 34, which also receives the intermediate signal 14 as a further input variable as an error signal, and from this generates the compensation signal 10 for suppressing the acoustic feedback g.
  • the output signal 28 Due to the frequency distortion 22, the output signal 28 is decorrelated from the input signal 8 and thus also from the intermediate signal 14, so that when the error signal 14 is re-entered into the adaptive filter 34, the latter is not fully adapted to the tonal signal components of the output signal 28. This can cause artifacts to form in the output signal 28 and thus avoided in the output sound signal 32.
  • the suppression of the acoustic feedback g by the compensation signal 10 can in particular remain limited to specific frequency ranges, ie in this case the compensation signal 10 only has significant signal components for said frequency bands, in particular for those to which the frequency distortion 22 was applied.
  • FIG. 2 1 is a schematic block diagram of the sequence of a method 40 for frequency distortion 22 of the intermediate signal 14 FIG. 1 shown.
  • the intermediate signal 14 forms the audio signal 42 , which acts as the input variable relevant to the method 40 .
  • the audio signal 42 is used to check the frequency range in which acoustic feedback g from the output transducer 30 to the input transducer 8 of the hearing aid 2 is to be suppressed, and the frequency range in which there are also tonal signal components in the audio signal 42 that are present when the feedback is suppressed in the adaptive filter 34 may lead to artifacts.
  • the check with regard to the acoustic feedback g to be suppressed can be carried out by the adaptive filter 34, with regard to the tonality of the signal components preferably by the signal processor 16.
  • a first target frequency tf1 is then defined as a function of the results of these checks.
  • the target frequency tf1 is determined in particular as the minimum frequency above which a frequency distortion is required for an effective suppression of the acoustic feedback.
  • Step S2 the audio signal 42 is now divided into individual frequency bands in a filter bank 18 .
  • Step S2 can also include further sub-steps, such as frequency-band-dependent processing of the signal components 44 in the frequency bands generated, which, however, do not impair the course of the method 40 per se.
  • a first frequency band FB1 is now determined on the basis of the first target frequency tf1.
  • the first frequency band FB1 is given here as that frequency band whose upper band limit frequency is defined by the band limit frequency immediately below the first target frequency tf1 is formed, the upper band limit frequency being given by that frequency at which the magnitude frequency response of the first frequency band is equal to the magnitude frequency response of the frequency band immediately above the first frequency band FB1.
  • the frequency band immediately above the first frequency band FB1 is set as the second frequency band FB2.
  • a low-pass filter TP is placed over the first frequency band FB1 at its band limit frequency to the second frequency band FB2, and a high-pass filter HP is placed over the second frequency band FB2 at the same band limit frequency.
  • this further reduces the overlap between the first frequency band FB1 and the second frequency band FB2 than is provided by the filter bank 18, and on the other hand, the band limit frequency can easily be shifted to the first target frequency tf1 to be shifted towards.
  • step S5 frequency distortion 22 in the form of a frequency shift 46 by a time-constant amount ⁇ is now applied to the signal components 44 in all frequency bands from the second frequency band FB2 upwards, while the signal components 44 remain unchanged in all frequency bands from the first frequency band FB1 downwards , and thus the frequency-distorted signal 24 is generated.
  • the method 40 also returns to step S1 with the specification of the first frequency band FB1, and updates the first target frequency continuously, periodically or event-controlled in order to, in the event of a significant change in the acoustic feedback g, which results in the first target frequency tf1 being outside the first Frequency band FB1 is to determine a third frequency band FB3, which takes the place of the first frequency band FB1 to continue the method 40 analogously.
  • the frequency response of a filter bank 18 is plotted against a frequency f.
  • the individual frequency bands FB have a non-negligible overlap OV with the respectively adjacent frequency band, where two immediately adjacent frequency bands define a band limit frequency fL0 to fL3, which is given by that frequency at which the magnitude frequency response of the two adjacent frequency bands is the same.
  • the first target frequency tf1 is now specified, and on the basis of this the first frequency band FB1 is determined as that frequency band whose upper band limit frequency fL1 is formed by the band limit frequency immediately below the first target frequency tf1.
  • a low-pass filter TP is placed over the first frequency band FB1 at the upper band limit frequency fL1
  • a high-pass filter HP is placed over the second frequency band FB2 at the same band limit frequency fL1, which therefore limits the second frequency band FB2 downwards.
  • only one complex-valued zero (filter order 1) is preferably inserted.
  • the signal components of the audio signal 42 in the frequency bands above the upper band limit frequency fL1 of the first frequency band FB1, ie in the frequency bands from FB2 upwards, are then shifted by a constant amount.
  • the first target frequency tf1 is updated according to a second target frequency tf2 adapted to the change. It is now checked whether the second target frequency tf2 still corresponds to the band limit frequency fL1 between the first frequency band FB1 and the second frequency band FB2, i.e. whether the band limit frequency fL1 also forms the band limit frequency immediately below the second target frequency tf2. In that case, the frequency shift can continue to be applied unchanged to the signal components, preferably of all frequency bands from the second frequency band FB2 upwards (shaded area). preferably applied to the signal components of all frequency bands from the second frequency band FB2 upwards (shaded area).
  • the second target frequency is now above the band limit frequency fL3, which limits a frequency band that differs from the first frequency band at the top to the immediately adjacent frequency band.
  • the frequency band limited from above by the band limit frequency fL3 is now defined as the third frequency band FB3, and now the frequency shift for signal components preferably of all frequency bands above and excluding the third frequency band FB3 in the manner already described, in particular using appropriate high-pass or low-pass filters on the Band cutoff frequency fL3 (crosshatched area).
  • FIG. 4 is the magnitude frequency response of the first frequency band FB1 and of the second frequency band FB2 FIG. 3 plotted at the band limit frequency fL1 against a frequency f.
  • the dotted lines each show the absolute frequency response of the frequency bands FB1, FB2, as specified by the higher-level filter bank in the range of the band limit frequency fL1.
  • the band limit frequency fL1 can also be shifted slightly to an adapted band limit frequency fL1', for example in the direction of the first target frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Neurosurgery (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Amplifiers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Frequenzverzerrung eines Audiosignals, wobei auf verschiedene Signalanteile des Audiosignals eine unterschiedliche Verzerrung der Frequenzen angewandt wird und hierdurch ein frequenzverzerrtes Signal erzeugt wird.The invention relates to a method for frequency distortion of an audio signal, wherein different frequency distortions are applied to different signal components of the audio signal, and a frequency-distorted signal is thereby generated.

Für den Betrieb von akustischen Systemen, durch welche im weitesten Sinne Schallsignale der Umgebung elektrisch verstärkt widergegeben werden, also beispielsweise auch für den Betrieb von Hörgeräten, spielt die Kontrolle einer akustischen Rückkopplung oftmals eine zentrale Rolle. Die akustische Rückkopplung kann hierbei dann auftreten, wenn ein vom akustischen System erzeugtes Ausgangsschallsignal teilweise in einen Eingangswandler des akustischen Systems einkoppelt, welcher zur Aufnahme des Schallsignals der Umgebung und zur entsprechenden Erzeugung eines elektrischen Eingangssignals vorgesehen ist. Signalanteile des Ausgangsschallsignals können in diesem Fall erneut durch das akustische System elektrisch verstärkt werden, sodass hierdurch im Ausgangsschallsignal Störgeräusche gebildet werden, welche mögliche Nutzsignale im Schallsignal der Umgebung bis zu deren Unhörbarkeit völlig überlagern können. Im elektrischen Signalweg des akustischen Systems ist deswegen häufig eine Unterdrückung oder Kompensation einer akustischen Rückkopplung vorgesehen. Eine derartige Kompensation geschieht dabei oftmals mittels eines adaptiven Filters, welchem das fertig verstärkte Ausgangssignal, aus dem das Ausgangsschallsignal erzeugt wird, als Eingangsgröße zugeführt wird. Daraus wird ein Kompensationssignal erzeugt, das dem noch unverstärkten Eingangssignal zur Kompensation der Rückkopplung zugeführt wird. Die Kontrolle des adaptiven Filters erfolgt hierbei meist über ein Fehlersignal, welches aus der Differenz von Eingangssignal und Kompensationssignal gebildet wird.Controlling acoustic feedback often plays a central role in the operation of acoustic systems, by means of which sound signals from the environment are reproduced in an electrically amplified manner in the broadest sense, ie also for the operation of hearing aids, for example. The acoustic feedback can occur when an output sound signal generated by the acoustic system is partially coupled into an input transducer of the acoustic system, which is provided for picking up the sound signal from the environment and for correspondingly generating an electrical input signal. In this case, signal components of the output sound signal can be electrically amplified again by the acoustic system, so that interference noises are formed in the output sound signal, which can completely superimpose possible useful signals in the sound signal of the environment until they are completely inaudible. Suppression or compensation for acoustic feedback is therefore often provided in the electrical signal path of the acoustic system. Such a compensation often takes place by means of an adaptive filter, to which the fully amplified output signal, from which the output sound signal is generated, is supplied as an input variable. A compensation signal is generated from this, which is supplied to the input signal, which has not yet been amplified, to compensate for the feedback. Adaptive filter control usually takes place via an error signal, which is formed from the difference between the input signal and the compensation signal.

Hierfür wird das fertig verstärkte Ausgangssignal im akustischen System oftmals einer Frequenzverzerrung unterzogen, wodurch das Ausgangssignal vom Eingangssignal dekorreliert wird, sodass ein Auftreten der beschriebenen Signalauslöschung weitgehend vermieden werden kann. Die Frequenzverzerrung wird hierbei je nach Art des Schallsignals der Umgebung meist nur auf einen bestimmten Frequenzbereich des verstärkten Signals angewandt, wofür letzteres bei einer gegebenen Teilungsfrequenz in einen zu verzerrenden Signalanteil und einen nicht zu verzerrenden Signalanteil gefiltert wird.For this purpose, the fully amplified output signal in the acoustic system is often subjected to frequency distortion, as a result of which the output signal is decorrelated from the input signal, so that the signal cancellation described can largely be avoided. Depending on the type of sound signal in the environment, the frequency distortion is usually only applied to a specific frequency range of the amplified signal, for which the latter is filtered at a given division frequency into a signal component to be distorted and a signal component not to be distorted.

Um dabei das Auftreten von Artefakten im Ausgangssignal möglichst zu unterdrücken, wird die Teilungsfrequenz meist an eine ermittelte akustische Rückkopplung angepasst. Die Implementierung der Teilungsfrequenz erfolgt hierbei üblicherweise über Hochpass- und Tiefpassfilter, welche im akustischen System zu einer zusätzlichen Latenz führen.In order to suppress the occurrence of artefacts in the output signal as far as possible, the division frequency is mostly adapted to a determined acoustic feedback. The implementation of the division frequency usually takes place via high-pass and low-pass filters, which lead to additional latency in the acoustic system.

Die EP 2 244 491 B2 , deren Prioritätsanmeldung als DE 10 2009 018 812 A1 veröffentlicht ist, nennt ein Verfahren zum Betrieb eines Hörgerätes, welches die Aufteilung eines Eingangssignals in einen hoch- und einen niederfrequenten Signalanteil vorsieht, wobei auf den hochfrequenten Signalanteil eine Frequenzverzerrung angewandt wird. Hierbei wird eine Grenzfrequenz für die Aufteilung in den hoch- und den niederfrequenten Signalanteil mittels einer Analyse des Eingangssignals derart bestimmt, dass Artefakte in einem Ausgangssignal, welches anhand des niederfrequenten und des frequenzverzerrten hochfrequenten Signalanteils gebildet wird, möglichst reduziert werden.The EP 2 244 491 B2 , whose priority application as DE 10 2009 018 812 A1 is published, calls a method for operating a hearing aid, which provides for the division of an input signal into a high-frequency and a low-frequency signal component, wherein a frequency distortion is applied to the high-frequency signal component. In this case, a limit frequency for the division into the high-frequency and low-frequency signal components is determined by analyzing the input signal in such a way that artifacts in an output signal, which is formed using the low-frequency and the frequency-distorted high-frequency signal component, are reduced as far as possible.

Die US 2016 / 0 057 548 A1 nennt für ein Hörgerät ein Verfahren, in welchem zur Unterdrückung einer akustischen Rückkopplung das vom Hörgerät übertragene Frequenzspektrum an einer Teilungsfrequenz in einen hoch- und einen niederfrequenten Anteil aufgeteilt wird, wobei im hochfrequenten Anteil des Frequenzspektrums die Transferfunktion der Rückkopplungsschleife ermittelt wird, anhand dieser Transferfunktion im Bereich oberhalb der Teilungsfrequenz das Verhalten einer Transferfunktion für den niederfrequenten Anteil in einer Umgebung unterhalb der Teilungsfrequenz abgeschätzt wird, und anhand des Resultates dieser Abschätzung die Teilungsfrequenz ggf. angepasst wird.The US 2016 / 0 057 548 A1 describes a method for a hearing aid in which, to suppress acoustic feedback, the frequency spectrum transmitted by the hearing aid is divided into a high-frequency and a low-frequency component at a dividing frequency, with the transfer function of the feedback loop being determined in the high-frequency component of the frequency spectrum, using this Transfer function in the range above the division frequency, the behavior of a transfer function for the low-frequency component is estimated in an environment below the division frequency, and the division frequency is adjusted, if necessary, based on the result of this estimation.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Frequenzverzerrung eines Audiosignals anzugeben, welche die Latenz möglichst minimieren soll und dabei die Bildung von Artefakten möglichst unterdrücken soll.The invention is therefore based on the object of specifying a method for frequency distortion of an audio signal, which is intended to minimize the latency as far as possible and, in so doing, to suppress the formation of artefacts as far as possible.

Die genannte Aufgabe wird erfindungsgemäß gelöst durch das in Anspruch 1 definierte Verfahren zur Frequenzverzerrung eines Audiosignals in einem Signalverarbeitungsprozess in einem Hörgerät, wobei das Audiosignal mittels einer Filterbank in eine Mehrzahl an vorgegebenen Frequenzbändern aufgeteilt wird, wobei durch je zwei unmittelbar benachbarte Frequenzbänder jeweils eine Bandgrenzfrequenz festgelegt wird, wobei anhand des Audiosignals zunächst eine Zielfrequenz für eine Grenze zwischen zwei Frequenzbereichen mit unterschiedlicher Verzerrung der Frequenzen bestimmt wird, wobei die Zielfrequenz als eine kritische Frequenz bestimmt wird, welche durch eine zu unterdrückende akustische Rückkopplung am Hörgerät gegeben ist, und wobei anhand der Zielfrequenz ein erstes Frequenzband und ein unmittelbar über dem ersten Frequenzband liegendes zweites Frequenzband bestimmt werden, wobei als erstes Frequenzband dasjenige Frequenzband bestimmt wird, dessen obere Bandgrenzfrequenz durch die unmittelbar unterhalb der Zielfrequenz gelegene Bandgrenzfrequenz gebildet wird, und wobei auf Signalanteile im ersten Frequenzband eine unterschiedliche Verzerrung der Frequenzen angewandt wird als auf Signalanteile im zweiten Frequenzband. Hierdurch (d.h. aus den beiden unterschiedlich frequenzverzerrten Signalanteilen) wird ein frequenzverzerrtes Signal erzeugt. Zwischen der Aufspaltung des Audiosignals in die Frequenzbänder und der jeweiligen Verzerrung der Frequenzen erfolgt dabei eine frequenzbandspezifische Verstärkung der Signalanteile in den einzelnen Frequenzbändern.The stated object is achieved according to the invention by the method defined in claim 1 for frequency distortion of an audio signal in a signal processing process in a hearing aid, the audio signal being divided into a plurality of predetermined frequency bands by means of a filter bank, with a band limit frequency being defined by two immediately adjacent frequency bands in each case is determined, based on the audio signal first a target frequency for a boundary between two frequency ranges with different distortion of the frequencies is determined, wherein the target frequency is determined as a critical frequency, which is given by an acoustic feedback to be suppressed on the hearing aid, and based on the target frequency a first frequency band and a second frequency band lying directly above the first frequency band are determined, with that frequency band being determined as the first frequency band, the upper band limit frequency of which is formed by the band limit frequency located directly below the target frequency, and with signal components in the first frequency band having a different distortion of the Frequencies is applied to signal components in the second frequency band. As a result (ie from the two differently frequency-distorted signal components), a frequency-distorted signal is generated. Between the splitting of the audio signal into the frequency bands and the respective distortion of the frequencies, there is a frequency-band-specific amplification of the signal components in the individual frequency bands.

Insbesondere ist das frequenzverzerrte Signal in der Frequenz-Domäne gegeben.In particular, the frequency-distorted signal is given in the frequency domain.

Unter einem Audiosignal Ist hierbei generell ein elektrisches Signal umfasst, dessen Signalverlauf als Träger von akustischen Informationen dienen kann, und welches durch einen geeigneten Ausgangswandler in ein entsprechendes Schallsignal gewandelt werden kann. Die Aufteilung des Audiosignals in eine Mehrzahl an vorgegebenen Frequenzbändern erfolgt hierbei mittels einer Filterbank, Die Vorgabe der einzelnen Frequenzbänder, insbesondere der Bandcharakteristiken der einzelnen Frequenzbänder wie zum Beispiel die jeweilige Mittenfrequenz und/oder Bandweite, erfolgt hierbei beispielsweise durch eine übergeordnete Anwendung, In welcher das Audiosignal Verwendung findet. Die übergeordnete Anwendung ist beispielsweise durch einen Signalverarbeitungsprozess in einem Hörgerät gegeben. In diesem Fall erfolgt die Vorgabe der einzelnen Frequenzbänder insbesondere anhand der Anforderungen für die frequenzbandweise Signalverarbeitung im Hörgerät.An audio signal generally includes an electrical signal whose signal profile can serve as a carrier of acoustic information and which can be converted into a corresponding sound signal by a suitable output converter. The audio signal is divided into a plurality of predefined frequency bands by means of a filter bank. The individual frequency bands, in particular the band characteristics of the individual frequency bands, such as the respective center frequency and/or bandwidth, are specified here, for example, by a higher-level application, in which the audio signal is used. The higher-level application is given, for example, by a signal processing process in a hearing device. In this case, the individual frequency bands are specified in particular on the basis of the requirements for the signal processing by frequency band in the hearing device.

Zwei Frequenzbänder sind insbesondere dann als unmittelbar benachbart anzusehen, wenn zwischen den beiden charakteristischen Frequenzen, welche jeweils die Position eines Frequenzbandes im Frequenzraum festlegen, keine weitere charakteristische Frequenz eines anderen Frequenzbandes gelegen ist. Als eine derartige charakteristische Frequenz wird insbesondere eine Mittenfrequenz eines Frequenzbandes oder eine Maximumsfrequenz des Betragsfrequenzgangs herangezogen. Die Bandgrenzfrequenz zweier unmittelbar benachbarter Frequenzbänder ist vorzugsweise so festzulegen, dass hieraus in dem Frequenzbereich, in welchem die beiden betreffenden Frequenzbänder benachbart sind, also Insbesondere In einem möglichen Überlappungsbereich, Information über das Filterverhalten jedes der beiden betreffenden Frequenzbänder geliefert wird. Insbesondere wird die Bandgrenzfrequenz als diejenige Frequenz bestimmt, für welche die beiden unmittelbar benachbarten Frequenzbänder denselben Betragsfrequenzgang aufweisen, oder als arithmetischer oder geometrischer Mittelwert zwischen den die beiden unmittelbar benachbarten Frequenzbänder bestimmenden charakteristischen Frequenzen,Two frequency bands are to be regarded as immediately adjacent in particular if there is no further characteristic frequency of another frequency band between the two characteristic frequencies, which in each case define the position of a frequency band in the frequency space. In particular, a center frequency of a frequency band or a maximum frequency of the magnitude frequency response is used as such a characteristic frequency. The band limit frequency of two immediately adjacent frequency bands should preferably be set so that information about the filter behavior of each of the two frequency bands concerned is provided in the frequency range in which the two frequency bands concerned are adjacent, i.e. in particular in a possible overlapping area. In particular, the band limit frequency is determined as that frequency for which the two immediately adjacent frequency bands have the same magnitude frequency response, or as the arithmetic or geometric mean between the characteristic frequencies determining the two immediately adjacent frequency bands,

Im Rahmen der Erfindung wird anhand des Audiosignals zunächst eine (erste) Zielfrequenz bestimmt, die eine gewünschte Grenze zwischen zwei Frequenzbereichen mit unterschiedlicher Verzerrung angibt. Anhand dieser Zielfrequenz werden dann mittelbar das erste und zweite Frequenzband bestimmt. Da die Zielfrequenz aus Eigenschaften des Audiosignals abgeleitet ist, fällt diese Zielfrequenz nur in Ausnahmefällen exakt mit einer der Bandgrenzfrequenzen zusammen. In der Regel ist sie von der nächsten Bandgrenzfrequenz mehr oder weniger beabstandet.Within the scope of the invention, a (first) target frequency, which is a desired limit between two frequency ranges, is initially determined on the basis of the audio signal with different distortion. The first and second frequency bands are then indirectly determined on the basis of this target frequency. Since the target frequency is derived from the properties of the audio signal, this target frequency only coincides exactly with one of the band limit frequencies in exceptional cases. As a rule, it is more or less distant from the nearest band cut-off frequency.

Die erste Zielfrequenz wird dabei insbesondere im Rahmen der übergeordneten Anwendung des Audiosignals bestimmt, z.B. im Fall eines Signalverarbeitungsprozesses in einem Hörgerät in Abhängigkeit von einer im Hörgerät auftretenden Erforderlichkeit frequenzverzerrter Signale in einem bestimmten Frequenzbereich. In diesem Zusammenhang wird die erste Zielfrequenz bevorzugt derart bestimmt, dass sie den Anforderungen an die gewünschte Frequenzverzerrung des Audiosignals durch die übergeordnete Anwendung besonders gut gerecht wird, so dass insbesondere die erste Zielfrequenz für die übergeordnete Anwendung des Audiosignals hinsichtlich der Frequenzverzerrung einen kritischen Wert darstellt, an welchem geeigneterweise eine Änderung der Frequenzverzerrung des Audiosignals bevorzugt zu erfolgen hat. Im Fall eines Signalverarbeitungsprozesses in einem Hörgerät als übergeordnete Anwendung ist eine derartige kritische Frequenz für die Frequenzverzerrung beispielsweise gegeben durch eine zu unterdrückende akustische Rückkopplung am Hörgerät, welche bevorzugt in einem möglichst kleinen Frequenzbereich durchzuführen ist, wobei im Rahmen der Unterdrückung der akustischen Rückkopplung eine Frequenzverzerrung angewandt wird. Als kritische Frequenz ist in diesem Fall beispielsweise die minimale Frequenz gewählt, für welche eine Unterdrückung einer akustischen Rückkopplung erforderlich ist, um in der aus dem akustischer Rückkopplungspfad und der Signalverarbeitung gebildeten geschlossenen Schleife eine Gesamtverstärkung kleiner als eins zu gewährleisten.The first target frequency is determined in particular within the framework of the higher-level application of the audio signal, e.g. in the case of a signal processing process in a hearing aid depending on the need for frequency-distorted signals in a specific frequency range occurring in the hearing aid. In this context, the first target frequency is preferably determined in such a way that it meets the requirements for the desired frequency distortion of the audio signal by the higher-level application particularly well, so that in particular the first target frequency for the higher-level application of the audio signal represents a critical value in terms of frequency distortion, at which suitably a change in the frequency distortion of the audio signal has to take place preferentially. In the case of a signal processing process in a hearing aid as a higher-level application, such a critical frequency for the frequency distortion is given, for example, by acoustic feedback on the hearing aid that is to be suppressed, which is preferably to be carried out in the smallest possible frequency range, with frequency distortion being used as part of the suppression of the acoustic feedback becomes. In this case, the critical frequency selected is, for example, the minimum frequency for which acoustic feedback must be suppressed in order to ensure an overall gain of less than one in the closed loop formed from the acoustic feedback path and the signal processing.

Die Bestimmung des ersten Frequenzbandes und des unmittelbar über dem ersten Frequenzband liegenden zweiten Frequenzbandes erfolgt vorzugsweise allein anhand der ersten Zielfrequenz, beispielsweise, indem als erstes Frequenzband und unmittelbar darüber liegendes zweites Frequenzband diejenigen unmittelbar benachbarten Frequenzbänder ausgewählt werden, deren Bandgrenzfrequenz insbesondere unmittelbar unter der ersten Zielfrequenz liegt, das heißt, dass also insbesondere zwischen der ersten Zielfrequenz und der darunter liegenden Bandgrenzfrequenz, an welcher das erste Frequenzband und das zweite Frequenzband benachbart sind, keine weitere Bandgrenzfrequenz anderer Frequenzbänder mehr liegt. In einer alternativen Ausführung der Erfindung werden zusätzlich zu der ersten Zielfrequenz auch noch weitere Parameter herangezogen. Beispielsweise werden die jeweiligen Signalanteile in den einzelnen Frequenzbändern mitberücksichtigt, und somit als erstes Frequenzband und zweites Frequenzband nur solche Frequenzbänder zugelassen werden, für deren Signalanteile ein vorgegebener Maximalpegel nicht überschritten wird. Ist in diesem Fall im Rahmen der übergeordneten Anwendung des Audiosignals die erste Zielfrequenz als eine hinsichtlich der Frequenzverzerrung maximale kritische Frequenz definiert, so erfolgt eine Berücksichtigung der Signalpegel beispielsweise derart, dass zwei benachbarte Frequenzbänder mit einer Bandgrenzfrequenz unterhalb der ersten Zielfrequenz ermittelt werden, deren Signalanteile den vorgegebenen Maximalpegel nicht überschreiten.The first frequency band and the second frequency band lying directly above the first frequency band are preferably determined solely on the basis of the first target frequency, for example by using those directly as the first frequency band and the second frequency band lying directly above it adjacent frequency bands are selected whose band limit frequency is in particular directly below the first target frequency, i.e. that in particular there is no further band limit frequency of other frequency bands between the first target frequency and the band limit frequency below it, at which the first frequency band and the second frequency band are adjacent . In an alternative embodiment of the invention, further parameters are used in addition to the first target frequency. For example, the respective signal components in the individual frequency bands are also taken into account, and thus only those frequency bands are permitted as the first frequency band and second frequency band for whose signal components a predetermined maximum level is not exceeded. If, in this case, the first target frequency is defined as a maximum critical frequency with regard to frequency distortion as part of the higher-level application of the audio signal, the signal level is taken into account, for example, in such a way that two adjacent frequency bands with a band limit frequency below the first target frequency are determined, the signal components of which not exceed the specified maximum level.

Erfindungsgemäß erfolgt zwischen der Aufspaltung des Audiosignals in die Frequenzbänder und der vorstehend beschriebenen Frequenzverzerrung eine frequenzbandspezifische Verstärkung der in den einzelnen Frequenzbändern geführten Signalanteile. Dies bedeutet, dass die Signalanteile im ersten Frequenzband bzw. im zweiten Frequenzband, auf welche die voneinander unterschiedliche Verzerrung von Frequenzen anzuwenden ist, nicht zwingend identisch sind zu den Signalanteilen des Audiosignals bei der Aufteilung in die einzelnen Frequenzbänder. Zusätzlich können weitere Signalverarbeitungsschritte der Frequenzverzerrung nachgeschaltet sein.According to the invention, between the splitting of the audio signal into the frequency bands and the frequency distortion described above, there is a frequency-band-specific amplification of the signal components carried in the individual frequency bands. This means that the signal components in the first frequency band or in the second frequency band, to which the mutually different distortion of frequencies is to be applied, are not necessarily identical to the signal components of the audio signal when divided into the individual frequency bands. In addition, further signal processing steps can follow the frequency distortion.

Vorzugsweise bleibt dabei die jeweilige Verzerrung der Frequenzen nicht nur auf die Signalanteile des ersten Frequenzbandes bzw. des zweiten Frequenzbandes beschränkt, sondern kann sich jeweils auch auf weitere, von der Bandgrenzfrequenz zwischen dem ersten Frequenzband und dem zweiten Frequenzband weiter entfernt gelegene Frequenzbänder mit erstrecken. Dies umfasst insbesondere den Fall, dass auf Signalanteile in allen niederen Frequenzbändern bis einschließlich dem ersten Frequenzband eine bestimmte Verzerrung von Frequenzen angewandt wird, und auf Signalanteile aller hohen Frequenzbänder ab dem einschließlich zweiten Frequenzband aufwärts jeweils eine zur vorigen Verzerrung unterschiedliche Verzerrung der Frequenzen angewandt wird. Die "unterschiedliche Frequenzverzerrung" der Signalanteile in dem ersten bzw. zweiten Frequenzband (und gegebenenfalls weiteren jeweils zugehörigen Frequenzbändern) umfasst dabei insbesondere auch den Fall, dass die Signalanteile in einem dieser beiden Frequenzbänder (und gegebenenfalls den zugehörigen weiteren Frequenzbändern) nicht verzerrt wird, so dass die Ausgangsfrequenz dieses Frequenzbandes oder dieser Frequenzbänder der jeweiligen Eingangsfrequenz entspricht.Preferably, the respective distortion of the frequencies is not only limited to the signal components of the first frequency band or the second frequency band, but can also extend to others, from the band limit frequency between the first frequency band and the second frequency band extend distant frequency bands with. This includes in particular the case that a specific distortion of frequencies is applied to signal components in all low frequency bands up to and including the first frequency band, and a different distortion of the frequencies than the previous distortion is applied to signal components of all high frequency bands from the second frequency band inclusive upwards. The "different frequency distortion" of the signal components in the first or second frequency band (and possibly further associated frequency bands) also includes in particular the case that the signal components in one of these two frequency bands (and possibly the associated further frequency bands) are not distorted, see above that the output frequency of this frequency band or these frequency bands corresponds to the respective input frequency.

Soll ein Audiosignal frequenzabhängig verzerrt werden, kann nun somit eine im Rahmen der übergeordneten Anwendung des Audiosignals erfolgende Aufteilung in einzelne Frequenzbänder für die besagte Frequenzverzerrung genutzt werden, so dass für die Implementierung der Frequenzabhängigkeit der Frequenzverzerrung selbst die bereits vorhandene Infrastruktur der übergeordneten Anwendung des Audiosignals genutzt werden kann. Dies wirkt einerseits in der übergeordneten Anwendung ressourcensparend, und spart andererseits einen zusätzlichen, für die Aufteilung der Frequenzen zur Frequenzverzerrung eigenständigen Filterprozess, wodurch zusätzliche Latenzen vermieden werden.If an audio signal is to be distorted as a function of frequency, a division into individual frequency bands that takes place as part of the higher-level application of the audio signal can now be used for said frequency distortion, so that the already existing infrastructure of the higher-level application of the audio signal can be used to implement the frequency dependency of the frequency distortion itself can be. On the one hand, this saves resources in the higher-level application and, on the other hand, saves an additional filter process that is independent for the distribution of the frequencies for frequency distortion, whereby additional latencies are avoided.

Erfindungsgemäß wird als erstes Frequenzband dasjenige Frequenzband bestimmt, dessen obere Bandgrenzfrequenz durch die insbesondere unmittelbar unterhalb der ersten Zielfrequenz gelegene Bandgrenzfrequenz gebildet wird. Die meisten üblichen Implementierungen einer Aufteilung eines Audiosignals in eine Mehrzahl an vorgegebenen Frequenzbändern sind derart gestaltet, dass die resultierenden Frequenzbänder jeweils einen Betragsfrequenzgang mit einem definierten Maximum und/oder ohne lokale Minima aufweisen. Für ein gegebenes Frequenzband wird insbesondere der Bereich zwischen den beiden Bandgrenzfrequenzen zu den jeweils unmittelbar benachbarten Frequenzbändern als der Bereich des Frequenzbandes angeben, in welchen üblicherweise konstruktionsbedingt der Betrags-frequenzgang sein Maximum aufweist und/oder der Betragsfrequenzgang größer ist als jenseits einer der Bandgrenzfrequenzen. Dieser Bereich wird nun insbesondere als der Kernbereich des Frequenzbandes identifiziert. Durch die vorgeschlagene Bestimmung des ersten Frequenzbandes als das Frequenzband, dessen obere Bandgrenzfrequenz durch die unmittelbar unterhalb der ersten Zielfrequenz gelegene Bandgrenzfrequenz gebildet wird, wird erreicht, dass für die beschriebene Ausgestaltung der Frequenzbänder die erste Zielfrequenz im Kernbereich des zweiten Frequenzbandes liegt.According to the invention, that frequency band is determined as the first frequency band, the upper band limit frequency of which is formed by the band limit frequency located directly below the first target frequency. The most common implementations of dividing an audio signal into a plurality of predefined frequency bands are designed in such a way that the resulting frequency bands each have an absolute value frequency response with a defined maximum and/or without local minima. For a given frequency band, in particular the range between the two band limit frequencies to the respective immediately adjacent frequency bands is specified as the range of the frequency band in which usually construction-related the magnitude frequency response has its maximum and/or the magnitude frequency response is greater than beyond one of the band limit frequencies. This area is now specifically identified as the core area of the frequency band. The proposed determination of the first frequency band as the frequency band whose upper band limit frequency is formed by the band limit frequency located directly below the first target frequency means that for the configuration of the frequency bands described, the first target frequency is in the core range of the second frequency band.

Wird die erste Zielfrequenz im Rahmen der übergeordneten Anwendung des Audiosignals als eine minimale Frequenz bestimmt, für welche eine bestimmte Art von Frequenzverzerrung gewünscht wird, so kann durch die genannte Auswahl und die damit einhergehende Einordnung der ersten Zielfrequenz in den Kernbereich des zweiten Frequenzbandes durch eine entsprechende Frequenzverzerrung des zweiten Frequenzbandes im Rahmen der Erfindung vorteilhaft erreicht werden, dass dieser gewünschten Minimaleigenschaft der ersten Zielfrequenz in jedem Fall Rechnung getragen wird.If the first target frequency is determined as a minimum frequency within the framework of the higher-level application of the audio signal, for which a certain type of frequency distortion is desired, the selection mentioned and the associated classification of the first target frequency in the core range of the second frequency band can be Frequency distortion of the second frequency band can be advantageously achieved in the context of the invention that this desired minimum property of the first target frequency is taken into account in any case.

Zweckmäßigerweise wird zu einem Zeitpunkt nach dem Bestimmen des ersten und zweiten Frequenzbandes anhand des Audiosignals anstelle des ersten Frequenzbands ein hiervon verschiedenes drittes Frequenzband bestimmt. Auf Signalanteile in diesem dritten Frequenzband wird dabei eine unterschiedliche Verzerrung der Frequenzen angewandt als auf Signalanteile in einem dem dritten Frequenzband unmittelbar benachbarten (insbesondere unmittelbar darüberliegenden) Frequenzband.Expediently, at a point in time after the determination of the first and second frequency band based on the audio signal, a different third frequency band is determined instead of the first frequency band. A different distortion of the frequencies is applied to signal components in this third frequency band than to signal components in a frequency band directly adjacent to (in particular directly above) the third frequency band.

In einer zweckmäßigen Ausführung der Erfindung wird dabei anhand des Audiosignals zunächst anstelle der ersten Zielfrequenz eine zweite Zielfrequenz bestimmt. Anhand dieser Zielfrequenz wird dann mittelbar das dritte Frequenzband bestimmt. Auch die zweite Zielfrequenz fällt in der Regel nicht mit einer der Bandgrenzfrequenzen zusammen, sondern ist von der nächsten Bandgrenzfrequenz regelmäßig mehr oder weniger beabstandet.In an expedient embodiment of the invention, a second target frequency is initially determined on the basis of the audio signal instead of the first target frequency. The third frequency band is then indirectly determined on the basis of this target frequency. The second target frequency also generally does not coincide with one of the band limit frequencies, but is regularly spaced more or less from the next band limit frequency.

Die Bestimmung des dritten Frequenzbandes (und dabei gegebenenfalls auch die Bestimmung der zweiten Zielfrequenz) erfolgen hierbei insbesondere durch eine laufende, periodische oder ereignisgesteuerte Aktualisierung im Rahmen der für das Audiosignal übergeordneten Anwendung. Die Verzerrung von Frequenzen von Signalanteilen in dem dritten Frequenzband oder dem unmittelbar benachbarten Frequenzband erfolgen dabei insbesondere analog zur oben beschriebenen Form der Verzerrung der Frequenzen von Signalanteilen im ersten bzw. zweiten Frequenzband. Mit anderen Worten wird die Grenze zwischen zwei hinsichtlich der Frequenzverzerrung unterschiedlichen Frequenzbereichen in Abhängigkeit von dem Audiosignal verschoben, indem Frequenzbänder zwischen unterschiedlichen Arten der Frequenzverzerrung umgeschaltet werden.The determination of the third frequency band (and possibly also the determination of the second target frequency) is carried out here in particular by an ongoing, periodic or event-controlled update within the framework of the higher-level application for the audio signal. The distortion of frequencies of signal components in the third frequency band or the immediately adjacent frequency band takes place in particular analogously to the above-described form of distortion of the frequencies of signal components in the first or second frequency band. In other words, the boundary between two frequency ranges different in terms of frequency distortion is shifted depending on the audio signal by switching frequency bands between different types of frequency distortion.

Insbesondere kann hierbei eine zunächst wie vorbeschrieben bezüglich der Signalanteile im ersten Frequenzband und im zweiten Frequenzband eingestellte Verzerrung der Frequenzen durch eine bloße Verschiebung des Anwendungsbereiches hin zum dritten Frequenzband und dem unmittelbar über dem dritten Frequenzband liegenden Frequenzband erreicht werden. Die Anpassung der Verzerrung von Frequenzen an die zweite Zielfrequenz, welche in der genannten Weise einem anderen Frequenzband und somit einer anderen Bandgrenzfrequenz zuzuordnen ist als die erste Zielfrequenz, erlaubt es, auf geänderte Anforderungen an die Frequenzverzerrung des Audiosignals in der übergeordneten Anwendung zu reagieren, also beispielsweise auf Veränderungen einer zu unterdrückenden Rückkopplung bei der Signalverarbeitung in einem Hörgerät.In particular, a distortion of the frequencies initially adjusted as described above with regard to the signal components in the first frequency band and in the second frequency band can be achieved simply by shifting the application range towards the third frequency band and the frequency band lying directly above the third frequency band. The adaptation of the distortion of frequencies to the second target frequency, which is assigned to a different frequency band and thus a different band limit frequency than the first target frequency in the manner mentioned, makes it possible to react to changed requirements for the frequency distortion of the audio signal in the higher-level application, i.e for example, to changes in a feedback to be suppressed during signal processing in a hearing aid.

Vorzugsweise wird hierbei überprüft, ob die zweite Zielfrequenz unmittelbar oberhalb der oberen Begrenzungsfrequenz eines weiteren, vom ersten Frequenzband verschiedenen Frequenzbandes liegt, wobei in Abhängigkeit dieser Überprüfung das weitere Frequenzband als das dritte Frequenzband bestimmt wird, und wobei auf die Signalanteile im dritten Frequenzband eine unterschiedliche Verzerrung der Frequenzen angewandt wird als auf die Signalanteile des unmittelbar über dem dritten Frequenzband liegenden Frequenzbandes. Hierdurch wird die zweite Zielfrequenz derart dem dritten Frequenzband zugeordnet, dass der Kernbereich des unmittelbar über dem dritten Frequenzband liegenden Frequenzbandes die zweite Zielfrequenz umfasst. Dies ist insbesondere dann vorteilhaft, wenn die zweite Zielfrequenz anhand des Audiosignals nach den Anforderungen der übergeordneten Anwendung als eine Minimalfrequenz für eine gewünschte Frequenzverzerrung bestimmt wird. Die Einordnung der zweiten Zielfrequenz in den Kernbereich des Frequenzbandes unmittelbar oberhalb des dritten Frequenzbandes und die entsprechende Anwendung der gewünschten Frequenzverzerrung zumindest auf das besagte Frequenzband und gegebenenfalls auf weitere Frequenzbänder oberhalb und ausschließlich des dritten Frequenzbandes trägt dann dieser Minimaleigenschaft der zweiten Zielfrequenz Rechnung.It is preferably checked here whether the second target frequency is directly above the upper limit frequency of a further frequency band that is different from the first frequency band, with the further frequency band being determined as the third frequency band as a function of this check, and with different distortion being applied to the signal components in the third frequency band of the frequencies is applied than to the signal components of the frequency band immediately above the third frequency band. As a result, the second target frequency is assigned to the third frequency band in such a way that the core area of the frequency band lying directly above the third frequency band second target frequency includes. This is particularly advantageous when the second target frequency is determined based on the audio signal according to the requirements of the higher-level application as a minimum frequency for a desired frequency distortion. The classification of the second target frequency in the core area of the frequency band immediately above the third frequency band and the corresponding application of the desired frequency distortion at least to said frequency band and, if necessary, to other frequency bands above and exclusively the third frequency band then takes this minimum property of the second target frequency into account.

In einer vorteilhaften Ausführung der Erfindung ist die Verzerrung von Frequenzen jeweils gegeben durch eine Verschiebung um einen über die Frequenz hinweg konstanten Betrag und/oder einen zeitabhängig modulierten Frequenzwert. Insbesondere ist hierbei der zeitabhängig modulierte Frequenzwert über die Frequenz hinweg konstant. Eine auf die Signalanteile des ersten Frequenzbandes in unterschiedlicher Weise anzuwendende Verzerrung von Frequenzen als auf die Signalanteile des zweiten Frequenzbandes wird dann insbesondere durch einen Unterschied in dem konstanten Betrag erreicht. Insbesondere kann dabei für die Signalanteile eines der beiden Frequenzbänder, bevorzugt des ersten Frequenzbandes, der Betrag der Frequenzverschiebung im Rahmen der Erfindung auch Null sein, so dass die betreffenden Frequenzen effektiv nicht verschoben werden.In an advantageous embodiment of the invention, the distortion of frequencies is given in each case by a shift by an amount that is constant over the frequency range and/or a frequency value that is modulated as a function of time. In particular, the time-dependent modulated frequency value is constant over the frequency. A frequency distortion to be applied in a different way to the signal components of the first frequency band than to the signal components of the second frequency band is then achieved in particular by a difference in the constant amount. In particular, for the signal components of one of the two frequency bands, preferably the first frequency band, the amount of the frequency shift can also be zero within the scope of the invention, so that the relevant frequencies are effectively not shifted.

Die Frequenzverzerrung ist in der Frequenzdomäne mit einer zeitabhängigen Phasenmodifikation des frequenzverzerrten Signalanteils korreliert. Konkret wird der in den betroffenen Frequenzbändern jeweils geführte Signalanteil insbesondere mit einem komplexwertigen Zeiger eiΔt multipliziert, wodurch die Frequenzverzerrung erzielt wird. Die Größe Δ kennzeichnet hier die Stärke der Frequenzverzerrung für das jeweilige Frequenzband. Die Größe t bezeichnet die Zeit. Sofern Δ für mehrere Frequenzbänder gleich ist, kommt sich dies einer konstanten Frequenzverschiebung dieser Frequenzbänder gleich. Bevorzugt wird hierbei eine Änderung der auf den Signalanteil in einem Frequenzband anzuwendenden Frequenzverzerrung stets derart vorgenommen, dass durch diese Änderung der Frequenzverzerrung die Phase des frequenzverzerrten Signalanteils nicht oder nur in einem einen Grenzwert unterschreitenden Ausmaß springt (d.h. sich sprunghaft ändert). In besonders zweckmäßiger Ausführung der Erfindung wird die Änderung der Frequenzverzerrung dabei nur bei einem Nulldurchgang oder in einer vorgegebenen Umgebung eines Nulldurchgangs der mit der Verzerrung korrelierten Phasenmodifikation vorgenommen. Die Änderung der Frequenzverzerrung erfolgt somit nur dann, wenn sich der vorstehend beschriebene Zeiger eiΔt der Phasenmodifikation auf oder in der Nähe der reellen Achse der komplexen Zahlenebene befindet (d.h. für Δ·t ≈ 0,2π,4π,... und eiΔt ≈ 1).In the frequency domain, the frequency distortion is correlated with a time-dependent phase modification of the frequency-distorted signal component. In concrete terms, the signal component carried in each of the frequency bands concerned is multiplied in particular by a complex-valued pointer e iΔt , as a result of which the frequency distortion is achieved. The variable Δ characterizes the strength of the frequency distortion for the respective frequency band. The quantity t designates the time. If Δ is the same for several frequency bands, this amounts to a constant frequency shift of these frequency bands. A change in the frequency distortion to be applied to the signal component in a frequency band is preferably always carried out in such a way that this change in the frequency distortion does not change the phase of the frequency-distorted signal component or only changes it in jumps (ie changes in leaps and bounds) to an extent below a threshold. In a particularly expedient embodiment of the invention, the change in the frequency distortion is undertaken only at a zero crossing or in a predetermined vicinity of a zero crossing of the phase modification correlated with the distortion. The change in frequency distortion thus occurs only when the phase modification phasor e iΔt described above is on or near the real axis of the complex plane (ie for Δ·t ≈ 0,2π,4π,... and e iΔt ≈ 1).

Auf diese Weise werden bei der Änderung der Frequenzverzerrung hörbare Artefakte (z.B. "Knackgeräusche") in dem frequenzverzerrten Signal vorteilhaft vermieden.In this way, audible artifacts (e.g., "pops") in the frequency-distorted signal as the frequency distortion is changed are advantageously avoided.

Insbesondere wird für eine Änderung einer auf die Signalanteile in einem Frequenzband anzuwendenden Verzerrung der Frequenzen die Phasenmodifikation der betreffenden Signalanteile überprüft, wobei eine Änderung der Frequenzverzerrung nur bei oder in der Umgebung des Nulldurchgangs der Phasenmodifikation zugelassen wird. Unter einer Änderung einer auf die Signalanteile in einem Frequenzband anzuwendenden Verzerrung ist hierbei insbesondere eine Änderung derart umfasst, dass sich in Folge einer Aktualisierung der ersten Zielfrequenz hin zu einer zweiten Zielfrequenz für Signalanteile von Frequenzbändern, deren Kernbereich jeweils zumindest teilweise zwischen der ersten Zielfrequenz und der zweiten Zielfrequenz liegt, die anzuwendende Verzerrung von Frequenzen ändert.In particular, the phase modification of the relevant signal components is checked for a change in a frequency distortion to be applied to the signal components in a frequency band, with a change in the frequency distortion only being permitted at or in the vicinity of the zero crossing of the phase modification. A change in a distortion to be applied to the signal components in a frequency band includes in particular a change such that as a result of an update of the first target frequency towards a second target frequency for signal components of frequency bands whose core range is at least partially between the first target frequency and the second target frequency, the applied distortion of frequencies changes.

Die Änderung kann hierbei auch in einem vollständigen Zu- bzw. Abschalten einer Frequenzverzerrung für eines oder mehrere Frequenzbänder bestehen. Das Abschalten der Frequenzverzerrung äußert sich numerisch darin, dass der die Frequenzverzerrung präsentierende Zeiger eiΔt in einen Phasenmodifikationsterm vom Wert 1 übergeht. Dieser Übergang würde erkanntermaßen dann zu hörbaren Artefakten führen, wenn der Zeiger eiΔt zum Zeitpunkt des Abschaltens einen von 1 deutlich abweichenden Wert aufweist. Um derartige Artefakte zu vermeiden, wird das Abschalten der Frequenzverzerrung in der vorteilhaften Ausführung der Erfindung nur zu Zeitpunkten zugelassen, bei denen der Betrag des die Phasenmodifikation repräsentierenden Produktterms Δ·t einen vorgegebenen Grenzwert von z.B π/8 oder sogar π/16 unterschreitet.In this case, the change can also consist in a complete activation or deactivation of a frequency distortion for one or more frequency bands. Switching off the frequency distortion is expressed numerically in that the vector e iΔt presenting the frequency distortion changes to a phase modification term of the value 1. As has been recognized, this transition would then lead to audible artefacts if the pointer e iΔt had a value significantly different from 1 at the time of switching off. In order to avoid such artifacts, switching off the frequency distortion in the advantageous embodiment of the Invention only permitted at times when the amount of the product term Δ·t representing the phase modification falls below a predetermined limit value of, for example, π/8 or even π/16.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird das erste Frequenzband zusätzlich mit einem Tiefpassfilter gefiltert, und/oder das zweite Frequenzband zusätzlich mit einem Hochpassfilter gefiltert. Die jeweilige Filterung erfolgt hierbei insbesondere an der Bandgrenzfrequenz zwischen dem ersten Frequenzband und dem zweiten Frequenzband. Hierdurch kann der Überlapp zwischen dem ersten Frequenzband und dem zweiten Frequenzband verringert werden. Für Signalkomponenten aus dem Bereich des Überlapps zwischen dem ersten Frequenzband und dem zweiten Frequenzband führt die jeweils unterschiedliche Verzerrung von Frequenzen von Signalanteilen des ersten Frequenzbandes und des zweiten Frequenzbandes bei einer anschließenden Synthese und Rücktransformation des frequenzverzerrten Signals von der Frequenzdomäne in die Zeitdomäne zu einer Überlagerung von zwei unterschiedlich frequenzverzerrten Beiträgen derselben Signalkomponente. Hierdurch kann es zu hörbaren Artefakten und/oder Schwebungen kommen. Eine Verringerung des Überlapps genau in dem Bereich, in welchem die Signalanteile jeweils unterschiedlichen Frequenzverzerrungen der einzelnen Frequenzbänder ausgesetzt sind, führt nun dazu, dass derartige doppelte Beiträge mit unterschiedlicher Frequenzverzerrung, welche ursprünglich von derselben Signalkomponente stammen, erheblich unterdrückt werden können. Vorzugsweise wird dabei das Tiefpassfilter nur auf das erste Frequenzband angewandt und/oder das Hochpassfilter nur auf das zweite Frequenzband angewandt. Hierdurch kann die zusätzliche Latenz, welche durch das Tiefpassfilter und/oder das Hochpassfilter entsteht, auf einen kleinen Frequenzbereich beschränkt werden.In a further advantageous embodiment of the invention, the first frequency band is additionally filtered with a low-pass filter and/or the second frequency band is additionally filtered with a high-pass filter. The respective filtering takes place here in particular at the band limit frequency between the first frequency band and the second frequency band. As a result, the overlap between the first frequency band and the second frequency band can be reduced. For signal components from the area of the overlap between the first frequency band and the second frequency band, the respective different distortion of frequencies of signal components of the first frequency band and the second frequency band leads to a superimposition of in a subsequent synthesis and inverse transformation of the frequency-distorted signal from the frequency domain into the time domain two differently frequency distorted contributions of the same signal component. This can lead to audible artefacts and/or beats. A reduction in the overlap precisely in the area in which the signal components are each exposed to different frequency distortions of the individual frequency bands means that such double contributions with different frequency distortions, which originally come from the same signal component, can be significantly suppressed. In this case, the low-pass filter is preferably applied only to the first frequency band and/or the high-pass filter is only applied to the second frequency band. As a result, the additional latency that occurs as a result of the low-pass filter and/or the high-pass filter can be limited to a small frequency range.

Bevorzugt wird hierbei die Bandgrenzfrequenz zwischen dem ersten Frequenzband und dem zweiten Frequenzband mittels der Filtercharakteristik des Tiefpassfilters und/oder mittels der Filtercharakteristik des Hochpassfilters von dem durch die Aufteilung der Frequenzbänder vorgegebenen Wert zu der ersten Zielfrequenz hin verschoben. Vorzugsweise weist hierfür das Hochpassfilter eine größere Flankensteilheit auf als das Tiefpassfilter. Dies hat zur Folge, dass der Bereich, in welchem eine gewünschte Frequenzverzerrung angewandt wird, und welcher über die Verzerrung von Frequenzen von Signalanteilen in einzelnen Frequenzbändern erreicht wird, durch die Verschiebung der Bandgrenzfrequenz zwischen dem ersten Frequenzband und dem zweiten Frequenzband und den damit einhergehenden veränderten Betragsfrequenzgang der betreffenden Frequenzbänder besser angepasst werden kann an eine im Rahmen der übergeordneten Anwendung des Audiosignals gewünschte oder erforderte Frequenzverschiebung, wie sie durch die erste Zielfrequenz begrenzt wird.The band limit frequency between the first frequency band and the second frequency band is preferably shifted from the value specified by the division of the frequency bands towards the first target frequency by means of the filter characteristic of the low-pass filter and/or by means of the filter characteristic of the high-pass filter. For this purpose, the high-pass filter preferably has a steeper edge on as the low pass filter. As a result, the range in which a desired frequency distortion is applied, and which is achieved by distorting frequencies of signal components in individual frequency bands, is changed by shifting the band limit frequency between the first frequency band and the second frequency band and the associated changes Amount frequency response of the frequency bands in question can be better adapted to a frequency shift desired or required within the framework of the higher-level application of the audio signal, as limited by the first target frequency.

Vorteilhafterweise wird die Verzerrung von Frequenzen nur auf Signalteile von Frequenzbändern auf einer Seite der Bandgrenzfrequenz zwischen dem ersten Frequenzband und dem zweiten Frequenzband angewandt. Dies ist einerseits signalverarbeitungstechnisch besonders einfach zu realisieren. Andererseits kommt es in vielen Anwendungen darauf an, eine Frequenzverzerrung auf einen möglichst kleinen Bereich des Audiosignals anzuwenden, wobei durch Randbedingungen andererseits ein Minimalbereich für eine Frequenzverzerrung des Audiosignals vorgegeben wird. In diesem Fall wird die Verzerrung von Frequenzen nur auf Signalanteile derjenigen Frequenzbänder angewandt, in welchem eine Frequenzverzerrung als erwünscht oder erforderlich angesehen wird.Advantageously, the distortion of frequencies is only applied to signal parts of frequency bands on one side of the band cutoff frequency between the first frequency band and the second frequency band. On the one hand, this is particularly easy to implement in terms of signal processing technology. On the other hand, in many applications it is important to apply frequency distortion to as small a range of the audio signal as possible, with boundary conditions prescribing a minimum range for frequency distortion of the audio signal. In this case, the distortion of frequencies is only applied to signal components of those frequency bands in which frequency distortion is considered desirable or necessary.

Eine Verkörperung der Erfindung ist weiterhin ein Verfahren zur Unterdrückung einer akustischen Rückkopplung in einem Hörgerät, wobei ein Eingangswandler des Hörgerätes aus einem Schallsignal der Umgebung ein Eingangssignal erzeugt, wobei anhand des Eingangssignals ein Zwischensignal erzeugt wird, welches einer Signalverarbeitung mit einer Filterbank zur frequenzbandweisen Aufteilung des Zwischensignals zugeführt wird, wobei aus einem frequenzverzerrten Signal ein Ausgangssignal erzeugt wird, welches durch einen Ausgangswandler des Hörgerätes in ein Ausgangsschallsignal umgewandelt wird, wobei anhand des frequenzverzerrten Signals eine durch ein Einkoppeln des Ausgangsschallsignals in den Eingangswandler auftretende akustische Rückkopplung im Hörgerät unterdrückt wird, und wobei auf das Zwischensignal das vorbeschriebene erfindungsgemäße Verfahren zur Frequenzverzerrung angewandt wird, und hierdurch das frequenzverzerrte Signal erzeugt wird.An embodiment of the invention is also a method for suppressing acoustic feedback in a hearing aid, with an input converter of the hearing aid generating an input signal from a sound signal from the environment, with an intermediate signal being generated on the basis of the input signal, which is subjected to signal processing with a filter bank for dividing the frequency band by frequency intermediate signal is supplied, with an output signal being generated from a frequency-distorted signal, which output signal is converted into an output sound signal by an output converter of the hearing device, with the frequency-distorted signal being used to suppress acoustic feedback in the hearing device that occurs as a result of the output sound signal being coupled into the input converter, and with to the intermediate signal according to the invention as described above Method for frequency distortion is applied, and thereby the frequency-distorted signal is generated.

Unter einem Eingangswandler ist allgemein ein akusto-elektrischer Wandler umfasst, welcher dazu eingerichtet ist, dass Schallsignal der Umgebung in ein entsprechendes elektrisches bzw. elektro-magnetisches Signal umzuwandeln, also beispielsweise ein Mikrofon. Unter einem Ausgangswandler ist generell ein elektro-akustischer Wandler umfasst, welcher dazu eingerichtet ist, aus einen elektrischen und/oder elektro-magnetischen Signal ein Ausgangsschallsignal zu erzeugen, also beispielsweise ein Lautsprecher oder ein Schallerzeuger zur Knochenschallleitung. Unter einer Signalverarbeitung ist hierbei insbesondere eine Aufbereitung des Eingangssignals oder eines vom Eingangssignal abgeleiteten Signals zu verstehen, also insbesondere eine frequenzbandabhängige Verstärkung und/oder Rauschunterdrückung.An input converter generally includes an acousto-electric converter, which is set up to convert the sound signal from the environment into a corresponding electrical or electromagnetic signal, ie a microphone, for example. An output transducer generally includes an electro-acoustic transducer which is set up to generate an output sound signal from an electrical and/or electromagnetic signal, ie for example a loudspeaker or a sound generator for bone sound conduction. In this context, signal processing is to be understood in particular as a processing of the input signal or of a signal derived from the input signal, ie in particular a frequency band-dependent amplification and/or noise suppression.

Unter einer Erzeugung des Zwischensignals anhand des Eingangssignals ist hierbei insbesondere zu verstehen, dass die Signalverarbeitung ein vom Eingangssignal unmittelbar abhängendes Signal empfängt, also beispielsweise das Eingangssignal, welches zur Kompensation einer akustischen Rückkopplung um ein Kompensationssignal korrigiert wurde. Die Anwendung des Verfahrens zur Frequenzverzerrung auf das Zwischensignal kann dann insbesondere derart erfolgen, dass das Zwischensignal an der Filterbank der Signalverarbeitungseinheit in einzelne vorgegebene Frequenzbänder aufgeteilt wird, und nach einer frequenzbandabhängigen Aufbereitung der Signalanteile in den einzelnen Frequenzbändern durch die Signalverarbeitung die unterschiedliche Verzerrung von Frequenzen auf die weiterverarbeiteten Signalanteile im ersten Frequenzband bzw. im zweiten Frequenzband angewandt wird, um so das frequenzverzerrte Signal zu erzeugen. Aus diesem wird anschließend das Ausgangssignal u.a. durch die Synthese der einzelnen Frequenzband-Komponenten erzeugt. Die Unterdrückung der Rückkopplung kann dann durch ein adaptives Filter anhand des frequenzverzerrten Signals, also insbesondere auch durch das Ausgangssignal als Führungsgröße des adaptiven Filters, über ein entsprechendes Kompensationssignal erreicht werden.Generating the intermediate signal based on the input signal means in particular that the signal processing receives a signal that is directly dependent on the input signal, for example the input signal that has been corrected by a compensation signal to compensate for acoustic feedback. The method for frequency distortion can then be applied to the intermediate signal in particular in such a way that the intermediate signal is divided into individual predefined frequency bands at the filter bank of the signal processing unit, and after a frequency band-dependent processing of the signal components in the individual frequency bands by the signal processing, the different distortion of frequencies the processed signal components in the first frequency band or in the second frequency band is applied in order to generate the frequency-distorted signal. From this, the output signal is then generated, among other things, by synthesizing the individual frequency band components. The feedback can then be suppressed by an adaptive filter based on the frequency-distorted signal, ie in particular also by the output signal as a reference variable of the adaptive filter, via a corresponding compensation signal.

Die für das Verfahren zur Frequenzverzerrung eines Audiosignals und seine Weiterbildungen angegebenen Vorteile können dabei sinngemäß auf das Verfahren zur Unterdrückung einer akustischen Rückkopplung in einem Hörgerät übertragen werden.The advantages specified for the method for frequency distortion of an audio signal and its developments can be transferred analogously to the method for suppressing acoustic feedback in a hearing device.

Die Erfindung bezieht sich zudem auf ein Hörgerät, umfassend einen Eingangswandler zur Erzeugung eines Eingangssignals aus einem Schallsignal der Umgebung, und eine Signalverarbeitungseinheit mit einer Filterbank zur Aufteilung eines vom Eingangssignal abgeleiteten Audiosignals anhand des Eingangssignals und einer Steuereinheit, welche dazu eingerichtet ist, das vorbeschriebene Verfahren zur Verzerrung eines Audiosignals durchzuführen. Die für das Verfahren und für seine Weiterbildung angegebenen Vorteile können hierbei sinngemäß auf das Hörgerät übertragen werden. Insbesondere sind die Signalverarbeitungseinheit, Filterbank Teile der Steuereinheit. In diesem Fall ist das Audiosignal ein Zwischensignal in der Steuereinheit.The invention also relates to a hearing aid, comprising an input converter for generating an input signal from a sound signal from the environment, and a signal processing unit with a filter bank for dividing an audio signal derived from the input signal using the input signal and a control unit which is set up to implement the method described above to distort an audio signal. The advantages specified for the method and for its further development can be transferred to the hearing aid. In particular, the signal processing unit and filter bank are parts of the control unit. In this case the audio signal is an intermediate signal in the control unit.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Hierbei zeigen jeweils schematisch:

FIG. 1
in einem Blockdiagramm ein Verfahren zur Unterdrückung einer akustischen Rückkopplung in einem Hörgerät,
FIG. 2
in einem Blockdiagramm ein Verfahren zur Frequenzverzerrung nach FIG. 1,
FIG. 3
den Frequenzgang einer Filterbank im Verfahren nach FIG. 2, und
FIG. 4
den durch Hochpass- und Tiefpassfilter angepassten Frequenzgang zweier benachbarter Frequenzbänder in der Filterbank nach FIG. 3.
An exemplary embodiment of the invention is explained in more detail below with reference to a drawing. Here each show schematically:
FIG. 1
in a block diagram a method for suppressing acoustic feedback in a hearing device,
FIG. 2
in a block diagram a method for frequency distortion FIG. 1 ,
FIG. 3
the frequency response of a filter bank in the process FIG. 2 , and
FIG. 4
the frequency response of two adjacent frequency bands in the filter bank, adjusted by high-pass and low-pass filters FIG. 3 .

Einander entsprechende Teile und Größen sind in allen Figuren jeweils mit gleichen Bezugszeichen versehen.Corresponding parts and sizes are provided with the same reference symbols in all figures.

In Figur 1 ist schematisch in einem Blockdiagramm ein Verfahren 1 zur Unterdrückung einer akustischen Rückkopplung g in einem akustischen System dargestellt. Das akustische System ist vorliegend gegeben durch ein Hörgerät 2. Das Hörgerät 2 umfasst einen Eingangswandler 4, welcher aus einem Schallsignal 6 der Umgebung ein Eingangssignal 8 erzeugt, und im vorliegenden Fall gegeben ist durch ein Mikrofon. Vom Eingangssignal 8 wird ein Kompensationssignal 10 subtrahiert, welches in noch zu beschreibender Weise in einer elektrischen Rücckopplungsschleife 12 erzeugt wird. Das aus dem Eingangssignal 8 und dem Kompensationssignal 10 resultierende Zwischensignal 14 wird einer Signalverarbeitung 16 zugeführt, in welcher die für das Hörgerät 2 benutzerspezifischen Signalverarbeitungsprozesse erfolgen (insbesondere eine frequenzband-abhängige Verstärkung des Zwischensignals 14). Hierfür umfasst die Signalverarbeitung 16 eine Filterbank 18, an welcher das Zwischensignal in einzelne Frequenzbänder aufgeteilt wird, welche dann entsprechend benutzerspezifisch verarbeitet werden. Die Signalverarbeitung 16 gibt nun ein frequenzbandweise aufgelöstes verarbeitetes Signal 20 aus, auf welches in einem noch zu beschreibenden Verfahren eine Frequenzverzerrung 22 angewandt wird. Das aus der Frequenzverzerrung 22 resultierende frequenzverzerrte Signal 24 in der Zeit-Frequenz-Domäne wird nun an einer Synthesefilterbank 26 zu einem breitbandigen Ausgangssignal 28 in der Zeit-Domäne umgewandelt, welches seinerseits durch einen Ausgangswandler 30 in ein Ausgangsschallsignal 32 umgewandelt wird. Der Ausgangswandler 30 ist im vorliegenden Fall gegeben durch einen Lautsprecher.In figure 1 a method 1 for suppressing acoustic feedback g in an acoustic system is shown schematically in a block diagram. In the present case, the acoustic system is given by a hearing aid 2. The hearing aid 2 comprises an input converter 4, which generates an input signal 8 from a sound signal 6 of the environment, and in the present case is given by a microphone. A compensation signal 10 is subtracted from the input signal 8 and is generated in an electrical feedback loop 12 in a manner to be described below. The intermediate signal 14 resulting from the input signal 8 and the compensation signal 10 is fed to a signal processing unit 16 in which the signal processing processes specific to the hearing aid 2 are carried out (in particular a frequency band-dependent amplification of the intermediate signal 14). For this purpose, the signal processing 16 includes a filter bank 18, on which the intermediate signal is divided into individual frequency bands, which are then processed in a user-specific manner. The signal processor 16 now outputs a processed signal 20 resolved by frequency band, to which a frequency distortion 22 is applied in a method that is yet to be described. The frequency-distorted signal 24 in the time-frequency domain resulting from the frequency distortion 22 is now converted in a synthesis filter bank 26 into a broadband output signal 28 in the time domain, which in turn is converted into an output sound signal 32 by an output converter 30. In the present case, the output converter 30 is provided by a loudspeaker.

Andererseits wird das Ausgangssignal 28 in die elektrische Rückkopplungsschleife 12 abgezweigt, und dort einem adaptiven Filter 34 zugeführt, welches als weitere Eingangsgröße als ein Fehlersignal auch das Zwischensignal 14 empfängt, und hieraus das Kompensationssignal 10 zur Unterdrückung der akustischen Rücckopplung g erzeugt. Durch die Frequenzverzerrung 22 wird dabei das Ausgangssignal 28 vom Eingangssignal 8 und somit auch vom Zwischensignal 14 dekorreliert, sodass durch die erneute Eingabe des Fehlersignals 14 in das adaptive Filter 34 letzteres nicht vollständig auf die tonalen Signalanteile des Ausgangssignals 28 adaptiert. Hierdurch kann eine Bildung von Artefakten im Ausgangssignal 28 und somit im Ausgangsschallsignal 32 vermieden werden. Die Unterdrückung der akustischen Rückkopplung g durch das Kompensationssignal 10 kann dabei insbesondere auf bestimmte Frequenzbereiche beschränkt bleiben, d.h., das Kompensationssignal 10 weist in diesem Fall nur für besagte Frequenzbänder, insbesondere für diejenigen, auf welche die Frequenzverzerrung 22 angewandt wurde, nennenswerte Signalanteile auf.On the other hand, the output signal 28 is branched off into the electrical feedback loop 12 and fed there to an adaptive filter 34, which also receives the intermediate signal 14 as a further input variable as an error signal, and from this generates the compensation signal 10 for suppressing the acoustic feedback g. Due to the frequency distortion 22, the output signal 28 is decorrelated from the input signal 8 and thus also from the intermediate signal 14, so that when the error signal 14 is re-entered into the adaptive filter 34, the latter is not fully adapted to the tonal signal components of the output signal 28. This can cause artifacts to form in the output signal 28 and thus avoided in the output sound signal 32. The suppression of the acoustic feedback g by the compensation signal 10 can in particular remain limited to specific frequency ranges, ie in this case the compensation signal 10 only has significant signal components for said frequency bands, in particular for those to which the frequency distortion 22 was applied.

In FIG. 2 ist schematisch in einem Blockdiagramm der Ablauf eines Verfahrens 40 zur Frequenzverzerrung 22 des Zwischensignals 14 nach FIG. 1 dargestellt. Das Zwischensignal 14 bildet hierbei das Audiosignal 42, welches als die für das Verfahren 40 relevante Eingangsgröße fungiert. In einem ersten Schritt S1 wird anhand des Audiosignals 42 überprüft, in welchem Frequenzbereich eine akustische Rückkopplung g vom Ausgangswandler 30 zum Eingangswandler 8 des Hörgerätes 2 zu unterdrücken ist, und in welchem Frequenzbereich zudem tonale Signalanteile im Audiosignal 42 vorliegen, die bei der Unterdrückung der Rückkopplung im adaptiven Filter 34 ggf. zu Artefakten führen können. Die Überprüfung hinsichtlich der zu unterdrückenden akustischen Rückkopplung g kann dabei durch das adaptive Filter 34 erfolgen, hinsichtlich der Tonalität der Signalanteile vorzugsweise durch die Signalverarbeitung 16. Anschließend wird in Abhängigkeit der Resultate dieser Überprüfungen eine erste Zielfrequenz tf1 festgelegt. Die Zielfrequenz tf1 wird hierbei insbesondere als die minimale Frequenz bestimmt, oberhalb derer eine Frequenzverzerrung für eine wirksame Unterdrückung der akustischen Rücckopplung erforderlich ist.In FIG. 2 1 is a schematic block diagram of the sequence of a method 40 for frequency distortion 22 of the intermediate signal 14 FIG. 1 shown. In this case, the intermediate signal 14 forms the audio signal 42 , which acts as the input variable relevant to the method 40 . In a first step S1, the audio signal 42 is used to check the frequency range in which acoustic feedback g from the output transducer 30 to the input transducer 8 of the hearing aid 2 is to be suppressed, and the frequency range in which there are also tonal signal components in the audio signal 42 that are present when the feedback is suppressed in the adaptive filter 34 may lead to artifacts. The check with regard to the acoustic feedback g to be suppressed can be carried out by the adaptive filter 34, with regard to the tonality of the signal components preferably by the signal processor 16. A first target frequency tf1 is then defined as a function of the results of these checks. In this case, the target frequency tf1 is determined in particular as the minimum frequency above which a frequency distortion is required for an effective suppression of the acoustic feedback.

In einem nächsten Schritt S2 wird nun das Audiosignal 42 an einer Filterbank 18 in einzelne Frequenzbänder aufgeteilt. Der Schritt S2 kann zudem noch weitere Unterschritte beinhalten, so beispielsweise eine frequenzband-abhängige Verarbeitung der Signalanteile 44 in den erzeugten Frequenzbändern, welche jedoch den Ablauf des Verfahrens 40 an sich nicht beeinträchtigen.In a next step S2, the audio signal 42 is now divided into individual frequency bands in a filter bank 18 . Step S2 can also include further sub-steps, such as frequency-band-dependent processing of the signal components 44 in the frequency bands generated, which, however, do not impair the course of the method 40 per se.

In einem weiteren Schritt S3 wird nun auf Basis der ersten Zielfrequenz tf1 ein erstes Frequenzband FB1 bestimmt. Das erste Frequenzband FB1 ist hierbei gegeben als dasjenige Frequenzband, dessen obere Bandgrenzfrequenz durch die unmittelbar unterhalb der ersten Zielfrequenz tf1 gelegenen Bandgrenzfrequenz gebildet wird, wobei die obere Bandgrenzfrequenz gegeben ist durch diejenige Frequenz, an welcher der Betragsfrequenzgang des ersten Frequenzbandes gleich dem Betragsfrequenzgang des Frequenzbandes unmittelbar über dem ersten Frequenzband FB1. Das Frequenzband unmittelbar über dem ersten Frequenzband FB1 wird als zweites Frequenzband FB2 festgelegt.In a further step S3, a first frequency band FB1 is now determined on the basis of the first target frequency tf1. The first frequency band FB1 is given here as that frequency band whose upper band limit frequency is defined by the band limit frequency immediately below the first target frequency tf1 is formed, the upper band limit frequency being given by that frequency at which the magnitude frequency response of the first frequency band is equal to the magnitude frequency response of the frequency band immediately above the first frequency band FB1. The frequency band immediately above the first frequency band FB1 is set as the second frequency band FB2.

In einem nächsten Schritt S4 wird dann über das erste Frequenzband FB1 an dessen Bandgrenzfrequenz zum zweiten Frequenzband FB2 ein Tiefpassfilter TP gelegt, und über das zweite Frequenzband FB2 an derselben Bandgrenzfrequenz ein Hochpassfilter HP. Hierdurch wird einerseits der Überlapp zwischen dem ersten Frequenzband FB1 und dem zweiten Frequenzband FB2 weiter verringert, als es durch die Filterbank 18 vorgesehen ist, andererseits kann durch eine asymmetrische Auslegung der Filtercharakteristiken des Hochpassfilters HP und des Tiefpassfilters TP die Bandgrenzfrequenz leicht zu der ersten Zielfrequenz tf1 hin verschoben werden.In a next step S4, a low-pass filter TP is placed over the first frequency band FB1 at its band limit frequency to the second frequency band FB2, and a high-pass filter HP is placed over the second frequency band FB2 at the same band limit frequency. On the one hand, this further reduces the overlap between the first frequency band FB1 and the second frequency band FB2 than is provided by the filter bank 18, and on the other hand, the band limit frequency can easily be shifted to the first target frequency tf1 to be shifted towards.

Im Schritt S5 wird nun auf die Signalanteile 44 in allen Frequenzbändern von zweiten Frequenzband FB2 an aufwärts eine Frequenzverzerrung 22 in der Form einer Frequenzverschiebung 46 um einen zeitlich konstanten Betrag Δ angewandt, während die Signalanteile 44 in allen Frequenzbändern vom ersten Frequenzband FB1 an abwärts unverändert bleiben, und so das frequenzverzerrte Signal 24 erzeugt. Das Verfahren 40 kehrt zudem mit der Vorgabe des ersten Frequenzbandes FB1 zum Schritt S1 zurück, und aktualisiert laufend, periodisch oder ereignisgesteuert die erste Zielfrequenz, um bei einer maßgeblichen Veränderung der akustischen Rückkopplung g, welche dazu führt, dass die erste Zielfrequenz tf1 außerhalb des ersten Frequenzbandes FB1 liegt, ein drittes Frequenzband FB3 zu ermitteln, welches an die Stelle des ersten Frequenzbandes FB1 tritt, um das Verfahren 40 analog fortzuführen.In step S5, frequency distortion 22 in the form of a frequency shift 46 by a time-constant amount Δ is now applied to the signal components 44 in all frequency bands from the second frequency band FB2 upwards, while the signal components 44 remain unchanged in all frequency bands from the first frequency band FB1 downwards , and thus the frequency-distorted signal 24 is generated. The method 40 also returns to step S1 with the specification of the first frequency band FB1, and updates the first target frequency continuously, periodically or event-controlled in order to, in the event of a significant change in the acoustic feedback g, which results in the first target frequency tf1 being outside the first Frequency band FB1 is to determine a third frequency band FB3, which takes the place of the first frequency band FB1 to continue the method 40 analogously.

In FIG. 3 ist der Frequenzgang einer Filterbank 18 gegen eine Frequenz f aufgetragen. Die einzelnen Frequenzbänder FB weisen dabei mit dem jeweils benachbarten Frequenzband einen nicht vernachlässigbaren Überlapp OV auf, wobei zwei unmittelbar benachbarte Frequenzbänder eine Bandgrenzfrequenz fL0 bis fL3 festlegen, welche gegeben ist durch diejenige Frequenz, an der der Betragsfrequenzgang der beiden benachbarten Frequenzbänder gleich groß ist. Gemäß Schritt S1 des Verfahrens 40 nach FIG. 2 wird nun die erste Zielfrequenz tf1 vorgegeben, und anhand dieser das erste Frequenzband FB1 bestimmt als dasjenige Frequenzband, dessen obere Bandgrenzfrequenz fL1 durch die unmittelbar unterhalb der erste Zielfrequenz tf1 gelegene Bandgrenzfrequenz gebildet wird. Wie oben beschrieben wird über das erste Frequenzband FB1 an der oberen Bandgrenzfrequenz fL1 ein Tiefpassfilter TP gelegt, und über das zweite Frequenzband FB2 an derselben Bandgrenzfrequenz fL1, welche also das zweite Frequenzband FB2 nach unten hin begrenzt, ein Hochpassfilter HP gelegt. Hierdurch wird der Überlapp OV1 zwischen dem ersten Frequenzband FB1 und dem zweiten Frequenzband FB2 verringert. Dadurch, dass die beiden besagten Filter TP, HP nur auf jeweils ein Frequenzband angewandt werden, ist die hierdurch gegebenenfalls erzeugte Latenz spektral auf die betreffenden Frequenzbänder beschränkt. Um die zusätzliche Latenz möglichst gering zu halten, wird bevorzugt nur eine komplexwertige Nullstelle (Filterordnung 1) eingefügt. Die Signalanteile des Audiosignals 42 in den Frequenzbändern oberhalb der oberen Bandgrenzfrequenz fL1 des ersten Frequenzbandes FB1, also in den Frequenzbändern ab FB2 an aufwärts, werden dann um einen konstanten Betrag verschoben.In FIG. 3 the frequency response of a filter bank 18 is plotted against a frequency f. The individual frequency bands FB have a non-negligible overlap OV with the respectively adjacent frequency band, where two immediately adjacent frequency bands define a band limit frequency fL0 to fL3, which is given by that frequency at which the magnitude frequency response of the two adjacent frequency bands is the same. According to step S1 of method 40 after FIG. 2 the first target frequency tf1 is now specified, and on the basis of this the first frequency band FB1 is determined as that frequency band whose upper band limit frequency fL1 is formed by the band limit frequency immediately below the first target frequency tf1. As described above, a low-pass filter TP is placed over the first frequency band FB1 at the upper band limit frequency fL1, and a high-pass filter HP is placed over the second frequency band FB2 at the same band limit frequency fL1, which therefore limits the second frequency band FB2 downwards. This reduces the overlap OV1 between the first frequency band FB1 and the second frequency band FB2. Due to the fact that the two said filters TP, HP are only applied to one frequency band each, the latency that may be generated as a result is limited spectrally to the relevant frequency bands. In order to keep the additional latency as low as possible, only one complex-valued zero (filter order 1) is preferably inserted. The signal components of the audio signal 42 in the frequency bands above the upper band limit frequency fL1 of the first frequency band FB1, ie in the frequency bands from FB2 upwards, are then shifted by a constant amount.

Ändert sich nach einer gewissen Zeit der akustische Rückkopplungspfad, welcher die akustische Rückkopplung g im Hörgerät 2 nach FIG. 1 bedingt, so wird die erste Zielfrequenz tf1 entsprechend zu einer an die Änderung angepasste zweiten Zielfrequenz tf2 aktualisiert. Nun wird überprüft, ob die zweite Zielfrequenz tf2 weiterhin der Bandgrenzfrequenz fL1 zischen dem ersten Frequenzband FB1 und dem zweiten Frequenzband FB2 entspricht, also ob die Bandgrenzfrequenz fL1 auch die unmittelbar unterhalb der zweiten Zielfrequenz tf2 gelegene Bandgrenzfrequenz bildet. In jenem Fall kann die Frequenzverschiebung unverändert weiter auf die Signalanteile bevorzugt aller Frequenzbänder ab dem zweiten Frequenzband FB2 an aufwärts angewandt werden (schraffierter Bereich).
auf die Signalanteile bevorzugt aller Frequenzbänder ab dem zweiten Frequenzband FB2 an aufwärts angewandt werden (schraffierter Bereich).
Changes after a certain time, the acoustic feedback path, which the acoustic feedback g in the hearing aid 2 after FIG. 1 conditionally, the first target frequency tf1 is updated according to a second target frequency tf2 adapted to the change. It is now checked whether the second target frequency tf2 still corresponds to the band limit frequency fL1 between the first frequency band FB1 and the second frequency band FB2, i.e. whether the band limit frequency fL1 also forms the band limit frequency immediately below the second target frequency tf2. In that case, the frequency shift can continue to be applied unchanged to the signal components, preferably of all frequency bands from the second frequency band FB2 upwards (shaded area).
preferably applied to the signal components of all frequency bands from the second frequency band FB2 upwards (shaded area).

Im vorliegenden Fall trifft dies jedoch nicht zu, die zweite Zielfrequenz liegt nun oberhalb der Bandgrenzfrequenz fL3, welche ein vom ersten Frequenzband verschiedenes Frequenzband nach oben hin zum unmittelbar benachbarten Frequenzband begrenzt. Das von oben durch die Bandgrenzfrequenz fL3 begrenzte Frequenzband wird nun festgelegt als drittes Frequenzband FB3, und nun die Frequenzverschiebung für Signalanteile bevorzugt aller Frequenzbänder oberhalb und ausschließlich des dritten Frequenzbandes FB3 in der bereits beschriebenen Weise, insbesondere unter Verwendung entsprechender Hochpass- bzw. Tiefpassfilter an der Bandgrenzfrequenz fL3, durchgeführt (kreuzweise schraffierter Bereich).In the present case, however, this is not the case; the second target frequency is now above the band limit frequency fL3, which limits a frequency band that differs from the first frequency band at the top to the immediately adjacent frequency band. The frequency band limited from above by the band limit frequency fL3 is now defined as the third frequency band FB3, and now the frequency shift for signal components preferably of all frequency bands above and excluding the third frequency band FB3 in the manner already described, in particular using appropriate high-pass or low-pass filters on the Band cutoff frequency fL3 (crosshatched area).

In FIG. 4 ist der Betragsfrequenzgang des ersten Frequenzbandes FB1 und des zweiten Frequenzbandes FB2 nach FIG. 3 an deren Bandgrenzfrequenz fL1 gegen eine Frequenz f aufgetragen. Die gepunkteten Linien zeigen dabei jeweils den Betragsfrequenzgang der Frequenzbänder FB1, FB2, wie er im Bereich der Bandgrenzfrequenz fL1 durch die übergeordnete Filterbank vorgegeben ist. Mittels eines Tiefpassfilters bzw. einer Hochpassfilters angewandt auf das erste Frequenzband bzw. das zweite Frequenzband lässt sich im Bereich der Bandgrenzfrequenz fL1 der Überlapp OV1 verringern (OV1', gestrichelte Linien). Werden nun hierbei ein Tiefpassfilter und ein Hochpassfilter mit unterschiedlichen, insbesondere asymmetrischen Filtercharakteristiken verwendet, so kann zusätzlich zum verringerten Überlapp OV1' auch die Bandgrenzfrequenz fL1 leicht zu einer angepassten Bandgrenzfrequenz fL1' verschoben werden, beispielsweise in Richtung der ersten Zielfrequenz.In FIG. 4 is the magnitude frequency response of the first frequency band FB1 and of the second frequency band FB2 FIG. 3 plotted at the band limit frequency fL1 against a frequency f. The dotted lines each show the absolute frequency response of the frequency bands FB1, FB2, as specified by the higher-level filter bank in the range of the band limit frequency fL1. By means of a low-pass filter or a high-pass filter applied to the first frequency band or the second frequency band, the overlap OV1 can be reduced in the range of the band limit frequency fL1 (OV1′, dashed lines). If a low-pass filter and a high-pass filter with different, in particular asymmetrical, filter characteristics are used here, then in addition to the reduced overlap OV1', the band limit frequency fL1 can also be shifted slightly to an adapted band limit frequency fL1', for example in the direction of the first target frequency.

BezugszeichenlisteReference List

11
Verfahren zur Unterdrückung einer RückkopplungMethod for suppressing feedback
22
Hörgeräthearing aid
44
Eingangswandlerinput converter
66
Schallsignalsound signal
88th
Eingangssignalinput signal
1010
Kompensationssignalcompensation signal
1212
elektrische Rückkopplungsschleifeelectrical feedback loop
1414
Zwischensignalintermediate signal
1616
Signalverarbeitungsignal processing
1818
Filterbankfilter bank
2020
verarbeitetes Signalprocessed signal
2222
Frequenzverzerrungfrequency distortion
2424
frequenzverzerrtes Signalfrequency distorted signal
2626
Synthesefilterbanksynthesis filter bank
2828
Ausgangssignaloutput signal
3030
Ausgangswandleroutput converter
3232
Ausgangsschallsignaloutput sound signal
3434
adaptive Filteradaptive filters
4040
Verfahren zur FrequenzverzerrungMethod of frequency distortion
4242
Audiosignalaudio signal
4444
Signalanteilsignal portion
4646
Frequenzverschiebungfrequency shift
FBFB
Frequenzbandfrequency band
FB1FB1
erstes Frequenzbandfirst frequency band
FB2FB2
zweites Frequenzbandsecond frequency band
FB3FB3
drittes Frequenzbandthird frequency band
fL0-fL3fL0-fL3
Bandgrenzfrequenzband cutoff frequency
fL1'fL1'
angepasste Bandgrenzfrequenzadjusted band cutoff frequency
gG
akustische Rückkopplungacoustic feedback
HPHB
Hochpassfilterhigh pass filter
OVOV
Überlappoverlap
OV1OV1
Überlappoverlap
OV1'OV1'
angepasster Überlappadjusted overlap
S1-S5S1-S5
Verfahrensschrittprocess step
TPTP
Tiefpassfilterlow pass filter
ΔΔ
konstanter Frequenzbetragconstant frequency magnitude

Claims (12)

  1. A method (40) for frequency distortion (22) of an audio signal (42) in a signal processing process in a hearing aid (2),
    wherein the audio signal (42) is divided into a plurality of predetermined frequency bands (FB, FB1, FB2, FB3) by means of a filter bank, wherein each two directly adjacent frequency bands (FB1, FB2, FB3) are determining a band limit frequency (fL0-fL3),
    wherein signal components (44) in the individual frequency bands (FB, FB1, FB2, FB3) are amplified in a frequency band-specific manner,
    wherein at first, a target frequency (tf1) for a boundary between two frequency ranges with different distortion (22) of the frequencies is determined on the basis of the audio signal (42), said target frequency (tf1) being determined as a critical frequency which is given by an acoustic feedback (g) to be suppressed at the hearing aid (2), and wherein a first frequency band (FB1) and a second frequency band (FB2) lying directly above the first frequency band (FB1) are determined on the basis of the target frequency (tf1),
    wherein the first frequency band (FB1) is being determined as the frequency band with its upper band limit frequency being formed by the band limit frequency (fL1) located directly below the target frequency (tf1),
    wherein to signal components (44) in the first frequency band (FB1), it is applied a different distortion (22) of the frequencies than to signal components (44) in the second frequency band (FB2), thereby generating a frequency-distorted signal (24), and
    wherein the frequency band-specific amplification of the signal components (44) in the individual frequency bands (FB, FB1, FB2, FB3) takes place between the splitting of the audio signal into the frequency bands (FB, FB1, FB2, FB3) and the respective distortion (22) of the frequencies.
  2. The method (40) according to claim 1,
    wherein at an instant of time after the determination of the first frequency band (FB1), a third frequency band (FB3) different from the first frequency band (FB1) is determined from the audio signal (42), and
    wherein to signal components (44) in the third frequency band (FB3), it is applied a different distortion (22) of the frequencies than to signal components (44) in a frequency band directly adjacent to the third frequency band (FB3).
  3. The method (40) according to claim 2,
    wherein, in order to determine the third frequency band (FB3), at first a second target frequency (tf2) different from the first target frequency (tf1) is determined on the basis of the audio signal (42), and wherein the third frequency band (FB3) is determined on the basis of the second target frequency (tf2).
  4. The method (40) according to claim 3,
    wherein it is checked whether the second target frequency (tf2) lies directly above the upper band limit frequency (fL3) of a further frequency band (FB3) different from the first frequency band (FB1),
    wherein the further frequency band is being determined as the third frequency band (FB3) in dependence on this check, and
    wherein to the signal components (44) in the third frequency band (FB3), it is applied a different distortion (22) of the frequencies than to the signal components (44) of the frequency band lying directly above the third frequency band (FB3).
  5. The method (40) according to one of the preceding claims,
    wherein respective the distortion (22) of frequencies is given by a shift (46) by an amount (Δ) which is constant over the frequency and/or a frequency value which is modulated as a value of a time-dependent function.
  6. The method (40) according to one of the preceding claims,
    wherein a change in the distortion (22) of the frequencies to be applied to the signal component (44) in a frequency band (FB2) is always carried out in such a way that, as a result of the change in the frequency distortion, the phase of the frequency-distorted signal component (44) does not jump or jumps only to an extent which is below a limit value.
  7. The method (40) according to any one of the preceding claims,
    wherein a change in the distortion (22) of the frequencies to be applied to the signal component (44) in a frequency band (FB2) is made only in a zero crossing or in a predetermined vicinity of a zero crossing of a phase modification of the frequency-distorted signal component (44) correlated with the distortion.
  8. The method (40) according to any one of the preceding claims,
    wherein the first frequency band (FB1) is additionally filtered with a low-pass filter (TP), and/or
    wherein the second frequency band (FB2) is additionally filtered with a high-pass filter (HP).
  9. The method (40) according to claim 8,
    wherein the band limit frequency (fL1) between the first frequency band (FB1) and the second frequency band (FB2) is shifted from the value predetermined by the division of the frequency bands (FB, FB1, FB2, FB3) towards the first target frequency (tf1) by means of the filter characteristic of the low-pass filter (TP) and/or by means of the filter characteristic of the high-pass filter (HP).
  10. The method (40) according to any one of the preceding claims,
    wherein the distortion (22) of frequencies is applied only to signal portions (44) of frequency bands (FB2, FB3) on one side of the band limit frequency (fL1) between the first frequency band (FB1) and the second frequency band (FB2).
  11. A method (1) for suppressing acoustic feedback (g) in a hearing aid (2), wherein an input transducer (4) of the hearing aid (2) generates an input signal (8) from a sound signal (6) of the environment,
    wherein an intermediate signal (14) is generated on the basis of the input signal (8), said intermediate signal (14) being fed to a signal processing unit (16) with a filter bank (18) for frequency-band splitting of the intermediate signal (14),
    wherein an output signal (28) is generated from a frequency-distorted signal (24), said output signal (28) being converted into an output sound signal (32) by an output transducer (30) of the hearing aid (2),
    wherein acoustic feedback (g) occurring in the hearing aid (2) due to coupling of the output sound signal (32) into the input transducer (4) is suppressed by means of the frequency-distorted signal (24), and
    wherein the method (40) for frequency distortion (22) according to one of the preceding claims is applied to the intermediate signal (14), thereby producing said frequency-distorted signal (24).
  12. A hearing aid (2) comprising an input transducer (4) for generating an input signal (8) from an ambient sound signal (6), a signal processing unit (16) having a filter bank (18) for dividing an audio signal (42) derived from the input signal (8) on the basis of the input signal (8), and a control unit adapted to perform the method according to any one of claims 1 to 10.
EP18154220.0A 2017-03-06 2018-01-30 Method for frequency distortion of an audio signal and a hearing aid carrying out this method Active EP3373601B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017203631.1A DE102017203631B3 (en) 2017-03-06 2017-03-06 Method for frequency distortion of an audio signal

Publications (2)

Publication Number Publication Date
EP3373601A1 EP3373601A1 (en) 2018-09-12
EP3373601B1 true EP3373601B1 (en) 2023-05-31

Family

ID=61094356

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18154220.0A Active EP3373601B1 (en) 2017-03-06 2018-01-30 Method for frequency distortion of an audio signal and a hearing aid carrying out this method

Country Status (6)

Country Link
US (1) US10397712B2 (en)
EP (1) EP3373601B1 (en)
JP (1) JP6622830B2 (en)
CN (1) CN108540907B (en)
DE (1) DE102017203631B3 (en)
DK (1) DK3373601T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3783919B1 (en) * 2019-08-22 2023-04-26 Sonova AG Adjusting treble gain of hearing device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094265A (en) * 2003-09-16 2005-04-07 Victor Co Of Japan Ltd Audio player
DE102009018812B4 (en) 2009-04-24 2015-05-28 Siemens Medical Instruments Pte. Ltd. Method for operating a hearing device and hearing device with a crossover network
US8494199B2 (en) 2010-04-08 2013-07-23 Gn Resound A/S Stability improvements in hearing aids
JP2014204213A (en) 2013-04-03 2014-10-27 パイオニア株式会社 Digital filter and filter characteristic modification method
EP2988529B1 (en) * 2014-08-20 2019-12-04 Sivantos Pte. Ltd. Adaptive separation frequency in hearing aids
DE102015204010B4 (en) * 2015-03-05 2016-12-15 Sivantos Pte. Ltd. Method for suppressing a noise in an acoustic system
DE102015204253B4 (en) 2015-03-10 2016-11-10 Sivantos Pte. Ltd. Method for frequency-dependent noise suppression of an input signal and hearing aid
DE102015216822B4 (en) * 2015-09-02 2017-07-06 Sivantos Pte. Ltd. A method of suppressing feedback in a hearing aid

Also Published As

Publication number Publication date
US10397712B2 (en) 2019-08-27
CN108540907A (en) 2018-09-14
EP3373601A1 (en) 2018-09-12
CN108540907B (en) 2020-09-01
DK3373601T3 (en) 2023-08-28
DE102017203631B3 (en) 2018-05-17
JP2018148562A (en) 2018-09-20
US20180255407A1 (en) 2018-09-06
JP6622830B2 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
DE102008039276B4 (en) Sound processing apparatus, apparatus and method for controlling the gain and computer program
EP1853089B1 (en) Method for elimination of feedback and for spectral expansion in hearing aids.
EP2244491B1 (en) Method for operating a hearing aid with feedback suppression and hearing aid with a diplexer
DE102006027673A1 (en) Signal isolator, method for determining output signals based on microphone signals and computer program
EP3197181B1 (en) Method for reducing latency of a filter bank for filtering an audio signal and method for low latency operation of a hearing system
EP3565270B1 (en) Method for noise suppression in an audio signal
DE102006047986A1 (en) Processing an input signal in a hearing aid
EP3139633A1 (en) Method for suppressing feedback in a hearing aid
EP3355592B1 (en) Method for operating a binaural hearing aid system
EP3373601B1 (en) Method for frequency distortion of an audio signal and a hearing aid carrying out this method
EP2360945B1 (en) Hearing aid with frequency shift and accompanying method
EP1406469B1 (en) Feedback compensator in acoustic amplifying systems, hearing-aid, method for feedback compensation and use of said method in hearing-aids
EP3373599B1 (en) Method for frequency warping of an audio signal and hearing aid operating according to this method
EP3068141A1 (en) Method for frequency-dependent noise suppression in an input signal
EP3340656B1 (en) Method for operating a hearing aid
EP2276272A1 (en) Hearing aid and method for suppressing feedback
DE10310580A1 (en) Device and method for adapting hearing aid microphones
DE102019123971A1 (en) ACTIVE NOISE COMPENSATION
DE102019111150A1 (en) Audio system and method for controlling an audio system
EP2437521B1 (en) Method for frequency compression with harmonic adjustment and corresponding device
EP1929465A1 (en) Method for the active reduction of noise, and device for carrying out said method
EP1351550A1 (en) Method for adapting a signal amplification in a hearing aid and a hearing aid
DE4445983C2 (en) Noise reduction methods and apparatus for performing the methods
DE102018207780B3 (en) Method for operating a hearing aid
EP3048813B1 (en) Method and device for suppressing noise based on inter-subband correlation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190312

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190531

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 27/00 20060101ALN20221202BHEP

Ipc: H04R 25/00 20060101AFI20221202BHEP

INTG Intention to grant announced

Effective date: 20221219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1571730

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230824

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231002

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240124

Year of fee payment: 7

Ref country code: CH

Payment date: 20240202

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

26N No opposition filed

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240124

Year of fee payment: 7

Ref country code: DK

Payment date: 20240123

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240130