EP3372725A1 - Système et procédé de production et de récupération d'énergie électrique à partir d'une machine à laver - Google Patents

Système et procédé de production et de récupération d'énergie électrique à partir d'une machine à laver Download PDF

Info

Publication number
EP3372725A1
EP3372725A1 EP17159959.0A EP17159959A EP3372725A1 EP 3372725 A1 EP3372725 A1 EP 3372725A1 EP 17159959 A EP17159959 A EP 17159959A EP 3372725 A1 EP3372725 A1 EP 3372725A1
Authority
EP
European Patent Office
Prior art keywords
washing
magnetic field
induction coil
tube
washing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17159959.0A
Other languages
German (de)
English (en)
Other versions
EP3372725B1 (fr
Inventor
Burhan GULBAHAR
Gorkem MEMISOGLU
Mehmet Abbak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestel Elektronik Sanayi ve Ticaret AS
Ozyegin Universitesi
Original Assignee
Vestel Elektronik Sanayi ve Ticaret AS
Ozyegin Universitesi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestel Elektronik Sanayi ve Ticaret AS, Ozyegin Universitesi filed Critical Vestel Elektronik Sanayi ve Ticaret AS
Priority to EP17159959.0A priority Critical patent/EP3372725B1/fr
Priority to TR2017/04553A priority patent/TR201704553A2/tr
Publication of EP3372725A1 publication Critical patent/EP3372725A1/fr
Application granted granted Critical
Publication of EP3372725B1 publication Critical patent/EP3372725B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/20Arrangements for water recovery

Definitions

  • the embodiments herein generally relate to an electrical energy harvesting system, and, more particularly, a system and method for generating and harvesting electrical energy from a washing machine.
  • WO2010111376 details about an energy harvesting system that are described in electro active materials such as dielectric elastomers.
  • the energy harvesting system is utilized to absorb the shocks, bumps, and vibrations from the road or path to generate energy, which is captured and stored for use in the vehicle to provide additional power for any number of uses.
  • WO2015092646 discloses a washing or washing/drying machine comprising an electric current generator.
  • the washing and drying machine comprising a frame, an assembly constrained to frame, energy recovery means configured to transform kinetic energy in electrical energy.
  • none of the conventional used devices disclosed a method that utilizes ordinary movements of a washing machine.
  • an embodiment herein provides a system for generating and harvesting electrical energy from a washing machine.
  • the system includes a permanent magnet, an induction coil, and a wireless charging device.
  • the permanent magnet placed around a washing-tube of the washing machine.
  • the permanent magnet generates a magnetic field.
  • the induction coil is placed inside of the washing-tube of the washing machine.
  • the induction coil is configured to generate an induced current when the washing-tube rotates in the magnetic field of the permanent magnet.
  • the wireless charging device is operatively coupled to the induction coil.
  • the wireless charging devices comprises an inductive antenna that configured to transfer the induced current generated in the induction coil to a storage device.
  • the permanent magnet is coupled to the washing machine in a way that the magnetic field of the permanent magnet does not affect any electronics circuits of the washing machine.
  • the permanent magnet is adapted to be adjusted in terms of size, magnitude of the magnetic field, and the field pattern.
  • the permanent magnet produces a magnetic field and magnetic lines of the magnetic field penetrate through the induction coil.
  • the permanent magnet is optimized to neglect a magnetic effect or minimize the magnetic effect to a negligible limit on the normal function of the washing machine.
  • more than one permanent magnet is placed around the washing-tube of the washing machine.
  • the induction coil cuts the magnetic field of the permanent magnet and the induction coil experiences a changing magnetic field.
  • the changing magnetic field induces the induced current in the induction coil and the induced current is transferred to the wireless charging device.
  • the wireless charging device is configured to store the induced current in a storage device.
  • a force is generated in the induction coil due to the changing magnetic field and the force is diminished by absorbing the force by the highly complicated aqueous medium or objects inside the washing-tube of the washing machine.
  • the system further comprises a mobile magnet that is adapted to couple inside the washing-tube of the washing machine.
  • the induction coil is coupled to an inner wall the washing tube that is around the mobile magnet.
  • the induction coil cuts a magnetic field of the mobile magnet
  • the induction coil experiences a changing magnetic field and the changing magnetic field produces the induced current.
  • the washing-tube is designed to minimize a magnetic force produced inside the washing-tube by the mobile magnet and reduces the electrical power required to rotate the washing-tube of the washing machine.
  • a method for generating and harvesting electrical energy from a washing machine using a permanent magnet includes following steps: (i) the permanent magnet is coupled around a washing-tube of the washing machine; (ii) an induction coil is coupled inside of the washing-tube of the washing machine; (iii) the washing-tube is rotated in a magnetic field of the permanent magnet to generate a changing magnetic field in the induction coil; (iv) an induced current is induced in an inductive antenna of a wireless charging device by the changing magnetic field of the induction coil; and (v) the induced current is transferred to a storage device by the wireless charging device.
  • the permanent magnet produces a magnetic field.
  • the wireless charging device is operatively coupled to the induction coil.
  • the method further includes steps of: (i) the induced current is converted into the direct current using a rectifier of the wireless charging device; and (ii) the direct current is transmitted to the storage device using a transmitter coil of the wireless charging device.
  • the storage device is configured to store the direct current received from the wireless charging device.
  • a method for generating and harvesting electrical energy from a washing machine using a mobile magnet includes following steps: (i) the mobile magnet is coupled in a centre of a washing-tube of the washing machine; (ii) an induction coil is coupled inside of the washing-tube of the washing machine; (iii) the washing-tube is rotated in a magnetic field of the mobile magnet to generate a changing magnetic field in the induction coil; (iv) an induced current is induced in an inductive antenna of the wireless charging device by the changing magnetic field of the induction coil; and (v) the induced current is transferred to a storage device by the wireless charging device.
  • the mobile magnet produces the magnetic field.
  • a wireless charging device is operatively coupled to the induction coil.
  • the method further includes steps of: (i) the induced current is converted into the direct current using a rectifier of the wireless charging device; and (ii) the direct current is transmitted to the storage device using a transmitter coil of the wireless charging device.
  • the storage device is configured to store the direct current received from the wireless charging device.
  • FIGS. 1 through 5 where similar reference characters denote corresponding features consistently throughout the figures, there are shown preferred embodiments.
  • FIG. 1 illustrates a perspective view of a system 100 to generate and harvest electrical energy from a washing machine 106 by a permanent magnet 102 according to an embodiment herein.
  • the system 100 includes the permanent magnet 102, a washing-tube 104, the washing machine 106, an induction coil 108, and a wireless charging device 112.
  • the permanent magnet 102 is coupled around the washing-tube 104 of the washing machine 106.
  • the permanent magnet 102 produces a magnetic field 110 in between the North and South Pole of the permanent magnet 102.
  • the induction coil 108 is coupled inside of the washing-tube of the washing machine 106.
  • the induction coil 108 is configured to generate an induced current when the washing-tube 104 rotates in the magnetic field 110 of the permanent magnet 102.
  • the wireless charging device 112 is operatively coupled to the induction coil 108.
  • the wireless charging device 112 includes an inductive antenna.
  • the induction coil 108 cuts the magnetic field 110 of the permanent magnet 102 and the induction coil 108 experience a changing magnetic field.
  • the changing magnetic field induces the induced current in the induction coil 108.
  • the inductive antenna of the wireless charging device 112 is configured to transmit and store the induced current to a storage device.
  • the storage device is a battery package.
  • the battery is coupled inside the wireless charging device 112.
  • the permanent magnet 102 is adapted to be adjusted in terms of size and the magnitude of the magnetic field 110 and the field pattern. In another embodiment, the permanent magnet 102 is adapted to produce the magnetic field and the magnetic lines of the magnetic field that penetrate through the induction coil 108. In an embodiment, the permanent magnet 102 is coupled to the washing machine 106 in a way that the magnetic field 110 of the permanent magnet 102 does not affect any electronics circuits of the washing machine 106. In another embodiment, the permanent magnet 102 is optimized to neglect a magnetic effect or minimize the magnetic effect to a negligible limit on the normal functioning of the washing machine 106. In another embodiment, the permanent magnet 102 is replaced by more than one permanent magnet that is placed around the washing machine 106.
  • the force is diminished by absorbing the force by the highly complicated aqueous medium or objects inside the washing-tube 104 of the washing machine 106.
  • the highly complicated aqueous medium is water.
  • the wireless charging device 112 is configured to charge any inductive charging devices including, but not limited to, wearable sensors or water resistant electronic devices.
  • FIG. 2 illustrates a perspective view of a system 200 for generating electrical energy from the washing machine 106 using a mobile magnet 202 of FIG. 1 according to an embodiment herein.
  • the system 200 includes the mobile magnet 202, the induction coil 108, and the wireless charging device (not shown in FIG. 2 ).
  • the mobile magnet 202 is coupled inside of the washing-tube 104 of the washing machine 106.
  • the mobile magnet 202 produces a magnetic field 204 inside the washing-tube 104 of the washing machine 106.
  • the induction coil 108 is coupled to an inner wall the washing tube 104 that is around the mobile magnet 202.
  • the induction coil 108 is configured to generate an induced current when the washing-tube 104 rotates in the magnetic field 204 of the mobile magnet 202.
  • the wireless charging device is coupled to the induction coil 108.
  • the induction coil 108 cuts the magnetic field 204 of the mobile magnet 202 and the induction coil 108 experience a changing magnetic field.
  • the changing magnetic field induces the induced current in the induction coil 108.
  • the inductive antenna of the wireless charging device is configured to transmit and store the induced current to the storage device.
  • the storage device is a battery package.
  • the washing-tube 104 is designed to minimize a magnetic force produced inside the washing-tube 104 by the mobile magnet 202 and reduce the electrical power required to rotate the washing-tube 104 of the washing machine 106.
  • the mobile magnet 202 is configured with higher magnetic fields.
  • a charging rate of the wireless charging device is increased according to the increase in rotation of the washing-tube 104 of the washing machine 1063.
  • the system 200 is configured to generate and harvest electrical energy from washing machines, drying machines or toys.
  • FIG. 3 illustrates a block diagram 300 of the wireless charging device of the FIGS. 1 and 2 according to an embodiment herein.
  • the block diagram includes an AC-DC converter 302, an oscillator 304, a transmitter coil 306, a receiver coil 308, a rectifier 310, a DC voltage regulator 312, and a storage battery 314.
  • the AC-DC converter 302 is configured to convert the induced current into the direct current (DC).
  • the induced current is an alternating current (AC).
  • the oscillator 304 is configured to generate an AC power signal with a frequency signal based on the input DC.
  • the frequency signal is a carrier signal.
  • the transmitter coil 306 is configured to transmit the AC signal and the generated frequency signal to the receiver coil 308.
  • the transmitter coil 306 is the inductive antenna. In one embodiment, the transmitter coil 306 and the receiver coil 308 is magnetically coupled. In one embodiment, a power amplifier is coupled to the transmitter coil 306 to amplify the frequency signal to supply adequate power to the receiver coil. The receiver coil 308 is configured to receive the AC power signal and transmits to the rectifier 310. The rectifier 310 is configured to convert the received AC power signal into a DC power signal. In one embodiment, a filter is coupled to the rectifier 310 to filter any AC component in the converted DC power signal. The DC-DC regulator 312 is configured to generate a DC voltage from the DC power signal and store in the storage batter 314.
  • FIG. 4 is a flow diagram 400 illustrating a method for generating and harvesting electrical energy from a washing machine 106 using a permanent magnet 102 of FIG. 1 according to an embodiment herein.
  • the permanent magnet 102 is coupled around a washing-tube 104 of the washing machine 106.
  • the permanent magnet 102 produces a magnetic field 110.
  • an induction coil 108 is coupled inside of the washing-tube 104 of the washing machine 106.
  • a wireless charging device is operatively coupled to the induction coil 108.
  • the washing-tube 104 is rotated in the magnetic field 110 of the permanent magnet 102 to generate a changing magnetic field in the induction coil 108.
  • an induced current is induced in an inductive antenna of the wireless charging device by the changing magnetic field of the induction coil 108.
  • the induced current is transferred to a storage device by the wireless charging device.
  • the method further includes steps of: (i) the induced current is converted into the direct current using a rectifier of the wireless charging device; and (ii) the direct current is transmitted to the storage device using a transmitter coil of the wireless charging device.
  • the storage device is configured to store the direct current received from the wireless charging device.
  • FIG. 5 is a flow diagram 500 illustrating a method for generating and harvesting electrical energy from a washing machine 106 using a mobile magnet 202 of FIG. 2 according to an embodiment herein.
  • the mobile magnet 202 is coupled in a centre of a washing-tube 104 of the washing machine 106.
  • the mobile magnet 202 produces a magnetic field 204.
  • an induction coil 108 is coupled inside of the washing-tube 104 of the washing machine 106.
  • a wireless charging device is operatively coupled to the induction coil 108.
  • the washing-tube 104 is rotated in the magnetic field 204 of the mobile magnet 202 to generate a changing magnetic field in the induction coil 108.
  • an induced current is induced in an inductive antenna of the wireless charging device by the changing magnetic field of the induction coil 108.
  • the induced current is transferred to a storage device by the wireless charging device.
  • the method further includes steps of: (i) the induced current is converted into the direct current using a rectifier of the wireless charging device; and (ii) the direct current is transmitted to the storage device using a transmitter coil of the wireless charging device.
  • the storage device is configured to store the direct current received from the wireless charging device.
  • the invention provides a system for generating and harvesting electrical energy from a washing machine.
  • the system includes a permanent magnet, an induction coil, and a wireless charging device.
  • the permanent magnet placed around a washing-tube of the washing machine.
  • the permanent magnet generates a magnetic field.
  • the induction coil is placed inside of the washing-tube of the washing machine.
  • the induction coil is configured to generate an induced current when the washing-tube rotates in the magnetic field of the permanent magnet.
  • the wireless charging device is operatively coupled to the induction coil.
  • the wireless charging devices comprises an inductive antenna that configured to transfer the induced current generated in the induction coil to a storage device.
  • the permanent magnet is coupled to the washing machine in a way that the magnetic field of the permanent magnet does not affect any electronics circuits of the washing machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)
EP17159959.0A 2017-03-08 2017-03-08 Système et procédé de production et de récupération d'énergie électrique à partir d'une machine à laver Active EP3372725B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17159959.0A EP3372725B1 (fr) 2017-03-08 2017-03-08 Système et procédé de production et de récupération d'énergie électrique à partir d'une machine à laver
TR2017/04553A TR201704553A2 (tr) 2017-03-08 2017-03-27 Bir çamaşır makinesinden elektrik enerjisi üretmek ve hasat etmek için sistem ve yöntem.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17159959.0A EP3372725B1 (fr) 2017-03-08 2017-03-08 Système et procédé de production et de récupération d'énergie électrique à partir d'une machine à laver

Publications (2)

Publication Number Publication Date
EP3372725A1 true EP3372725A1 (fr) 2018-09-12
EP3372725B1 EP3372725B1 (fr) 2023-10-18

Family

ID=58266915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17159959.0A Active EP3372725B1 (fr) 2017-03-08 2017-03-08 Système et procédé de production et de récupération d'énergie électrique à partir d'une machine à laver

Country Status (2)

Country Link
EP (1) EP3372725B1 (fr)
TR (1) TR201704553A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111908A (zh) * 2019-06-03 2020-12-22 青岛海尔洗衣机有限公司 一种洗衣机及其控制方法
CN112609400A (zh) * 2020-12-14 2021-04-06 南京创维家用电器有限公司 一种支持无线充电的洗衣机
CN114717800A (zh) * 2021-01-05 2022-07-08 青岛海尔洗衣机有限公司 一种洗衣机及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010111376A1 (fr) 2009-03-25 2010-09-30 Nikhil Bhat Système de collecte d'énergie
US20120192362A1 (en) * 2010-03-15 2012-08-02 Dong Soo Lee Washing machine and control method thereof
WO2013022164A2 (fr) * 2011-08-10 2013-02-14 Lg Electronics Inc. Machine à laver
WO2013087774A1 (fr) * 2011-12-16 2013-06-20 BSH Bosch und Siemens Hausgeräte GmbH Appareil ménager comprenant un module d'alimentation en énergie et un module de consommation d'énergie
WO2015092646A1 (fr) 2013-12-18 2015-06-25 Indesit Company S.P.A, Lave-linge ou lave-linge/sèche-linge comprenant un générateur de courant électrique
DE102014013717A1 (de) * 2014-09-16 2016-03-17 Diehl Ako Stiftung & Co. Kg Elektronisches Haushaltsgerät und Verfahren zum Betreiben eines elektronischen Haushaltsgeräts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010111376A1 (fr) 2009-03-25 2010-09-30 Nikhil Bhat Système de collecte d'énergie
US20120192362A1 (en) * 2010-03-15 2012-08-02 Dong Soo Lee Washing machine and control method thereof
WO2013022164A2 (fr) * 2011-08-10 2013-02-14 Lg Electronics Inc. Machine à laver
WO2013087774A1 (fr) * 2011-12-16 2013-06-20 BSH Bosch und Siemens Hausgeräte GmbH Appareil ménager comprenant un module d'alimentation en énergie et un module de consommation d'énergie
WO2015092646A1 (fr) 2013-12-18 2015-06-25 Indesit Company S.P.A, Lave-linge ou lave-linge/sèche-linge comprenant un générateur de courant électrique
DE102014013717A1 (de) * 2014-09-16 2016-03-17 Diehl Ako Stiftung & Co. Kg Elektronisches Haushaltsgerät und Verfahren zum Betreiben eines elektronischen Haushaltsgeräts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111908A (zh) * 2019-06-03 2020-12-22 青岛海尔洗衣机有限公司 一种洗衣机及其控制方法
CN112111908B (zh) * 2019-06-03 2023-08-08 青岛海尔洗衣机有限公司 一种洗衣机及其控制方法
CN112609400A (zh) * 2020-12-14 2021-04-06 南京创维家用电器有限公司 一种支持无线充电的洗衣机
CN114717800A (zh) * 2021-01-05 2022-07-08 青岛海尔洗衣机有限公司 一种洗衣机及其控制方法

Also Published As

Publication number Publication date
EP3372725B1 (fr) 2023-10-18
TR201704553A2 (tr) 2018-09-21

Similar Documents

Publication Publication Date Title
US10097041B2 (en) Wireless power transmission device and control method therefor
EP3372725A1 (fr) Système et procédé de production et de récupération d'énergie électrique à partir d'une machine à laver
US9847675B2 (en) Power receiving device and power feeding system
JP6088147B2 (ja) 給電システムの動作方法
US10615849B2 (en) Power receiving device and power feeding system
US20180054078A1 (en) Device having wireless charging function and wireless charging system
KR20130039031A (ko) 무선 전력 송신 장치, 무선 전력 수신 장치 그리고 무선 전력 송수신 장치
CN103166293A (zh) 无线充电式便携式电子装置及无线充电系统
KR20160090420A (ko) 무선 전력 송수신 장치
KR101744590B1 (ko) 수직형 전력 전송 방식의 무선 전력 전송 및 충전 장치
KR20090046790A (ko) 에너지를 저장하기 위한 시스템 및 방법
JP2010284066A (ja) 通信装置、通信端末および通信システム
US10784043B2 (en) Wireless power transmission device, wireless power reception device, and wireless charging system
KR101839527B1 (ko) 고효율 무선 전력 전송을 위한 부하 전류에 따른 정류 전압 가변 방법
US11264836B2 (en) Wireless kinetic charger
US10236118B1 (en) Wireless energy coil arrangement
KR20230098501A (ko) 무선 전력 전송장치, 무선 전력 수신장치 및 무선 충전 시스템
US20160099605A1 (en) Systems and devices for wireless power charging
KR20160086685A (ko) 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
JP5801240B2 (ja) 共鳴型無線電力伝送装置
JP2006304010A (ja) 無線による信号発信システム、および発信装置
Sharma et al. Comparative implication and analysis of inductive & capacitive wireless power and data transfer in usb
CN118118058A (zh) 一种近场通信电路及电子设备
KR20170021479A (ko) 무선 전력 전송 장치
JPS62133829A (ja) 信号伝送装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190221

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210622

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017075383

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231018

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1622557

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240119

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240118

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 8

Ref country code: GB

Payment date: 20240320

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240118

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240304

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017075383

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240719