EP3371509B1 - Light module - Google Patents

Light module Download PDF

Info

Publication number
EP3371509B1
EP3371509B1 EP16790975.3A EP16790975A EP3371509B1 EP 3371509 B1 EP3371509 B1 EP 3371509B1 EP 16790975 A EP16790975 A EP 16790975A EP 3371509 B1 EP3371509 B1 EP 3371509B1
Authority
EP
European Patent Office
Prior art keywords
light
primary
wavelength converter
safety guard
light module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16790975.3A
Other languages
German (de)
French (fr)
Other versions
EP3371509A1 (en
Inventor
Ernst-Olaf Rosenhahn
Christian Buchberger
Martin Licht
Joachim Knittel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP3371509A1 publication Critical patent/EP3371509A1/en
Application granted granted Critical
Publication of EP3371509B1 publication Critical patent/EP3371509B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/70Prevention of harmful light leakage

Definitions

  • the invention relates to a light module for a motor vehicle headlight according to the preamble of claim 1.
  • laser light sources for example semiconductor laser diodes
  • high radiation outputs can be achieved.
  • laser light sources usually emit almost monochromatic, coherent and strongly collimated laser light, which in this form cannot be used directly as the emitted light of the lighting device.
  • Laser light sources are therefore mostly used in vehicle lighting with a wavelength converter.
  • the monochromatic, coherent laser light is converted into diffuse and largely incoherent white light.
  • light modules with a laser light source and a photoluminescence converter are known.
  • the photoluminescence converter has a photoluminescent dye that emits light with different wavelengths when excited to photoluminescence by means of laser light.
  • the secondary light distribution achieved in this way includes the converted light and possibly also scattered portions of the incident light, and can therefore be used for the purposes of vehicle lighting.
  • the wavelength converter is of relevance to safety, since unconverted laser light is potentially dangerous with the typically high radiation power of laser light sources.
  • the wavelength converter If the wavelength converter is damaged, there may be a risk of strongly collimated laser beams emerging from the lighting device.
  • a detection device for detecting the radiation intensity is provided. Disadvantages of these safety devices are that they require additional optical and electronic components in order to detect the radiation intensity.
  • a control device is required in order to switch off the laser light source if the detected intensity exceeds a safety limit value.
  • a safety device in which a screen is arranged on an emitting device or in the beam path between the photoluminescent element and the emitting optics.
  • This diaphragm must be precisely adjusted in relation to the photoluminescent element and the laser light source. In addition, it must be structurally ensured that the diaphragm does not inadvertently change its position.
  • a light module for a motor vehicle headlight is known with a laser light source, a wavelength converter, a radiation optics device and a support component for holding the wavelength converter.
  • a light guide is provided by means of which the laser light is coupled directly into the wavelength converter. Therefore, a primary light bundle in the actual sense, with respect to which the wavelength converter is arranged, is not provided.
  • a light module with a laser light source, a wavelength converter and an optical emission device is also known, embodiments with and without a light guide being disclosed.
  • the wavelength converter is followed by a UV mirror which is intended to reflect non-wavelength-converted light back onto the wavelength converter.
  • a design or alignment of the mirror in relation to a primary light beam is not apparent.
  • a wavelength converter is provided with a hole through which a direct light component of the primary light beam is radiated.
  • the present invention is based on the object of avoiding the risk of laser light emerging from a motor vehicle lighting device in a reliable and robust manner.
  • a light module with the features of claim 1.
  • a light module is understood to be the actual light-emitting structural unit of a motor vehicle lighting device.
  • the object is also achieved by a motor vehicle lighting device with the features of the light module described.
  • the light module comprises a laser light source for emitting a primary light bundle in a primary solid angle area around a primary emission direction starting from the laser light source. Furthermore, a wavelength converter is provided, which is arranged in such a way that the primary light bundle that can be emitted with the laser light source strikes the wavelength converter.
  • the wavelength converter is designed in such a way that a secondary light distribution with in particular polychromatic or white light can be emitted by the incident primary light bundle, in that at least a portion of the primary light bundle is converted from laser light, e.g. using photoluminescence, into light with a different wavelength.
  • the secondary light distribution is emitted in particular in a secondary solid angle range.
  • the emission of the secondary light distribution from the wavelength converter occurs in particular diffuse and largely undirected.
  • the wavelength converter has the emission characteristics of a Lambert radiator after excitation by the primary light beam.
  • the secondary solid angle range is significantly larger than the primary solid angle range.
  • the light module further comprises an emission optics device (e.g. projection lens, deflecting reflector) for converting the secondary light distribution into an emission light distribution of the light module.
  • the emitted light distribution is concentrated e.g. around a main emission direction which, when installed in a motor vehicle, points e.g. in the direction of travel.
  • the light module also includes a support component for holding the wavelength converter.
  • the carrier component has a safety bracket which, viewed from the wavelength converter, covers the primary solid angle area around the primary emission direction.
  • the following beam path results in the light module:
  • a primary light bundle (laser light) runs essentially in the primary solid angle range around the primary emission direction.
  • the primary light beam emitted by the laser light source normally hits the wavelength converter.
  • the wavelength converter converts the coherent primary light bundle into a usable secondary light distribution from diffuse, largely incoherent white light.
  • the light beams of the secondary light distribution impinge on the emitting optics device and are directed by this in the, preferably essentially around one main emission direction of the light module concentrated, radiated light distribution reshaped (ie deflected and / or reflected and / or projected).
  • the wavelength converter therefore acts as the actual light source, the secondary light distribution of which essentially no longer exhibits the hazard potential of laser light. In normal operation, the wavelength converter thus ensures that the potentially dangerous laser light does not reach the emitted light distribution directly.
  • the wavelength converter is not arranged in the beam path of the primary light bundle (e.g. broken) due to mechanical influences, an accident or a construction fault
  • the laser light of the primary light bundle is suppressed by the safety bar on the carrier component of the wavelength converter.
  • the safety bar is thus arranged on the carrier component in such a way that it is prevented that, in spite of the no longer effective wavelength converter, potentially dangerous laser light emerges from the light module.
  • the safety bar also ensures that the wavelength converter is arranged on the carrier component so that it is protected from mechanical influences.
  • each laser beam can thus be terminated by the safety bracket in the interior of the light module.
  • This protective device has a high level of functional reliability, since in particular moving mechanical components or electronic controls are not required.
  • the radiation optics device can be designed as a reflector, e.g. a parabolic reflector, or as a reflector arrangement. It is also possible for the radiation optics device to be designed as a projection device, e.g. comprising a projection lens.
  • the radiation optics device can also consist of several optical elements, e.g. primary optics and secondary optics.
  • the influence of the safety bar on the light beam distribution is negligibly small. This is due to the fact that the size of the safety bar is preferably such that the light is only blocked in the event that it hits the safety bar directly (without a wavelength converter). With typical laser light sources, the half-value angle of the laser light can be approximately 2 ° -8 °.
  • the safety bar has, for example, a longitudinal extension of 10mm to 20mm and a transverse extension of 1mm to 8mm and, in the case mentioned, can for example block 90% of the laser beam. If the wavelength converter is effective, the Radiated light distribution essentially fed by the secondary light distribution emitted by the wavelength converter. The largely incoherent white light of the secondary light distribution is less collimated and more diffuse.
  • the power of the secondary light distribution is therefore distributed more homogeneously in space in the secondary spatial angle range.
  • the secondary solid angle range is significantly larger than the primary solid angle range.
  • a suppression of light beams by the safety bar in the comparatively small primary solid angle range around the primary emission direction therefore does not lead to a noticeable loss of power or interference with the emission of light distribution during normal operation.
  • the safety bar is in particular not designed to be larger than necessary to block the primary beam.
  • the safety bar is in particular dimensioned such that only light is blocked which strikes the safety bar running around the primary emission direction in the primary solid angle range.
  • the safety bracket is preferably firmly connected to the carrier component, in particular connected in one piece.
  • the safety bar is mechanically robust and integrated into the carrier component with a fixed adjustment. In particular, this ensures that the safety bar is precisely aligned relative to the wavelength converter.
  • the safety bracket is preferably arranged in the beam path of the primary light bundle between the wavelength converter and the radiation optics device.
  • the primary light bundle is suppressed by the safety bar before it hits the emitting optics device and prevents potentially dangerous laser light from the emitting optics device in the direction of the Beam light distribution is deflected.
  • the safety bar protrudes over a mounting plane of the wavelength converter in which the wavelength converter is arranged.
  • the safety bar extends in its further course at a distance from the mounting plane and extends along the mounting plane, in particular essentially parallel to the mounting plane.
  • the distance between the section of the safety bar running along the mounting plane and the mounting plane can be approx. 1-10 mm, for example.
  • the safety bar starting from the mounting plane, the safety bar initially has an inclined course. After the inclined course, the safety bar can merge into a section with a parallel course to the holding plane.
  • the safety bar has an angled course along its extension.
  • the safety bar is designed like a finger and extends bent over the mounting level. Due to the angled design, the safety bar affects the smallest possible area of the secondary light distribution when the wavelength converter is intact.
  • the safety bar preferably comprises an absorption area on the side facing the laser light source, which is designed in such a way that incident laser light can be at least partially absorbed. This can take place in that the absorption area comprises a surface designed to absorb laser light.
  • the absorption area on the side facing the laser light source is only in the Area is formed which covers the primary solid angle area.
  • the safety bar comprises a scattering area with a surface made of a scattering material, so that an incident light bundle is in particular scattered to the side or diffusely in such a way that it is not detected by the emitting optics device. A bundle of light hitting the scattering surface does not contribute to the distribution of the emitted light.
  • the safety bar comprises a reflection area with a reflection surface which is arranged in such a way that a light beam incident along the primary emission direction can be deflected in such a way that it does not contribute to the emission of light distribution.
  • a light bundle impinging on the reflection surface is deflected in particular in such a way that it is not detected by the emitting optics device.
  • the reflection surface can be oriented obliquely to the primary emission direction.
  • the safety bar includes a back-reflection area with a reflective surface, so that a light bundle running along the primary emission direction and incident on the reflective surface is directed back to the wavelength converter.
  • the light bundle can then be scattered by the wavelength converter and thus at least partially contribute to the radiation light distribution.
  • the back-reflection area can be designed and oriented, for example, in such a way that back-reflected light hits you in comparison to the original Beam direction strikes remote or marginal area of the wavelength converter.
  • the radiation can thereby be directed to areas that are still undamaged, thereby increasing operational reliability.
  • a detection element designed to detect laser radiation is provided.
  • the safety bar preferably includes a deflection area with an at least partially reflective surface, so that a light bundle incident along the primary emission direction can be at least partially deflected onto the detection element.
  • the detection element is set up in particular to detect an increase in intensity of the detected light. If the radiation intensity exceeds a specified threshold value, e.g. the laser light source can be switched off by control electronics.
  • a detection element is arranged on the safety bar itself.
  • This can be a temperature sensor, for example.
  • the safety bar has an absorption area with an absorbent surface. The safety bar heats up through the absorption of unconverted laser radiation. If, in the case of a damaged wavelength converter, more unconverted laser radiation hits the safety bar, it will heat up more. The temperature rise is recorded by a temperature sensor. If the temperature exceeds a specified value, the laser light source can be switched off by control electronics, for example. It is also conceivable to attach an indication element to the bracket that changes its color, in particular permanently, when heated above a threshold value. Look at the discoloration of it Indication element, defects or damage to the wavelength converter can be diagnosed even when the light module is switched off.
  • the light emitted distribution should often have characteristic properties, some of which are regulated by law.
  • a shielded light distribution has a light-dark boundary which separates an illuminated area (below) from a dark area (above).
  • the safety bar can help to achieve the desired light distribution.
  • the safety bar can, for example, have a diaphragm edge which shades an area of the secondary light distribution and which is arranged in relation to the radiation optics device in such a way that the secondary light distribution shaded by the diaphragm edge is transformed into an emitted light distribution with a light-dark border.
  • the Figure 1 shows a light module 10 for a motor vehicle headlight with a laser light source 12 in side view. This emits a primary light bundle 14 which runs concentrated around a primary emission direction 16 in a small primary solid angle range.
  • the primary light bundle 14 hits an optional intermediate optics 18, which directs the primary light bundle 14 onto a wavelength converter 20.
  • the wavelength converter 20 is held by a carrier component 22 and arranged in the beam path of the primary light bundle 14 of the laser light source 12.
  • the incident primary light bundle 14 stimulates the wavelength converter 20 to emit a secondary light distribution 24, which preferably has incoherent, polychromatic or white light. Therefore, the secondary light distribution no longer has the potentially dangerous properties of laser light.
  • the secondary light distribution 24 fills you up compared to the primary solid angle range from larger secondary solid angle range.
  • An emission optics device embodied as a reflector 26 in the example shown serves to convert or deflect the light bundles of the secondary light distribution 24 into an emission light distribution 28 which is essentially concentrated around a main emission direction 30 of the light module 10.
  • the light module 10 comprises a safety bracket 32 which is arranged on the support component 22 of the wavelength converter 20 and protrudes over a mounting plane for the wavelength converter 20 in which the wavelength converter 20 or a light-emitting surface of the wavelength converter 20 is arranged.
  • Fig. 2 shows an embodiment of a light module 10 in a plan view of the carrier component 22 with the wavelength converter 20 and the safety bracket 32 fastened to the carrier component.
  • the safety bracket 32 protrudes over the mounting plane of the wavelength converter 20.
  • the wavelength converter 20 is positioned in a central section of the carrier component 22.
  • the safety bracket 32 attaches, for example, to an edge section of the carrier component 22 and, starting from the edge section, protrudes over the central area of the carrier component 22.
  • the safety bracket 32 covers part of the surface of the wavelength converter 20 Secondary light distribution 22 on the safety bar 32.
  • the safety bar 32 is dimensioned and arranged in such a way that the primary solid angle area is covered, in which the bundles of light run from the Laser light source 12 run around primary emission direction 16.
  • the safety bar 32 can comprise an absorption region 34 for absorbing laser radiation.
  • the safety bar 32 is heated by the absorption of the laser radiation. If the wavelength converter 20 is damaged, a larger proportion of laser light strikes the safety bar 32. The latter heats up more.
  • a temperature sensor 36 attached to the safety bar 32 can detect the heating.
  • the Figures 3a and 3b show a schematic representation of the safety bar 32 of a light module 10 in a further embodiment in trouble-free operation ( Fig. 3a ) and for an incident ( Figure 3b ).
  • the safety bar 32 comprises a reflection area 38 with a reflection surface 40 oriented obliquely to the primary emission direction 16.
  • Fig. 3a In normal operation ( Fig. 3a ), ie with an intact wavelength converter 20, in the ideal case the entire primary light bundle 14 is recorded and the secondary light distribution 24 is generated.
  • the secondary light distribution 24 shines in the Secondary solid angle range from and only that part of the secondary light distribution 24 which runs in the primary emission direction 16 is deflected by the safety bracket 32.
  • the remaining light bundles of the secondary light distribution 24 are not reflected by the safety bar 32 and strike the reflector 26.
  • FIGS. 4 and 5 show further embodiments of a light module 10, the radiation optics not being shown in each case.
  • a detection element 44 for detecting and monitoring the radiation intensity of laser light and for emitting a detector signal is arranged on a circuit board 42.
  • the safety bar 32 has a scattering area 46 with a scattering surface 48. At least part of the light bundle impinging on the safety bracket 32 is directed by the scattering surface 48 onto a light guide 50 and guided in the light guide 50 onto the detection element 44.
  • the light guide 50 is preferably designed in such a way that only unconverted laser beams are guided. This can be achieved in particular by coating the light guide 50 or by installing an additional optical filter. Light bundle of Secondary light distributions 24 which strike the light guide 50 are then absorbed and / or reflected and preferably do not reach the detection element 44.
  • the detection element 44 detects the radiation intensity of the incident light bundle. In the event of a defect in the wavelength converter 20, the unconverted laser light beam strikes the safety bracket 32 and thus also the detection element 44. The detection element 44 then detects a (sudden) increase in the radiation intensity and sends a detection signal to the control electronics of the laser light source if the radiation intensity exceeds a limit value 12. In order to avoid further damage to the light module 10, the laser light source 12 can be deactivated based on the detection signal in the event of a fault.
  • the Figure 5 shows an embodiment in which at least a part of the light beam impinging on the safety bracket 32 is guided through a transmission opening 52 in the carrier component 22 onto the detection element 44.
  • An optical element 54 in particular a lens, a diffractive element, a color filter or a prism, is advantageously provided in the transmission opening 52 in order to adapt the light bundles entering through the transmission opening 52 to the detection element 44.

Description

Die Erfindung betrifft ein Lichtmodul für einen Kfz-Scheinwerfer gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a light module for a motor vehicle headlight according to the preamble of claim 1.

Im Bereich der Kfz-Beleuchtung, insbesondere bei Kfz-Scheinwerfern, ist die Verwendung von leistungsstarken Lichtquellen mit möglichst hoher Leuchtdichte erwünscht. Dadurch lassen sich mit kleinem Bauraum lichtstarke Beleuchtungseinrichtungen realisieren. Die abgestrahlten Lichtverteilungen müssen bestimmte, in der Regel gesetzlich vorgegebene Eigenschaften aufweisen. Für die Frontlichter eines Kraftfahrzeuges ist in der Regel weißes Licht erwünscht.In the field of motor vehicle lighting, especially in motor vehicle headlights, the use of powerful light sources with the highest possible luminance is desirable. As a result, bright lighting devices can be implemented with a small installation space. The light distribution emitted must have certain properties that are usually prescribed by law. White light is generally desired for the front lights of a motor vehicle.

Mit Laserlichtquellen, beispielsweise Halbleiter-Laserdioden, lassen sich hohe Strahlungsleistungen erzielen. Allerdings strahlen Laserlichtquellen Prinzip meist nahezu monochromatisches, kohärentes und stark kollimiertes Laserlicht aus, das in dieser Form nicht unmittelbar als abgestrahltes Licht der Beleuchtungseinrichtung verwendet werden kann.With laser light sources, for example semiconductor laser diodes, high radiation outputs can be achieved. However, in principle, laser light sources usually emit almost monochromatic, coherent and strongly collimated laser light, which in this form cannot be used directly as the emitted light of the lighting device.

Laserlichtquellen werden in der Kfz-Beleuchtung daher meist mit einem Wellenlängenkonverter eingesetzt. Dabei wird das monochromatische, kohärente Laserlicht in diffuses und weitgehend inkohärentes weißes Licht umgewandelt. Aus der DE 10 2012 220 481 A1 und der US 8,400,011 B2 sind beispielsweise Lichtmodule mit einer Laserlichtquelle und einem Photolumineszenzkonverter bekannt. Der Photolumineszenzkonverter weist einen Photolumineszenzfarbstoff auf, der durch Anregung zur Photolumineszenz mittels Laserlicht ein Licht mit anderen Wellenlängen abgibt. Die so erzielte Sekundärlichtverteilung umfasst das umgewandelte Licht und gegebenenfalls auch gestreute Anteile des eingestrahlten Lichts, und ist daher für die Zwecke der Kfz-Beleuchtung nutzbar.Laser light sources are therefore mostly used in vehicle lighting with a wavelength converter. The monochromatic, coherent laser light is converted into diffuse and largely incoherent white light. From the DE 10 2012 220 481 A1 and the US 8,400,011 B2 For example, light modules with a laser light source and a photoluminescence converter are known. The photoluminescence converter has a photoluminescent dye that emits light with different wavelengths when excited to photoluminescence by means of laser light. The secondary light distribution achieved in this way includes the converted light and possibly also scattered portions of the incident light, and can therefore be used for the purposes of vehicle lighting.

Dem Wellenlängenkonverter kommt eine sicherheitsrelevante Bedeutung zu, da unumgewandeltes Laserlicht bei den typisch hohen Strahlungsleistungen von Laserlichtquellen potenziell gefährlich ist.The wavelength converter is of relevance to safety, since unconverted laser light is potentially dangerous with the typically high radiation power of laser light sources.

Wird der Wellenlängenkonverter beschädigt, kann unter Umständen eine Gefährdung durch aus der Beleuchtungseinrichtung austretende, stark kollimierte Laserstrahlen auftreten. Um Beschädigungen des Konverters zu detektieren und den Laser gegebenenfalls abzuschalten, ist in der DE 10 2012 220 481 A1 und der US 8,400,011 B2 eine Detektionseinrichtung zum Detektieren der Strahlungsintensität vorgesehen ist. Nachteile dieser Sicherheitsvorrichtungen sind, dass sie zusätzliche optische und elektronische Komponenten benötigen um die Strahlungsintensität zu detektieren. Außerdem ist eine Steuereinrichtung erforderlich, um die Laserlichtquelle abzuschalten, wenn die detektierte Intensität einen Sicherheitsgrenzwert überschreitet.If the wavelength converter is damaged, there may be a risk of strongly collimated laser beams emerging from the lighting device. In order to detect damage to the converter and to switch off the laser if necessary, the DE 10 2012 220 481 A1 and the US 8,400,011 B2 a detection device for detecting the radiation intensity is provided. Disadvantages of these safety devices are that they require additional optical and electronic components in order to detect the radiation intensity. In addition, a control device is required in order to switch off the laser light source if the detected intensity exceeds a safety limit value.

Aus der DE 10 2012 220 472 A1 ist eine Sicherheitsvorrichtung bekannt, bei der eine Blende an einer Abstrahlvorrichtung oder im Strahlengang zwischen dem Photolumineszenzelement und der Abstrahloptik angeordnet ist. Diese Blende muss präzise in Bezug auf das Photolumineszenzselements und die Laserlichtquelle justiert werden. Außerdem muss konstruktiv sichergestellt sein, dass die Blende nicht ungewollt ihre Position verändert.From the DE 10 2012 220 472 A1 a safety device is known in which a screen is arranged on an emitting device or in the beam path between the photoluminescent element and the emitting optics. This diaphragm must be precisely adjusted in relation to the photoluminescent element and the laser light source. In addition, it must be structurally ensured that the diaphragm does not inadvertently change its position.

Aus EP 2 781 823 A2 ist ein Lichtmodul für einen Kraftfahrzeugscheinwerfer bekannt mit einer Laserlichtquelle, einem Wellenlängenkonverter, einer Abstrahlungsoptikeinrichtung und einem Trägerbauteil zum Haltern des Wellenlängenkonverters. Allerdings ist ein Lichtleiter vorgesehen, mittels dessen das Laserlicht direkt in den Wellenlängenkonverter eingekoppelt wird. Daher ist ein Primärlichtbündel im eigentlichen Sinn, bezüglich dessen der Wellenlängenkonverter angeordnet ist, nicht vorgesehen.Out EP 2 781 823 A2 a light module for a motor vehicle headlight is known with a laser light source, a wavelength converter, a radiation optics device and a support component for holding the wavelength converter. However, a light guide is provided by means of which the laser light is coupled directly into the wavelength converter. Therefore, a primary light bundle in the actual sense, with respect to which the wavelength converter is arranged, is not provided.

Aus US 2012/0292636 A1 ist ebenfalls ein Lichtmodul mit einer Laserlichtquelle, einem Wellenlängenkonverter und einer Abstrahlungsoptikeinrichtung bekannt, wobei Ausführungsformen mit und ohne Lichtleiter offenbart sind. Bei zwei Figuren ist dem Wellenlängenkonverter ein UV Spiegel nachgeordnet, welcher nicht wellenlängenkonvertiertes Licht auf den Wellenlängenkonverter zurückreflektieren soll. Eine Ausbildung oder Ausrichtung des Spiegels in Bezug auf ein Primärlichtbündel ist nicht ersichtlich.Out US 2012/0292636 A1 a light module with a laser light source, a wavelength converter and an optical emission device is also known, embodiments with and without a light guide being disclosed. In two figures, the wavelength converter is followed by a UV mirror which is intended to reflect non-wavelength-converted light back onto the wavelength converter. A design or alignment of the mirror in relation to a primary light beam is not apparent.

Einweiteres Lichtmodul mit einer Laserlichtquelle, einem Wellenlängenkonverter und einer Abstrahlungsoptikeinrichtung ist in der WO 2015/154983 A1 beschrieben. Hierbei ist ein Wellenlängenkonverter mit einem Loch versehen, durch welches ein Direktlichtanteil des Primärlichtstrahls hindurchgestrahlt wird.Another light module with a laser light source, a wavelength converter and a radiation optical device is in the WO 2015/154983 A1 described. Here, a wavelength converter is provided with a hole through which a direct light component of the primary light beam is radiated.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, auf zuverlässige und robuste Weise eine Gefährdung durch austretendes Laserlicht aus einer Kfz-Beleuchtungseinrichtung zu vermeiden.The present invention is based on the object of avoiding the risk of laser light emerging from a motor vehicle lighting device in a reliable and robust manner.

Diese Aufgabe wird durch ein Lichtmodul mit den Merkmalen des Anspruchs 1 gelöst. Unter einem Lichtmodul wird im vorliegenden Zusammenhang die eigentlich lichtabgebende Baueinheit einer Kfz-Beleuchtungseinrichtung verstanden. Die Aufgabe wird jedoch auch durch eine Kfz-Beleuchtungseinrichtung mit den Merkmalen des beschriebenen Lichtmoduls gelöst.This object is achieved by a light module with the features of claim 1. In the present context, a light module is understood to be the actual light-emitting structural unit of a motor vehicle lighting device. However, the object is also achieved by a motor vehicle lighting device with the features of the light module described.

Das Lichtmodul umfasst eine Laserlichtquelle zur Ausstrahlung eines Primärlichtbündels in einen Primärraumwinkelbereich um eine Primärabstrahlrichtung ausgehend von der Laserlichtquelle. Ferner ist ein Wellenlängenkonverter vorgesehen, welcher derart angeordnet ist, dass das mit der Laserlichtquelle ausstrahlbare Primärlichtbündel auf den Wellenlängenkonverter auftrifft. Der Wellenlängenkonverter ist derart ausgebildet ist, dass durch das auftreffende Primärlichtbündel eine Sekundärlichtverteilung mit insbesondere polychromatischem oder weißem Licht ausstrahlbar ist, indem wenigstens ein Anteil des Primärlichtbündels aus Laserlicht z.B. unter Ausnutzung von Photolumineszenz in Licht mit abweichender Wellenlänge umgewandelt wird.The light module comprises a laser light source for emitting a primary light bundle in a primary solid angle area around a primary emission direction starting from the laser light source. Furthermore, a wavelength converter is provided, which is arranged in such a way that the primary light bundle that can be emitted with the laser light source strikes the wavelength converter. The wavelength converter is designed in such a way that a secondary light distribution with in particular polychromatic or white light can be emitted by the incident primary light bundle, in that at least a portion of the primary light bundle is converted from laser light, e.g. using photoluminescence, into light with a different wavelength.

Die Sekundärlichtverteilung wird insbesondere in einen Sekundärraumwinkelbereich ausgestrahlt. Die Ausstrahlung der Sekundärlichtverteilung von dem Wellenlängenkonverter erfolgt insbesondere diffus und weitgehend ungerichtet. In der Regel weist der Wellenlängenkonverter nach Anregung durch das Primärlichtbündel die Abstrahlcharakteristik eines Lambert-Strahlers auf. Der Sekundärraumwinkelbereich ist insofern deutlich größer als der Primärraumwinkelbereich.The secondary light distribution is emitted in particular in a secondary solid angle range. The emission of the secondary light distribution from the wavelength converter occurs in particular diffuse and largely undirected. As a rule, the wavelength converter has the emission characteristics of a Lambert radiator after excitation by the primary light beam. In this respect, the secondary solid angle range is significantly larger than the primary solid angle range.

Das Lichtmodul umfasst ferner eine Abstrahloptikeinrichtung (z.B. Projektionslinse, Umlenkreflektor) zum Umformen der Sekundärlichtverteilung in eine Abstrahllichtverteilung des Lichtmoduls. Die Abstrahllichtverteilung ist z.B. um eine Hauptabstrahlrichtung konzentriert, welche bei Einbau in ein Kraftfahrzeug z.B. in Fahrtrichtung weist.The light module further comprises an emission optics device (e.g. projection lens, deflecting reflector) for converting the secondary light distribution into an emission light distribution of the light module. The emitted light distribution is concentrated e.g. around a main emission direction which, when installed in a motor vehicle, points e.g. in the direction of travel.

Das Lichtmodul umfasst außerdem ein Trägerbauteil zum Haltern des Wellenlängenkonverters. Das Trägerbauteil weist einen Sicherheitsbügel auf, welcher ausgehend von dem Wellenlängenkonverter betrachtet den Primärraumwinkelbereich um die Primärabstrahlrichtung herum überdeckt.The light module also includes a support component for holding the wavelength converter. The carrier component has a safety bracket which, viewed from the wavelength converter, covers the primary solid angle area around the primary emission direction.

Im störungsfreien Normalbetrieb ergibt sich in dem Lichtmodul folgender Strahlengang: Ausgehend von der als Primärlichtquelle wirkenden Laserlichtquelle verläuft ein Primärlichtbündel (Laserlicht) im Wesentlichen in dem Primärraumwinkelbereich um die Primärabstrahlrichtung herum. Das von der Laserlichtquelle ausgestrahlte Primärlichtbündel trifft im Normalfall auf den Wellenlängenkonverter. Der Wellenlängenkonverter wandelt das kohärente Primärlichtbündel in eine nutzbare Sekundärlichtverteilung aus diffusem weitgehend inkohärenten weißen Licht um. Die Lichtstrahlen der Sekundärlichtverteilung treffen auf die Abstrahloptikeinrichtung und werden von dieser in die, vorzugsweise im Wesentlichen um eine Hauptabstrahlrichtung des Lichtmoduls konzentrierte, Abstrahllichtverteilung umgeformt (d.h. umgelenkt und/oder reflektiert und/oder projiziert). Für die Abstrahloptikeinrichtung wirkt daher der Wellenlängenkonverter als die eigentliche Lichtquelle, dessen Sekundärlichtverteilung das Gefährdungspotenzial von Laserlicht im Wesentlichen nicht mehr aufweist. Im Normalbetrieb gewährleistet der Wellenlängenkonverter somit, dass das potenziell gefährliche Laserlicht nicht direkt in die Abstrahllichtverteilung gelangt.In trouble-free normal operation, the following beam path results in the light module: Starting from the laser light source acting as the primary light source, a primary light bundle (laser light) runs essentially in the primary solid angle range around the primary emission direction. The primary light beam emitted by the laser light source normally hits the wavelength converter. The wavelength converter converts the coherent primary light bundle into a usable secondary light distribution from diffuse, largely incoherent white light. The light beams of the secondary light distribution impinge on the emitting optics device and are directed by this in the, preferably essentially around one main emission direction of the light module concentrated, radiated light distribution reshaped (ie deflected and / or reflected and / or projected). For the radiation optics device, the wavelength converter therefore acts as the actual light source, the secondary light distribution of which essentially no longer exhibits the hazard potential of laser light. In normal operation, the wavelength converter thus ensures that the potentially dangerous laser light does not reach the emitted light distribution directly.

Ist der Wellenlängenkonverter beispielsweise aufgrund mechanischer Einflüsse, eines Unfalls oder Konstruktionsfehlers nicht im Strahlengang des Primärlichtbündels angeordnet (z.B. zerbrochen), so wird das Laserlicht des Primärlichtbündels durch den am Trägerbauteil des Wellenlängenkonverters angeordneten Sicherheitsbügel unterdrückt. Der Sicherheitsbügel ist somit derart am Trägerbauteil angeordnet, dass verhindert wird, dass trotz des nicht mehr wirksamen Wellenlängenkonverters potenziell gefährliches Laserlicht aus dem Lichtmodul austritt. Der Sicherheitsbügel gewährleistet außerdem, dass der Wellenlängenkonverter vor mechanischen Einwirkungen geschützt am Trägerbauteil angeordnet ist.If the wavelength converter is not arranged in the beam path of the primary light bundle (e.g. broken) due to mechanical influences, an accident or a construction fault, the laser light of the primary light bundle is suppressed by the safety bar on the carrier component of the wavelength converter. The safety bar is thus arranged on the carrier component in such a way that it is prevented that, in spite of the no longer effective wavelength converter, potentially dangerous laser light emerges from the light module. The safety bar also ensures that the wavelength converter is arranged on the carrier component so that it is protected from mechanical influences.

Bei der Verwendung von Laserlichtquellen muss aufgrund der typischerweise stark kollimierten Lichtbündel mit geringem Strahldurchmesser eine präzise Ausrichtung der Laserlichtquelle auf den Wellenlängenkonverter und eine zuverlässige und sichere Anordnung des Wellenlängenkonverters sichergestellt werden. Dies kann mit dem Trägerbauteil zum Haltern des Wellenlängenkonverters und ggf. seiner Befestigungsweise in dem Lichtmodul gewährleistet werden.When using laser light sources, because of the typically strongly collimated light bundles with a small beam diameter, precise alignment of the laser light source on the wavelength converter and a reliable and safe arrangement of the wavelength converter must be ensured. This can be ensured with the carrier component for holding the wavelength converter and, if necessary, its method of fastening in the light module.

Durch Anordnung des Sicherheitsbügels an dem Trägerbauteil des Wellenlängenkonverters befindet sich der Sicherheitsbügel ebenfalls in einer robusten, sicheren und präzise auf die Laserlichtquelle ausgerichtete Position. Bei der erfindungsgemäßen Ausgestaltung kann somit jeder Laserstrahl durch den Sicherheitsbügel im Innern des Lichtmoduls beendet werden. Im Störfall wird auf einfach zu realisierende Weise eine Gefährdung durch abgestrahlte Laserstrahlen vermieden. Diese Schutzeinrichtung weist eine hohe Funktionssicherheit auf, da insbesondere bewegliche mechanische Bauteile oder elektronische Steuerungen nicht erforderlich sind.By arranging the safety bar on the carrier component of the wavelength converter, the safety bar is also in a robust, safe and precisely aligned position with the laser light source. In the embodiment according to the invention, each laser beam can thus be terminated by the safety bracket in the interior of the light module. In the event of a fault, a hazard from emitted laser beams is avoided in a way that is easy to implement. This protective device has a high level of functional reliability, since in particular moving mechanical components or electronic controls are not required.

Die Abstrahloptikeinrichtung kann als Reflektor z.B. parabolischer Reflektor oder als Reflektoranordnung ausgebildet sein. Ebenso ist möglich, dass die Abstrahloptikeinrichtung als Projektionseinrichtung, z.B. umfassend eine Projektionslinse ausgebildet ist. Die Abstrahloptikeinrichtung kann auch aus mehreren Optikelementen bestehen, z.B. Primäroptik und Sekundäroptik.The radiation optics device can be designed as a reflector, e.g. a parabolic reflector, or as a reflector arrangement. It is also possible for the radiation optics device to be designed as a projection device, e.g. comprising a projection lens. The radiation optics device can also consist of several optical elements, e.g. primary optics and secondary optics.

Im störungsfreien Normalbetrieb ist der Einfluss des Sicherheitsbügels auf die Abstrahllichtverteilung vernachlässigbar gering. Dies ist darauf zurückzuführen, dass der Sicherheitsbügel vorzugsweise in seiner Größe derart bemessen ist, dass das Licht nur für den Fall blockiert wird, in dem es direkt (ohne Wellenlängenkonverter) auf den Sicherheitsbügel trifft. Bei typischen Laserlichtquellen kann der Halbwertswinkel des Laserlichts ca. 2°-8° betragen. Der Sicherheitsbügel weist z.B. eine Längserstreckung von 10mm bis 20mm und eine Quererstreckung von 1mm bis 8mm auf und kann im genannten Fall beispielsweise 90 % des Laserstrahls blockieren. Ist der Wellenlängenkonverter wirksam, wird die Abstrahllichtverteilung im Wesentlichen durch die vom Wellenlängenkonverter abgestrahlte Sekundärlichtverteilung gespeist. Das weitgehend inkohärente weiße Licht der Sekundärlichtverteilung ist weniger kollimiert und stärker diffus. Die Leistung der Sekundärlichtverteilung ist daher homogener im Raum in dem Sekundärraumwinkelbereich verteilt. Der Sekundärraumwinkelbereich ist deutlich größer als der Primärraumwinkelbereich. Eine Unterdrückung von Lichtstrahlen durch den Sicherheitsbügel in dem vergleichsweise kleinen Primärraumwinkelbereich um die Primärabstrahlrichtung führt daher im Normalbetrieb nicht zu einem nennenswerten Leistungsverlust oder Störungen der Abstrahllichtverteilung. Um Leistungsverluste zu minimieren, ist der Sicherheitsbügel insbesondere nicht größer ausgelegt, als zum Blockieren des Primärstrahlbündels erforderlich. Der Sicherheitsbügel ist insbesondere derart bemessen, dass nur Licht blockiert wird, das um die Primärabstrahlrichtung in dem Primärraumwinkelbereich verlaufend auf den Sicherheitsbügel trifft.In normal, trouble-free operation, the influence of the safety bar on the light beam distribution is negligibly small. This is due to the fact that the size of the safety bar is preferably such that the light is only blocked in the event that it hits the safety bar directly (without a wavelength converter). With typical laser light sources, the half-value angle of the laser light can be approximately 2 ° -8 °. The safety bar has, for example, a longitudinal extension of 10mm to 20mm and a transverse extension of 1mm to 8mm and, in the case mentioned, can for example block 90% of the laser beam. If the wavelength converter is effective, the Radiated light distribution essentially fed by the secondary light distribution emitted by the wavelength converter. The largely incoherent white light of the secondary light distribution is less collimated and more diffuse. The power of the secondary light distribution is therefore distributed more homogeneously in space in the secondary spatial angle range. The secondary solid angle range is significantly larger than the primary solid angle range. A suppression of light beams by the safety bar in the comparatively small primary solid angle range around the primary emission direction therefore does not lead to a noticeable loss of power or interference with the emission of light distribution during normal operation. In order to minimize power losses, the safety bar is in particular not designed to be larger than necessary to block the primary beam. The safety bar is in particular dimensioned such that only light is blocked which strikes the safety bar running around the primary emission direction in the primary solid angle range.

Vorzugsweise ist der Sicherheitsbügel mit dem Trägerbauteil fest verbunden, insbesondere einstückig verbunden. Dadurch ist der Sicherheitsbügel mechanisch robust und fest justiert in das Trägerbauteil integriert. Insbesondere ist dadurch gewährleistet, dass der Sicherheitsbügel relativ zum Wellenlängenkonverter exakt ausgerichtet ist.The safety bracket is preferably firmly connected to the carrier component, in particular connected in one piece. As a result, the safety bar is mechanically robust and integrated into the carrier component with a fixed adjustment. In particular, this ensures that the safety bar is precisely aligned relative to the wavelength converter.

Vorzugsweise ist der Sicherheitsbügel im Strahlengang des Primärlichtbündels zwischen Wellenlängenkonverter und Abstrahloptikeinrichtung angeordnet. Dadurch wird das Primärlichtbündel durch den Sicherheitsbügel unterdrückt bevor es auf die Abstrahloptikeinrichtung trifft und von vorneherein verhindert, dass potenziell gefährliches Laserlicht von der Abstrahloptikeinrichtung in Richtung der Abstrahllichtverteilung umgelenkt wird. Insbesondere ragt der Sicherheitsbügel über eine Halterungsebene des Wellenlängenkonverters, in welcher der Wellenlängenkonverter angeordnet ist, hervor.The safety bracket is preferably arranged in the beam path of the primary light bundle between the wavelength converter and the radiation optics device. As a result, the primary light bundle is suppressed by the safety bar before it hits the emitting optics device and prevents potentially dangerous laser light from the emitting optics device in the direction of the Beam light distribution is deflected. In particular, the safety bar protrudes over a mounting plane of the wavelength converter in which the wavelength converter is arranged.

In einer bevorzugten Ausführungsform verläuft der Sicherheitsbügel in seinem weiteren Verlauf beabstandet von der Halterungsebene und erstreckt sich entlang der Halterungsebene, insbesondere im Wesentlichen parallel zu der Halterungsebene. Der Abstand des entlang der Halterungsebene verlaufenden Abschnitts des Sicherheitsbügels von der Halterungsebene kann zum Beispiel ca. 1 - 10 mm betragen. Denkbar ist, dass der Sicherheitsbügel ausgehend von der Halterungsebene zunächst einen schrägen Verlauf aufweist. Nach dem schrägen Verlauf kann der Sicherheitsbügel in einen Abschnitt mit parallelem Verlauf zu Halteebene übergehen. Denkbar ist auch, dass der Sicherheitsbügel entlang seiner Erstreckung einen abgewinkelten Verlauf aufweist. Insbesondere ist der Sicherheitsbügel fingerartig ausgestaltet und erstreckt sich abgeknickt über die Halterungsebene. Durch die gewinkelte Ausgestaltung beeinträchtigt der Sicherheitsbügel bei intaktem Wellenlängenkonverter einen möglichst geringen Bereich der Sekundärlichtverteilung.In a preferred embodiment, the safety bar extends in its further course at a distance from the mounting plane and extends along the mounting plane, in particular essentially parallel to the mounting plane. The distance between the section of the safety bar running along the mounting plane and the mounting plane can be approx. 1-10 mm, for example. It is conceivable that, starting from the mounting plane, the safety bar initially has an inclined course. After the inclined course, the safety bar can merge into a section with a parallel course to the holding plane. It is also conceivable that the safety bar has an angled course along its extension. In particular, the safety bar is designed like a finger and extends bent over the mounting level. Due to the angled design, the safety bar affects the smallest possible area of the secondary light distribution when the wavelength converter is intact.

Vorzugsweise umfasst der Sicherheitsbügel auf der der Laserlichtquelle zugewandten Seite einen Absorptionsbereich, welcher derart ausgebildet ist, dass auftreffendes Laserlicht zumindest teilweise absorbierbar ist. Dies kann dadurch erfolgen, dass der Absorptionsbereich eine zur Absorption von Laserlicht ausgebildete Oberfläche umfasst.The safety bar preferably comprises an absorption area on the side facing the laser light source, which is designed in such a way that incident laser light can be at least partially absorbed. This can take place in that the absorption area comprises a surface designed to absorb laser light.

Es erweist sich als vorteilhaft wenn der Absorptionsbereich auf der der Laserlichtquelle zugewandten Seite nur in dem Bereich ausgebildet ist, der den Primärraumwinkelbereich überdeckt.It proves to be advantageous if the absorption area on the side facing the laser light source is only in the Area is formed which covers the primary solid angle area.

Nach einer Ausgestaltung der Erfindung, umfasst der Sicherheitsbügel einen Streubereich mit einer Oberfläche aus einem streuenden Material, so dass ein auftreffendes Lichtbündel insbesondere derart zur Seite oder diffus gestreut wird, dass es nicht von der Abstrahloptikeinrichtung erfasst wird. Ein auf der Streuoberfläche auftreffendes Lichtbündel trägt dadurch nicht zur Abstrahllichtverteilung bei.According to one embodiment of the invention, the safety bar comprises a scattering area with a surface made of a scattering material, so that an incident light bundle is in particular scattered to the side or diffusely in such a way that it is not detected by the emitting optics device. A bundle of light hitting the scattering surface does not contribute to the distribution of the emitted light.

Denkbar ist auch eine Ausgestaltung, wonach der Sicherheitsbügel einen Reflexionsbereich mit einer Reflexionsoberfläche umfasst, welche derart angeordnet ist, dass ein entlang der Primärabstrahlrichtung auftreffendes Lichtbündel derart ablenkbar ist, dass es nicht zur Abstrahllichtverteilung beiträgt. Ein auf der Reflexionsoberfläche auftreffendes Lichtbündel wird insbesondere derart abgelenkt, dass es nicht von der Abstrahloptikeinrichtung erfasst wird. Beispielsweise kann die Reflexionsoberfläche schräg zur Primärabstrahlrichtung orientiert sein.An embodiment is also conceivable according to which the safety bar comprises a reflection area with a reflection surface which is arranged in such a way that a light beam incident along the primary emission direction can be deflected in such a way that it does not contribute to the emission of light distribution. A light bundle impinging on the reflection surface is deflected in particular in such a way that it is not detected by the emitting optics device. For example, the reflection surface can be oriented obliquely to the primary emission direction.

Eine vorteilhafte Ausgestaltung ergibt sich dadurch, dass der Sicherheitsbügel einen Rückreflexionsbereich mit einer reflektierenden Oberfläche umfasst, so dass ein entlang der Primärabstrahlrichtung verlaufendes auf die reflektierende Oberfläche auftreffendes Lichtbündel zurück zu dem Wellenlängenkonverter gelenkt wird. Das Lichtbündel kann dann von dem Wellenlängenkonverter gestreut werden und somit zumindest teilweise zu der Abstrahllichtverteilung beitrage. Der Rückreflexionsbereich kann z.B. so ausgestaltet und orientiert sein, dass rückreflektiertes Licht auf einen im Vergleich zur ursprünglichen ein Strahlrichtung abgelegenen oder randständigen Bereich des Wellenlängenkonverters trifft. Bei einem bereichsweise beschädigten Wellenlängenkonverter kann dadurch die Strahlung auf noch unbeschädigte Bereiche gelenkt werden und dadurch die Betriebssicherheit erhöht werden.An advantageous embodiment results from the fact that the safety bar includes a back-reflection area with a reflective surface, so that a light bundle running along the primary emission direction and incident on the reflective surface is directed back to the wavelength converter. The light bundle can then be scattered by the wavelength converter and thus at least partially contribute to the radiation light distribution. The back-reflection area can be designed and oriented, for example, in such a way that back-reflected light hits you in comparison to the original Beam direction strikes remote or marginal area of the wavelength converter. In the case of a wavelength converter that is damaged in certain areas, the radiation can thereby be directed to areas that are still undamaged, thereby increasing operational reliability.

Zur weiteren Ausgestaltung des Lichtmoduls ist ein zur Detektion von Laserstrahlung ausgebildetes Detektionselement vorgesehen. Der Sicherheitsbügel umfasst vorzugsweise einen Umlenkbereich mit einer zumindest anteilig reflektierend wirkenden Oberfläche, so dass ein entlang der Primärabstrahlrichtung auftreffendes Lichtbündel zumindest teilweise auf das Detektionselement ablenkbar ist. Das Detektionselement ist insbesondere zur Erkennung einer Intensitätszunahme des erfassten Lichtes eingerichtet. Überschreitet die Strahlungsintensität einen festgelegten Schwellwert, kann z.B. die Laserlichtquelle von einer Kontrollelektronik abgeschaltet werden.For the further configuration of the light module, a detection element designed to detect laser radiation is provided. The safety bar preferably includes a deflection area with an at least partially reflective surface, so that a light bundle incident along the primary emission direction can be at least partially deflected onto the detection element. The detection element is set up in particular to detect an increase in intensity of the detected light. If the radiation intensity exceeds a specified threshold value, e.g. the laser light source can be switched off by control electronics.

Es ist denkbar, dass an dem Sicherheitsbügel selbst ein Detektionselement angeordnet ist. Hierbei kann es sich beispielsweise um einen Temperatursensor handeln. Insbesondere weist der Sicherheitsbügel einen Absorptionsbereich mit einer absorbierenden Oberfläche auf. Durch die Absorption unumgewandelter Laserstrahlung erwärmt sich der Sicherheitsbügel. Trifft im Falle eines beschädigten Wellenlängenkonverters mehr unumgewandelte Laserstrahlung auf dem Sicherheitsbügel auf, erwärmt sich dieser stärker. Durch einen Temperatursensor wird der Temperaturanstieg erfasst. Überschreitet die Temperatur einen vorgegebenen Wert, kann z.B. die Laserlichtquelle von einer Kontrollelektronik abgeschaltet werden. Es ist ebenfalls denkbar, an dem Bügel ein Indikationselement anzubringen, das sich bei Erwärmung über einen Schwellwert insbesondere dauerhaft verfärbt. Anhand der Verfärbung es Indikationselements können Defekte oder Schäden am Wellenlängenkonverter auch bei ausgeschaltetem Lichtmodul diagnostiziert werden.It is conceivable that a detection element is arranged on the safety bar itself. This can be a temperature sensor, for example. In particular, the safety bar has an absorption area with an absorbent surface. The safety bar heats up through the absorption of unconverted laser radiation. If, in the case of a damaged wavelength converter, more unconverted laser radiation hits the safety bar, it will heat up more. The temperature rise is recorded by a temperature sensor. If the temperature exceeds a specified value, the laser light source can be switched off by control electronics, for example. It is also conceivable to attach an indication element to the bracket that changes its color, in particular permanently, when heated above a threshold value. Look at the discoloration of it Indication element, defects or damage to the wavelength converter can be diagnosed even when the light module is switched off.

Für Kfz-Beleuchtungseinrichtungen soll die Abstrahllichtverteilung oftmals charakteristische Eigenschaften aufweisen, die zum Teil gesetzlich geregelt sind. Insbesondere weist eine abgeblendete Lichtverteilung eine Hell-Dunkel-Grenze auf, welche einen (unten liegenden) ausgeleuchteten Bereich von einem (oben liegenden) Dunkelbereich trennt. Nach einem Aspekt der Erfindung kann der Sicherheitsbügel dazu beitragen, die gewünschte Lichtverteilung zu erzielen. Hierzu kann der Sicherheitsbügel beispielsweise eine Blendenkante aufweisen, welche einen Bereich der Sekundärlichtverteilung abschattet und welche derart in Bezug auf die Abstrahloptikeinrichtung angeordnet ist, dass die von der Blendenkante abgeschattete Sekundärlichtverteilung in eine Abstrahllichtverteilung mit einer Hell-Dunkel-Grenze umgeformt wird.For vehicle lighting devices, the light emitted distribution should often have characteristic properties, some of which are regulated by law. In particular, a shielded light distribution has a light-dark boundary which separates an illuminated area (below) from a dark area (above). According to one aspect of the invention, the safety bar can help to achieve the desired light distribution. For this purpose, the safety bar can, for example, have a diaphragm edge which shades an area of the secondary light distribution and which is arranged in relation to the radiation optics device in such a way that the secondary light distribution shaded by the diaphragm edge is transformed into an emitted light distribution with a light-dark border.

Weitere Einzelheiten und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung zu entnehmen, anhand derer die in den Figuren dargestellten Ausführungsformen der Erfindung näher beschrieben und erläutert sind.Further details and advantageous embodiments of the invention can be found in the following description, on the basis of which the embodiments of the invention shown in the figures are described and explained in more detail.

Es zeigen:

  • Fig.1 eine skizzierte Darstellung eines erfindungsgemäßen Lichtmoduls im Normalbetrieb;
  • Fig. 2 eine Detailansicht aus Fig. 1;
  • Fig. 3a eine Detailansicht eines erfindungsgemäßen Lichtmoduls in einer weiteren Ausführungsform im Normalbetrieb;
  • Fig. 3b eine Detailansicht eines erfindungsgemäßen Lichtmoduls aus Fig. 3a im gestörten Betrieb;
  • Fig. 4 eine Detailansicht eines erfindungsgemäßen Lichtmoduls in einer weiteren Ausführungsform; und
  • Fig. 5 eine Detailansicht eines erfindungsgemäßen Lichtmoduls in einer anderen Ausführungsform.
Show it:
  • Fig.1 a sketched representation of a light module according to the invention in normal operation;
  • Fig. 2 a detailed view Fig. 1 ;
  • Fig. 3a a detailed view of an inventive Light module in a further embodiment in normal operation;
  • Figure 3b a detailed view of a light module according to the invention Fig. 3a in disturbed operation;
  • Fig. 4 a detailed view of a light module according to the invention in a further embodiment; and
  • Fig. 5 a detailed view of a light module according to the invention in another embodiment.

In den Figuren sowie in der nachfolgenden Beschreibung sind gleiche oder einander entsprechende Bauteile und Merkmale mit denselben Bezugszeichen versehen.In the figures and in the following description, the same or corresponding components and features are provided with the same reference symbols.

Die Figur 1 zeigt ein Lichtmodul 10 für einen Kfz-Scheinwerfer mit einer Laserlichtquelle 12 in Seitenansicht. Diese strahlt ein Primärlichtbündel 14 aus, welches um eine Primärabstrahlrichtung 16 in einem kleinen Primärraumwinkelbereich konzentriert verläuft. In dem in Figur 1 dargestellten Normalbetrieb trifft das Primärlichtbündel 14 auf eine optionale Zwischenoptik 18, die das Primärlichtbündel 14 auf einen Wellenlängenkonverter 20 lenkt. Der Wellenlängenkonverter 20 ist von einem Trägerbauteil 22 gehaltert im Strahlengang des Primärlichtbündels 14 der Laserlichtquelle 12 angeordnet. Durch das auftreffende Primärlichtbündel 14 wird der Wellenlängenkonverter 20 zur Ausstrahlung einer Sekundärlichtverteilung 24 angeregt, welche vorzugweise inkohärentes, polychromatisches bzw. weißes Licht aufweist. Daher hat die Sekundärlichtverteilung nicht mehr die potenziell gefährlichen Eigenschaften von Laserlicht.The Figure 1 shows a light module 10 for a motor vehicle headlight with a laser light source 12 in side view. This emits a primary light bundle 14 which runs concentrated around a primary emission direction 16 in a small primary solid angle range. In the in Figure 1 The normal operation shown, the primary light bundle 14 hits an optional intermediate optics 18, which directs the primary light bundle 14 onto a wavelength converter 20. The wavelength converter 20 is held by a carrier component 22 and arranged in the beam path of the primary light bundle 14 of the laser light source 12. The incident primary light bundle 14 stimulates the wavelength converter 20 to emit a secondary light distribution 24, which preferably has incoherent, polychromatic or white light. Therefore, the secondary light distribution no longer has the potentially dangerous properties of laser light.

Die Sekundärlichtverteilung 24 füllt einen im Vergleich zu dem Primärraumwinkelbereich größeren Sekundärraumwinkelbereich aus. Eine im dargestellten Beispiel als Reflektor 26 ausgebildete Abstrahloptikeinrichtung dient dazu, die Lichtbündel der Sekundärlichtverteilung 24 in eine Abstrahllichtverteilung 28 umzuformen bzw. umzulenken, welche im Wesentlichen um eine Hauptabstrahlrichtung 30 des Lichtmoduls 10 konzentriert ist.The secondary light distribution 24 fills you up compared to the primary solid angle range from larger secondary solid angle range. An emission optics device embodied as a reflector 26 in the example shown serves to convert or deflect the light bundles of the secondary light distribution 24 into an emission light distribution 28 which is essentially concentrated around a main emission direction 30 of the light module 10.

Das Lichtmodul 10 umfasst einen Sicherheitsbügel 32, der an dem Trägerbauteil 22 des Wellenlängenkonverters 20 angeordnet ist und über eine Halterungsebene für den Wellenlängenkonverters 20, in welcher der Wellenlängenkonverter 20 bzw. eine lichtabgebende Oberfläche des Wellenlängenkonverters 20 angeordnet ist, hervorragt.The light module 10 comprises a safety bracket 32 which is arranged on the support component 22 of the wavelength converter 20 and protrudes over a mounting plane for the wavelength converter 20 in which the wavelength converter 20 or a light-emitting surface of the wavelength converter 20 is arranged.

Fig. 2 zeigt eine Ausgestaltung eines Lichtmoduls 10 in Draufsicht auf das Trägerbauteil 22 mit Wellenlängenkonverter 20 und dem an dem Trägerbauteil befestigten Sicherheitsbügel 32. Der Sicherheitsbügel 32 ragt über die Halterungsebene des Wellenlängenkonverters 20 hervor. Insbesondere ist der Wellenlängenkonverter 20 in einem mittigen Abschnitt des Trägerbauteil 22 positioniert. Der Sicherheitsbügel 32 setzt beispielsweise an einem Randabschnitt des Trägerbauteil 22 an und ragt ausgehend von dem Randabschnitt über den mittigen Bereich des Trägerbauteil 22. Insofern überdeckt der Sicherheitsbügel 32 einen Teil der Fläche des Wellenlängenkonverters 20. Somit trifft nur ein geringer Teil der vom Wellenlängenkonverter 20 ausgesandten Sekundärlichtverteilung 22 auf den Sicherheitsbügel 32. Der Sicherheitsbügel 32 ist so bemessen und angeordnet, dass der Primärraumwinkelbereich überdeckt wird, in dem Lichtbündel verlaufen, welche ausgehend von der Laserlichtquelle 12 um die Primärabstrahlrichtung 16 verlaufen. Im Idealfall treffen auch nur solche Lichtbündel auf den Sicherheitsbügel 32, welche ausgehend von der Laserlichtquelle 12 in einem Primärraumwinkelbereich um die Pimärabstrahlrichtung 16 verlaufen, sodass eine Umformung in die Abstrahllichtverteilung 28 auch nur für solche Lichtbündel unterdrückt wird. Die Abstrahllichtverteilung 28 wird im Wesentlichen durch die Sekundärlichtverteilung 24 erzeugt. Eine Unterdrückung von Lichtstrahlen in dem vergleichsweise kleinen Primärraumwinkelbereich um die Primärabstrahlrichtung 16 führt daher im Normalbetrieb nicht zu einem nennenswerten Leistungsverlust oder Störungen der Abstrahllichtverteilung 28. Fig. 2 shows an embodiment of a light module 10 in a plan view of the carrier component 22 with the wavelength converter 20 and the safety bracket 32 fastened to the carrier component. The safety bracket 32 protrudes over the mounting plane of the wavelength converter 20. In particular, the wavelength converter 20 is positioned in a central section of the carrier component 22. The safety bracket 32 attaches, for example, to an edge section of the carrier component 22 and, starting from the edge section, protrudes over the central area of the carrier component 22. In this respect, the safety bracket 32 covers part of the surface of the wavelength converter 20 Secondary light distribution 22 on the safety bar 32. The safety bar 32 is dimensioned and arranged in such a way that the primary solid angle area is covered, in which the bundles of light run from the Laser light source 12 run around primary emission direction 16. In the ideal case, only those light bundles hit the safety bar 32 which, starting from the laser light source 12, extend in a primary solid angle range around the primary emission direction 16, so that a transformation into the emission light distribution 28 is suppressed for such light bundles. The emitted light distribution 28 is essentially generated by the secondary light distribution 24. A suppression of light beams in the comparatively small primary solid angle range around the primary emission direction 16 therefore does not lead to a noticeable loss of power or disturbances in the emission light distribution 28 during normal operation.

Der Sicherheitsbügel 32 kann auf der dem Wellenlängenkonverter 20 zugewandten Seite einen Absorptionsbereich 34 zum Absorbieren von Laserstrahlung umfassen. Durch die Absorption der Laserstrahlung erwärmt sich der Sicherheitsbügel 32. Ist der Wellenlängenkonverter 20 beschädigt, trifft ein größerer Anteil von Laserlicht auf den Sicherheitsbügel 32. Dieser erwärmt sich stärker. Beispielsweise kann ein am Sicherheitsbügel 32 angebrachter Temperatursensor 36 die Erwärmung detektieren.On the side facing the wavelength converter 20, the safety bar 32 can comprise an absorption region 34 for absorbing laser radiation. The safety bar 32 is heated by the absorption of the laser radiation. If the wavelength converter 20 is damaged, a larger proportion of laser light strikes the safety bar 32. The latter heats up more. For example, a temperature sensor 36 attached to the safety bar 32 can detect the heating.

Die Figuren 3a und 3b zeigen eine schematische Darstellung des Sicherheitsbügels 32 eines Lichtmoduls 10 in einer weiteren Ausführungsform im störungsfreien Betrieb (Fig. 3a) und für einen Störfall (Fig. 3b). Der Sicherheitsbügel 32 umfasst einen Reflexionsbereich 38 mit einer schräg zur Primärabstrahlrichtung 16 orientierten Reflexionsoberfläche 40. Im Normalbetrieb (Fig. 3a), d.h. mit einem intakten Wellenlängenkonverter 20, wird im Idealfall das gesamte Primärlichtbündel 14 erfasst und die Sekundärlichtverteilung 24 erzeugt. Die Sekundärlichtverteilung 24 strahlt in den Sekundärraumwinkelbereich ab und nur der Teil der Sekundärlichtverteilung 24, der in der Primärabstrahlrichtung 16 verläuft, wird von dem Sicherheitsbügel 32 abgelenkt. Die restlichen Lichtbündel der Sekundärlichtverteilung 24 werden von dem Sicherheitsbügel 32 nicht reflektiert und treffen auf Reflektor 26.The Figures 3a and 3b show a schematic representation of the safety bar 32 of a light module 10 in a further embodiment in trouble-free operation ( Fig. 3a ) and for an incident ( Figure 3b ). The safety bar 32 comprises a reflection area 38 with a reflection surface 40 oriented obliquely to the primary emission direction 16. In normal operation ( Fig. 3a ), ie with an intact wavelength converter 20, in the ideal case the entire primary light bundle 14 is recorded and the secondary light distribution 24 is generated. The secondary light distribution 24 shines in the Secondary solid angle range from and only that part of the secondary light distribution 24 which runs in the primary emission direction 16 is deflected by the safety bracket 32. The remaining light bundles of the secondary light distribution 24 are not reflected by the safety bar 32 and strike the reflector 26.

Ist der Wellenlängenkonverter 20 beschädigt (Fig. 3b), trifft das potenziell gefährliche Laserlichtbündel ausgehendend von der Laserlichtquelle 12 und der Zwischenoptik 18 auf den Sicherheitsbügel 32. Durch die Reflexionsoberfläche 40 des Sicherheitsbügels 32 werden die auftreffenden Lichtstrahlen in einen der Hauptabstrahlrichtung 30 des Lichtmoduls 10 und des Reflektors 26 abgewandten Bereich gelenkt und tragen somit nicht zur Abstrahllichtverteilung 28 des Lichtmoduls 10 bei.Is the wavelength converter 20 damaged ( Figure 3b ), the potentially dangerous laser light bundle, emanating from the laser light source 12 and the intermediate optics 18, hits the safety bracket 32. By the reflective surface 40 of the safety bracket 32, the incident light beams are directed into an area facing away from the main emission direction 30 of the light module 10 and the reflector 26 and thus carry them does not contribute to the radiation light distribution 28 of the light module 10.

Die Figuren 4 und 5 zeigen weitere Ausführungsformen eines Lichtmoduls 10, wobei jeweils die Abstrahloptik nicht dargestellt ist. Auf einer Leiterplatte 42 ist ein Detektionselement 44 zum Erfassen und Überwachen der Strahlungsintensität von Laserlicht und zum Aussenden eines Detektorsignals angeordnet. In Figur 4 weist der Sicherheitsbügel 32 einen Streubereich 46 mit einer streuenden Oberfläche 48 auf. Zumindest ein Teil des auf dem Sicherheitsbügel 32 auftreffenden Lichtbündels wird von der streuenden Oberfläche 48 auf einen Lichtleiter 50 gelenkt und in dem Lichtleiter 50 auf das Detektionselement 44 geführt. Der Lichtleiter 50 ist vorzugsweise derart ausgebildet, dass nur unumgewandelte Laserstrahlen geleitet werden. Dies kann insbesondere durch eine Beschichtung des Lichtleiters 50 oder durch den Einbau eines zusätzlichen optischen Filters realisiert werden. Lichtbündel der Sekundärlichtverteilung 24, die auf den Lichtleiter 50 treffen werden dann absorbiert und/oder reflektiert und gelangen vorzugsweise nicht auf das Detektionselement 44.The Figures 4 and 5 show further embodiments of a light module 10, the radiation optics not being shown in each case. A detection element 44 for detecting and monitoring the radiation intensity of laser light and for emitting a detector signal is arranged on a circuit board 42. In Figure 4 the safety bar 32 has a scattering area 46 with a scattering surface 48. At least part of the light bundle impinging on the safety bracket 32 is directed by the scattering surface 48 onto a light guide 50 and guided in the light guide 50 onto the detection element 44. The light guide 50 is preferably designed in such a way that only unconverted laser beams are guided. This can be achieved in particular by coating the light guide 50 or by installing an additional optical filter. Light bundle of Secondary light distributions 24 which strike the light guide 50 are then absorbed and / or reflected and preferably do not reach the detection element 44.

Das Detektionselement 44 erfasst die Strahlungsintensität des auftreffenden Lichtbündels. Im Falle eines Defekts des Wellenlängenkonverters 20 trifft der unumgewandelte Laserlichtstrahl auf den Sicherheitsbügel 32 und damit auch auf das Detektionselement 44. Das Detektionselement 44 erfasst dann einen (sprunghaften) Anstieg der Strahlungsintensität und sendet im Falle einer Grenzwertüberschreitung der Strahlungsintensität ein Detektionssignal an eine Steuerelektronik der Laserlichtquelle 12. Um weitere Schäden am Lichtmodul 10 zu vermeiden, kann im Störfall die Laserlichtquelle 12 aufgrund des Detektionssignals des deaktiviert werden.The detection element 44 detects the radiation intensity of the incident light bundle. In the event of a defect in the wavelength converter 20, the unconverted laser light beam strikes the safety bracket 32 and thus also the detection element 44. The detection element 44 then detects a (sudden) increase in the radiation intensity and sends a detection signal to the control electronics of the laser light source if the radiation intensity exceeds a limit value 12. In order to avoid further damage to the light module 10, the laser light source 12 can be deactivated based on the detection signal in the event of a fault.

Die Figur 5 zeigt eine Ausführungsform, bei der zumindest ein Teil des auf den Sicherheitsbügel 32 auftreffenden Lichtbündels durch eine Durchstrahlöffnung 52 in dem Trägerbauteil 22 auf das Detektionselement 44 geführt wird. Vorteilhafterweise ist in der Durchstrahlöffnung 52 ein optisches Element 54, insbesondere eine Linse, ein diffraktives Element, ein Farbfilter oder ein Prisma vorgesehen, um die durch die Durchstrahlöffnung 52 eintretenden Lichtbündel auf das Detektionselement 44 anzupassen.The Figure 5 shows an embodiment in which at least a part of the light beam impinging on the safety bracket 32 is guided through a transmission opening 52 in the carrier component 22 onto the detection element 44. An optical element 54, in particular a lens, a diffractive element, a color filter or a prism, is advantageously provided in the transmission opening 52 in order to adapt the light bundles entering through the transmission opening 52 to the detection element 44.

Claims (11)

  1. Light module (10) for a motor vehicle headlight, comprising:
    • at least one laser light source (12) for emitting a primary light beam (14);
    • a wavelength converter (20) for converting the primary light beam (4) into a secondary light distribution (24);
    • an emission optics device (26) for converting the secondary light distribution (24) into an emission light distribution (28) of the light module (10);
    • a carrier component (22) being provided for holding the wavelength converter (20),
    characterized in that
    the laser light source (12) is designed such that the primary light beam (14) is emitted in a primary solid angle range about a primary emission direction (16),
    and in that the wavelength converter (20) is designed such that the primary light beam (14) strikes the wavelength converter (20) in the primary solid angle range about the primary emission direction (16),
    and in that the carrier component (22) has a safety guard (32) which, starting from the wavelength converter (20), covers the primary solid angle range about the primary emission direction (16) and is arranged on the carrier component (22) such that it prevents potentially dangerous laser light of the primary light beam (14) from exiting the light module (10) .
  2. Light module (10) according to claim 1, characterized in that the safety guard (32) is rigidly connected to the carrier component (22), the safety guard (32) protruding over a mounting plane for the wavelength converter (20).
  3. Light module (10) according to the preceding claim, characterized in that the safety guard (32) extends, in its further extension, at a distance from the mounting plane and along the mounting plane.
  4. Light module (10) according to any of the preceding claims, characterized in that the safety guard (32) has an absorption region (34) which is designed such that incident laser light is absorbed.
  5. Light module (10) according to any of the preceding claims, characterized in that the absorption region (34) only completely covers the primary solid angle range.
  6. Light module (10) according to any of the preceding claims, characterized in that the safety guard (32) comprises a scatter region (46) having a scattering surface (48) such that an incident light beam is scattered to the side or diffusely.
  7. Light module (10) according to any of the preceding claims, characterized in that the safety guard (32) comprises a reflection region (38) having a reflection surface (40) which is arranged such that a light beam incident in the primary emission direction (16) can be deflected such that it does not contribute to the emission light distribution (28).
  8. Light module (10) according to any of the preceding claims, characterized in that the safety guard (32) comprises a back-reflection region (38) having a reflective surface (40) such that a light beam incident in the primary emission direction (16) is deflected back to the wavelength converter (20).
  9. Light module (10) according to any of the preceding claims, characterized in that the safety guard (32) comprises a deflection region having a reflective surface such that a light beam incident in the primary emission direction (16) can be deflected onto a detection element (44) designed for detecting laser radiation.
  10. Light module (10) according to any of the preceding claims, characterized in that a detection element (36), in particular for detecting temperature, and/or an indication element, in particular for indicating temperature, is arranged on the safety guard (32).
  11. Light module (10) according to any of the preceding claims, characterized in that the safety guard (32) has at least one screen edge which shades a region of the secondary light distribution and which is arranged in relation to the emission optics device (26) such that the secondary light distribution (24) shaded by the screen edge is transformed into an emission light distribution having a light-dark boundary.
EP16790975.3A 2015-11-02 2016-11-02 Light module Active EP3371509B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015221399.4A DE102015221399A1 (en) 2015-11-02 2015-11-02 light module
PCT/EP2016/076363 WO2017076870A1 (en) 2015-11-02 2016-11-02 Light module

Publications (2)

Publication Number Publication Date
EP3371509A1 EP3371509A1 (en) 2018-09-12
EP3371509B1 true EP3371509B1 (en) 2021-02-17

Family

ID=57233440

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16790975.3A Active EP3371509B1 (en) 2015-11-02 2016-11-02 Light module

Country Status (3)

Country Link
EP (1) EP3371509B1 (en)
DE (1) DE102015221399A1 (en)
WO (1) WO2017076870A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016117411B4 (en) 2016-09-15 2020-03-26 Varroc Lighting Systems, s.r.o. Lighting system for a motor vehicle with a laser light source
DE202017103875U1 (en) * 2017-06-29 2018-10-02 Automotive Lighting Reutlingen Gmbh Lighting device for a motor vehicle
DE102018100410B3 (en) 2018-01-10 2019-05-23 Automotive Lighting Reutlingen Gmbh Light module with a laser light source and motor vehicle headlight with such a light module

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5122542B2 (en) * 2009-09-15 2013-01-16 シャープ株式会社 Light emitting device, lighting device, and light detector
JP4975797B2 (en) 2009-10-14 2012-07-11 シャープ株式会社 LIGHTING DEVICE, VEHICLE LIGHT, AND VEHICLE
JP2011249538A (en) * 2010-05-26 2011-12-08 Sharp Corp Light emitting device and lighting system
JP5657357B2 (en) * 2010-12-01 2015-01-21 スタンレー電気株式会社 Vehicle lighting
EP2797772B1 (en) * 2011-12-29 2020-12-02 ZKW Group GmbH Safety device for headlights with laser light sources and method for shutting down laser light sources in case of safety-critical conditions
JP5912712B2 (en) * 2012-03-21 2016-04-27 スタンレー電気株式会社 Optical system for illumination
DE102012220472A1 (en) 2012-11-09 2014-05-15 Automotive Lighting Reutlingen Gmbh Kfz. lighting device
DE102012220481A1 (en) 2012-11-09 2014-05-15 Automotive Lighting Reutlingen Gmbh light module
JP6146734B2 (en) * 2013-03-19 2017-06-14 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
DE102014207024A1 (en) * 2014-04-11 2015-10-15 Osram Gmbh Lighting device with light source and spaced phosphor body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017076870A1 (en) 2017-05-11
EP3371509A1 (en) 2018-09-12
DE102015221399A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
EP2917072B1 (en) Light module
EP2917635B1 (en) Motor vehicle lighting apparatus
EP3108177B1 (en) Lighting device with primary light source and phosphor volume
WO2015140001A1 (en) Lighting device
EP3371509B1 (en) Light module
DE102017109905A1 (en) Headlamp with integrated lidar
DE102014222775A1 (en) Motor vehicle headlight with a laser light module
AT518083B1 (en) Headlamp for vehicles with at least one laser light module
DE102016117411B4 (en) Lighting system for a motor vehicle with a laser light source
DE102018100410B3 (en) Light module with a laser light source and motor vehicle headlight with such a light module
EP2475956B1 (en) Laser projector for wheel alignment
DE102019112324A1 (en) Headlights of a motor vehicle
WO2016151016A1 (en) Illumination device for vehicles
DE102014208504A1 (en) lighting device
WO2017140705A1 (en) Light module
DE102015202368A1 (en) light module
EP3160796B1 (en) Lighting device for a motor vehicle, comprising a safety device for detecting fault states, and method for detecting fault states
AT517733B1 (en) Laser unit with aperture for reduction of aberrant light and laser module
DE102016101192A1 (en) Lighting device for vehicles
DE102016118378A1 (en) Method for detecting an abnormal operating state of a laser light source of a motor vehicle headlight, laser light module and motor vehicle headlight for implementing the method
EP3056802B1 (en) Lighting device for a headlight of a motor vehicle and method for operation of a lighting device
DE102019003198A1 (en) Motor vehicle laser headlight arrangement with frequency monitoring
DE102017103402A1 (en) Lighting device for installation in a motor vehicle
DE102015215742A1 (en) Light module for a motor vehicle lighting device
DE202006003839U1 (en) Reflection light barrier for detecting e.g. white objects in monitoring area, has auxiliary detector to detect radiation scattered by object, where measuring information of main and auxiliary detectors are evaluated to detect objects

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101AFI20170523BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016012394

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041160000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/16 20180101AFI20200623BHEP

Ipc: F21S 41/176 20180101ALI20200623BHEP

Ipc: F21S 41/43 20180101ALI20200623BHEP

Ipc: F21S 45/70 20180101ALI20200623BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200910

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012394

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1361931

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210518

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210517

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012394

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211102

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1361931

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231019

Year of fee payment: 8