EP3366797B1 - Verfahren zur herstellung eines heisspresselement - Google Patents

Verfahren zur herstellung eines heisspresselement Download PDF

Info

Publication number
EP3366797B1
EP3366797B1 EP16857079.4A EP16857079A EP3366797B1 EP 3366797 B1 EP3366797 B1 EP 3366797B1 EP 16857079 A EP16857079 A EP 16857079A EP 3366797 B1 EP3366797 B1 EP 3366797B1
Authority
EP
European Patent Office
Prior art keywords
steel sheet
less
hot
rolled steel
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16857079.4A
Other languages
English (en)
French (fr)
Other versions
EP3366797A1 (de
EP3366797A4 (de
Inventor
Koichi Nakagawa
Shinjiro Kaneko
Takeshi Yokota
Kazuhiro Seto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of EP3366797A1 publication Critical patent/EP3366797A1/de
Publication of EP3366797A4 publication Critical patent/EP3366797A4/de
Application granted granted Critical
Publication of EP3366797B1 publication Critical patent/EP3366797B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a method of manufacturing a hot pressed member.
  • a technique of manufacturing a high strength automotive member by applying a hot press process to a steel sheet has been put into actual use.
  • the hot press process after heating a steel sheet to an austenite region, the steel sheet is conveyed to a press machine.
  • the press machine the steel sheet is formed into a member of a desired shape using a press tool, and simultaneously quenched.
  • this cooling process (quenching) in the press tool the microstructure of the member undergoes phase transformation from austenite phase to martensite phase. A high strength member of a desired shape is thus obtained.
  • JP 2013-79441 A proposes a hot press formed part obtained by forming a thin steel sheet by a hot press forming method.
  • the hot press formed part proposed in PTL 1 includes: a chemical composition containing, in mass%, C: 0.15 % to 0.35 %, Si: 0.5 % to 3 %, Mn: 0.5 % to 2 %, P: 0.05 % or less, S: 0.05 % or less, Al: 0.01 % to 0.1 %, Cr: 0.01 % to 1 %, B: 0.0002 % to 0.01 %, Ti: (N content) ⁇ 4 % to 0.1 %, and N: 0.001 % to 0.01 %, with a balance consisting of Fe and incidental impurities; and a microstructure including, in area ratio, martensite: 80 % to 97 %, retained austenite: 3 % to 20 %, and a balance: 5 % or less.
  • PTL 1 states that, with
  • JP 2010-65293 A proposes a hot pressed member having excellent ductility.
  • the hot pressed member described in PTL 2 includes: a composition containing, in mass%, C: 0.20 % to 0.40 %, Si: 0.05 % to 3.0 %, Mn: 1.0 % to 4.0 %, P: 0.05 % or less, S: 0.05 % or less, Al: 0.005 % to 0.1 %, and N: 0.01 % or less, with a balance consisting of Fe and incidental impurities; and a microstructure in which the area ratio of ferrite phase is 5 % to 55 % and the area ratio of martensite phase is 45 % to 95 % with respect to the whole microstructure, and the mean grain size of ferrite phase and martensite phase is 7 ⁇ m or less.
  • the hot pressed member has high strength of 1470 MPa to 1750 MPa in tensile strength TS, and high ductility of 8 % or more in total elong
  • PTL 3 relates to a high-strength hot-pressed part obtained by performing a hot pressing process on a steel sheet, where the part has a specific chemical composition, microstructure and tensile properties. PTL 3 further relates to a method of manufacturing the hot-pressed part.
  • PTL 4 relates to a steel sheet used for hot stamping, which is characterized by a specific composition and martensitic transformation start temperature.
  • PTL 4 further relates to a hot stamping process, in which the steel sheet is provided, heated, transferred to a die for stamping so as to obtain a formed component, and cooling the formed component.
  • PTL 5 relates to a hot-formed member having a specific chemical composition, microstructure and tensile strength, as well as a manufacturing method which provides the hot-formed member.
  • PTL 6 relates to a method for manufacturing a hot-pressed member including heating a specific coated steel sheet to 850°C to 950°C, and starting hot press forming when the temperature of the coated steel sheet which has been heated is 650°C to 800°C.
  • a hot pressed member is typically subjected to a baking finish after the production. Heat treatment in this baking finish increases yield stress YS. To enhance anti-crash property, not only high uniform elongation but also high YS is important. Accordingly, a hot pressed member that has excellent heat treatment hardenability so that YS increases as high as possible as a result of the heat treatment in the baking finish is desired.
  • the techniques described in PTL 1 and PTL 2 are, however, not concerned with such heat treatment hardenability.
  • a hot pressed member having all of: high strength of 1500 MPa or more in tensile strength TS; high ductility of 6.0 % or more in uniform elongation uEl; and excellent heat treatment hardenability of increasing in yield stress YS by 150 MPa or more when subjected to heat treatment (baking finish), and an advantageous method of manufacturing the same.
  • excellent heat treatment hardenability means a property that, when a hot pressed member is heat treated, the difference (hereafter denoted by " ⁇ YS”) between the yield stress YS after the heat treatment and the yield stress YS before the heat treatment is 150 MPa or more.
  • the hot pressed member obtainable according to the present invention has all of: high strength of 1500 MPa or more in tensile strength TS; high ductility of 6.0 % or more in uniform elongation uEl; and excellent heat treatment hardenability of increasing in yield stress YS by 150 MPa or more when subjected to heat treatment (baking finish).
  • Such a hot pressed member can be advantageously obtained by the method of manufacturing a hot pressed member according to the present invention.
  • C is an element that increases the strength of the steel.
  • yield stress is increased by dislocation locking of solute C.
  • the C content is 0.090 % or more. If the C content is 0.30 % or more, the degree of solid solution strengthening by C increases, which makes it difficult to adjust the tensile strength TS of the hot pressed member to less than 2300 MPa.
  • Mn 3.5 % or more and less than 11.0 %
  • Mn is an element that increases the strength of the steel and also concentrates in austenite to improve the stability of austenite, and is the most important element in the present invention.
  • the Mn content is 3.5 % or more. If the Mn content is 11.0 % or more, the degree of solid solution strengthening by Mn increases, which makes it difficult to adjust the tensile strength TS of the hot pressed member to less than 2300 MPa.
  • a hot pressed member having tensile property of 6.0 % or more in uniform elongation can be yielded stably, with a tensile strength TS of 1500 MPa or more and preferably less than 2300 MPa.
  • a tensile strength TS 1500 MPa or more and preferably less than 2300 MPa.
  • C 0.090 % or more and less than 0.12 % and Mn: 6.5 % or more and less than 8.5 %, or C: 0.12 % or more and less than 0.18 % and Mn: 5.5 % or more and less than 7.5 %.
  • C 0.090 % or more and less than 0.12 % and Mn: 8.5 % or more and less than 11.0 %
  • C: 0.12 % or more and less than 0.18 % and Mn 7.5 % or more and less than 11.0 %
  • C: 0.18 % or more and less than 0.30 % and Mn 4.5 % or more and less than 6.5 %.
  • Si is an element that increases the strength of the steel by solid solution strengthening. To achieve the effect, the Si content is 0.01 % or more. If the Si content is more than 2.5 %, surface defects called red scale occur significantly in hot rolling, and also the rolling load increases. The Si content is therefore 0.01 % or more and 2.5 % or less. The Si content is preferably 0.02 % or more. The Si content is preferably 1.5 % or less.
  • P is an element that exists in the steel as an incidental impurity, and segregates to crystal grain boundaries and like and causes adverse effects such as a decrease in the toughness of the member.
  • the P content is therefore desirably as low as possible, but 0.05 % or less P is allowable. Accordingly, the P content is 0.05 % or less, and more preferably 0.02 % or less. Excessive dephosphorization leads to higher refining cost, and so the P content is desirably 0.0005 % or more.
  • S is contained in the steel incidentally. S exists in the steel as a sulfide inclusion, and decreases the ductility, toughness, and the like of the hot pressed member.
  • the S content is therefore desirably as low as possible, but 0.05 % or less S is allowable. Accordingly, the S content is 0.05 % or less, and more preferably 0.005 % or less. Excessive desulfurization leads to higher refining cost, and so the S content is desirably 0.0005 % or more.
  • Al is an element that acts as a deoxidizer. To achieve the effect, the Al content is 0.005 % or more. If the Al content is more than 0.1 %, Al combines with nitrogen to form a large amount of nitride. This causes a decrease in the blanking workability and quench hardenability of the steel sheet as a blank sheet.
  • the Al content is therefore 0.005 % or more and 0.1 % or less.
  • the Al content is preferably 0.02 % or more.
  • the Al content is preferably 0.05 % or less.
  • N is typically contained in the steel incidentally. If the N content is more than 0.01 %, nitrides such as AlN form during heating in hot rolling or hot press. This causes a decrease in the blanking workability and quench hardenability of the steel sheet as a blank sheet.
  • the N content is therefore 0.01 % or less.
  • the N content is more preferably 0.0030 % or more.
  • the N content is more preferably 0.0050 % or less. In the case where N is contained incidentally without adjustment, the N content is approximately less than 0.0025 %. To prevent an increase in refining cost, the N content is desirably 0.0025 % or more.
  • the chemical composition may contain the following optional components.
  • a group one or more selected from Ni: 0.01 % to 5.0 %, Cu: 0.01 % to 5.0 %, Cr: 0.01 % to 5.0 %, and Mo: 0.01 % to 3.0 %
  • Ni, Cu, Cr, and Mo are each an element that increases the strength of the steel and improves quench hardenability. One or more of them may be selected and added according to need. To achieve the effect, the content of each element is 0.01 % or more. To prevent an increase in material cost, the Ni, Cu, and Cr contents are each 5.0 % or less, and the Mo content is 3.0 % or less. The content of each element is preferably 0.01 % or more and 1.0 % or less.
  • B group one or more selected from Ti: 0.005 % to 3.0 %, Nb: 0.005 % to 3.0 %, V: 0.005 % to 3.0 %, and W: 0.005 % to 3.0 %
  • Ti, Nb, V, and W are each an element that increases the strength of the steel by precipitation strengthening, and also improves toughness by crystal grain refinement. One or more of them may be selected and added according to need.
  • Ti has not only the effect of increasing strength and improving toughness, but also the effect of forming a nitride more preferentially than B and improving quench hardenability by solute B.
  • the Ti content is 0.005 % or more. If the Ti content is more than 3.0 %, the rolling load increases extremely in hot rolling, and also the toughness of the hot pressed member decreases. Accordingly, in the case of containing Ti, the Ti content is 0.005 % or more and 3.0 % or less.
  • the Ti content is preferably 0.01 % or more.
  • the Ti content is preferably 1.0 % or less.
  • the Nb content is 0.005 % or more. If the Nb content is more than 3.0 %, the amount of carbonitride increases, and ductility and lagging destruction resistance decrease. Accordingly, in the case of containing Nb, the Nb content is 0.005 % or more and 3.0 % or less.
  • the Nb content is preferably 0.01 % or more.
  • the Nb content is preferably 0.05 %.
  • V has not only the effect of increasing strength and improving toughness, but also the effect of precipitating as a precipitate or a crystallized product and improving hydrogen embrittlement resistance as a hydrogen trap site.
  • the V content is 0.005 % or more. If the V content is more than 3.0 %, the amount of carbonitride increases considerably, and ductility decreases. Accordingly, in the case of containing V, the V content is 0.005 % or more and 3.0 % or less.
  • the V content is preferably 0.01 % or more.
  • the V content is preferably 2.0 % or less.
  • the W has not only the effect of increasing strength and improving toughness, but also the effect of improving hydrogen embrittlement resistance. To achieve the effects, the W content is 0.005 % or more. If the W content is more than 3.0 %, ductility decreases. Accordingly, in the case of containing W, the W content is 0.005 % or more and 3.0 % or less. The W content is preferably 0.01 % or more. The W content is preferably 2.0 % or less.
  • C group one or more selected from REM: 0.0005 % to 0.01 %, Ca: 0.0005 % to 0.01 %, and Mg: 0.0005 % to 0.01 %
  • REM, Ca, and Mg are each an element that improves ductility and hydrogen embrittlement resistance by morphological control of an inclusion. One or more of them may be selected and added according to need. To achieve the effect, the content of each element is 0.0005 % or more. To prevent a decrease in hot workability, the REM content and the Ca content are each 0.01 % or less. To prevent a decrease in ductility caused by the formation of a coarse oxide or sulfide, the Mg content is 0.01 % or less. The content of each element is preferably 0.0006 % to 0.01 %.
  • the Sb inhibits the formation of a decarburized layer in the steel sheet surface layer when heating or cooling the steel sheet, and so may be added according to need.
  • the Sb content is 0.002 % or more. If the Sb content is more than 0.03 %, the rolling load increases, and productivity decreases. Accordingly, in the case of containing Sb, the Sb content is 0.002 % or more and 0.03 % or less. The Sb content is preferably 0.002 % or more and 0.02 % or less.
  • the B improves quench hardenability during hot press and toughness after hot press, and so may be added according to need.
  • the B content is 0.0005 % or more. If the B content is more than 0.05 %, the rolling load in hot rolling increases. Besides, martensite phase or bainite phase may form after hot rolling, and cause cracking in the steel sheet. Accordingly, in the case of containing B, the B content is 0.0005 % or more and 0.05 % or less, and preferably 0.0005 % or more and 0.01 % or less.
  • the balance other than the components described above consists of Fe and incidental impurities.
  • incidental impurities O (oxygen): 0.0100 % or less is allowable.
  • microstructure of the hot pressed member is described below.
  • Martensite phase 70.0 % or more in volume fraction
  • martensite phase of 70.0 % or more in volume fraction needs to be the main phase.
  • martensite phase is preferably 97 % or less.
  • Retained austenite phase 3.0 % to 30.0 % in volume fraction
  • Retained austenite phase enhances uniform elongation by a transformation induced plasticity (TRIP) effect upon deformation, and is the most important microstructure in the present invention.
  • the volume fraction of retained austenite phase is 3.0 % or more, to achieve a uniform elongation uEl of 6.0 % or more. If the volume fraction of retained austenite phase is more than 30.0 %, hard martensite phase transformed after the TRIP effect is developed increases excessively, and toughness decreases.
  • the volume fraction of retained austenite phase is therefore 3.0 % or more and 30.0 % or less.
  • the volume fraction of retained austenite phase is preferably 5.0 or more.
  • the volume fraction of retained austenite phase is preferably 20.0 % or less.
  • bainite phase As the balance other than martensite phase and retained austenite phase, 10 % or less (including 0 %) bainite phase, ferrite phase, cementite, and pearlite in volume fraction in total is allowable.
  • the volume fraction of each phase is determined as follows.
  • the volume fraction of retained austenite is determined by the following method.
  • An X-ray diffraction test piece is cut out of the hot pressed member, mechanically polished and chemically polished so that the measurement plane is at a position of 1/4 of the thickness, and then subjected to X-ray diffraction.
  • CoK ⁇ radiation as an incident X-ray, the peak integrated intensity for the retained austenite ( ⁇ ) planes of ⁇ 200 ⁇ , ⁇ 220 ⁇ , and ⁇ 311 ⁇ and the peak integrated intensity for the ferrite ( ⁇ ) planes of ⁇ 200 ⁇ and ⁇ 211 ⁇ are measured.
  • the retained ⁇ volume fraction obtained from each integrated intensity ratio is calculated.
  • Their mean value is set as "the volume fraction of retained austenite phase”.
  • the volume fraction of the balance is determined by the following method.
  • a microstructure observation test piece is collected from the hot pressed member so that the observation plane is parallel to the rolling direction and perpendicular to the rolling plane.
  • the observation plane is polished, and etched with a 3 vol% nital solution to expose the microstructure.
  • the microstructure at a position of 1/4 of the sheet thickness is observed using a scanning electron microscope (at 1500 magnifications) and photographed. From the obtained micrograph, the microstructure is identified and the microstructure proportion is calculated by image analysis.
  • a phase observed as black with a relatively smooth surface is identified as ferrite phase.
  • a phase observed as white in film or lump form in crystal grain boundaries is identified as cementite.
  • a phase in which ferrite phase and cementite form in layers is identified as pearlite.
  • a phase in which a carbide forms between laths and a phase made of bainitic ferrite having no carbide in grains are identified as bainite phase.
  • the occupancy area ratio of each phase in the micrograph is calculated, and the area ratio is set as the volume fraction on the assumption that the microstructure is homogeneous three-dimensionally.
  • the volume fraction of martensite phase is calculated by subtracting the volume fraction of the balance and the volume fraction of the retained austenite phase from 100 %.
  • Dislocation density 1.0 ⁇ 10 16 /m 2 or more
  • the dislocation density of the hot pressed member influences ⁇ YS, and is the most important index in the present invention. It is considered that, when the hot pressed member is subjected to heat treatment (baking finish), solute C locks to mobile dislocations, as a result of which yield stress YS increases. To achieve ⁇ YS of 150 MPa or more, the dislocation density of the hot pressed member needs to be 1.0 ⁇ 10 16 /m 2 or more. The upper limit of the dislocation density is substantially 5.0 ⁇ 10 16 /m 2 .
  • the dislocation density of the hot pressed member is preferably 1.2 ⁇ 10 16 /m 2 or more.
  • the dislocation density of the hot pressed member is preferably 4.5 ⁇ 10 16 /m 2 or less.
  • the dislocation density is determined by the following method.
  • An X-ray diffraction test piece is cut out of the hot pressed member, mechanically polished and chemically polished so that the measurement plane is at a position of 1/4 of the thickness, and then subjected to X-ray diffraction.
  • the peak half-value widths of ⁇ 110 ⁇ , ⁇ 211 ⁇ , and ⁇ 220 ⁇ are measured.
  • the measured peak half-value widths of ⁇ 110 ⁇ , ⁇ 211 ⁇ , and ⁇ 220 ⁇ are corrected to true half-value widths using a strain-free standard test piece (Si), and then strain ( ⁇ ) is calculated based on the Willaimson-Hall method.
  • the hot pressed member in this embodiment has the following properties: high strength of 1500 MPa or more and preferably less than 2300 MPa in tensile strength TS; high ductility of 6.0 % or more and substantially 20 % or less in uniform elongation uEl; and ⁇ YS of 150 MPa or more and substantially 300 MPa or less.
  • the hot pressed member in this embodiment preferably has a coated layer.
  • the steel sheet used as a blank sheet of the hot pressed member is a coated steel sheet
  • a coated layer remains in the surface layer of the yielded hot pressed member.
  • scaling is suppressed during heating in hot press.
  • the hot pressed member can thus be put to use without descaling the surface, which contributes to improved productivity.
  • the coated layer is preferably a zinc or zinc alloy coated layer or an aluminum or aluminum alloy coated layer.
  • a zinc or zinc alloy coated layer is better than an aluminum or aluminum alloy coated layer, because the corrosion rate of the steel substrate can be reduced by the sacrificial protection effect of zinc.
  • a zinc oxide film forms in the initial stage of heating in the hot press process, so that evaporation of Zn can be prevented in the subsequent treatment of the hot pressed member.
  • the zinc or zinc alloy coating examples include typical hot-dip galvanizing (GI), galvannealing (GA), and Zn-Ni-based coating.
  • Zn-Ni-based coating is particularly preferable.
  • a Zn-Ni-based coated layer can remarkably suppress scaling during hot press heating, and also prevent liquid metal embrittlement cracking.
  • the Zn-Ni-based coated layer preferably contains 10 mass% to 25 mass% Ni. If more than 25 % Ni is contained, the effects are saturated.
  • Examples of the aluminum or aluminum alloy coated layer include Al-10 mass% Si coating.
  • a slab having the above-mentioned chemical composition is heated, and hot rolled to obtain a hot rolled steel sheet.
  • the hot rolled steel sheet is then subjected to predetermined heat treatment (Mn concentration heat treatment) (described later), to obtain a first blank steel sheet.
  • predetermined heat treatment Mn concentration heat treatment
  • the first blank steel sheet is cold rolled to obtain a cold rolled steel sheet.
  • the cold rolled steel sheet is then subjected to predetermined annealing, to obtain a second blank steel sheet.
  • the second blank steel sheet obtained in this way is subjected to a predetermined heating process and a hot press forming process, to obtain a hot pressed member. Each process is described in detail below.
  • the obtainment of the hot rolled steel sheet is not limited, and may be performed according to a usual method. It is preferable to obtain molten steel having the above-mentioned chemical composition by steelmaking in a converter or the like, and process the molten steel into a slab by a continuous casting method in order to prevent macrosegregation. An ingot casting method or a thin slab continuous casting method may be used instead of the continuous casting method.
  • the obtained slab is cooled to the room temperature, and then charged into a heating furnace for reheating.
  • an energy saving process such as a process of charging the slab into the heating furnace as a warm slab without cooling the slab to the room temperature or a process of heat-retaining the slab for a short time and then immediately hot rolling the slab may be used.
  • the obtained slab is heated to a predetermined heating temperature, and then hot rolled to obtain a hot rolled steel sheet.
  • the heating temperature is, for example, 1000 °C to 1300 °C.
  • the heated slab is typically hot rolled at a finisher entry temperature of 1100 °C or less and a finisher delivery temperature of 800 °C to 950 °C, cooled at an average cooling rate of 5 °C/s or more, and coiled at a coiling temperature of 300 °C to 750 °C, to obtain a hot rolled steel sheet.
  • the hot rolled steel sheet is heated to a first temperature that is Ac1 point or more and Ac3 point or less, retained at the first temperature for 1 hr or more and 48 hr or less, and then cooled to obtain the first blank steel sheet.
  • This process causes Mn to concentrate in austenite, and is the most important process for manufacturing a hot pressed member that has the appropriate amount of retained austenite to achieve a uniform elongation uEl of 6.0 % or more and has a dislocation density of 1.0 ⁇ 10 16 /m 2 or more to achieve ⁇ YS of 150 MPa or more.
  • Heating temperature Ac1 point or more and Ac3 point or less
  • the hot rolled steel sheet is heated to a ferrite-austenite dual phase temperature range, to cause Mn to concentrate in austenite.
  • Mn-concentrated austenite the martensite transformation end temperature is the room temperature or less, and the formation of retained austenite is facilitated. If the heating temperature is less than Ac1 point, austenite does not form, and Mn cannot be concentrated in austenite. If the heating temperature is more than Ac3 point, the temperature is in an austenite single phase temperature range, and Mn does not concentrate in austenite. In both of the case where the heating temperature is less than Ac1 point and the case where the heating temperature is more than Ac3 point, a hot pressed member having a dislocation density of 1.0 ⁇ 10 16 /m 2 or more cannot be obtained. The heating temperature is therefore Ac1 point or more and Ac3 point or less.
  • the heating temperature is preferably (Ac1 point + 20 °C) or more.
  • the heating temperature is preferably (Ac3 point - 20 °C) or less.
  • Heating retention time 1 hr or more and 48 hr or less
  • the concentration of Mn in austenite progresses with the passage of the heating retention time. If the heating retention time is less than 1 hr, the concentration of Mn in austenite is insufficient, and the desired uniform elongation cannot be obtained. Besides, if the heating retention time is less than 1 hr, the concentration of Mn is insufficient, and Ms point does not decrease in the hot press process, so that a hot pressed member having a dislocation density of 1.0 ⁇ 10 16 /m 2 or more cannot be obtained. If the heating retention time is more than 48 hr, pearlite forms, making it impossible to achieve the desired uniform elongation. Moreover, a hot pressed member having a dislocation density of 1.0 ⁇ 10 16 /m 2 or more cannot be obtained.
  • the heating retention time is therefore 1 hr or more and 48 hr or less.
  • the heating retention time is preferably 1.5 hr or more.
  • the heating retention time is preferably 24 hr or less.
  • the cooling after the heating retention is not limited. It is preferable to appropriately perform the cooling by natural cooling (gradual cooling) or controlled cooling depending on the heating furnace used and the like.
  • the Mn concentration heat treatment is preferably performed in a batch annealing furnace or a continuous annealing furnace.
  • the treatment conditions in the batch annealing furnace other than the above-mentioned conditions are not limited. For example, it is preferable to set the heating rate to 40 °C/hr or more and the cooling rate after the heating retention to 40 °C/hr or more, in terms of Mn concentration.
  • the treatment conditions in the continuous annealing furnace other than the above-mentioned conditions are not limited.
  • the hot rolled steel sheet after performing the above-mentioned heating retention, cool the hot rolled steel sheet at an average cooling rate of 10 °C/s or more to a cooling stop temperature in a temperature range of 350 °C to 600 °C, cause the hot rolled steel sheet to stay in the temperature range for 10 sec to 300 sec, and then cool and coil the steel sheet, in terms of manufacturability.
  • the first blank steel sheet produced in this way can be used as a steel sheet for hot press.
  • the microstructure of the first blank steel sheet has a feature that Mns/Mn ⁇ is 1.2 or more, where Mns is the Mn concentration in lath secondary phase and Mn ⁇ is the Mn concentration in lath ferrite.
  • secondary phase denotes the balance (austenite, martensite, pearlite, bainite) other than ferrite. If Mns/Mn ⁇ is less than 1.2, the concentration of Mn in austenite is insufficient, making it impossible to achieve sufficient uniform elongation and dislocation density after the hot press.
  • the first blank steel sheet is cold rolled to obtain a cold rolled steel sheet, instead of performing the below-mentioned heating process and hot press forming process on the first blank steel sheet.
  • the reduction ratio in the cold rolling is preferably 30 % or more, and more preferably 50 % or more.
  • the reduction ratio is preferably 85 % or less.
  • the cold rolled steel sheet is subjected to annealing of heating the cold rolled steel sheet to Ac1 point or more and Ac3 point or less, retaining it at the temperature, and then cooling it, to obtain the second blank steel sheet.
  • the annealing temperature is a predetermined temperature that is Ac1 point or more and Ac3 point or less. With this annealing temperature, the concentration of Mn in austenite is further facilitated in the annealing.
  • the retention time at the predetermined temperature is 30 sec or more and 300 sec or less. If the retention time is 30 sec or more, the effect of the concentration of Mn is sufficient. If the retention time is 300 sec or less, productivity is maintained.
  • the second blank steel sheet produced in this way can be used as a steel sheet for hot press.
  • the microstructure of the second blank steel sheet has a feature that the mean grain size of ferrite is 10 ⁇ m or less, the mean grain size of secondary phase is 10 ⁇ m or less, and Mns/Mn ⁇ is 1.5 or more, where Mns is the Mn concentration in secondary phase and Mn ⁇ is the Mn concentration in ferrite.
  • the mean grain size of ferrite and the mean grain size of secondary phase are determined by the following method.
  • a microstructure observation test piece is collected from the second blank steel sheet so that the observation plane is parallel to the rolling direction and perpendicular to the rolling plane.
  • the observation plane is polished, and etched with a 3 vol% nital solution to expose the microstructure.
  • microstructure at a position of 1/4 of the sheet thickness is observed using a scanning electron microscope (at 1500 magnifications) and photographed. From the obtained micrograph, the microstructure is identified based on the above-mentioned criteria.
  • the mean grain size of each of ferrite and secondary phase is calculated according to linear analysis described in JIS G 0551 (2005).
  • Mns/Mn ⁇ is determined by the following method. A microstructure observation test piece is collected. Its observation plane is then polished, and etched with a 3 vol% nital solution to expose the microstructure. The microstructure at a position of 1/4 of the sheet thickness is observed using an electron probe microanalyzer (EPMA), and quantitative analysis of Mn is performed on 30 particles for each of ferrite and secondary phase. Regarding the Mn quantitative analysis results, the mean value of ferrite is set as Mn ⁇ , the mean value of secondary phase is set as Mns, and the value obtained by dividing the mean value Mns of secondary phase by the mean value Mn ⁇ of ferrite is set as Mns/Mn ⁇ .
  • EPMA electron probe microanalyzer
  • the coating weight of the coated layer is preferably 10 g/m 2 to 90 g/m 2 per side, and more preferably 30 g/m 2 to 70 g/m 2 per side. If the coating weight is 10 g/m 2 or more, the effect of suppressing scaling during heating is sufficient. If the coating weight is 90 g/m 2 or less, productivity is not hampered.
  • the components of the coated layer are as described above.
  • a heating process of heating the second blank steel sheet to a second temperature that is Ac3 point or more and 1000 °C or less and retaining it at the second temperature for 900 sec or less is performed.
  • Heating temperature Ac3 point or more and 1000 °C or less
  • the heating temperature is less than Ac3 point which is in an austenite single phase region, austenitization is insufficient. As a result, the desired amount of martensite in the hot pressed member cannot be ensured, and the desired tensile strength cannot be achieved. Besides, the hot pressed member cannot have a dislocation density of 1.0 ⁇ 10 16 /m 2 or more, making it impossible to achieve ⁇ YS of 150 MPa or more. If the heating temperature is more than 1000 °C, Mn concentrated in austenite is made uniform. Consequently, the desired amount of retained austenite cannot be ensured, and the desired uniform elongation cannot be achieved.
  • the heating temperature is therefore Ac3 point or more and 1000 °C or less.
  • the heating temperature is preferably (Ac3 point + 30) °C or more.
  • the heating temperature is preferably 950 °C or less.
  • the heating rate to the heating temperature is not limited, but is preferably 1 °C/s to 400 °C/s, and more preferably 10 °C/s to 150 °C/s. If the heating rate is 1 °C/s or more, productivity is not hampered. If the heating rate is 400 °C/s or less, stable temperature control is ensured.
  • Retention time 900 sec or less (including 0 sec)
  • the retention time is therefore 900 sec or less.
  • the retention time may be 0 sec, that is, the heating may be stopped immediately after the second temperature is reached.
  • the heating method is not limited, and may be any typical heating method such as an electric furnace, a gas furnace, infrared heating, high frequency heating, or direct current heating.
  • the atmosphere is not limited, and may be any of an air atmosphere and an inert gas atmosphere.
  • Hot press forming is a process of press forming a heated thin steel sheet using a press tool and simultaneously quenching it, and is also referred to as "hot forming", “hot stamping”, “die quenching”, etc.
  • the forming start temperature in the press machine is not limited, but is preferably Ms point or more. If the forming start temperature is less than Ms point, the load of press forming increases, and the load on the press machine increases.
  • the conveyance of the blank steel sheet before the forming start is typically performed with air cooling. Accordingly, the upper limit of the forming start temperature is the heating temperature in the immediately previous heating process in the manufacturing process.
  • the cooling rate is preferably decreased by a heat insulation jig such as a heat retention box.
  • the cooling rate in the press tool is not limited.
  • the average cooling rate to 200 °C is preferably 20 °C/s or more, and more preferably 40 °C/s or more.
  • the removal time from the press tool and the cooling rate after the removal are not limited.
  • a punch press tool is held at the bottom dead center for 1 sec to 60 sec, and the hot pressed member is cooled using a die press tool and the punch press tool. After this, the hot pressed member is removed from the press tool, and cooled.
  • the cooling in the press tool and the cooling after the removal from the press tool may be performed in combination with a cooling method using a refrigerant such as gas or liquid. This improves productivity.
  • Molten steel having the chemical composition (the balance consisting of Fe and incidental impurities) listed in Tables 1 and 4 was obtained by steelmaking in a small vacuum melting furnace, to yield a slab.
  • the slab was heated to 1250 °C, and further subjected to hot rolling including rough rolling and finish rolling, to obtain a hot rolled steel sheet.
  • the finisher entry temperature was 1100 °C
  • the finisher delivery temperature was 850 °C.
  • the cooling rate after the hot rolling end was 15 °C/s on average from 800 °C to 600 °C, and the coiling temperature was 650 °C.
  • the obtained hot rolled steel sheet was heated to the heating temperature T1 (first temperature) listed in Tables 2 and 5, retained at the temperature for the time listed in Tables 2 and 5, and then cooled to obtain a first blank steel sheet.
  • the first blank steel sheet was pickled, and cold rolled at a reduction ratio of 54 %, to obtain a cold rolled steel sheet (sheet thickness: 1.6 mm).
  • the cold rolled steel sheet was further heated to the heating temperature T2 listed in Tables 2 and 5, and retained for the time listed in Tables 2 and 5.
  • the cold rolled steel sheet was then cooled at a cooling rate of 15 °C/s. The cooling was stopped at 500 °C, and the cold rolled steel sheet was retained at the temperature for 150 sec, to obtain a second blank steel sheet.
  • the first blank steel sheet was subjected to microstructure observation, and Mns/Mn ⁇ was calculated by the above-mentioned method. The results are listed in Tables 2 and 5.
  • the second blank steel sheet was subjected to microstructure observation, and the mean grain size of ferrite, the mean grain size of secondary phase, and Mns/Mn ⁇ were calculated by the above-mentioned methods. The results are listed in Tables 2 and 5.
  • the second blank steel sheet was subjected to coating treatment.
  • GI denotes a hot-dip galvanized layer
  • GA denotes a galvannealed layer
  • Zn-Ni denotes a Zn-12 mass% Ni coated layer
  • Al-Si denotes a Al-10 mass% Si coated layer.
  • the coating weight of each coated layer was 60 g/m 2 per side.
  • the hot rolled steel sheet (first blank steel sheet) or the cold rolled steel sheet (second blank steel sheet) obtained in this way was subjected to a heating process under the conditions listed in Tables 3 and 6 and a hot press forming process, to obtain a hat-shaped hot pressed member.
  • the hot press was performed using a punch press tool having a width of 70 mm and a shoulder radius R of 6 mm and a die press tool having a shoulder radius R of 7.6 mm, with a forming depth of 30 mm.
  • the heating rate from the room temperature to 750 °C was 7.5 °C/s on average.
  • the heating rate from 750 °C to the heating temperature was 2.0 °C/s on average.
  • the steel sheet was retained at the heating temperature in the case of keeping temperature.
  • the heating rate from the room temperature to the heating temperature was 100 °C/s on average.
  • the hot press starts at 750 °C.
  • the steel sheet was cooled to 150 °C or less by a combination of: clamping the steel sheet using the die press tool and the punch press tool with the punch press tool being held at the bottom dead center for 15 sec; and air cooling on the die after release from the clamping.
  • the average cooling rate from the hot pressing start temperature to 200 °C was 100 °C/s.
  • the obtained hot pressed member was heat treated (low temperature heat treatment) at 170 °C for 20 min. This corresponds to the baking finish condition in a typical automotive member manufacturing process.
  • the hot pressed member obtainable by the present invention is suitable as a structural member required to have high collision energy absorbing performance, such as an impact beam, a center pillar, or a bumper of a vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Claims (5)

  1. Verfahren zur Herstellung eines heißgepressten Elements, das Verfahren umfassend:
    Erwärmen einer Bramme und Warmwalzen der Bramme, so dass ein warmgewalztes Stahlblech erhalten wird, wobei die Bramme eine chemische Zusammensetzung aufweist, in Massen-% bestehend aus
    C: 0,090 % oder mehr und weniger als 0,30 %,
    Mn: 3,5 % oder mehr und weniger als 11,0 %,
    Si: 0,01 % bis 2,5 %,
    P: 0,05 % oder weniger,
    S: 0,05 % oder weniger,
    Al: 0,005 % bis 0,1 %,
    N: 0,01 % oder weniger,
    gegebenenfalls eine oder mehrere Gruppen, ausgewählt aus
    A-Gruppe: eines oder mehrere, ausgewählt aus Ni: 0,01 % bis 5,0 %, Cu: 0,01 % bis 5,0 %, Cr: 0,01 % bis 5,0 % und Mo: 0,01 % bis 3,0 %,
    B-Gruppe: eines oder mehrere, ausgewählt aus Ti: 0,005 % bis 3,0 %, Nb: 0,005 % bis 3,0 %, V: 0,005 % bis 3,0 % und W: 0,005 % bis 3,0 %,
    C-Gruppe: eines oder mehrere, ausgewählt aus SEM: 0,0005 % bis 0,01 %, Ca: 0,0005 % bis 0,01 % und Mg: 0,0005 % bis 0,01 %,
    D-Gruppe: Sb: 0,002 % bis 0,03 % und
    E-Gruppe: B: 0,0005 % bis 0,05 %,
    wobei ein Rest Fe und unvermeidbare Verunreinigungen, einschließlich 0, Sauerstoff, 0,0100 % oder weniger, ist;
    Erwärmen des warmgewalzten Stahlblechs auf eine erste Temperatur, die ein Ac1-Punkt oder höher und ein Ac3-Punkt oder niedriger ist, Halten des warmgewalzten Stahlblechs bei der ersten Temperatur für 1 h oder mehr und 48 h oder weniger und anschließend Abkühlen des warmgewalzten Stahlblechs, so dass ein erstes blankes Stahlblech erhalten wird;
    Kaltwalzen des ersten blanken Stahlblechs, so dass ein kaltgewalztes Stahlblech erhalten wird, und Glühen des kaltgewalzten Stahlblechs, so dass ein zweites blankes Stahlblech erhalten wird, wobei das Glühen Erwärmen des kaltgewalztes Stahlblech auf eine Temperatur, die der Acl-Punkt oder höher und der Ac3-Punkt oder niedriger ist, Halten des kaltgewalzten Stahlblechs bei der Temperatur für 30 Sekunden oder mehr und 300 Sekunden oder weniger und anschließendes Abkühlen des kaltgewalzten Stahlblechs umfasst,
    Durchführen eines Erwärmungsprozesses, bei dem das zweite blanke Stahlblech auf eine zweite Temperatur erwärmt wird, die der Ac3-Ppunkt oder höher und 1000 °C oder niedriger ist, und Halten des zweiten blanken Stahlblechs bei der zweiten Temperatur für 900 s oder weniger; und
    danach Durchführen eines Heißpressformungsprozesses, bei dem das zweite blanke Stahlblech unter Verwendung eines Presswerkzeugs zur Formung gleichzeitig pressgeformt und gequencht wird, so dass ein heißgepresstes Element erhalten wird,
    wobei der Ac1-Punkt, °C, und der Ac3-Punkt, °C, gemäß den nachfolgenden Ausdrücken berechnet werden: Ac 1 Punkt , ° C = 751 16 C + 11 Si 28 Mn 5,5 Cu 16 Ni + 13 Cr + 3,4 Mo
    Figure imgb0009
    Ac 3 Punkt , ° C = 910 203 C 1 / 2 + 44,7 Si 4 Mn + 11 Cr
    Figure imgb0010
    wobei C, Si, Mn, Ni, Cu, Cr und Mo jeweils den Gehalt in Massen-% des entsprechenden Elements darstellen und der Gehalt als 0 angenommen wird, falls das Element nicht enthalten ist.
  2. Verfahren zur Herstellung eines heißgepressten Elements gemäß Anspruch 1, ferner umfassend
    Bilden einer Überzugsschicht auf einer Oberfläche des zweiten blanken Stahlblechs vor dem Erwärmungsprozess.
  3. Verfahren zur Herstellung eines heißgepressten Elements gemäß Anspruch 2,
    worin die Überzugsschicht irgendeine ist aus einer Zink- oder Zinklegierungsüberzugsschicht und einer Aluminium- oder Aluminiumlegierungsüberzugsschicht.
  4. Verfahren zur Herstellung eines heißgepressten Elements gemäß Anspruch 3,
    worin die Zink- oder Zinklegierungsüberzugsschicht Ni: 10 Massen-% bis 25 Massen-% enthält.
  5. Verfahren zur Herstellung eines heißgepressten Elements gemäß mindestens einem der Ansprüche 2 bis 4,
    worin das Beschichtungsgewicht der Überzugsschicht 10 g/m2 bis 90 g/m2 pro Seite beträgt.
EP16857079.4A 2015-10-19 2016-10-03 Verfahren zur herstellung eines heisspresselement Active EP3366797B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015205751A JP6222198B2 (ja) 2015-10-19 2015-10-19 ホットプレス部材およびその製造方法
PCT/JP2016/004458 WO2017068756A1 (ja) 2015-10-19 2016-10-03 ホットプレス部材およびその製造方法

Publications (3)

Publication Number Publication Date
EP3366797A1 EP3366797A1 (de) 2018-08-29
EP3366797A4 EP3366797A4 (de) 2018-08-29
EP3366797B1 true EP3366797B1 (de) 2019-12-18

Family

ID=58556946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16857079.4A Active EP3366797B1 (de) 2015-10-19 2016-10-03 Verfahren zur herstellung eines heisspresselement

Country Status (7)

Country Link
US (1) US20190093191A1 (de)
EP (1) EP3366797B1 (de)
JP (1) JP6222198B2 (de)
KR (1) KR20180063303A (de)
CN (1) CN108138289A (de)
MX (1) MX2018004772A (de)
WO (1) WO2017068756A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260676B2 (ja) 2016-03-29 2018-01-17 Jfeスチール株式会社 ホットプレス用鋼板およびその製造方法、ならびにホットプレス部材およびその製造方法
CN117026072A (zh) * 2016-03-29 2023-11-10 杰富意钢铁株式会社 热冲压用钢板及其制造方法以及热冲压构件及其制造方法
JP6443375B2 (ja) * 2016-03-29 2018-12-26 Jfeスチール株式会社 ホットプレス部材およびその製造方法
CN106244918B (zh) * 2016-07-27 2018-04-27 宝山钢铁股份有限公司 一种1500MPa级高强塑积汽车用钢及其制造方法
JP6460296B2 (ja) 2016-11-25 2019-01-30 新日鐵住金株式会社 焼き入れ成形品の製造方法、熱間プレス用鋼材の製造方法、及び熱間プレス用鋼材
EP3589770B1 (de) 2017-03-01 2022-04-06 Ak Steel Properties, Inc. Pressgehärteter stahl mit extrem hoher festigkeit
WO2018220430A1 (en) * 2017-06-02 2018-12-06 Arcelormittal Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof
CN109112360A (zh) * 2017-06-26 2019-01-01 鞍钢股份有限公司 一种锌铝基镀层钢板及其制造方法、热成型方法和部件
CN109112453A (zh) * 2017-06-26 2019-01-01 鞍钢股份有限公司 一种锌铝镁镀层钢板及其制造方法、热成型方法和部件
CN109112359A (zh) * 2017-06-26 2019-01-01 鞍钢股份有限公司 一种锌基镀层钢板及其制造方法、热成型方法和部件
KR101940919B1 (ko) 2017-08-08 2019-01-22 주식회사 포스코 우수한 강도와 연신율을 갖는 열연강판 및 제조방법
CN114369768A (zh) * 2017-11-02 2022-04-19 重庆哈工易成形钢铁科技有限公司 热冲压成形用钢材、热冲压成形工艺及成形构件
JP6573050B1 (ja) 2017-11-13 2019-09-11 Jfeスチール株式会社 熱間プレス鋼板部材およびその製造方法
KR20200066350A (ko) 2017-11-13 2020-06-09 제이에프이 스틸 가부시키가이샤 열간 프레스 강판 부재 및 그 제조 방법
TW202010852A (zh) * 2018-06-29 2020-03-16 日商日本製鐵股份有限公司 高強度鋼板及其製造方法
CN108950160A (zh) * 2018-08-25 2018-12-07 马鞍山钢铁股份有限公司 一种基于csp流程的锌基镀层热成形钢及其制备方法
CN109972061A (zh) * 2019-04-26 2019-07-05 北京科技大学 热冲压成形用抗氧化超高强钢板及其低温热成形工艺
WO2020241762A1 (ja) * 2019-05-31 2020-12-03 日本製鉄株式会社 ホットスタンプ用鋼板
JP7188584B2 (ja) * 2019-05-31 2022-12-13 日本製鉄株式会社 ホットスタンプ成形体
US20220403490A1 (en) * 2020-01-16 2022-12-22 Nippon Steel Corporation Hot stamped body
CN111996446B (zh) * 2020-08-03 2021-10-22 鞍钢股份有限公司 一种基于界面控制的高延伸冷轧镀锌钢带及其生产方法
MX2024002449A (es) * 2021-08-31 2024-03-08 Arcelormittal Hoja de acero laminada en caliente y metodo de fabricacion de la misma.
CA3229396A1 (en) * 2021-08-31 2023-03-09 Arcelormittal Hot rolled and steel sheet and a method of manufacturing thereof
CN115961130A (zh) * 2021-10-11 2023-04-14 清华大学 一种高强高塑中锰钢及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065007A1 (en) * 2011-06-10 2014-03-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hot press-formed product, process for producing same, and thin steel sheet for hot press forming

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217125A (ja) * 1985-07-15 1987-01-26 Nippon Steel Corp 高強度高延性鋼材の製造方法
JP3872426B2 (ja) * 2002-12-27 2007-01-24 株式会社神戸製鋼所 熱間プレス成形性に優れた亜鉛めっき鋼板および該鋼板を用いた熱間プレス成形部材の製法並びに高強度かつめっき外観に優れた熱間プレス成形部材
JP4688782B2 (ja) * 2006-12-11 2011-05-25 株式会社神戸製鋼所 焼付硬化用高強度鋼板およびその製造方法
JP5347393B2 (ja) 2008-09-12 2013-11-20 Jfeスチール株式会社 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP5884151B2 (ja) * 2010-11-25 2016-03-15 Jfeスチール株式会社 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
CA2836119C (en) * 2011-06-07 2016-02-09 Jfe Steel Corporation Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet
EP2728027B1 (de) * 2011-06-30 2019-01-16 Hyundai Steel Company Wärmegehärteter stahl mit hervorragender kollisionstauglichkeit und verfahren zur herstellung wärmehärtbarer teile damit
JP5440672B2 (ja) * 2011-09-16 2014-03-12 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
CN103842541B (zh) * 2011-09-30 2016-03-30 新日铁住金株式会社 烘烤硬化性优良的高强度热浸镀锌钢板、高强度合金化热浸镀锌钢板以及它们的制造方法
KR101613806B1 (ko) * 2011-10-24 2016-04-29 제이에프이 스틸 가부시키가이샤 가공성이 우수한 고강도 강판의 제조 방법
KR101382981B1 (ko) * 2011-11-07 2014-04-09 주식회사 포스코 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
JP5585623B2 (ja) * 2012-07-23 2014-09-10 新日鐵住金株式会社 熱間成形鋼板部材およびその製造方法
KR20160027146A (ko) * 2013-07-02 2016-03-09 제이에프이 스틸 가부시키가이샤 열간 프레스 부재의 제조 방법
CN114438418A (zh) * 2014-01-06 2022-05-06 日本制铁株式会社 热成形构件及其制造方法
WO2015182596A1 (ja) * 2014-05-29 2015-12-03 新日鐵住金株式会社 熱処理鋼材及びその製造方法
MX2017005168A (es) * 2014-10-24 2017-07-27 Jfe Steel Corp Parte prensada en caliente de alta resistencia y metodo para la fabricacion de la misma.
CN104846274B (zh) * 2015-02-16 2017-07-28 重庆哈工易成形钢铁科技有限公司 热冲压成形用钢板、热冲压成形工艺及热冲压成形构件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065007A1 (en) * 2011-06-10 2014-03-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hot press-formed product, process for producing same, and thin steel sheet for hot press forming

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"PROPERTIES AND SELECTION : IRONS, STEELS & HIGH PERFORMANCE ALLOYS.", 31 March 1990, METALS PARK, OHIO : AMERICAN SOCIETY FOR METALS, US, ISBN: 978-0-87170-377-4, article N/A: "Metals Handbook: Properties and Selection: Irons, Steels & High Performance Alloys (Vol. 1, Edition 10)", pages: 146 - 147, XP055562279, 016775 *

Also Published As

Publication number Publication date
EP3366797A1 (de) 2018-08-29
JP2017078188A (ja) 2017-04-27
JP6222198B2 (ja) 2017-11-01
MX2018004772A (es) 2018-05-30
US20190093191A1 (en) 2019-03-28
WO2017068756A1 (ja) 2017-04-27
KR20180063303A (ko) 2018-06-11
EP3366797A4 (de) 2018-08-29
CN108138289A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
EP3366797B1 (de) Verfahren zur herstellung eines heisspresselement
EP3366798B1 (de) Heisspresselement und verfahren zur herstellung davon
KR102253720B1 (ko) 핫 프레스 부재 및 그 제조 방법
CN111492077B (zh) 高强度高可成形性钢板及制造方法
US10858718B2 (en) Steel sheet for hot press and method of manufacturing same, and hot-press forming part and method of manufacturing same
EP3187613B1 (de) Hochfestes kaltgewalztes stahlblech und verfahren zur herstellung davon
EP3128026B1 (de) Hochfestes kaltgewalztes stahlblech mit ausgezeichneter gleichmässigkeit der materialqualität und herstellungsverfahren dafür
EP3730636B1 (de) Hochfestes stahlblech mit hervorragender verarbeitbarkeit und verfahren zu seiner herstellung
EP2762581B1 (de) Heissgewalztes stahlblech und herstellungsverfahren dafür
EP2937433B1 (de) Hochfestes kaltgewalztes stahlblech mit hohem ertrag und verfahren zur herstellung davon
EP3447160A1 (de) Stahlplatte, stahlplattenelement und herstellungsverfahren dafür
US11293075B2 (en) Hot-press forming part and method of manufacturing same
EP3543364B1 (de) Hochfestes stahlblech und verfahren zur herstellung davon
WO2016063467A1 (ja) 高強度ホットプレス部材およびその製造方法
US20170218472A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
EP3447159B1 (de) Stahlplatte, plattierte stahlplatte sowie herstellungsverfahren dafür
EP3412787B1 (de) Hochfestes dünnes stahlblech und verfahren zur herstellung davon
CN111684096A (zh) 热浸镀锌钢板以及合金化热浸镀锌钢板
EP3693485A1 (de) Heissprägegeformter artikel, heissgeprägtes stahlblech und verfahren zu seiner herstellung
CN113195772B (zh) 弯曲加工性优异的高强度冷轧钢板及其制造方法
EP3561121A1 (de) Kaltgewalztes stahlblech mit hervorragender biegbarkeit und lochaufweitbarkeit und verfahren zur herstellung davon
EP3543365B1 (de) Hochfestes stahlblech und verfahren zur herstellung davon
EP4194578A1 (de) Hochfestes kaltgewalztes stahlblech, hochfestes plattiertes stahlblech, verfahren zur herstellung eines hochfesten kaltgewalzten stahlblechs und verfahren zur herstellung eines hochfesten plattierten stahlblechs
KR101665818B1 (ko) 연성 및 화성처리성이 우수한 고강도 냉연강판 및 그 제조방법
KR101736603B1 (ko) 연성 및 화성처리성이 우수한 냉연강판 및 그 제조방법

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180504

A4 Supplementary search report drawn up and despatched

Effective date: 20180705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 6/00 20060101ALI20190717BHEP

Ipc: C22C 38/00 20060101AFI20190717BHEP

Ipc: C22C 38/18 20060101ALI20190717BHEP

Ipc: C22C 38/08 20060101ALI20190717BHEP

Ipc: C21D 9/46 20060101ALI20190717BHEP

Ipc: C22C 38/04 20060101ALI20190717BHEP

Ipc: C23C 2/40 20060101ALI20190717BHEP

Ipc: C22C 38/06 20060101ALI20190717BHEP

Ipc: C23C 2/06 20060101ALN20190717BHEP

Ipc: B21D 22/20 20060101ALI20190717BHEP

Ipc: C23C 2/28 20060101ALI20190717BHEP

Ipc: C22C 18/00 20060101ALI20190717BHEP

Ipc: C21D 8/02 20060101ALI20190717BHEP

Ipc: C22C 38/16 20060101ALI20190717BHEP

Ipc: C22C 38/60 20060101ALI20190717BHEP

Ipc: C23C 2/02 20060101ALI20190717BHEP

Ipc: C21D 9/00 20060101ALI20190717BHEP

Ipc: C22C 38/02 20060101ALI20190717BHEP

Ipc: C21D 1/18 20060101ALI20190717BHEP

Ipc: C22C 38/14 20060101ALI20190717BHEP

Ipc: C22C 38/12 20060101ALI20190717BHEP

Ipc: C23C 2/12 20060101ALN20190717BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/18 20060101ALI20190722BHEP

Ipc: C22C 38/00 20060101AFI20190722BHEP

Ipc: B21D 22/20 20060101ALI20190722BHEP

Ipc: C22C 38/14 20060101ALI20190722BHEP

Ipc: C23C 2/06 20060101ALN20190722BHEP

Ipc: C23C 2/02 20060101ALI20190722BHEP

Ipc: C22C 38/04 20060101ALI20190722BHEP

Ipc: C21D 9/00 20060101ALI20190722BHEP

Ipc: C21D 8/02 20060101ALI20190722BHEP

Ipc: C22C 38/08 20060101ALI20190722BHEP

Ipc: C22C 38/60 20060101ALI20190722BHEP

Ipc: C22C 38/16 20060101ALI20190722BHEP

Ipc: C22C 38/02 20060101ALI20190722BHEP

Ipc: C22C 18/00 20060101ALI20190722BHEP

Ipc: C21D 6/00 20060101ALI20190722BHEP

Ipc: C21D 9/46 20060101ALI20190722BHEP

Ipc: C21D 1/18 20060101ALI20190722BHEP

Ipc: C23C 2/40 20060101ALI20190722BHEP

Ipc: C22C 38/06 20060101ALI20190722BHEP

Ipc: C23C 2/12 20060101ALN20190722BHEP

Ipc: C23C 2/28 20060101ALI20190722BHEP

Ipc: C22C 38/12 20060101ALI20190722BHEP

INTG Intention to grant announced

Effective date: 20190809

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016026626

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1214672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200319

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200318

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200418

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016026626

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1214672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

26N No opposition filed

Effective date: 20200921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201003

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220901

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230830

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240909

Year of fee payment: 9