EP3353006A1 - Verfahren und einrichtung zum bestimmen der absolutposition eines fahrzeuges - Google Patents

Verfahren und einrichtung zum bestimmen der absolutposition eines fahrzeuges

Info

Publication number
EP3353006A1
EP3353006A1 EP16765959.8A EP16765959A EP3353006A1 EP 3353006 A1 EP3353006 A1 EP 3353006A1 EP 16765959 A EP16765959 A EP 16765959A EP 3353006 A1 EP3353006 A1 EP 3353006A1
Authority
EP
European Patent Office
Prior art keywords
vehicle
transmitter
positioning
parking
infrastructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16765959.8A
Other languages
English (en)
French (fr)
Inventor
Thomas Röhrl
Stephan Bartz
Peter Säger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3353006A1 publication Critical patent/EP3353006A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/37Means for automatic or assisted adjustment of the relative position of charging devices and vehicles using optical position determination, e.g. using cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/627Vehicle position by WLAN
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/665Light intensity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/667Precipitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a method for determining the absolute position of a vehicle for the Nah Schlspo ⁇ sitioning of the same when parking the vehicle.
  • the invention is further directed to a device for carrying out such a method.
  • parking is here the automatic parking but also the manual parking, for example, supported by a visual display, meant.
  • the automatic parking of vehicles is known. This may be, for example, the parking of a vehicle on a marked parking lot or parking in a garage.
  • a special case concerns the inductive charging of electrically powered vehicles, which have to go to a corresponding parking space, which offers such a charging option (for example, there is a transmitting coil in the ground).
  • an accurate arrangement of the vehicle is essential because between the inductive charging unit (the bottom coil) and the vehicle-mounted receiving unit (vehicle coil), a magnetic field dependent on the electric power is applied. It serves the security, if the magnetic field un ⁇ below the vehicle, barely accessible to people generated.
  • the vehicle thus ensures even for a starting ⁇ shielding effect, so that a radiation of the fields is significantly reduced in the area.
  • this advantage entails the disadvantage that the driver can hardly estimate whether an exact positioning has taken place between the two coils under the vehicle.
  • the coupling factor decreases and the efficiency decreases as the unwanted stray fields increase.
  • the efficiency already drops by 2% with only 8 cm offset.
  • 2% of a transmission power of 4 kW, for example already corresponds to 80 W additional power loss.
  • the driver must therefore park without visual contact to a few centimeters, which is difficult to ensure without tools.
  • an automated parking process is conceivable.
  • the present invention relates to a parking operation, in particular automated parking operation, wherein the parking for inductive charging of the vehicle here represents a special case.
  • FIG. This figure shows schematically a parking lot from above.
  • the vehicle can determine the x and y offsets of the ground coil with respect to the vehicle itself.
  • the positions 1-3 shown in the figure all give the same result.
  • the location of the parking lot can also be detected by means of a camera system, but this process would again result in dependence on weather conditions, such as snow and foliage.
  • the present invention is therefore based on the object to provide a method of the type described available, which allows a particularly accurate parking of the vehicle. This object is achieved by a method of the type described above, in which an inductive positioning method is performed, wherein a first transmitter in the infrastructure or in the vehicle for generating a positioning magnetic field and a second
  • Transmitter are excited in the infrastructure or in the vehicle to generate a positioning signal, the positioning magnetic field and the positioning signal from a receiving device in the vehicle or in the infrastructure are received and based on the received positioning magnetic field and positioning signal, the absolute position of the vehicle is determined.
  • the receiving device is located in the vehicle and that the transmitters are located in the infrastructure, ie in the vicinity of the vehicle. If the following is a parking bay or a parking lot, these terms should cover all possible parking spaces, including covered parking spaces or garages and those that are equipped with charging facilities.
  • the vehicle In order to determine the orientation of the parking lot in addition to the position of the first transmitter, the vehicle needs another reference point, which is located in the infrastructure. In the method described here, in which a positioning field is measured by the first transmitter is a such point a second transmitter on the side of the infrastructure. Thus, not only the x and y offset of the vehicle relative to the first transmitter can be determined, but also the x and y offset of the second transmitter with respect to the coordinate system of the vehicle.
  • the method according to the invention thus finds a second transmitter or auxiliary transmitter use. While, as described above, the positions 1-3 can not be distinguished from each other without a second transmitter, a clear distinction between the individual positions is possible with the aid of the second transmitter. The reason for this is that now two points of the infrastructure are known and thus the relative coordinate system of the vehicle can be transferred into the absolute coordinate system of the infrastructure. In addition to the advantage of knowing exactly where the vehicle is located in the infrastructure , however, the complexity of the system also increases since both a positioning magnetic field and a positioning signal have to be transmitted and evaluated.
  • a second transmitter which also generates a positioning magnetic field.
  • two positioning magnetic fields are used.
  • both fields may overlap, so that as a result of re ⁇ consulted a field that has a more complex shape than it has exhibited the A ⁇ zelfelder.
  • the second transmitter is arranged, its influence on the positioning field is different.
  • the position of the second transmitter is standardized with respect to the first transmitter.
  • the algorithm for calculating the position would be much more complex.
  • the solution algorithm would therefore have to be adapted to this complex form.
  • the position of the second transmitter with respect to the first transmitter is determined first. If this position is known, the calculated distance between vehicle and transmitters can be used to calculate the position of the vehicle in the infrastructure. For example, the position of the second transmitter can be determined via another channel, in particular WLAN. This variant has the advantage that the second transmitter can be adapted to local conditions.
  • the first transmitter and the second transmitter are preferably excited sequentially.
  • the x and y offset of the individual transmitters can be detected separately.
  • the algorithm with which the position is calculated can then be much simpler and faster due to the simpler and more symmetrical geometry of the individual fields.
  • a further communication channel for example WLAN, between transmitter and vehicle can be used.
  • an identifier can be modulated onto a position signal, for example a coil identifier.
  • each parking space is provided with a first transmitter for emitting a positioning magnetic field, and has a second transmitter, which have the embodiments described above and can deliver a corresponding positioning signal, which is also a positioning magnetic field, but also other signals can act.
  • the first transmitters are units for inductive charging, which are preferably operated by a central charging station.
  • the corresponding loading units are best operated by a central charging station. If a vehicle now wants to occupy a completely empty inductive charging station, the vehicle sends, for example, a request via WLAN to the charging station. Since no vehicle is currently on a loading space, the vehicle is assigned the first bottom coil. Since in this case there is another bottom coil on the neighboring square, this further bottom coil (adjacent unit for inductive charging) can be used as a second transmitter. This can therefore be dispensed with a special auxiliary transmitter.
  • the respective neighboring inductive charging stations are already occupied, their units for inductive charging (ground coils) can no longer be used as auxiliary transmitters. Therefore, another system must be used, for example an optical system that acts as a second transmitter.
  • an optical system that acts as a second transmitter. For example, when a vehicle drives an average parking bay, in which already the right and left is a vehicle, the two vehicles can be used as an optical detection feature, so that the vehicle can automatically be parked even in the non-visible Parkplatzbe ⁇ demarcations.
  • the first transmitter positioning transmitter
  • Essential for the inventive method is that using a an inductive positioning method is performed on the first transmitter, regardless of whether the first transmitter is a charging unit or not.
  • the second station may be any station which emits a positioning signal, such as an optical ⁇ 's transmitter, whereby also here a station is preferably on an inductive basis.
  • the transmitters are located in the infrastructure and that a corresponding receiving device is provided in the vehicle.
  • a corresponding receiving device is provided in the vehicle.
  • at least three transmitters are used as receiving devices for determining the x and y offset.
  • the positions of the transmitters can be triangulated.
  • the receivers in the infrastructure can then triangulate the x and y offset of the vehicle to the transmitter and, for example, send it back to the vehicle via another channel (eg radio, WLAN). If the values of at least two receivers of the infrastructure are known, the position of the vehicle in the infrastructure can be calculated.
  • another channel eg radio, WLAN
  • the method according to the invention can also be combined with other methods.
  • existing cameras or Top-view systems are integrated, likewise fully automatic parking aids ⁇ tables and / Radcardieresensoriken,
  • the ground coil and the associated parking lot were measured in its geographical position. When approaching a vehicle, this is based on the magnetic fields, but also gets notified by coding or Wi-Fi info the geographical orientation of the parking lot. If the parking space is set, for example, in a north-south direction, then the vehicle can accurately approach the parking space on the basis of its GPS and compass orientation.
  • a positioning system which locates the vehicle in relation to the vehicle
  • the invention further relates to a device for carrying out the method described above.
  • Figure 1 is a representation of a parking lot from above in a method of the prior art with indistinguishable parking positions;
  • Figure 2 is a schematic view as Figure 1 at a
  • Figure 3 is a schematic view of a parking lot from above with three parking bays in another embodiment of the method according to the invention.
  • Figure 4 is a schematic view of a parking lot from above with three parking bays in yet another embodiment of the method according to the invention.
  • FIG. 5 is a schematic view of parking spaces from above, wherein various embodiments of the invention are shown.
  • a determination of the absolute position of a vehicle for short-range positioning thereof takes place during automatic parking of the vehicle. It is an inductive positio performed ⁇ n istsvon, wherein a recessed in the bottom of a parking floor 5 coil 6 (first transmitter) is excited to generate a magnetic field positioning. This magnetic field is received by a receiving device arranged in a vehicle 4. On the basis of the received positioning magnetic field, the position of the vehicle is determined.
  • FIG. 2 shows the same parking situation as in FIG. 1, but here an embodiment of the method according to the invention is carried out.
  • a second transmitter (auxiliary transmitter) 7 is used, which is arranged, for example, at the edge of the parking lot 5 ⁇ .
  • the bottom coil 6 used to load the vehicle 4 is used before loading as inductive Posi ⁇ tioning transmitter, which generates a positioning magnetic field.
  • the second station 7 generates a magnetic field approximately Positionin ⁇ . Both positioning magnetic fields are received by a receiving device in the vehicle 4, and on the basis of the received positioning magnetic fields, the absolute position of the vehicle is determined.
  • Figure 3 shows a plan view of a parking area with three parking bays or parking 5. In the bottom of each
  • Parkplatzes 5 is a bottom coil 6 embedded. All three bottom coils 6 are supplied by a common charging station 8.
  • the bottom coil 6 of the central parking bay serves as a second transmitter or auxiliary transmitter.
  • the vehicle 4 wants to load at the completely empty deep-bedding site, it sends a request, for example via WLAN, to the charging station 8. Since there is no vehicle at the moment at a loading place, the vehicle 6 is assigned the floor coil 6 of the uppermost parking bay.
  • the bottom coil 6 in the middle parking bay acts as a second transmitter or auxiliary transmitter.
  • each parking bay 5 has a bottom coil 6. All bottom coils 6 are supplied by a common charging station 8.
  • the situation shown here differs from that of Figure 3 in that the upper and lower parking bay in the figure are already occupied. The corresponding bottom coils 6 of these parking bays can therefore no longer be used as auxiliary transmitter.
  • the vehicle 4 can therefore only be parked in the middle parking bay. Since a vehicle is already an optical recognition feature on both sides of the middle parking bay, the vehicle 4 can be parked automatically using an optical system in this case as well.
  • Figure 5 shows a schematic view of various parking spaces from above, wherein various embodiments of the invention are shown.
  • a first transmitter in the form of a bottom coil 6 and a second transmitter 7 are provided in the infrastructure (in the area of the parking space).
  • the associated vehicle has a receiving device, which in this case has three receivers 11.
  • a first transmitter 6 and a second transmitter 7 are provided on the vehicle, while three receivers 11 are located in the parking area (in the infrastructure).
  • the embodiment of Figure 5 C) shows a first transmitter 6 and two second transmitter 7 on the vehicle and two receivers 11 in the parking area (infrastructure).
  • Figure 5 D shows a first transmitter coil as a bottom 6 and two second channels 7, which are arranged in the parking area, and two at the vehicle ⁇ parent receiver. 11
  • the receivers are outside the vehicle, they must send their data back to the vehicle so that the vehicle knows the position.

Abstract

Es wird ein Verfahren zum Bestimmen der Absolutposition eines Fahrzeuges für die Nahbereichspositionierung desselben beim Einparken des Fahrzeuges beschrieben. Es wird ein induktives Positionierungsverfahren durchgeführt, wobei ein erster Sender in der Infrastruktur oder im Fahrzeug zur Erzeugung eines Positionierungsmagnetfeldes und ein zweiter Sender in der Infrastruktur oder im Fahrzeug zur Erzeugung eines Positionierungssignals angeregt werden. Das Positionierungsmagnetfeld und das Positionierungssignal werden von einer Empfangsein- richtung im Fahrzeug oder in der Infrastruktur empfangen, und auf der Basis des empfangenen Positionierungsmagnetfeldes und Positionierungssignals wird die Absolutposition des Fahrzeuges ermittelt. Auf diese Weise wird ein besonders exaktes Einparken des Fahrzeuges, insbesondere eines elektrisch betriebenen Fahrzeuges zum induktiven Laden, ermöglicht.

Description

Beschreibung
Verfahren und Einrichtung zum Bestimmen der Absolutposition eines Fahrzeuges
Die vorliegende Erfindung betrifft ein Verfahren zum Bestimmen der Absolutposition eines Fahrzeuges für die Nahbereichspo¬ sitionierung desselben beim Einparken des Fahrzeuges. Die Erfindung ist ferner auf eine Einrichtung zur Durchführung eines derartigen Verfahrens gerichtet.
Mit „Einparken" ist hierbei das automatische Einparken aber auch das manuelle Einparken, beispielsweise unterstützt durch eine optische Anzeige, gemeint.
Das automatische Einparken von Fahrzeugen ist bekannt. Es kann sich hierbei beispielsweise um das Einparken eines Fahrzeuges auf einem markierten Parkplatz oder das Einparken in einer Garage handeln. Ein spezieller Fall betrifft das Induktivladen von elektrisch betriebenen Fahrzeugen, die hierzu einen entsprechenden Parkplatz aufsuchen müssen, der eine solche Ladeoption bietet (beispielsweise befindet sich hierbei eine Sendespule im Boden) . Insbesondere ist in diesem Fall eine genaue Anordnung des Fahrzeuges von wesentlicher Bedeutung, da zwischen der Einheit zum induktiven Aufladen (der Bodenspule) und der im Fahrzeug angeordneten Empfangseinheit (Fahrzeugspule) ein von der elektrischen Leistung abhängiges starkes Magnetfeld aufgespannt wird. Es dient dabei der Sicherheit, wenn das Magnetfeld un¬ terhalb des Fahrzeuges, für Menschen kaum zugänglich, erzeugt wird. Zudem sorgt das Fahrzeug dadurch selbst für eine ab¬ schirmende Wirkung, so dass eine Abstrahlung der Felder in die Umgebung deutlich minimiert wird. Dieser Vorteil bringt jedoch den Nachteil mit sich, dass der Fahrer kaum abschätzen kann, ob eine exakte Positionierung zwischen den beiden Spulen unter dem Fahrzeug erfolgt ist. Je weniger die beiden Spulen miteinander fluchten, also je weniger diese genau übereinanderliegen, desto schlechter ist nämlich die Energieübertragung. Der Kopplungsfaktor sinkt, und der Wirkungsgrad nimmt ab, während die unerwünschten Streufelder zunehmen . Je nach Spulendesign nimmt beispielsweise der Wirkungsgrad bei nur 8 cm Versatz schon um 2 % ab . 2 % von einer Übertragungsleistung von beispielsweise 4 kW entsprechen immerhin schon 80 W zusätzlicher Verlustleistung. Der Fahrer muss also ohne Sichtkontakt auf einige Zentimeter genau parken, was ohne Hilfsmittel nur schwer gewährleisten ist. Neben der Möglichkeit, den Fahrer durch eine visuelle Anzeige zu unterstützen, ist natürlich auch ein automatisierter Parkvorgang denkbar .
Die vorliegende Erfindung bezieht sich auf einen Parkvorgang, insbesondere automatisierten Parkvorgang, wobei das Einparken zum induktiven Aufladen des Fahrzeuges hierbei einen Sonderfall darstellt .
Zur Durchführung eines automatisierten Parkvorganges hat man Konzepte entwickelt, die mit Kamera-Bildererkennungssystemen, Funkortung, Radar, Ultraschall oder auch RFID arbeiten. Diese Konzepte sind auch miteinander kombiniert worden. Die ent- sprechenden Lösungsansätze haben jedoch Nachteile. Beispiels¬ weise ist die Umgebung eines jeden Parkplatzes anders. Wenn aber jeder Parkplatz anders aussieht, wonach sollen sich die Ortungssysteme dann richten, wenn kein einheitliches Erkennungszeichen vereinbart ist? Diese Systeme ohne Normung funktionieren somit nur für bestimmte Anwendungsfälle und eine einzige Umgebungssituation. Weiterhin haben optische Systeme (Kameras) den Nachteil, dass sich der Parkplatz wetter- und jahreszeitbedingt im Aussehen verändert, bei Helligkeit und Regen Kontraste und Farbsättigung verändern und weil Laub im Herbst die eventuell farbig vorhandene Parkplatzkennzeichnung zumindest teilweise verdecken. Im Winter bei Schnee besteht dieses Problem grundsätzlich. Aus der US 2012/0262002 AI ist ein induktives Positionie¬ rungssystem bekannt. Bei diesem Verfahren wird die Bodenspule einer Ladestation mit einem schwachen Magnetfeld beaufschlagt, bei dem es sich um ein entsprechendes Positionierungsfeld handelt. Aufgrund der Stärke und/oder Richtung dieses Mag- netfeldes kann das vorgesehene System so die Position der
Ladespule errechnen. Folglich ist ein Fahrzeug, welches mit einem derartigen induktiven Positionierungssystem ausgestattet ist, in der Lage, die Bodenspule in so gut wie jedem beliebigen Parkplatz bei jeglicher Wetterlage zu orten.
Wenn man nunmehr ein derartiges Fahrzeug automatisch einparken lässt, ergibt sich jedoch das Problem, dass nicht voneinander unterscheidbare Parkpositionen existieren. Hierzu sei auf Figur 1 verwiesen. Diese Figur zeigt schematisch einen Parkplatz von oben. Durch das vorstehend beschriebene magnetische Verfahren kann das Fahrzeug den x- und y-Versatz der Bodenspule in Bezug auf das Fahrzeug selbst bestimmen. Dabei liefern jedoch die in der Figur gezeigten Positionen 1-3 alle das gleiche Ergebnis. Natürlich kann die Lage des Parkplatzes auch mithilfe eines Kamerasystems erfasst werden, jedoch hätte dieses Verfahren erneut eine Abhängigkeit von Witterungsbedingungen, wie Schnee und Laub, zur Folge. Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren der beschriebenen Art zur Verfügung zu stellen, das ein besonders exaktes Einparken des Fahrzeuges ermöglicht. Diese Aufgabe wird erfindungsgemäß durch ein Verfahren der eingangs beschriebenen Art gelöst, bei dem ein induktives Positionierungsverfahren durchgeführt wird, wobei ein erster Sender in der Infrastruktur oder im Fahrzeug zur Erzeugung eines Positionierungsmagnetfeldes und ein zweiter
Sender in der Infrastruktur oder im Fahrzeug zur Erzeugung eines Positionierungssignals angeregt werden, das Positionierungsmagnetfeld und das Positionierungssignal von einer Empfangseinrichtung im Fahrzeug oder in der Infrastruktur empfangen werden und auf der Basis des empfangenen Positionierungsmagnetfeldes und Positionierungssignals die Absolutposition des Fahrzeuges ermittelt wird.
In der nachfolgenden Beschreibung wird davon ausgegangen, dass sich die Empfangseinrichtung im Fahrzeug und die Sender in der Infrastruktur, d.h. in der Umgebung des Fahrzeuges, befinden. Wenn nachfolgend von einer Parkbucht oder einem Parkplatz die Rede ist, so sollen diese Begriffe alle möglichen Stellplätze, auch überdachte Stellplätze oder Garagen sowie solche, die mit Ladeeinrichtungen versehen sind, abdecken. Um die Ausrichtung des Parkplatzes zusätzlich zur Position des ersten Senders ermitteln zu können, benötigt das Fahrzeug einen weiteren Bezugspunkt, welcher sich in der Infrastruktur befindet. Bei dem hier beschriebenen Verfahren, bei dem ein Positionierungsfeld vom ersten Sender gemessen wird, ist ein solcher Punkt ein zweiter Sender auf der Seite der Infrastruktur. Damit kann nicht nur der x- und y-Versatz des Fahrzeuges relativ zum ersten Sender bestimmt werden, sondern zudem noch der x- und y-Versatz des zweiten Senders in Bezug auf das Koordinatensystem des Fahrzeuges.
Bei dem erfindungsgemäßen Verfahren findet somit ein zweiter Sender oder Hilfssender Verwendung. Während, wie vorstehend beschrieben, die Positionen 1-3 ohne zweiten Sender nicht voneinander unterschieden werden können, ist mit Hilfe des zweiten Senders eine klare Unterscheidung der einzelnen Positionen untereinander möglich. Grund hierfür ist, dass nun zwei Punkte der Infrastruktur bekannt sind und somit das relative Koordinatensystem des Fahrzeuges in das absolute Koordina- tensystem der Infrastruktur überführt werden kann. Neben dem Vorteil, zu wissen, wo genau sich das Fahrzeug in der Infra¬ struktur befindet, steigt allerdings auch die Komplexität des Systems, da sowohl ein Positionierungsmagnetfeld als auch ein Positionierungssignal ausgesendet und ausgewertet werden müssen.
Vorzugsweise findet ein zweiter Sender Verwendung, der ebenfalls ein Positionierungsmagnetfeld erzeugt. Es finden somit zwei Positionierungsmagnetfelder Verwendung. Hierbei können sich beide Felder überlagern, so dass als Ergebnis ein Feld re¬ sultiert, welches eine komplexere Form hat als es die Ein¬ zelfelder aufgewiesen haben. Je nachdem, in welchem Abstand und in welcher Richtung zum ersten Sender der zweite Sender angeordnet ist, ist dessen Einfluss auf das Positionierungsfeld unterschiedlich.
Bei einer Ausführungsform des erfindungsgemäßen Verfahrens wird die Position des zweiten Senders in Bezug auf den ersten Sender standardisiert. Durch eine Standardisierung der Position des zweiten Senders bezogen auf den ersten Sender können die vorstehend geschilderten Nachteile vermieden werden, jedoch würde der Algorithmus zur Berechnung der Position bedeutend komplexer ausfallen. Der Lösungsalgorithmus müsste daher an diese komplexe Form angepasst werden.
Weitere Möglichkeiten zur Umsetzung des vorstehend beschriebenen Verfahrens werden nachfolgend beschrieben. Hierbei wird als erstes die Position des zweiten Senders in Bezug auf den ersten Sender ermittelt. Wenn diese Position bekannt ist, kann aus den berechneten Abständen zwischen Fahrzeug und Sendern die Position des Fahrzeuges in der Infrastruktur berechnet werden. So kann beispielsweise die Position des zweiten Senders über einen anderen Kanal, insbesondere WLAN, ermittelt werden. Diese Variante hat den Vorteil, dass der zweite Sender an örtliche Gegebenheiten angepasst werden kann.
Der erste Sender und der zweite Sender werden vorzugsweise sequentiell angeregt. Hierdurch können der x- und y-Versatz der einzelnen Sender getrennt erfasst werden. Der Algorithmus, mit welchem die Position berechnet wird, kann dann aufgrund der einfacheren und symmetrischeren Geometrie der Einzelfelder deutlich einfacher und schneller ausfallen. Um zu unterscheiden, von welchem Sender das aktuell ausgestrahlte Feld emittiert wird, kann ein weiterer Kommunikationskanal, beispielsweise WLAN, zwischen Sender und Fahrzeug verwendet werden.
Auch kann zur Unterscheidung beider Sender eine Kennung auf ein Positionssignal aufmoduliert werden, beispielsweise eine Spulenkennung .
Neben dem sequentiellen Sendevorgang können natürlich auch unterschiedliche Frequenzen für die beiden Sender verwendet werden. Dadurch kann die Empfangseinrichtung die beiden Sender unterscheiden. Bei geeigneter Filterung (z.B. Schwingkreise) der Einzelfelder kann somit eine einfache Ortung des Fahrzeuges in der Infrastruktur stattfinden. Das erfindungsgemäße Verfahren wird vorzugsweise bei der
Nahbereichspositionierung eines elektrisch betriebenen Fahrzeuges zum Induktivladen eingesetzt. Ein derartiges Verfahren wurde vorstehend bereits ausreichend erläutert. Bei dieser Verfahrensvariante wird mit der Einheit zum induktiven Aufladen des Fahrzeuges, die hier als erster Sender verwendet wird, ein Positionierungsmagnetfeld zusätzlich zu dem beim Ladevorgang abgestrahlten Magnetfeldes erzeugt. Das Positionierungsmag¬ netfeld findet daher zum exakten Positionieren des Fahrzeuges Verwendung, um die Einheit zum induktiven Aufladen, die vor- zugsweise als Bodenspule im Boden des Parkplatzes eingelassen ist, exakt zu der im Fahrzeug angeordneten Empfangseinrichtung aus zurichten .
Ein derartiges Verfahren ist in der vorstehend erwähnten US 2012/0262002 AI beschrieben. Erfindungsgemäß wird ein derartiges Verfahren bei dieser speziellen Ausführungsform durch die Anordnung eines zweiten Senders erweitert, wie vorstehend erläutert . Während vorstehend von einzelnen Parkplätzen bzw. Stellplätzen die Rede war, bezieht sich das erfindungsgemäße Verfahren auch auf einen Fall, bei dem mehrere Parkplätze bzw. Stellplätze nebeneinander angeordnet sind. Hierbei ist jeder Parkplatz mit einem ersten Sender zum Emittieren eines Positionierungsmag- netfeldes versehen, und weist einen zweiten Sender auf, der die vorstehend beschriebenen Ausführungsformen aufweisen und ein entsprechendes Positionierungssignal abgeben kann, bei dem es sich ebenfalls um ein Positionierungsmagnetfeld, aber auch um andere Signale handeln kann. Auch bei dieser Ausführungsform kann es sich bei den ersten Sendern um Einheiten zum induktiven Aufladen handeln, die vorzugsweise von einer zentralen Ladestation betrieben werden. Speziell sind daher hierbei beispielsweise mehrere Induktiv¬ ladeplätze nebeneinander angeordnet. Um das Laden der einzelnen Fahrzeuge zu koordinieren und neu ankommenden Fahrzeugen die entsprechenden Parkplätze zuzuweisen, werden die entsprechenden Ladeeinheiten (Bodenspulen) am besten von einer zentralen Ladestation betrieben. Will nun ein Fahrzeug einen komplett leeren Induktivladeplatz einnehmen, sendet das Fahrzeug beispielsweise eine Anfrage über WLAN an die Ladestation. Da kein Fahrzeug momentan auf einem Ladeplatz steht, wird dem Fahrzeug die erste Bodenspule zugewiesen. Da sich in diesem Fall auf dem Nachbarplatz eine weitere Bodenspule befindet, kann diese weitere Bodenspule (benachbarte Einheit zum induktiven Aufladen) als zweiter Sender verwendet werden. Hierbei kann daher auf einen speziellen Hilfssender verzichtet werden. Sind jedoch die jeweils benachbarten Induktivladeplätze bereits besetzt, können deren Einheiten zum induktiven Aufladen (Bodenspulen) nicht mehr als Hilfssender verwendet werden. Hierbei muss daher ein anderes System Anwendung finden, beispielsweise ein optisches System, das als zweiter Sender wirkt. Wenn beispielsweise ein Fahrzeug eine mittlere Parkbucht ansteuert, wobei bereits jeweils rechts und links ein Fahrzeug steht, können diese beiden Fahrzeuge als optisches Erkennungsmerkmal dienen, so dass das Fahrzeug auch bei nichtsichtbaren Parkplatzbe¬ grenzungen automatisch eingeparkt werden kann.
Wie bereits erwähnt, ist es nicht zwingend erforderlich, eine Einheit zum induktiven Aufladen, speziell eine Bodenspule, als ersten Sender (Positionierungssender) zu verwenden. Wesentlich für das erfindungsgemäße Verfahren ist, dass mithilfe eines ersten Senders ein induktives Positionierungsverfahren durchgeführt wird, und zwar unabhängig davon, ob es sich bei dem ersten Sender dabei um eine Ladeeinheit handelt oder nicht. Bei dem zweiten Sender kann es sich um irgendeinen Sender handeln, der ein Positionierungssignal abgibt, beispielsweise einen opti¬ schen Sender, wobei auch hier ein Sender auf induktiver Basis bevorzugt wird.
Es versteht sich, dass bei dem erfindungsgemäßen Verfahren auch weitere Sender Verwendung finden können.
Bei den vorstehend beschriebenen speziellen Ausführungsformen wurde davon ausgegangen, dass sich die Sender in der Infrastruktur befinden und im Fahrzeug eine entsprechende Emp- fangseinrichtung vorgesehen ist. Vorzugsweise werden als Empfangseinrichtungen hierbei zur Bestimmung des x- und y-Versatzes mindestens drei Sender verwendet. Somit können die Positionen der Sender trianguliert werden. Erfindungsgemäß ist es natürlich genauso gut möglich, ent¬ sprechende Sender, vorzugsweise drei oder mehr, im Fahrzeug anzuordnen und den zweiten Sender in der Infrastruktur (ein oder mehrere Hilfssender) durch Hilfsempfänger zu ersetzen. So ist es beispielsweise möglich, mit den Sendespulen eines Pase-Systems mehrere Suchfelder zu generieren, beispielsweise sequentiell. Die Empfänger in der Infrastruktur können daraufhin den x- und y-Versatz des Fahrzeuges zum Sender triangulieren und beispielsweise über einen weiteren Kanal (z.B. Funk, WLAN) an das Fahrzeug zurücksenden. Sind die Werte von mindestens zwei Empfängern der Infrastruktur bekannt, kann die Position des Fahrzeuges in der Infrastruktur berechnet werden.
Das erfindungsgemäße Verfahren kann auch mit weiteren Verfahren kombiniert werden. Beispielsweise können vorhandene Kameras oder Top-View-Systeme integriert werden, desgleichen vollautoma¬ tische Einparkhilfen und/oder Raddrehzahlsensoriken,
GPS/Galileo etc., Google Street View, bekannte WLAN-Knoten etc. Auch ist eine Variante möglich, bei der die Bodenspule und der dazugehörige Parkplatz in seiner geographischen Lage vermessen wurden. Beim Annähern eines Fahrzeuges orientiert sich dieses an den Magnetfeldern, bekommt aber ebenfalls per Codierung oder WLAN-Info die geographische Orientierung des Parkplatzes mitgeteilt. Ist der Parkplatz beispielsweise in Nord-Süd- Richtung festgelegt, so kann das Fahrzeug anhand seiner GPS- und Kompassorientierung genau den Parkplatz richtig anfahren.
Erfindungsgemäß wird daher ein Positionierungssystem ge- schaffen, das eine Ortung des Fahrzeuges in Bezug auf die
Infrastruktur ermöglicht. Dadurch wird das automatische Ein¬ parken bei induktiven Ladevorgängen oder anderen Parkvorgängen verwirklicht, ohne mit Einschränkungen bei herkömmlichen Sensorfunktionen zu rechnen (Schnee, Laub etc.).
Die Erfindung betrifft ferner eine Einrichtung zur Durchführung des vorstehend beschriebenen Verfahrens.
Die Erfindung wird nachfolgend anhand eines Ausführungs- beispieles in Verbindung mit der Zeichnung im Einzelnen erläutert. Es zeigen:
Figur 1 eine Darstellung eines Parkplatzes von oben bei einem Verfahren des Standes der Technik mit nichtunterscheidbaren Parkpositionen;
Figur 2 eine schematische Ansicht wie Figur 1 bei einer
Ausführungsform des erfindungsgemäßen Verfahrens ; Figur 3 eine schematische Ansicht eines Parkplatzes von oben mit drei Parkbuchten bei einer andere Ausführungsform des erfindungsgemäßen Verfahrens ;
Figur 4 eine schematische Ansicht eines Parkplatzes von oben mit drei Parkbuchten bei noch einer anderen Ausführungsform des erfindungsgemäßen Verfahrens; und
Figur 5 eine schematische Ansicht von Parkplätzen von oben, wobei diverse Ausführungsformen der Erfindung dargestellt sind. Bei dem Verfahren des Standes der Technik gemäß Figur 1 findet eine Bestimmung der Absolutposition eines Fahrzeuges für die Nahbereichspositionierung desselben beim automatischen Einparken des Fahrzeuges statt. Es wird ein induktives Positio¬ nierungsverfahren durchgeführt, wobei eine in den Boden eines Parkplatzes 5 eingelassene Bodenspule 6 (erster Sender) zur Erzeugung eines Positionierungsmagnetfeldes angeregt wird. Dieses Magnetfeld wird von einer in einem Fahrzeug 4 angeordneten Empfangseinrichtung empfangen. Auf der Basis des empfangenen Positionierungsmagnetfeldes wird die Position des Fahrzeuges ermittelt.
Durch das vorstehend beschriebene magnetische Verfahren kann das Fahrzeug 4 den x- und y-Versatz der Bodenspule 6 in Bezug auf das Fahrzeug 4 selbst bestimmen. Dabei liefern jedoch die in Figur 1 gezeigten Positionen 1-3 des Fahrzeuges alle das gleiche Ergebnis. Die korrekte Position des Fahrzeuges 4 exakt über der Bodenspule 6 kann daher nicht ermittelt werden. Figur 2 zeigt die gleiche Parksituation wie in Figur 1, wobei jedoch hier eine Ausführungsform des erfindungsgemäßen Verfahrens durchgeführt wird. Hierbei wird bei dem induktiven Positionierungsverfahren neben der in den Boden des Parkplatzes 5 eingelassen Bodenspule 6 ein zweiter Sender (Hilfssender) 7 verwendet, der beispielsweise am Rand des Parkplatzes 5 an¬ geordnet ist. Auch hier wird die zum Laden des Fahrzeuges 4 verwendete Bodenspule 6 vor dem Laden als induktiver Posi¬ tionierungssender verwendet, der ein Positionierungsmagnetfeld erzeugt. Auch der zweite Sender 7 erzeugt ein Positionie¬ rungsmagnetfeld. Beide Positionierungsmagnetfelder werden von einer Empfangseinrichtung im Fahrzeug 4 empfangen, und auf der Basis der empfangenen Positionierungsmagnetfelder wird die Absolutposition des Fahrzeuges ermittelt.
Während die Positionen 1-3 ohne zweiten Sender 7 (Hilfssender) nicht voneinander unterschieden werden können, ist mit dem zweiten Sender 7 eine klare Unterscheidung der einzelnen Positionen untereinander möglich. Grund hierfür ist, dass nun zwei Punkte der Infrastruktur bekannt sind und somit das relative Koordinatensystem des Fahrzeuges 4 in das absolute Koordina¬ tensystem der Infrastruktur überführt werden kann.
Figur 3 zeigt eine Draufsicht auf einen Parkbereich mit drei Parkbuchten bzw. Parkplätzen 5. In den Boden eines jeden
Parkplatzes 5 ist eine Bodenspule 6 eingelassen. Alle drei Bodenspulen 6 werden von einer gemeinsamen Ladestation 8 versorgt . Bei der hier dargestellten Situation, bei der sich ein Fahrzeug 4 in die in der Figur obere Parkbucht bewegt, sind die beiden unteren Parkbuchten leer. Hierbei dient die Bodenspule 6 der mittleren Parkbucht als zweiter Sender bzw. Hilfssender. Wenn das Fahrzeug 4 an dem komplett leeren Tiefladeplatz laden will, sendet es eine Anfrage, beispielsweise über WLAN, an die Ladestation 8. Da momentan überhaupt kein Fahrzeug auf einem Ladeplatz steht, wird dem Fahrzeug die Bodenspule 6 der obersten Parkbucht zugewiesen. Die Bodenspule 6 in der mittleren Parkbucht fungiert hierbei als zweiter Sender bzw. Hilfssender.
Bei der in Figur 4 schematisch dargestellten Parksituation sind ebenfalls drei Parkbuchten 5 vorhanden, wobei jede Parkbucht 5 eine Bodenspule 6 aufweist. Alle Bodenspulen 6 werden von einer gemeinsamen Ladestation 8 versorgt. Die hier dargestellte Situation unterscheidet sich von der der Figur 3 dadurch, dass die in der Figur obere und untere Parkbucht bereits besetzt sind. Die entsprechenden Bodenspulen 6 dieser Parkbuchten können daher nicht mehr als Hilfssender verwendet werden. Das Fahrzeug 4 kann daher nur noch in der mittleren Parkbucht eingeparkt werden. Da sich zu beiden Seiten der mittleren Parkbucht bereits ein Fahrzeug als optisches Erkennungsmerkmal befindet, kann das Fahrzeug 4 mithilfe eines optischen Systems auch in diesem Fall automatisch eingeparkt werden.
Figur 5 zeigt eine schematische Ansicht von diversen Parkplätzen von oben, wobei diverse Ausführungsformen der Erfindung dargestellt sind. Bei der Ausführungsform von Figur 5 A) sind ein erster Sender in Form einer Bodenspule 6 und ein zweiter Sender 7 in der Infrastruktur (im Bereich des Parkplatzes) vorgesehen. Das zugehörige Fahrzeug besitzt eine Empfangseinrichtung, die hierbei drei Empfänger 11 aufweist. Bei der in Figur 5 B) gezeigten Ausführungsform sind ein erster Sender 6 und ein zweiter Sender 7 am Fahrzeug vorgesehen, während sich drei Empfänger 11 im Parkplatzbereich (in der Infrastruktur) befinden . Die Ausführungsform der Figur 5 C) zeigt einen ersten Sender 6 und zwei zweite Sender 7 am Fahrzeug und zwei Empfänger 11 im Parkplatzbereich (Infrastruktur) .
Schließlich zeigt die Ausführungsform der Figur 5 D) einen ersten Sender als Bodenspule 6 und zwei zweite Sender 7, die im Parkplatzbereich angeordnet sind, sowie zwei am Fahrzeug an¬ geordnete Empfänger 11.
Befinden sich die Empfänger außerhalb des Fahrzeuges, müssen diese ihre Daten an das Fahrzeug zurücksenden, damit das Fahrzeug die Position kennt.

Claims

Verfahren zum Bestimmen der Absolutposition eines Fahrzeuges (4) für die Nahbereichspositionierung desselben beim Einparken des Fahrzeuges (4), bei dem ein induktives Positionierungsverfahren durchgeführt wird, wobei ein erster Sender in der Infrastruktur oder im Fahrzeug zur Erzeugung eines Positionierungsmagnet¬ feldes und ein zweiter Sender (7) in der Infrastruktur oder im Fahrzeug zur Erzeugung eines Positionierungs¬ signals angeregt werden, das Positionierungsmagnetfeld und das Positionierungssignal von einer Empfangsein¬ richtung im Fahrzeug (4) oder in der Infrastruktur empfangen werden und auf der Basis des empfangenen Positionierungsmagnetfeldes und Positionierungssignals die Absolutposition des Fahrzeuges (4) ermittelt wird.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein zweiter Sender (7) verwendet wird, der ebenfalls ein Positionierungsmagnetfeld erzeugt .
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Position des zweiten Senders (7) in Bezug auf den ersten Sender standardisiert wird.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Position des zweiten Senders (7) in Bezug auf den ersten Sender ermittelt wird.
Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Position des zweiten Senders (7) über einen anderen Kanal, insbesondere WLAN, übermittelt wird.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der erste Sender und der zweite Sender (7) sequentiell angeregt werden. 7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zur Unterscheidung beider Sender eine Kennung auf ein Positionierungssignal aufmoduliert wird. 8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass unterschiedliche Sendefre¬ quenzen für den ersten und zweiten Sender (7) verwendet werden . 9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es bei der Nahbereichspo¬ sitionierung eines elektrisch betriebenen Fahrzeuges (4) zum Induktivladen eingesetzt wird. 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass als erster Sender eine Einheit zum induktiven Aufladen des Fahrzeuges verwendet wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass als Einheit zum induktiven Aufladen eine Bodenspule (6) eingesetzt wird.
12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass mehrere benachbarte Einheiten zum in- duktiven Aufladen, insbesondere Bodenspulen (6), vorgesehen sind, die insbesondere von einer zentralen Ladestation (8) betrieben werden.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass eine benachbarte Einheit zum induktiven Aufladen, insbesondere Bodenspule (6), als zweiter Sender ver¬ wendet wird.
14. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass ein optisches System als zweiter Sender eingesetzt wird.
15. Einrichtung zur Durchführung des Verfahrens nach einem der vorangehenden Ansprüche.
EP16765959.8A 2015-09-24 2016-09-09 Verfahren und einrichtung zum bestimmen der absolutposition eines fahrzeuges Withdrawn EP3353006A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015218410.2A DE102015218410A1 (de) 2015-09-24 2015-09-24 Verfahren und Einrichtung zum Bestimmen der Absolutposition eines Fahrzeuges
PCT/EP2016/071369 WO2017050595A1 (de) 2015-09-24 2016-09-09 Verfahren und einrichtung zum bestimmen der absolutposition eines fahrzeuges

Publications (1)

Publication Number Publication Date
EP3353006A1 true EP3353006A1 (de) 2018-08-01

Family

ID=56926177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16765959.8A Withdrawn EP3353006A1 (de) 2015-09-24 2016-09-09 Verfahren und einrichtung zum bestimmen der absolutposition eines fahrzeuges

Country Status (5)

Country Link
US (1) US10821844B2 (de)
EP (1) EP3353006A1 (de)
CN (1) CN108025656B (de)
DE (1) DE102015218410A1 (de)
WO (1) WO2017050595A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016221471A1 (de) * 2016-11-02 2018-05-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bereitstellung von Korrekturdaten für eine Positionsbestimmung
CN106965696A (zh) * 2017-04-22 2017-07-21 安徽驿盟物流科技有限公司 车辆管理系统
CN107031446A (zh) * 2017-04-22 2017-08-11 安徽驿盟物流科技有限公司 车辆感应充电装置
CN109445429A (zh) * 2018-10-15 2019-03-08 电子科技大学 自动行驶设备的窄通道进入控制方法
US11611246B2 (en) * 2018-10-25 2023-03-21 Hyundai Motor Company Low frequency sensor based apparatus and method for measuring vehicle position
CN109849697A (zh) * 2019-01-14 2019-06-07 深圳大学 一种用于车辆无线充电对位偏差检测装置和方法
EP3726241A1 (de) * 2019-04-19 2020-10-21 Siemens Mobility GmbH Verfahren und system zur lokalisierung eines gegenstandes
CN110103741A (zh) * 2019-05-24 2019-08-09 北京有感科技有限责任公司 一种电动汽车无线充电系统的线圈对位结构
CN112092667B (zh) * 2019-06-18 2023-09-01 湖南中车智行科技有限公司 充电位智能识别系统、方法和充电站
CN112114340B (zh) * 2020-09-07 2023-07-11 合肥海源机械有限公司 一种基于无线网的特种新能源车辆定位系统
JP2022150956A (ja) * 2021-03-26 2022-10-07 株式会社Ihi 電動車両の給電設備、および給電設備による電動車両の給電方法
CN112977141B (zh) * 2021-04-21 2021-08-10 北京有感科技有限责任公司 停车场无线充电引导方法和车辆无线充电引导方法
US11958474B2 (en) * 2021-07-20 2024-04-16 Atieva, Inc. Parking assistance with smooth handover, parking completion, or parking correction
CN113815605B (zh) * 2021-09-10 2024-01-09 岚图汽车科技有限公司 车辆泊车的控制方法、装置、介质、电子设备
DE102021123960A1 (de) 2021-09-16 2023-03-16 Jungheinrich Aktiengesellschaft Induktives Ladesystem für mindestens ein Flurförderzeug

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466654B2 (en) * 2008-07-08 2013-06-18 Qualcomm Incorporated Wireless high power transfer under regulatory constraints
EP2199142B1 (de) * 2008-12-22 2013-04-17 Aisin Aw Co., Ltd. Fahrzeugführungsvorrichtung zum Laden der Fahrzeugbatterie
US20100201309A1 (en) * 2009-02-10 2010-08-12 Meek Ivan C Systems and methods for coupling a vehicle to an external grid and/or network
US10343535B2 (en) * 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
WO2012095896A1 (ja) * 2011-01-11 2012-07-19 パナソニック株式会社 無線電力伝送システム及び位置ずれ検知装置
US10090885B2 (en) 2011-04-13 2018-10-02 Qualcomm Incorporated Antenna alignment and vehicle guidance for wireless charging of electric vehicles
US9859755B2 (en) * 2012-07-16 2018-01-02 Qualcomm Incorporated Device alignment and identification in inductive power transfer systems
DE102012214199A1 (de) * 2012-08-09 2014-04-03 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zur Positionierung durch Triangulation
US9672975B2 (en) * 2012-09-11 2017-06-06 Qualcomm Incorporated Wireless power transfer system coil arrangements and method of operation
US10014104B2 (en) * 2012-11-02 2018-07-03 Qualcomm Incorporated Coil arrangements in wireless power transfer systems for low electromagnetic emissions
FR3003815B1 (fr) * 2013-03-27 2016-09-02 Renault Sa Procede pour la charge par induction d'une batterie electrique d'un vehicule automobile, station de charge, vehicule automobile et borne de charge associes
DE102013208678A1 (de) * 2013-05-13 2014-11-13 Robert Bosch Gmbh System zur Ausrichtung eines Fahrzeugs und Verwendung des Systems
CN103342101B (zh) * 2013-06-14 2015-11-18 北京航空航天大学 感应式非接触充电定位对准装置及其定位方法
GB201315504D0 (en) 2013-08-30 2013-10-16 Ford Global Tech Llc A method to aid inductive battery charging of a motor vehicle
US10139238B2 (en) 2013-09-11 2018-11-27 Qualcomm Incorporated Systems, methods, and apparatus related to guidance and alignment for an electric vehicle and charging station
DE102013219239A1 (de) * 2013-09-25 2015-03-26 Robert Bosch Gmbh Verfahren, Vorrichtung und System zum Ermitteln einer Position eines Fahrzeugs
DE102013016880A1 (de) 2013-10-11 2014-07-03 Daimler Ag Verfahren zur Positionierung eines Fahrzeugs an einer induktiven Ladestation
DE102014210813B3 (de) * 2014-06-05 2015-10-01 Siemens Aktiengesellschaft Mittel und Verfahren zur Herstellung einer Assoziationsverbindung
KR20160025200A (ko) * 2014-08-27 2016-03-08 현대자동차주식회사 무선 충전 시스템 및 그 제어 방법

Also Published As

Publication number Publication date
US20180208073A1 (en) 2018-07-26
CN108025656B (zh) 2021-03-23
US10821844B2 (en) 2020-11-03
CN108025656A (zh) 2018-05-11
DE102015218410A1 (de) 2017-03-30
WO2017050595A1 (de) 2017-03-30

Similar Documents

Publication Publication Date Title
WO2017050595A1 (de) Verfahren und einrichtung zum bestimmen der absolutposition eines fahrzeuges
DE102014224455B4 (de) Verfahren zum berührungslosen Aufladen eines elektrisch angetriebenen Fahrzeugs
EP3380811B1 (de) Verfahren und system zum erstellen einer digitalen karte
DE102015208621B4 (de) Lokalisierungsvorrichtung für ein Kraftfahrzeug
DE102015201209A1 (de) Valet Parking-Verfahren und Valet-Parking System
DE102013208678A1 (de) System zur Ausrichtung eines Fahrzeugs und Verwendung des Systems
DE102014211557A1 (de) Valet Parking Verfahren und System
DE102015214826A1 (de) Verfahren und System zum Lokalisieren eines sich innerhalb eines Parkplatzes befindenden Fahrzeugs
DE102014213195A1 (de) Vorrichtung und Verfahren zum Betreiben eines induktiven Ladesystems
DE102009021014A1 (de) Vorrichtung zum Übertragen von Information über freien Parkraum und Führungssystem für freien Parkraum
WO2015051876A1 (de) Verfahren zur positionierung eines fahrzeugs an einer induktiven ladestation
EP2818952B1 (de) Steuerungssystem für einen schienengebundenen Fahrroboter und Verfahren zu dessen Betrieb
DE102012021403A1 (de) Verfahren zum Identifizieren eines von einer Sensoreinrichtung erfassten Fahrzeugs
DE102016224804A1 (de) Verfahren zur Bestimmung der Position einer Ladestation zur drahtlosen Übertragung von elektrischer Energie an ein Fahrzeug
WO2015039797A1 (de) Positionsbestimmungssystem für fahrzeuge mit elektrischem antrieb und induktiver ladung
DE102015012368A1 (de) Verfahren zur Ermittlung einer eine Relativposition eines Kraftfahrzeugs zu einer stationären, anzufahrenden Ladeeinrichtung beschreibenden Positionsinformation und Anordnung aus einem Kraftfahrzeug und einer stationären, anzufahrenden Ladeeinrichtung
DE102016221732A1 (de) Verfahren zum Leiten eines Kraftfahrzeugs in eine Ladeposition an einer induktiven Ladestation sowie Steuervorrichtung und Kraftfahrzeug
EP2838753B1 (de) Elektrofahrzeug, induktive ladestation und verfahren
WO2019052800A1 (de) Verfahren zum bereitstellen einer kommunikationsverbindung zwischen einer stationären elektrischen ladestation und einem kraftfahrzeug sowie steuervorrichtung und ladesystem
EP3515787B1 (de) Verfahren zur positionsbestimmung eines schienenfahrzeugs und schienenfahrzeug mit positionsbestimmungseinrichtung
DE102013217718A1 (de) Ladestation zur induktiven Energieübertragung und Verfahren zum Positionieren einer induktiven Energieübertragungsvorrichtung
EP3482384B1 (de) Bestimmung von seitlich entfernten parklücken
DE102018213007A1 (de) Verfahren zum Erstellen einer Parkhauskarte für Valet-Parking
WO2016055182A1 (de) System und verfahren zur assistenz für die positionierung einer sekundärspule an einer primärspule für eine induktive energieübertragung
EP3864427B1 (de) Vorrichtung zur positionsbestimmung eines relativ zu einem fahrzeug bewegbaren gegenstandes und ein damit ausgestattetes fahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181120