EP3347665A1 - Faisceau d'échange thermique de stockage pour batterie thermique de stockage comprenant des tubes - Google Patents

Faisceau d'échange thermique de stockage pour batterie thermique de stockage comprenant des tubes

Info

Publication number
EP3347665A1
EP3347665A1 EP16781498.7A EP16781498A EP3347665A1 EP 3347665 A1 EP3347665 A1 EP 3347665A1 EP 16781498 A EP16781498 A EP 16781498A EP 3347665 A1 EP3347665 A1 EP 3347665A1
Authority
EP
European Patent Office
Prior art keywords
tubes
heat exchange
connection means
tube
exchange bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16781498.7A
Other languages
German (de)
English (en)
Inventor
Samuel BRY
Patrick Boisselle
Kamel Azzouz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP3347665A1 publication Critical patent/EP3347665A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0078Heat exchanger arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2220/00Closure means, e.g. end caps on header boxes or plugs on conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • Storage heat exchange bundle for storage thermal battery comprising tubes
  • the present invention relates to the field of thermal storage batteries using, for heat exchange elements, a bundle of tubes for storing and releasing a determined quantity of heat, the tubes containing a material adapted to store and release a determined quantity of heat, in particular a phase change material (PCM).
  • PCM phase change material
  • the invention relates to a storage heat exchange bundle.
  • a thermal storage battery is, for example, used to distribute heat, via the heating system, in the passenger compartment of a hybrid motor vehicle, that is to say combining a motor powered by the energy thermal and electrical energy. Furthermore, this type of thermal battery can be used to preheat a heat transfer fluid, engine oil or oil of the automatic gearbox, and during the cold start of said motor vehicle.
  • the charging of said thermal battery is, in principle, performed during the charging of the electric battery.
  • the electric battery serves to move said electric vehicle.
  • the thermal energy stored in the thermal battery can be used during the start of the heating system to distribute heat in the passenger compartment of the motor vehicle.
  • the heating system for heating the air of the passenger compartment of a motor vehicle operates using a fluid such as a heat transfer fluid. In order to heat the cabin air, the thermal battery heats the heat transfer fluid before it passes inside the heating radiator, the radiator heating the air intended to be diffused into the passenger compartment. The energy provided by the thermal battery thus saves the corresponding energy stored by the battery which would have been used in the absence of a thermal storage battery.
  • thermal storage battery in a hybrid vehicle makes it possible to store thermal energy during the charging of the electric battery.
  • This thermal battery can be recharged via the coolant, when the engine of the hybrid vehicle is in thermal operating mode, that is to say operating with the engine.
  • the thermal energy stored inside the thermal battery comes from the energy produced during a previous driving of said vehicle.
  • Fluids used to cool the engine or automatic gearbox for example, can be used to charge the thermal battery.
  • the oil of the automatic gearbox rejects, in a conventional use, a given amount of heat.
  • Said specified quantity of heat can be stored in a thermal battery and then used during the starting of the motor vehicle to allow the rapid increase in the temperature of the heating of the air of the passenger compartment and / or the engine oil and / or automatic gearbox oil, thereby reducing the friction due to the viscosity of said oil.
  • the viscosity of the oil is even higher than the temperature is low.
  • the thermal battery can be charged by the thermal energy of the automatic gearbox oil, heat transfer fluid or engine oil circuits.
  • MCP phase change material
  • PCM Phase Change Material
  • Each end of the micro tube is closed by welding, gluing or by a mechanical plug.
  • the micro-tubes are organized into a bundle before their tight closure.
  • the bundle organization is performed by collectors, grids, spacers, ... allowing the maintenance of the microtubes.
  • the problem created by these solutions is that the tightness is checked once the heat exchange bundle has been completed. In other words, it is at the end of manufacture of the heat exchange bundle that its tightness is verified. If a leakage of phase change material is detected, the complete heat exchange bundle is rejected.
  • micro-tubes already filled with phase-change material and tightly closed are stored directly in a housing, without collector.
  • Micro-tubes having an inflexible structure, tend to bend and organized placement in the housing is not simple. This results in a loss of compactness of the heat exchange bundle.
  • One of the aims of the present invention is therefore to at least partially overcome the drawbacks of the state of the art by proposing a storage heat exchange bundle in which tubes can be filled with material adapted to store and release a determined quantity. heat and tightly closed before being stored in a very compact and very simple beam.
  • the present invention therefore relates to a storage heat exchange beam for storage thermal battery comprising a plurality of tubes containing a material adapted to store and release a predetermined quantity of heat, the tubes being assembled on at least one manifold, at least one end of each tube being provided with a first connection means, the manifold 4 being provided with a plurality second connection means, the first connecting means of the tubes being adapted to cooperate with one of said second connection means of the collector to allow the assembly of the tubes on the collector.
  • each tube further comprises a closure means capable of closing one end of said tube.
  • the first connection means is disposed on the means for closing the tube.
  • the tube closure means is a plug adapted to be inserted into one end of the tube.
  • the first connection means is a pad.
  • the second connection means is a hole made in the collector adapted to receive a first connection means.
  • the first connection means comprises a hole adapted to receive a second connection means.
  • the second connection means is a pad.
  • the collector comprises a plurality of second connecting means arranged in staggered rows.
  • the tubes are assembled on the collector parallel to each other, the second connection means being at a distance from one another, the distance being at least equal to the diameter of a tube.
  • the invention also relates to a thermal battery comprising a storage heat exchange bundle.
  • the invention also relates to a tube containing a material adapted to store and release a determined amount of heat, characterized in that the tube is provided on at least one of its ends with a first connection means.
  • Figure la shows a perspective view of a storage heat exchange bundle according to a first embodiment of the invention in which three tubes are represented,
  • FIG. 1b shows another perspective view of a storage heat exchange bundle according to a particular embodiment of the first embodiment of the invention in which three other tubes are shown,
  • FIG. 2 shows an enlarged view of a lateral end of the storage heat exchange bundle of FIG.
  • FIG. 3 shows an exploded and enlarged view of a lateral end of the storage heat exchange bundle of FIG. 1b
  • FIG. 4 is an exploded view of the end of a tube according to the particular embodiment of the first embodiment
  • FIG. 5 is an exploded and enlarged view of a lateral end of the storage heat exchange bundle according to a second embodiment of the invention
  • Figure 6 is a perspective view of a storage heat exchange bundle comprising three spacers.
  • a thermal storage storage heat exchange bundle according to the invention comprises a plurality of tubes.
  • the tubes are tubes, for example cylindrical, of synthetic material, particularly of plastic material of longitudinal shape, that is to say that their length is much larger than their diameter.
  • the tubes are of square or oval section.
  • each of the tubes contains a material adapted to store and release a determined amount of heat, for example a phase change material (PCM).
  • PCM phase change material
  • the tube is provided on at least one of its ends with a first connection means.
  • the tubes are assembled on a collector.
  • at least one end of each tube is provided with a first connection means and the manifold is provided with a plurality of second connection means.
  • the first connection means of the tubes is adapted to cooperate with one of said second connection means of the collector to allow the assembly of the tubes on the collector.
  • FIG. 1a a storage heat exchange bundle 9, according to the invention, is represented according to a first embodiment.
  • the storage heat exchange bundle 9 comprises two collectors 4 and tubes 1.
  • first connection means 10 At each end 3 of the tube 1 is a first connection means 10.
  • the first connection means 10 is a hole, in particular a cylindrical hole, adapted to receive a second connection means.
  • Each tube 1 further comprises a closing means capable of closing one end, this closure means allowing the phase change material not to leak.
  • the first connection means 10 is disposed on the means for closing the tube.
  • the first connection means 10, for example the hole 10 can be positioned on the closure means separate from the tube 1 or be an integral part of the tube 1. This is the case for example of the tube 1 at the output of manufacture which has only one open end, the closed end as for it may comprise a connection means in the form of a hole.
  • the collectors 4 are plates that can be made for example of plastic or metal material. Each collector 4 is provided with a plurality of second connection means 11. According to the example illustrated in Figure la, the second connection means are pads 11, in particular cylindrical pads.
  • the number of second connection means 11 is equal to the number of tubes 1 that must be composed of the storage heat exchange bundle 9. In FIG. 1a, only three tubes 1 are shown.
  • the first connecting means of the tubes and the second connection means of the collector are able to cooperate to allow the assembly of the tubes 1 on the collector 4.
  • the studs 11 are able to be inserted into the holes 10 located on the ends of the tubes 1.
  • the diameter of the holes 10 must be slightly greater than the diameter of the pads 11 so that the pads 11 can be inserted into the holes 10.
  • the diameter of the holes 10 must not be too much greater than that of the pads 11 otherwise the tubes 1 would no longer be held on the manifold 4, especially during vibrations due to the rolling of the vehicle under extreme conditions.
  • the diameters of the holes 10 and the pads 11 depend on the diameter of the tube 1.
  • the diameter of the holes 10 is 2.6 mm with a tolerance of ⁇ 0.1 mm
  • the diameter of the studs It is 2.3 mm with a tolerance of ⁇ 0.1 mm.
  • the diameter of the holes 10 is for example 1.3 mm with a tolerance of ⁇ 0.1 mm
  • the diameter of the studs 11 is 1 mm with a tolerance of ⁇ 0.1 mm.
  • a stud 11 may be in the form of a prism of any base (rectangular, square, star, triangular), or even in the form of a truncated cone or truncated pyramid, the essential being that the shape of the hole 10 associated with it is suitable to cooperate with the pad 11.
  • a stud 11 of conical shape associated with a hole 10 is a possible embodiment.
  • the shape of the hole 10 is complementary to the shape of the stud 11.
  • the shape of the collectors 4 shown in Figure la is an embodiment.
  • the shape of the collectors will be adapted to the desired application, the shape of the storage heat exchange bundle 9 being directly related to the shape of the collectors 4.
  • the collectors 4 may be identical or of different shape. It is for example possible to provide on one collector a connector system to an element outside the beam 9 that the other will not.
  • Fig. 1b is a particular embodiment of the first embodiment.
  • the tubes 1 are closed in a sealed manner by particular closure means, for example by plugs 5 adapted to be inserted into one end of the tubes.
  • the first connection means in particular a hole 10 is located on the outer end of the closure means, in particular of each cap 5. It is represented in this figure, three tubes 1, however, in order to form storage heat exchange bundle 9, other tubes will be added.
  • FIG 2 is an enlarged view of Figure la.
  • the organization of the second connection means 11, for example pads 11 according to this embodiment, on the collector is not arbitrary.
  • the second connection means 11 are arranged in staggered relation to one another.
  • the arrangement of the second connection means is made according to a alternating lines L1 and L2 parallel to each other so that each second connection means 11 (with the exception of the connection means located at the edge of collector 4) is equidistant from its six connecting means closest to a distance D in all directions.
  • the distance D is measured between the connection means 11 from center to center.
  • the connecting means of the lines L1 are arranged in a first grid, the connecting means L2 lines according to a second grid, the two grids being identical but offset with respect to each other.
  • This arrangement defines an arrangement of tubes 1 staggered in the storage heat exchanger beam 9.
  • the two collectors are positioned to create a generally shaped beam of a right prism.
  • the tubes 1 are thus parallel to each other.
  • the compactness of the storage heat exchange bundle is directly related to the distance D, this distance D defining the pitch of the tubes 1 on the collector 4 and indirectly the space between two tubes 1.
  • FIG 3 is an exploded view, at another and enlarged angle of Figure 1b.
  • This figure makes it possible to illustrate the closing means, namely plugs 5 according to this embodiment, of the three tubes represented on the storage heat exchange bundle. According to this particular embodiment, these closure means are pierced with a hole 10 on their outer end and are able to be assembled on the pads 11 of the collector 4.
  • the tubes are contiguous with each other, in particular at their plug 5. This is the most compact embodiment of the storage heat exchange bundle 9. The diameter of the plugs is then substantially equal. at the distance D between two connection means 11 on the collector 4.
  • FIG. 4 is an exploded view of a tube 1 closed by a plug 5.
  • the tube 1 contains a phase-change material 2. It comprises an internal wire 6 intrinsic to the manufacture of the tube 1.
  • the plug 5 comprises one end 7 of diameter smaller than that of the tube 1, able to be introduced into the tube 1.
  • Its other end 8, also called external end comprises a connection means, for example a hole 10 adapted to cooperate with a second connection means, for example a stud 11 of the collector 4.
  • Figure 5 corresponds to a second embodiment of the invention. 'invention.
  • the assembly principle tubes 1 on the collector 4 is the opposite of that of the first embodiment.
  • the collector 4 comprises second hole-shaped connection means 111 arranged, for example in staggered rows, in the manner of the pads 11 of FIG. 2.
  • the second connection means 111 are equidistant from the nearest 6 connection means, for example example of holes, a distance D (measured from center to center).
  • the tubes 1 each comprise a closure means 5, for example a plug, surmounted by a first connection means, in particular a stud 110 adapted to cooperate with the second connection means, namely the holes 111 of the collector 4.
  • the pads 110 and the holes 111 are connecting means which must cooperate together to assemble.
  • the tubes 1 can be assembled on the collector 4, the pads 110 located on the ends of the tubes 1 being adapted to be inserted into the holes 111 of the collector 4.
  • the diameter holes 111 must therefore be slightly greater than that of the pads 110 so that the pads 110 can be inserted into the holes 111.
  • the diameters of the holes 111 and the pads 110 depend on the diameter of the tube 1.
  • the diameter of the holes 111 is 2.6 mm with a tolerance of ⁇ 0.1 mm
  • the diameter of the studs 110 is 2.3 mm with a tolerance of ⁇ 0.1 mm.
  • the diameter of the holes 10 is for example 1.3 mm with a tolerance of ⁇ 0.1 mm
  • the diameter of the studs 11 is 1 mm with a tolerance of ⁇ 0.1 mm. If the manifolds are positioned so as to form a right prism, the tubes 1 are arranged in a staggered, parallel to each other.
  • the plugs 5 of the tubes 1 are contiguous.
  • the holes 111 according to the embodiment of Figure 5 are made by drilling into the collector 4. However, the definition of a hole should be considered more broadly. It is a cavity adapted to receive a stud 110.
  • a molded part may have holes 111 made directly from the shapes of the mold, these holes forming second connection means, which are adapted to receive pads 110.
  • a lattice projecting from the collector also makes it possible to create cavities, these cavities forming second connection means, which are capable of receiving studs 110.
  • a set of pads spaced in an orderly manner on a plate creates cavities able to receive pads 110, these cavities forming second connection means within the meaning of the present invention.
  • the space available to the heat transfer fluid for circulating between the tubes 1 is related to the choice of the distance D measured from center to center between the second connection means (11, 111) of the manifold 4.
  • This fluid circulation space must be optimized according to the applications to meet the performance requirements of the thermal battery while providing a compact device.
  • the distance D between the tubes 1 must be at least equal to the diameter of a tube 1.
  • the optimization of this distance D makes it possible to obtain a good compromise in terms of compactness and performance as well as a compromise between the density of MPC material and the internal pressure drop of the coolant.
  • the spacing between two outer walls of adjacent tubes 1 is for example of the order of 0.6 millimeters to allow a good flow of fluid between the tubes 1 and benefit from a compact storage heat exchange beam solution. This value is valid in particular for a tube 1 of diameter 4 millimeters and a distance D of 4.6 millimeters of the tubes 1.
  • This distance D can for example be obtained for a beam configuration in which the tubes 1 of diameter 4 millimeters are contiguous by their cap diameter of 4.6 millimeters.
  • the closure of the tubes 1 can be done upstream of the assembly of the thermal batteries, their sealing can be verified before assembly of the storage heat exchange bundle 9. This allows during manufacture to reject only the tubes 1 having sealing defects and not the complete storage heat exchange bundle 9. This also simplifies the assembly of the tubes 1 in the bundle 9, and therefore the complete assembly line for manufacturing the thermal battery.
  • the spacers can be assembled on the collectors 4 upstream of the assembly of the tubes 1 on the same manifold 4. Indeed, the tubes 1 are flexible and can be bent.
  • the spacers 15 may be left on the beam 9.
  • the beam structure will be rigid without adding additional stiffening part.
  • the spacers 15 can be replaced at the end of assembly of the beam 9 by tubes 1.
  • the spacers 15 can be reused for the manufacture of a other bundle of tubes. All the embodiments of the invention bring numerous advantages, such as, for example, the simplicity of assembly, the reduction of the assembly time, the absence of necessity of using additional holding parts to hold the tubes 1 on the collector 4, a low manufacturing cost.
  • collectors 4 also has an advantage, particularly in terms of cost reduction. In this case, it is the length of the tubes 1 which is adapted to the application.
  • the variable part of the tube is its length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention concerne un faisceau d'échange thermique de stockage (9) pour batterie thermique de stockage comprenant une pluralité de tubes (1) contenant un matériau adapté pour stocker et libérer une quantité déterminée de chaleur, les tubes étant assemblés sur au moins un collecteur (4), au moins une extrémité de chaque tube (1) étant dotée d'un premier moyen de connexion, le collecteur 4 étant doté d'une pluralité de seconds moyens de connexion (11), le premier moyen de connexion des tubes étant apte à coopérer avec un desdits seconds moyens de connexion du collecteur pour permettre l'assemblage des tubes (1) sur le collecteur (4).

Description

Faisceau d'échange thermique de stockage pour batterie thermique de stockage comprenant des tubes
La présente invention concerne le domaine des batteries thermiques de stockage utilisant pour éléments d'échange de chaleur, un faisceau de tubes pour stocker et libérer une quantité déterminée de chaleur, les tubes contenant un matériau adapté pour stocker et libérer une quantité déterminée de chaleur, notamment un matériau à changement de phase (MCP). Ces batteries de stockage sont particulièrement adaptées pour une utilisation dans les véhicules automobile.
En particulier, l'invention concerne un faisceau d'échange thermique de stockage.
Une batterie thermique de stockage est, par exemple, utilisée pour diffuser de la chaleur, via le système de chauffage, dans l'habitacle d'un véhicule automobile hybride, c'est-à-dire combinant un moteur fonctionnant grâce à l'énergie thermique et à l'énergie électrique. Par ailleurs, ce type de batterie thermique peut servir à préchauffer un fluide caloporteur, l'huile du moteur ou l'huile de la boîte de vitesse automatique, et ce lors du démarrage à froid dudit véhicule automobile.
Lors de l'utilisation d'une batterie thermique de stockage avec un véhicule électrique, le chargement de ladite batterie thermique est, en principe, réalisé lors du chargement de la batterie électrique. La batterie électrique sert au déplacement dudit véhicule électrique. Lors de l'utilisation dudit véhicule électrique, l'énergie thermique stockée dans la batterie thermique peut être utilisée lors de la mise en marche du système de chauffage pour diffuser de la chaleur dans l'habitacle du véhicule automobile. Le système de chauffage pour chauffer l'air de l'habitacle d'un véhicule automobile fonctionne à l'aide d'un fluide tel qu'un fluide caloporteur. Afin de chauffer l'air de l'habitacle, la batterie thermique réchauffe le fluide caloporteur avant son passage à l'intérieur du radiateur de chauffage, le radiateur chauffant l'air destiné à être diffusé dans l'habitacle. L'énergie fournie par la batterie thermique permet donc d'économiser l'énergie correspondante stockée par la batterie électrique qui aurait été utilisée en l'absence d'une batterie thermique de stockage. En d'autres termes, on supprime l'impact du fonctionnement du chauffage de l'air destiné à l'habitacle sur l'autonomie du véhicule électrique. L'utilisation d'une batterie thermique de stockage dans un véhicule hybride permet de stocker de l'énergie thermique lors du chargement de la batterie électrique. Cette batterie thermique peut être rechargée via le fluide caloporteur, lorsque le moteur du véhicule hybride est en mode de fonctionnement thermique, c'est-à-dire fonctionnant avec le moteur thermique.
Lors de l'utilisation d'une batterie thermique avec un véhicule muni d'un moteur à combustion interne, l'énergie thermique stockée à l'intérieur de la batterie thermique provient de l'énergie produite lors d'un précédent roulage dudit véhicule. Les fluides utilisés pour refroidir le moteur ou la boîte de vitesse automatique par exemple, peuvent être utilisés pour charger la batterie thermique. En effet, l'huile de la boîte de vitesse automatique rejette, dans un usage classique, une quantité déterminée de chaleur. Ladite quantité déterminée de chaleur peut être stockée dans une batterie thermique et ensuite utilisée lors du démarrage du véhicule automobile pour permettre l'augmentation rapide de la température de le chauffage de l'air de l'habitacle et / ou de l'huile de moteur et/ou de l'huile de la boîte de vitesse automatique, réduisant ainsi les frottements dus à la viscosité de ladite huile. En effet, la viscosité de l'huile est d'autant plus élevée que la température est basse. Si la température de l'huile n'augmente pas rapidement, notamment concernant l'huile de la boîte de vitesse automatique, les frottements entraînent une surconsommation de carburant et d'émissions de C02 lors des premières minutes de l'utilisation du véhicule. La batterie thermique peut être chargée par l'énergie thermique des circuits d'huile de boîte de vitesse automatique, de fluide caloporteur ou d'huile de moteur. Dans la conception des batteries thermiques, il est déjà connu d'utiliser des micro tubes en matériau synthétique pour encapsuler un matériau à changement de phase (MCP ou PCM en terminologie anglo-saxonne « Phase Change Material ») afin de pouvoir stocker et libérer une quantité déterminée de chaleur. Il est nécessaire de fermer les extrémités des micro-tubes de manière étanche et durable pour garantir qu'il n'y ait pas de mélange du matériau à changement de phase avec le fluide caloporteur d'échange.
Chaque extrémité du micro tube est fermé par soudage, collage ou par un bouchon mécanique.
Pour la plupart de ces solutions, les micro-tubes sont organisés en faisceau avant leur fermeture étanche.. L'organisation en faisceau est réalisée par des collecteurs, des grilles, des entretoises, ... permettant le maintien des micro-tubes. Le problème engendré par ces solutions est que l'on vérifie l'étanchéité une fois le faisceau d'échange thermique terminé. En d'autres termes, c'est en fin de fabrication du faisceau d'échange thermique que l'on vérifie son étanchéité. Si une fuite de matériau à changement de phase est détectée, le faisceau d'échange thermique complet est rejeté.
Dans certains cas, les micro-tubes déjà remplis de matériau à changement de phase et fermés de manière étanche sont rangés directement dans un boîtier, sans collecteur. Les micro-tubes ayant une structure peu rigide, ont tendance à se courber et la mise en place organisée dans le boîtier n'est pas simple. Il en résulte une perte de compacité du faisceau d'échange thermique.
Un des buts de la présente invention est donc de remédier au moins partiellement aux inconvénients de l'état de la technique en proposant un faisceau d'échange thermique de stockage dans lequel des tubes peuvent être remplis de matériau adapté pour stocker et libérer une quantité déterminée de chaleur et fermés de manière étanche avant d'être rangés de manière très compacte et très simple en faisceau.
La présente invention concerne donc un faisceau d'échange thermique de stockage pour batterie thermique de stockage comprenant une pluralité de tubes contenant un matériau adapté pour stocker et libérer une quantité déterminée de chaleur, les tubes étant assemblés sur au moins un collecteur, au moins une extrémité de chaque tube étant dotée d'un premier moyen de connexion, le collecteur 4 étant doté d'une pluralité de seconds moyens de connexion, le premier moyen de connexion des tubes étant apte à coopérer avec un desdits seconds moyens de connexion du collecteur pour permettre l'assemblage des tubes sur le collecteur.
Selon un aspect de l'invention, chaque tube comporte en outre un moyen de fermeture apte à fermer une extrémité dudit tube.
Selon une caractéristique particulière, le premier moyen de connexion est disposé sur le moyen de fermeture du tube. Selon un autre aspect de l'invention, le moyen de fermeture du tube est un bouchon apte à être inséré dans une extrémité du tube.
Selon un autre aspect de l'invention, le premier moyen de connexion est un plot.
Selon un autre aspect de l'invention, le second moyen de connexion est un trou réalisé dans le collecteur apte à recevoir un premier moyen de connexion.
Selon un autre aspect de l'invention, le premier moyen de connexion comprend un trou apte à recevoir un second moyen de connexion.
Selon un autre aspect de l'invention, le second moyen de connexion est un plot. Selon un autre aspect de l'invention, le collecteur comprend une pluralité de seconds moyens de connexion disposés en quinconce.
Cette disposition en quinconce permet de densifier le faisceau de tubes PCM. Selon un autre aspect de l'invention, les tubes sont assemblés sur le collecteur parallèlement les uns aux autres, les seconds moyens de connexion étant à distance les uns des autres, la distance étant au moins égale au diamètre d'un tube.
Cela permet de limiter la perte de charge interne du faisceau d'échange.
L'invention concerne également une batterie thermique comprenant un faisceau d'échange thermique de stockage. L'invention concerne également un tube contenant un matériau adapté pour stocker et libérer une quantité déterminée de chaleur, caractérisé en ce que le tube est doté sur au moins une de ses extrémités d'un premier moyen de connexion.
Les but, objet et caractéristiques de la présente invention ainsi que ses avantages apparaîtront plus clairement à la lecture de la description ci-dessous, des modes de réalisation préférés faisant référence aux dessins dans lesquels : la figure la montre une vue, en perspective, d'un faisceau d'échange thermique de stockage selon un premier mode de réalisation de l'invention dans lequel trois tubes sont représentés,
la figure lb montre une autre vue, en perspective, d'un faisceau d'échange thermique de stockage selon une réalisation particulière du premier mode de réalisation de l'invention dans lequel trois autres tubes sont représentés,
- la figure 2 montre une vue agrandie d'une extrémité latérale du faisceau d'échange thermique de stockage de la figure la,
la figure 3 montre une vue éclatée et agrandie d'une extrémité latérale du faisceau d'échange thermique de stockage de la figure lb,
la figure 4 est une vue éclatée de l'extrémité d'un tube selon la réalisation particulière du premier mode de réalisation, la figure 5 est une vue éclatée et agrandie d'une extrémité latérale du faisceau d'échange thermique de stockage selon un deuxième mode de réalisation de l'invention,
la figure 6 est une vue, en perspective d'un faisceau d'échange thermique de stockage comprenant trois entretoises.
La description détaillée ci-après a pour but d'exposer l'invention de manière suffisamment claire et complète, notamment à l'aide d'exemples, mais ne doit en aucun cas être regardée comme limitant l'étendue de la protection aux modes de réalisation particuliers et aux exemples présentés ci-après.
Un faisceau d'échange thermique de stockage pour batterie thermique de stockage conformément à l'invention comprend une pluralité de tubes. Les tubes sont des tubes, par exemple cylindriques, en matériau synthétique, particulièrement en matériau plastique de forme longitudinale, c'est à dire que leur longueur est bien plus importante que leur diamètre. Toutefois, selon d'autres modes de réalisation, non illustrées, les tubes sont de section carrée ou ovale.
Ces tubes sont notamment des micro-tubes du fait de leurs faibles dimensions en comparaison aux dimensions habituellement rencontrées dans le domaine des véhicules automobiles. En effet, un tel micro tube a un diamètre de l'ordre de 3 à 6 millimètres et en particulier 4 millimètres et une longueur comprise entre 100 et 300 millimètres. Chacun des tubes contient un matériau adapté pour stocker et libérer une quantité déterminée de chaleur, par exemple un matériau à changement de phase (MCP).
Conformément à l'invention, le tube est doté sur au moins une de ses extrémité d'un premier moyen de connexion.
Les tubes sont assemblés sur un collecteur. Conformément à l'invention, au moins une extrémité de chaque tube est dotée d'un premier moyen de connexion et le collecteur est doté d'une pluralité de seconds moyens de connexion. Le premier moyen de connexion des tubes est apte à coopérer avec un desdits seconds moyens de connexion du collecteur pour permettre l'assemblage des tubes sur le collecteur.
Sur la figure la, un faisceau d'échange thermique de stockage 9, conformément à l'invention, est représenté selon un premier mode de réalisation.
Selon ce mode de réalisation, le faisceau d'échange thermique de stockage 9 comprend deux collecteurs 4 et des tubes 1.
A chaque extrémité 3 du tube 1 se trouve un premier moyen de connexion 10. Selon l'exemple illustré en figure la, le premier moyen de connexion 10 est un trou, en particulier un trou cylindrique, apte à recevoir un second moyen de connexion.
Chaque tube 1 comporte en outre un moyen de fermeture apte à fermer une extrémité, ce moyen de fermeture permettant au matériau à changement de phase de ne pas fuir.
Selon un mode de réalisation particulier, le premier moyen de connexion 10 est disposé sur le moyen de fermeture du tube. Ainsi, le premier moyen de connexion 10, par exemple le trou 10, peut être positionné sur le moyen de fermeture distinct du tube 1 ou faire partie intégrante du tube 1. C'est le cas par exemple du tube 1 en sortie de fabrication qui ne comporte qu'une seule extrémité ouverte, l'extrémité fermée quant à elle peut comporter un moyen de connexion sous forme d'un trou.
Les collecteurs 4 sont des plaques qui peuvent être par exemple réalisées en matériau plastique ou métallique. Chaque collecteur 4 est doté d'une pluralité de seconds moyens de connexion 11. Selon l'exemple illustré en figure la, les seconds moyens de connexion sont des plots 11, en particulier des plots cylindriques.
Selon un mode de réalisation avantageux, le nombre de seconds moyens de connexion 11 est égal au nombre de tubes 1 que doit composer le faisceau d'échange thermique de stockage 9. Sur la figure la, seuls trois tubes 1 sont représentés.
Les premiers moyens de connexion des tubes et les seconds moyens de connexions du collecteur, respectivement les trous 10 et les plots 11 selon le mode de réalisation particulier de la figure la, sont aptes à coopérer pour permettre l'assemblage des tubes 1 sur le collecteur 4. Ainsi, tel qu'illustré en figure la, les plots 11 sont aptes à être insérés dans les trous 10 localisés sur les extrémités des tubes 1.
Pour ce faire, le diamètre des trous 10 doit donc être légèrement supérieur au diamètre des plots 11 afin que les plots 11 puissent être insérés dans les trous 10. Le diamètre des trous 10 ne doit pas être trop supérieur à celui des plots 11 sinon les tubes 1 ne seraient plus maintenus sur le collecteur 4, particulièrement lors de vibrations dues au roulage du véhicule dans des conditions extrêmes.
Les diamètres des trous 10 et des plots 11 dépendent du diamètre du tube 1. Par exemple, pour un tube 1 de diamètre extérieur 4 mm, le diamètre des trous 10 est de 2.6 mm avec une tolérance de ±0.1 mm, le diamètre des plots 11 est de 2.3 mm avec une tolérance de ±0.1 mm.
Pour un tube 1 de diamètre 2 mm, le diamètre des trous 10 est par exemple de 1.3 mm avec une tolérance de ±0.1 mm, le diamètre des plots 11 est de 1 mm avec une tolérance de ±0.1 mm.
La forme géométrique cylindrique à base ronde des trous 10 et des plots 11 décrite ci-dessus et représentée sur les figures est un exemple de réalisation. Un plot 11 peut être en forme de prisme à base quelconque (rectangulaire, carrée, étoile, triangulaire), ou même en forme de cône tronqué ou de pyramide tronquée, l'essentiel étant que la forme du trou 10 qui lui est associé soit apte à coopérer avec le plot 11. Par exemple, un plot 11 de forme conique associé à un trou 10 est un mode de réalisation possible. De manière avantageuse, la forme du trou 10 est complémentaire de la forme du plot 11.
De même, la forme des collecteurs 4 représentés sur la figure la est un exemple de réalisation. On adaptera la forme des collecteurs à l'application souhaitée, la forme du faisceau d'échange thermique de stockage 9 étant directement liée à la forme des collecteurs 4. Les collecteurs 4 peuvent être identiques ou de forme distincte. Il est par exemple possible de prévoir sur un des collecteurs un système de connectique à un élément extérieur au faisceau 9 que l'autre n'aura pas.
La figure lb est une réalisation particulière du premier mode de réalisation. Les tubes 1 sont fermés de manière étanche par des moyens de fermeture particuliers, par exemple par des bouchons 5 aptes à être insérés dans une extrémité des tubes.
Selon ce mode de réalisation, le premier moyen de connexion, notamment un trou 10 est localisé sur l'extrémité extérieure du moyen de fermeture, notamment de chaque bouchon 5. Il est représenté sur cette figure, trois tubes 1, toutefois, afin de former le faisceau d'échange thermique de stockage 9, d'autres tubes seront ajoutés.
La figure 2 est une vue agrandie de la figure la. L'organisation des seconds moyens de connexion 11 par exemple des plots 11 selon ce mode de réalisation, sur le collecteur n'est pas arbitraire. Les seconds moyens de connexion 11 sont agencés en quinconce les uns par rapport aux autres. Selon un mode de réalisation particulier, l'agencement des seconds moyens de connexion est réalisé selon une alternance de lignes Ll et L2 parallèles entre elles de sorte que chaque second moyen de connexion 11 (à l'exception des moyens de connexion localisés en bordure de collecteur 4) est équidistant de ses six moyens de connexion les plus proches d'une distance D dans toutes les directions. La distance D est mesurée entre les moyens de connexion 11 de centre à centre. Les moyens de connexion des lignes Ll sont disposés selon un premier quadrillage, les moyens de connexion des lignes L2 selon un deuxième quadrillage, les deux quadrillages étant identiques mais décalés l'un par rapport à l'autre. Cet agencement définit une disposition des tubes 1 en quinconce dans le faisceau d'échange thermique de stockage 9. Les deux collecteurs sont positionnés de manière à créer un faisceau de forme générale d'un prisme droit. Les tubes 1 sont ainsi parallèles les uns aux autres.
La compacité du faisceau d'échange thermique de stockage est directement liée à la distance D, cette distance D définissant le pas des tubes 1 sur le collecteur 4 et indirectement l'espace entre deux tubes 1.
La figure 3 est une vue éclatée, sous un autre angle et agrandie de la figure lb. Cette figure permet d'illustrer les moyens de fermeture, à savoir des bouchons 5 selon ce mode de réalisation, des trois tubes représentés sur le faisceau d'échange thermique de stockage. Selon ce mode de réalisation particulier, ces moyens de fermeture sont percés d'un trou 10 sur leur extrémité extérieure et sont aptes à être assemblés sur les plots 11 du collecteur 4.
Sur la figure 3, les tubes sont accolés les uns aux autres, notamment au niveau de leur bouchon 5. C'est le mode de réalisation le plus compact du faisceau d'échange thermique de stockage 9. Le diamètre des bouchons est alors sensiblement égal à la distance D entre deux moyens de connexion 11 sur le collecteur 4.
La figure 4 est une vue éclatée d'un tube 1 fermé par un bouchon 5. Le tube 1 contient un matériau à changement de phase 2. Il comporte un fil interne 6 intrinsèque à la fabrication du tube 1. Le bouchon 5 comprend une extrémité 7 de diamètre inférieur à celui du tube 1, apte à être introduite dans le tube 1. Son autre extrémité 8, encore appelée extrémité externe, comporte un moyen de connexion, par exemple un trou 10 apte à coopérer avec un deuxième moyen de connexion, par exemple un plot 11 du collecteur 4. La figure 5 correspond à un deuxième mode de réalisation de l'invention. Le principe d'assemblage des tubes 1 sur le collecteur 4 est l'opposé de celui du premier mode de réalisation. Le collecteur 4 comprend des seconds moyens de connexion en forme de trous 111 disposés, par exemple en quinconce, à la manière des plots 11 de la figure 2. Les seconds moyens de connexion 111 sont équidistants des 6 moyens de connexion les plus proches, par exemple des trous, d'une distance D (mesurée de centre à centre). Les tubes 1 comprennent chacun un moyen de fermeture 5, par exemple un bouchon, surmonté d'un premier moyen de connexion, notamment un plot 110 apte à coopérer avec les seconds moyens de connexion, à savoir les trous 111 du collecteur 4.
De manière similaire au premier mode de réalisation, les plots 110 et les trous 111 sont des moyens de connexion qui doivent coopérer ensemble afin de s'assembler. Ainsi, selon le mode de réalisation de la figure 5, les tubes 1 peuvent s'assembler sur le collecteur 4, les plots 110 localisés sur les extrémités des tubes 1 étant aptes à s'insérer dans les trous 111 du collecteur 4. Le diamètre des trous 111 doit donc être légèrement supérieur à celui des plots 110 afin que les plots 110 puissent être insérés dans les trous 111.
Les diamètres des trous 111 et des plots 110 dépendent de diamètre du tube 1. Par exemple, pour un tube 1 de diamètre extérieur 4 mm, le diamètre des trous 111 est de 2.6 mm avec une tolérance de ±0.1 mm, le diamètre des plots 110 est de 2.3 mm avec une tolérance de ±0.1 mm. Pour un tube 1 de diamètre 2 mm, le diamètre des trous 10 est par exemple de 1.3 mm avec une tolérance de ±0.1 mm, le diamètre des plots 11 est de 1 mm avec une tolérance de ±0.1 mm. Si les collecteurs sont positionnés de manière à former un prisme droit, les tubes 1 sont disposés en quinconce, les uns parallèles aux autres. Dans sa version la plus compacte, les bouchons 5 des tubes 1 sont accolés. Les trous 111 selon le mode de réalisation de la figure 5 sont réalisés par perçage dans le collecteur 4. Cependant, la définition d'un trou doit être considérée de manière plus large. Il s'agit d'une cavité apte à recevoir un plot 110.
Par exemple, une pièce issue de moulage peur comporter des trous 111 réalisés directement d'après les formes du moule, ces trous formant des seconds moyens de connexion, qui sont aptes à recevoir des plots 110.
,Un treillis en saillie sur le collecteur permet également de créer des cavités, ces cavités formant des seconds moyens de connexion, qui sont aptes à recevoir des plots 110.
De manière alternative, à l'image des jeux de construction de briques, un ensemble de plots espacés de manière ordonnée sur une plaque (ici un collecteur 4) crée des cavités aptes à recevoir des plots 110, ces cavités formant des seconds moyens de connexion au sens de la présente invention.
Que ce soit dans le premier ou dans le deuxième mode de réalisation, l'espace dont dispose le fluide caloporteur pour circuler entre les tubes 1 est lié au choix de la distance D mesurée de centre à centre entre les seconds moyens de connexion (11, 111) du collecteur 4. Cet espace de circulation de fluide doit être optimisé selon les applications pour répondre aux exigences de performance de la batterie thermique tout en proposant un dispositif compact.
La distance D entre les tubes 1 doit être au moins égale au diamètre d'un tube 1. L'optimisation de cette distance D permet d'obtenir un bon compromis en termes de compacité et de performances ainsi qu'un compromis entre la densité de matériau MPC et la perte de charge interne du liquide caloporteur. L'espacement entre deux parois externes de tubes 1 adjacents est par exemple de l'ordre de 0.6 millimètre pour permettre une bonne circulation du fluide entre les tubes 1 et bénéficier d'une solution de faisceau d'échange thermique de stockage compacte. Cette valeur est valable notamment pour un tube 1 de diamètre 4 millimètres et une distance D de 4.6 millimètres des tubes 1.
Cette distance D peut par exemple être obtenue pour une configuration de faisceau dans laquelle les tubes 1 de diamètre 4 millimètres sont accolés par leur bouchon 5 de diamètre 4.6 millimètres.
La fermeture des tubes 1 peut se faire en amont de l'assemblage des batteries thermiques, leur étanchéité peut être vérifiée avant montage du faisceau d'échange thermique de stockage 9. Cela permet au cours de la fabrication de ne rejeter que les tubes 1 présentant des défauts d' étanchéité et non pas le faisceau d'échange thermique de stockage 9 complet. Cela simplifie également l'assemblage des tubes 1 dans le faisceau 9, et donc la chaîne d'assemblage complète de fabrication de la batterie thermique. De manière avantageuse, comme illustré sur la figure 6, il est possible de maintenir les colleteurs 4 du faisceau 9 par des entretoises, par exemple de même diamètre que les tubes 1. Cela permet de rigidifier le faisceau 9.
Les entretoises peuvent être assemblées sur les collecteurs 4 en amont de l'assemblage des tubes 1 sur ce même collecteur 4. En effet, les tubes 1 sont flexibles et peuvent être courbés.
A la fin de l'assemblage, les entretoises 15 peuvent être laissées sur le faisceau 9. Ainsi, la structure du faisceau sera rigide sans y ajouter de pièce de rigidification complémentaire.
Cependant, pour des raisons d'optimisation du volume total de PCM dans le faisceau, les entretoises 15 peuvent être remplacées en fin d'assemblage du faisceau 9 par des tubes 1. Avantageusement, les entretoises 15 peuvent être réutilisées pour la fabrication d'un autre faisceau de tubes. Tous les modes de réalisation de l'invention apportent de nombreux avantages, tels que par exemple la simplicité d'assemblage, la réduction du temps d'assemblage, l'absence de nécessité d'utiliser des pièces de maintien additionnelle pour maintenir les tubes 1 sur le collecteur 4, un faible coût de fabrication.
Enfin, il est envisageable de produire en grande série des tubes 1 fermés standards quelques soient les applications. C'est la géométrie du collecteur 4 qui sera propre à chaque application, permettant des ajustements sur le nombre de tubes 1, la forme du faisceau d'échange thermique de stockage 9 et l'espacement entre chaque tube 1. Cela permet une certaine standardisation, ce qui contribue également à un gain de coût et de temps de fabrication.
A l'inverse, la standardisation des collecteurs 4 présente également un avantage, notamment en termes de réduction des coûts. Dans ce cas, c'est la longueur des tubes 1 qui est adaptée à l'application.
Si le premier moyen de connexion (11, 111) disposé sur le moyen de fermeture du tube (1) est un standard, alors quelque soit la géométrie, le format de la batterie, les extrémités des tubes sont standard, la partie variable du tube est sa longueur.

Claims

REVENDICATIONS
Faisceau d'échange thermique de stockage (9) pour batterie thermique de stockage comprenant une pluralité de tubes (1) contenant un matériau (2) adapté pour stocker et libérer une quantité déterminée de chaleur, les tubes étant assemblés sur au moins un collecteur (4), caractérisé en ce que au moins une extrémité de chaque tube (1) est dotée d'un premier moyen de connexion (10, 110), le collecteur (4) est doté d'une pluralité de seconds moyens de connexion (11, 111), le premier moyen de connexion des tubes étant apte à coopérer avec un desdits seconds moyens de connexion du collecteur pour permettre l'assemblage des tubes (1) sur le collecteur
(4).
Faisceau d'échange thermique de stockage (9) selon la revendication 1 caractérisé en ce que chaque tube (1) comporte en outre un moyen de fermeture apte à fermer une extrémité dudit tube.
Faisceau d'échange thermique de stockage (9) selon la revendication 2, caractérisé en ce que le premier moyen de connexion (11, 111) est disposé sur le moyen de fermeture du tube (1).
Faisceau d'échange thermique de stockage (9) selon la revendication 2 ou la revendication 3 caractérisé en ce que le moyen de fermeture du tube (1) est un bouchon (5) apte à être inséré dans une extrémité du tube.
5. Faisceau d'échange thermique de stockage (9) selon l'une quelconque des revendications 1 à 4 caractérisé en ce que le premier moyen de connexion est un plot (110).
6. Faisceau d'échange thermique de stockage (9) selon l'une quelconque des revendications 1 à 5 caractérisé en ce que le second moyen de connexion est un trou (111) réalisé dans le collecteur (4) apte à recevoir un premier moyen de connexion.
7. Faisceau d'échange thermique de stockage (9) selon l'une quelconque des revendications 1 à 4 caractérisé en ce que le premier moyen de connexion comprend un trou (10) apte à recevoir un second moyen de connexion.
8. Faisceau d'échange thermique de stockage (9) selon l'une quelconque des revendications 1 à 4 ou la revendication 7 caractérisé en ce que le second moyen de connexion est un plot (11).
9. Faisceau d'échange thermique de stockage (9) selon l'une quelconque des revendications précédentes caractérisé en ce que le collecteur (4) comprend une pluralité de seconds moyens de connexion disposés en quinconce.
10. Faisceau d'échange thermique de stockage (9) selon l'une quelconque des revendications précédentes caractérisé en ce que les tubes sont assemblés sur le collecteur parallèlement les uns aux autres, les seconds moyens de connexion étant à distance les uns des autres, la distance étant au moins égale au diamètre d'un tube (1).
11. Batterie thermique comprenant un faisceau d'échange thermique de stockage (9) selon l'une quelconque des revendications précédentes.
EP16781498.7A 2015-09-11 2016-09-09 Faisceau d'échange thermique de stockage pour batterie thermique de stockage comprenant des tubes Withdrawn EP3347665A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1558456A FR3041089B1 (fr) 2015-09-11 2015-09-11 Faisceau d'echange thermique de stockage pour batterie thermique de stockage comprenant des tubes
PCT/FR2016/052268 WO2017042505A1 (fr) 2015-09-11 2016-09-09 Faisceau d'échange thermique de stockage pour batterie thermique de stockage comprenant des tubes

Publications (1)

Publication Number Publication Date
EP3347665A1 true EP3347665A1 (fr) 2018-07-18

Family

ID=55072816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16781498.7A Withdrawn EP3347665A1 (fr) 2015-09-11 2016-09-09 Faisceau d'échange thermique de stockage pour batterie thermique de stockage comprenant des tubes

Country Status (4)

Country Link
EP (1) EP3347665A1 (fr)
KR (1) KR20180053339A (fr)
FR (1) FR3041089B1 (fr)
WO (1) WO2017042505A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10654162B2 (en) 2017-06-21 2020-05-19 Rolls-Royce North American Technologies Inc. Thermal management system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770632B1 (fr) * 1997-11-06 2000-01-07 Valeo Thermique Moteur Sa Echangeur de chaleur a collecteur renforce, notamment pour vehicule automobile
US7222659B2 (en) * 2005-04-12 2007-05-29 Alexander Levin Heat and cold storage multistage tower with application of PCM
US20150013949A1 (en) * 2013-04-19 2015-01-15 Roger Arnot Heat-exchange apparatus for insertion into a storage tank, and mounting components therefor
DE102014109165A1 (de) * 2013-07-04 2015-01-08 Institut Für Luft- Und Kältetechnik Gemeinnützige Gmbh Verfahren zur Herstellung eines gekapselten Latentwärmespeicherelements

Also Published As

Publication number Publication date
FR3041089A1 (fr) 2017-03-17
WO2017042505A1 (fr) 2017-03-16
FR3041089B1 (fr) 2019-03-22
KR20180053339A (ko) 2018-05-21

Similar Documents

Publication Publication Date Title
EP3283311B1 (fr) Tube à réservoir de matériau à changement de phase pour échangeur de chaleur.
EP3520166B1 (fr) Dispositif de regulation thermique
EP3347665A1 (fr) Faisceau d'échange thermique de stockage pour batterie thermique de stockage comprenant des tubes
WO2018020139A1 (fr) Echangeur de chaleur, notamment pour la regulation thermique d'une unite de reserve d'energie, et ensemble forme dudit echangeur et de ladite unite
WO2018060646A1 (fr) Boite collectrice comprenant un matériau à changement de phase et échangeur de chaleur comprenant une telle boite collectrice
EP3513137B1 (fr) Micro tube de faisceau de dispositif thermique de stockage et faisceau associé
WO2017005751A1 (fr) Dispositif de fermeture pour micro tube de faisceau de stockage d'une batterie thermique de stockage
FR3077129A1 (fr) Boite collectrice pour un echangeur thermique, notamment pour la regulation thermique de batteries, echangeur thermique et procede de fabrication correspondant
FR3077128A1 (fr) Echangeur thermique, notamment pour la regulation thermique de batteries, et procede de fabrication correspondant
WO2015052141A1 (fr) Dispositif de contrôle thermique pour module de batterie de véhicule automobile, à coût maîtrisé, et procédé de fabrication
EP3347664B1 (fr) Faisceau d'échange thermique de stockage pour batterie thermique de stockage comprenant des tubes et procédé de fermeture des tubes
EP2890937B1 (fr) Dispositif de chauffage électrique de fluide pour véhicule automobile
EP3479046A1 (fr) Batterie thermique à matériau à changement de phase
EP2985562A1 (fr) Batterie thermique de stockage comprenant un composant adapte pour stocker et liberer une quantite determinee de chaleur
FR3073609B1 (fr) Canal pour echangeur thermique d'un vehicule automobile
EP3320291B1 (fr) Faisceau d'echange thermique de stockage pour batterie thermique de stockage comprenant des micro tubes
EP3704433B1 (fr) Dispositif thermique a capacite de stockage pour vehicule
FR3081215A1 (fr) Micro-tube pour un faisceau d’echange thermique de stockage
FR3056828A1 (fr) Dispositif de regulation thermique
EP3861587B1 (fr) Système de refroidissement de cellules de batterie de véhicule automobile
WO2018046824A1 (fr) Batterie thermique de stockage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190102

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191212