EP3340272A1 - Allstromsensitiver summenstromwandler, elektromechanisches schutzschaltgerät und herstellverfahren - Google Patents

Allstromsensitiver summenstromwandler, elektromechanisches schutzschaltgerät und herstellverfahren Download PDF

Info

Publication number
EP3340272A1
EP3340272A1 EP17204905.8A EP17204905A EP3340272A1 EP 3340272 A1 EP3340272 A1 EP 3340272A1 EP 17204905 A EP17204905 A EP 17204905A EP 3340272 A1 EP3340272 A1 EP 3340272A1
Authority
EP
European Patent Office
Prior art keywords
housing
current transformer
summation current
housing part
metal pins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17204905.8A
Other languages
English (en)
French (fr)
Other versions
EP3340272B1 (de
Inventor
Alois Bierschneider
Daniel Franzen
Sonja Mayer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3340272A1 publication Critical patent/EP3340272A1/de
Application granted granted Critical
Publication of EP3340272B1 publication Critical patent/EP3340272B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/38Instruments transformers for polyphase ac
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/40Instruments transformers for dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • H01F2027/065Mounting on printed circuit boards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F2027/297Terminals; Tapping arrangements for signal inductances with pin-like terminal to be inserted in hole of printed path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • H01F2038/305Constructions with toroidal magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer
    • H01H2083/148Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer with primary windings formed of rigid copper conductors

Definitions

  • the invention relates to a universal current-sensitive summation current transformer for an electromechanical protective switching device, in particular for an AC-sensitive residual current circuit breaker for detecting an electrical differential current, with a first magnetic core for detecting alternating fault currents and a second magnetic core for detecting DC fault currents. Furthermore, the invention relates to an electromechanical protective switching device, in particular an all-current sensitive residual current circuit breaker, which has such a universal current sensitive summation current transformer. Furthermore, the invention relates to a manufacturing method for mounting the universal current sensitive summation current transformer.
  • Electromechanical circuit breakers - such as circuit breakers, circuit breakers or residual current circuit breakers - are used to monitor and secure an electrical circuit and are used in particular as switching and safety elements in electrical energy supply networks.
  • the protective switching device is electrically connected via two or more terminals with an electrical line of the circuit to be monitored in order to interrupt the electrical current in the respective monitored line, if necessary.
  • the protective switching device has a switching contact which can be opened when a predefined state occurs, for example when a short circuit or a fault current is detected, in order to disconnect the monitored circuit from the electrical line network.
  • Such protective switching devices are known in the field of low-voltage technology as DIN rail mounted devices.
  • a residual current device is a protective device to ensure protection against a dangerous fault current in an electrical system.
  • a fault current which is also referred to as differential current, occurs when a live line part has an electrical contact with earth. This is for example the case when a person touches a live part of an electrical system: in this case, the current flows as a fault current through the body of the person against the ground.
  • the electrical system quickly and safely disconnect all poles from the mains.
  • FI circuit breaker short: FI switch
  • DI switch residual current circuit breaker
  • RCD Residual Current Protective Device
  • a summation current transformer which determines the differential current by a phase-correct addition of the flowing in several, for example in two to four primary conductors electrical currents.
  • the summation current transformer has for this purpose an annular magnetic core, through which the primary conductors (back and leading lines) are passed.
  • the magnetic core itself is wrapped with a secondary conductor. If the current flow in the return and return electrical lines is the same, no induction current is induced in the secondary conductor. If, on the other hand, a fault current flows against earth, the currents flowing in the primary conductors no longer cancel each other out. Characterized a voltage difference proportional to the current difference is induced in the secondary winding, which leads as a fault current signal after exceeding a predetermined value to trigger the protective switching device.
  • a summation current transformer Since the mode of operation of a summation current transformer is based on the inductive principle, initially only currents with an alternating component, ie alternating differential currents or pulsating DC differential currents, can be detected. From the patent DE 10 2005 007 334 B4 In contrast, an all-current-sensitive summation current transformer is known, which is also suitable for detecting smooth DC differential currents in conjunction with an electronic unit.
  • This specially designed summation current transformer comprises two magnetic cores, one of which is intended to detect the alternating components and the other to detect the DC components.
  • the object of the invention is therefore to provide a summation current transformer for AC-sensitive differential current detection, an electro-mechanical protection device with such a universal current summation current transformer and a manufacturing process for mounting the AC-sensitive summation current transformer, which a more compact design of the summation current transformer - and thus the protective switching device - at the same time lower assembly and Allow manufacturing costs.
  • the universal current-sensitive summation current transformer according to the invention for detecting an electrical differential current is provided for an electromechanical protective switching device, in particular for an AC-sensitive residual current circuit breaker and has a two-part housing, which in turn has a first housing part and a second housing part, which are firmly but detachably connected to each other.
  • the housing has a passage opening which runs along a center axis and is intended to receive at least two primary conductors to be monitored with regard to the differential current.
  • the summation current transformer has a first magnet core surrounding the passage opening for detecting alternating fault currents, which is wound with a first sensor winding and accommodated and held in the first housing part.
  • the summation current transformer has a second magnet core surrounding the passage opening for detecting DC fault currents, which is wound with a second sensor winding and accommodated and held in the second housing part.
  • the two magnetic cores are arranged one above the other in the direction of the center axis.
  • the summation current transformer has a plurality of metal pins which are fixedly connected to the housing and protrude beyond an outer contour of the housing.
  • the first sensor winding and the second sensor winding each have two ends, which are electrically conductively connected to one of the metal pins, which are designed for electrical contacting with a printed circuit board.
  • the housing of the summation current transformer consists of only two parts, the first housing part for receiving the first magnetic core, and the second housing part for receiving the second magnetic core, which directly during assembly ie without the use of another housing spacer to be mounted together.
  • a small overall height of the summation current transformer can be realized in comparison with a three-part or multi-part housing.
  • the summation current transformer can be mounted directly on a printed circuit board via the metal pins firmly connected to the converter housing, without the need for additional electrical lines - and thus additional installation space. Due to the compact design achievable thereby, the very limited installation space inside the protective switching device can be better utilized.
  • the two magnetic cores have an annular or hollow cylindrical shape, wherein the center axis of the cylinder axis of the hollow cylindrical or annular magnetic cores corresponds. Along this cylinder axis, the two magnetic cores are superimposed, i. arranged side by side "or" one on top of the other ", so that the primary conductors can be guided straight through both magnetic cores.
  • the metal pins form a contacting region of the summation current transformer:
  • the ends of the sensor windings are electrically conductively connected to one of the metal pins, for example by means of soldering.
  • the electrically conductive connection with a printed circuit board of the protective switching device, on which the electronics of the protective switching device is arranged can be realized via the metal pins arranged in the contacting region. This can be done, for example Pressing the metal pins into a socket arranged on the printed circuit board, or by inserting the metal pins in holes provided on the printed circuit board with subsequent wave, wave or immersion soldering (so-called THT technique).
  • the metal pins are L-shaped and each have a short first leg and a long second leg.
  • the ends of the sensor windings are in each case connected to one of the first legs in the interior of the housing.
  • the second legs are passed through the housing to the outside and formed for electrical contact with the circuit board.
  • the summation current transformer which are the metal pins U-shaped and each have a first leg and a second leg, which both project beyond the outer contour of the housing and are connected to each other via a web.
  • the ends of the sensor windings are led out of the housing and each electrically connected to one of the first legs, while the second legs are formed for electrical contact with the circuit board.
  • the web or connecting bridge represents the middle section of the U-shaped metal pins.
  • the U-shaped Metal pins thus have a first leg and a second leg, which are connected via the connecting web both electrically and mechanically, but both survive beyond the outer contour. That is, none of the two legs is passed through the housing on the inside. For connection to the respective first leg, the ends of the sensor windings are therefore guided out of the housing to the first leg; the second leg, which is electrically conductively connected to the first leg via the web, in turn serves to make contact with the printed circuit board.
  • the metal pins are firmly connected to the housing.
  • This solid connection of the metal pins to the housing can be done for example by gluing, pressing or molding. Both the pressing or gluing the metal pins in the housing, as well as the encapsulation of the metal pins during injection molding of the housing in the plastic injection molding process, represent easy to implement manufacturing process for the mechanical attachment of the metal pins on the housing.
  • At least one of the magnetic cores has a Test winding, the two ends are electrically connected to one of the first leg of the metal pins.
  • the test winding is also at least partially wound around the magnetic core and serves to check the functionality of the summation current transformer.
  • a test voltage is applied to the test winding, which generates a magnetic field in the respective magnetic core, which induces an induction current in the sensor winding and can thus be detected.
  • two metal pins are also used, which may be L-shaped or U-shaped as described above.
  • the summation current transformer has at least one positioning element, which is formed adjacent to the metal pins on the housing and serves for positioning the summation current transformer relative to the printed circuit board.
  • the housing has at least one positioning element in a contact region in which the metal pins are arranged.
  • This positioning element is formed protruding over the housing, for example, and serves to pre-position the housing of the summation current transformer relative to the printed circuit board in order in a second step to position the metal pins relative to their associated contacting elements and then to add, ie both mechanically and electrically conductively connect with each other. In this way, the assembly of the summation current transformer on the circuit board at least partially automated executable.
  • a breakdown-resistant foil is arranged between the first housing part and the second housing part.
  • the first magnetic core accommodated in the first housing part and the second magnetic core accommodated in the second housing part are spatially separated from one another.
  • the impact-resistant foil serves for the magnetic "isolation" of the two magnetic cores, so that interactions between the two magnetic cores - and thus malfunction of the summation current transformer - can be effectively avoided.
  • the electromechanical protective switching device which is designed in particular as a universal current sensitive residual current circuit breaker, has a universal current sensitive summation current transformer of the type described above, with a first magnetic core for detecting alternating fault currents and a second magnetic core for detecting DC residual currents on.
  • step c) is likewise realized by a thermal joining method.
  • the electrically conductive connection between the metal pins and their each assigned contact point on the circuit board can also be made by thermal joining, with other connection methods, such as cold welding or crimping, in principle, are possible. Besides brazing, brazing or welding are also considered as thermal joining methods.
  • the universal current-sensitive summation current transformer-and thus the electromechanical protective switching device- can be produced much simpler and thus more cost-effectively.
  • the metal pins are rigidly formed on the housing in comparison to cable connections and thus are always in the same joining position relative to the housing, it is possible to carry out the thermal joining processes to produce an electrically conductive connection between the ends of the sensor windings and possibly the test winding. en) with one of the metal pins, as well as the metal pins with the respective contact points the PCB no longer manually, but at least partially automated perform. Cumbersome manual soldering due to the limited space sometimes hard to reach places is no longer necessary.
  • FIGS. 1 to 3 the inventive, fully assembled universal current sensitive summation current transformer 1 is shown schematically in different views.
  • FIG. 1 shows a perspective view of the universal current-sensitive summation current transformer 1; in the FIGS. 2 and 3 the summation current transformer 1 is shown in two different side views.
  • the universal current-sensitive summation current transformer 1 has a housing 10, which consists of two parts - the first housing part 11 and the second housing part 12. Along a center axis a, the housing 10 has a passage opening 13 for passing a plurality of primary conductors 9 (see FIG. 11 ) on.
  • the passage opening 13 is divided into four circular, mutually independent partial openings 17 by means of an injection-molded onto the housing 10 insulating cross 16.
  • the primary conductor 9 are electrically isolated from each other in the interior of the summation current transformer 1, whereby the risk of electrical flashovers is effectively reduced.
  • the insulating cross 16 prevents the sharp-edged ends of the primary conductors 9 from damaging other primary conductors when being threaded into the passage opening 13.
  • the universal current-sensitive summation current transformer 1 has a first magnetic core 20 surrounding the through-hole 13 for detecting alternating fault currents, which is received and held in the first housing part 11 (see FIG FIGS. 4 to 6 ), and a second magnetic core 30 surrounding the through-hole 13 for detecting DC residual currents, which is received and held in the second housing part 12 (see FIGS. 7 to 9 ), on.
  • the housing 10 of the summation current transformer 1 is also for direct mounting on a circuit board 100 (printed circuit board PCB, see FIGS.
  • the metal pins 40 are presently designed as U-shaped wire pins and fixed as inlays, that is not detachable, injected into the first housing part 11 and the second housing part 12. They each have a first leg 41 and a second leg 42, which are connected via a connecting web (not shown) of the U-shaped base body electrically conductively.
  • the housing 10 has two positioning elements 14, which are likewise arranged in the contact region 18, likewise projecting beyond the outer contour of the housing 10 and serve for positioning the summation current transformer 1 relative to the printed circuit board 100 of the protective switching device.
  • FIGS. 4 to 6 show schematic representations of the so-called FI part of the summation current transformer 1 in different views or mounting states:
  • the FIGS. 5 and 6 show the first housing part 11 with the first magnetic core 20 received therein, while in FIG. 4 the first magnetic core 20 is shown schematically before insertion into the first housing part 11 in a kind of exploded view.
  • a first sensor winding 21 which serves as the first secondary conductor of the summation current transformer 1.
  • the resulting induction voltage can then be measured between the two ends of the first sensor winding 21.
  • a first test winding 22 is at least partially wound around the first magnetic core 20, which serves to verify the functionality of the FI portion of the summation current transformer 1: is applied to the two ends of the first test winding 22, a test voltage, so causes the resulting current flow in the test winding 22, a change in the magnetic flux in the first magnetic core 20. This change can then be detected in turn by means of the first sensor winding 21.
  • FIG. 5 shows the first magnetic core 20 in its installed position in the first housing part 11.
  • the first magnetic core 20 can be glued into the first housing part 11.
  • a plurality of metal pins 40 in the form of U-shaped wire pins are injected into the first housing part 11.
  • the two ends of the first sensor winding 21 are in each case electrically conductively connected to a second leg 42 of the respectively assigned metal pin 40.
  • the two ends of the first test winding 22 are each electrically connected to a second leg 42 of the respectively assigned metal pin 40.
  • the ends of the first sensor winding 21 and the first test winding 22 are each led out of the first housing part 11 and wound around the respective first leg 42.
  • a permanent stable connection between the conductor ends of the sensor winding 21 or the test winding 22 and the respective metal pin 40 is then produced, for example by means of a thermal joining method such as welding or soldering.
  • the joining can be done manually; However, since the joining partners - the respective end of the sensor or introwicklung 21 or 22 and the associated first leg 41 of the respective metal pin 40 - are held dimensionally stable, it is also possible and advantageous to automate the joining process partially or even completely.
  • FIG. 6 shows the FI part of the summation current transformer 1 to another, later assembly time.
  • the first magnetic core 20 is covered with an impact-resistant film 15 to spatially from the recorded in the second housing part 12 the second magnetic core 30 (see FIGS. 7 to 9 ) to separate.
  • the impact-resistant film 15 serves the magnetic "isolation" of the two magnetic cores 20 and 30 in order to effectively avoid interactions between the two magnetic cores 20 and 30, and thus malfunction of the summation current transformer 1.
  • the first housing part 11 has two mounting pins 19 which engage in corresponding mounting openings 29 formed on the second housing part 12 in order to connect the two housing parts 11 and 12 in a form-fitting manner.
  • the film 15 is adapted in terms of their shape to the parting plane of the housing parts 11 and 12 and has in the region of the two mounting pins 19 two spatially corresponding openings. By hanging these openings in the mounting pin 19, the film 15 can be exactly positioned relative to the first housing part 11.
  • the first sensor winding 21 and the first test winding 22 are preferably formed from enameled wire. This is usually a copper wire, which was coated during manufacture with an electrically insulating paint layer. Since thickness and weight of this paint insulation are very low compared to other insulating materials with the same effect, neither such paint wires preferably used for the construction of electrical coils and transformers. Due to the low However, they are also correspondingly sensitive to external mechanical influences.
  • the first magnetic core 20 may be formed of nanocrystalline material. Since this material is very brittle and therefore tends to form flakes, it is advantageous in this case to surround the magnetic core 20 with a protective cover before it is wound with the first sensor winding 21 and / or the first test winding 22 to damage the thin enamel wires of the windings to avoid by the shank-like tinsel.
  • the magnetic core 20 can be wound with a thin paper for this purpose. Alternatively, it is also possible to shed it before winding into a synthetic resin.
  • FIGS. 7 to 9 the so-called DI part of the summation current transformer 1 is shown schematically in various views or mounting states:
  • the FIGS. 8 and 9 show the second housing part 12 with the second magnetic core 30 received therein, while in FIG. 7 the second magnetic core 30 is shown prior to insertion into the second housing part 12.
  • the second magnetic core 30, which serves to detect DC fault currents, is wound with a second sensor winding 31, which serves as a second secondary conductor of the summation current transformer 1.
  • a second sensor winding 31 which serves as a second secondary conductor of the summation current transformer 1.
  • the resulting induction voltage can then be measured between the two ends of the second sensor winding 31.
  • a second test winding 32 is at least partially wound around the second magnetic core 31, which serves to verify the functionality of the DI portion of the summation current transformer 1: is applied to the two ends of the second test winding 32, a test voltage, so causes the resulting current flow in the test winding 32, a change in the magnetic flux in the second magnetic core 30. This change can then be detected again with the aid of the second sensor winding 31.
  • FIG. 8 shows the second magnetic core 30 in its installed position in the second housing part 12.
  • the second magnetic core 30 can be glued into the second housing part 12.
  • a plurality of metal pins 40 in the form of U-shaped wire pins are injected into the second housing part 12.
  • the two ends of the second sensor winding 31 are in each case electrically conductively connected to a second leg 42 of the respectively associated metal pin 40.
  • the two ends of the second test winding 32 are each electrically connected to a second leg 42 of the respectively associated metal pin 40.
  • the ends of the second sensor winding 31 and the second test winding 32 are each led out of the second housing part 12 and wrapped around the respective first leg 42.
  • a permanent stable connection between the conductor ends of the sensor winding 31 or the test winding 32 and the respectively associated metal pin 40 is then produced, for example by a thermal joining method such as welding or soldering. Joining can also be done manually; However, since the joining partners (the respective end of the sensor or test winding 31 or 32 and the associated first leg 41 of the respective metal pin 40) are held in a dimensionally stable manner, it is equally possible and significantly more advantageous to partially or even completely automate the joining process.
  • FIG. 9 shows the DI part of the summation current transformer 1 to another, later assembly time.
  • the second magnetic core 30 is covered with a dielectric foil 15 in order to remove it from the first magnetic core 20 received in the first housing part 11 (see FIGS. 4 to 6 ) spatially separate.
  • the second housing part 12 has a mounting pin 19, which in a corresponding thereto, formed on the first housing part 11 Mounting openings 29 engages to connect the two housing parts 11 and 12 positively with each other.
  • the use of two foils 15, one on the first housing part 11 and another on the second housing part 12, is not absolutely necessary. Rather, the impact-resistant film 15 should be positioned either on the first housing part 11 or on the second housing part 12.
  • the transition areas of the partial openings 17 are formed so that they do not butt each other, but in the joining region have different, stepped cross-sections, so that two of the partial openings 17 of the first housing part 11 are inserted into the corresponding partial openings 17 of the second housing part 12 and vice versa.
  • a labyrinth is created by which the clearances and creepage distances between the primary conductors 9, which are received in the partial openings 17, be significantly extended, whereby the risk of electrical flashover between the primary conductors 9 is further reduced.
  • FIG. 10 schematically shows a sectional view of the summation current transformer 1 along the center axis a.
  • the first housing part 11 (FI part), in which the first magnetic core 20 is received and held for detecting AC error currents, is in the direction of the center axis a above the second housing part 12, in which the second magnetic core 30 is recorded for detecting DC residual currents and is held, arranged.
  • the impact-resistant film 15 which spatially separates the receiving space of the first magnetic core 20 from the receiving space of the second magnetic core 30, is arranged. With the aid of the impact-resistant film 15, it is thus possible, the overall height of the AC-sensitive summation current transformer 1 in the direction of the center axis to keep a much more compact than would be the case with the use of a further, additional housing part.
  • the passage opening 13 is subdivided into four tubular partial openings 17 (the sectional view of FIG. 10 shows the two), in which the primary conductors 9 are guided and electrically insulated from each other.
  • the insulating crosses 16 for the electrical insulation of the primary conductors 9 are arranged outside the summation current transformer 1.
  • the insulating crosses 16 are integrally connected to the first housing part 11 and the second housing part 12, whereby an additional component for the isolation of the primary conductor 9 in the outer region of the housing 10 and its additional assembly omitted.
  • the printed circuit board 100 is designed as a so-called rigid-flex printed circuit board, ie it has rigid areas 100a, which are interconnected by flexible regions ("flex") 100b, see FIG. 11 , In the present case, the printed circuit board 100 is "folded" around the summation current transformer 1. In this way, a comparatively large printed circuit board in addition to the voluminous summation current transformer 1 can be arranged extremely space-saving, so that a compact design of the electro-mechanical protection device can be realized. It can also be on the circuit board 100 further components or assemblies of the electro-mechanical protection device can be arranged.
  • FIG. 11 Furthermore, the primary conductor 9 are shown, which are passed through the passage opening 13 of the summation current transformer 1. Outside the summation current transformer 1, the primary conductors 9 in the present illustration are designed as flat profiles.
  • FIG. 12 shows an enlarged view of a section of the printed circuit board 100, which corresponds to the contact region 18 of the summation current transformer 1. It is clear that the summation current transformer 1 is mounted directly on the circuit board 100. By means of the positioning elements 14 formed on the housing 10, the housing 10 of the summation current transformer 1 is first positioned relative to the printed circuit board 100 by inserting or inserting the positioning elements 14 into positioning openings 103 formed on the printed circuit board 100. Furthermore, the printed circuit board 100 has differently dimensioned bores 101 and 102 for receiving the legs 41 and 42 of the metal pins 40.
  • the positioning openings 103 are dimensioned in terms of their size so that the summation current transformer 1 is guided without play, such that the legs 41 and 42 of the metal pins 40 are correspondingly positioned corresponding to their respective holes 101 and 102 so that they in another Step into the holes can be inserted.
  • the holes 102 are used to contact the metal pins 40 via their respective second leg 42. This contacting can be done for example by pressing the second leg 42 into the holes 102.
  • the holes 102 are dimensioned smaller, so that by pressing in the formed as Einpressite second leg 42 a cold-welded connection between the respective second leg 42 and the bore 102 associated therewith is formed.
  • these electrical connections can also be designed as a through-connection.
  • the holes 102 are dimensioned slightly larger and formed as plated-through holes through which the second legs 42 are inserted therethrough and then soldered. This type of mounting is also known as push-through technology ("THT - Through Hole Technology").
  • THT - Through Hole Technology push-through technology
  • the holes 101 are dimensioned much larger compared to the holes 102 and serve only to receive the respective first leg 41 of the metal pins 40. Since these first leg 41 of the contacting of the ends of the sensor windings 21 and 31 and the excwicklept 22 and 32 with the each associated metal pin 40, but not the contacting of the metal pins 40 are used with the circuit board 100, the associated holes 101 are only recesses in which the first legs 41 are spatially received to prevent damage.
  • the manufacturing method according to the invention for the AC-sensitive summation current transformer 1 will be described with reference to the figures described above: first, the ends of the first sensor winding 21 which is wound around the first magnetic core 20 and the ends of the second sensor winding 31 are wound around the second magnetic core 30 is, with one of the first leg 41 of the end of the respective winding assigned metal pin 40 by a thermal joining method - for example, soldering - electrically connected.
  • This joining process can be carried out both manually and automatically.
  • the second legs 42 of the metal pins 40 and the circuit board 100 via the associated bore 102 made a second electrically conductive connection. This connection can also be carried out by means of a thermal joining process; however, this is not mandatory.
  • test windings 22, 32 are present, the ends of the test windings 22, 32 are electrically conductively connected to one of the first legs 41 of a metal pin 40 assigned to this end in parallel with the contacting of the sensor windings 21, 31. Subsequently, the housing parts 11 and 12 are in turn assembled.
  • This method has the advantage that the contacting of the sensor and test windings 21, 22, 31 and 32 with the circuit board 100 in two steps, and thus both spatially and temporally separated from each other, takes place. In this way it is possible, even in confined spaces and - concomitantly - poor ergonomic conditions two high-quality, electrically conductive connections - preferably solder connections - on only one connecting element, the respective metal pin 40 to produce.
  • the metal pins 40 may be formed as press-fit pins.
  • the circuit board 100, also with plated-through holes 102, by means of a press-in device with the summation current transformer 1 are electrically connected. The force to be applied thereby creates a stable, cold-welded connection between the metal pin 40 and the bore 102.
  • the method is carried out automatically or semi-automatically, it is advantageous to bring the summation current transformer 1 into contact with the printed circuit board 100 by pivoting or by a linear feed such that first the positioning elements 14, and only then the metal pins 40 in contact with the printed circuit board 100 kick.
  • the positioning elements 14 are leading to the metal pins 40, a precise positioning of the metal pins 40 is achieved relative to their associated holes 101 and 102 on the circuit board 100 in a simple manner.
  • the positioning elements 14 can also serve as adjustment elements for further upstream or downstream production steps, for example the subsequent thermal joining process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

Eine allstromsensitive Summenstromwandler (1) zur Erfassung eines Differenzstromes ist für einen allstromsensitiven Fehlerstromschutzschalter vorgesehen und weist ein zweiteiliges Gehäuse (10) auf. Das Gehäuse (10) weist eine Durchgangsöffnung (13) auf, die zur Aufnahme mindestens zweier hinsichtlich des Differenzstromes zu überwachenden Primärleiter (9) bestimmt ist. Der Summenstromwandler (1) weist einen die Durchgangsöffnung (13) umgebenden ersten Magnetkern (20) zur Erfassung von Wechselfehlerströmen, welcher mit einer ersten Sensorwicklung (21) bewickelt und in einem ersten Gehäuseteil (11) gehaltert ist, und einen die Durchgangsöffnung (13) umgebenden zweiten Magnetkern (30) zur Erfassung von Gleichfehlerströmen, welcher mit einer zweiten Sensorwicklung (31) bewickelt und in einem zweiten Gehäuseteil (12) gehaltert ist, auf. Die beiden Magnetkerne (20, 30) sind übereinander angeordnet. Der Summenstromwandler (1) weist mehrere Metallstifte (40) auf, welche über eine Außenkontur des Gehäuses (10) hervorstehen. Die erste Sensorwicklung (21) und die zweite Sensorwicklung (31) weisen jeweils zwei Enden auf, welche mit je einem der Metallstifte (40), welche zur elektrischen Kontaktierung mit einer Leiterplatte (100) ausgebildet sind, elektrisch leitend verbunden sind.

Description

  • Die Erfindung betrifft einen allstromsensitiven Summenstromwandler für ein elektromechanisches Schutzschaltgerät, insbesondere für einen allstromsensitiven Fehlerstromschutzschalter zur Erfassung eines elektrischen Differenzstromes, mit einem ersten Magnetkern zur Erfassung von Wechselfehlerströmen und einen zweiten Magnetkern zur Erfassung von Gleichfehlerströmen. Weiterhin betrifft die Erfindung ein elektromechanisches Schutzschaltgerät, insbesondere einen allstromsensitiver Fehlerstromschutzschalter, welcher einen derartigen allstromsensitiven Summenstromwandler aufweist. Ferner betrifft die Erfindung ein Herstellverfahren zur Montage des allstromsensitiven Summenstromwandlers.
  • Elektromechanische Schutzschaltgeräte - beispielsweise Leistungsschalter, Leitungsschutzschalter oder Fehlerstromschutzschalter - dienen der Überwachung sowie der Absicherung eines elektrischen Stromkreises und werden insbesondere als Schalt- und Sicherheitselemente in elektrischen Energieversorgungsnetzen eingesetzt. Zur Überwachung und Absicherung des elektrischen Stromkreises wird das Schutzschaltgerät über zwei oder mehrere Anschlussklemmen mit einer elektrischen Leitung des zu überwachenden Stromkreises elektrisch leitend verbunden, um bei Bedarf den elektrischen Strom in der jeweiligen überwachten Leitung zu unterbrechen. Das Schutzschaltgerät weist hierzu einen Schaltkontakt auf, der bei Auftreten eines vordefinierten Zustandes, beispielsweise bei Erfassen eines Kurzschlusses oder eines Fehlerstromes, geöffnet werden kann, um den überwachten Stromkreis vom elektrischen Leitungsnetz zu trennen. Derartige Schutzschaltgeräte sind auf dem Gebiet der Niederspannungstechnik auch als Reiheneinbaugeräte bekannt.
  • Ein Fehlerstromschutzschalter ist eine Schutzeinrichtung zur Gewährleistung eines Schutzes gegen einen gefährlichen Fehlerstrom in einer elektrischen Anlage. Ein derartiger Fehlerstrom, welcher auch als Differenzstrom bezeichnet wird, tritt auf, wenn ein spannungsführendes Leitungsteil einen elektrischen Kontakt gegen Erde aufweist. Dies ist beispielsweise dann der Fall, wenn eine Person ein spannungsführendes Teil einer elektrischen Anlage berührt: in diesem Fall fließt der Strom als Fehlerstrom durch den Körper der betreffenden Person gegen die Erdung ab. Zum Schutz gegen derartige Körperströme muss der Fehlerstromschutzschalter bei Auftreten eines derartigen Fehlerstroms die elektrische Anlage schnell und sicher allpolig vom Leitungsnetz trennen. Im Allgemeinen Sprachgebrauch werden anstelle des Begriffs "Fehlerstromschutzschalter" auch die Begriffe FI-Schutzschalter (kurz: FI-Schalter), Differenzstromschutzschalter (kurz: DI-Schalter) oder RCD (für "Residual Current Protective Device") gleichwertig verwendet.
  • Zur Erfassung eines Fehler- oder Differenzstromes weisen Fehlerstromschutzschalter in der Regel einen Summenstromwandler auf, welcher den Differenzstrom durch eine phasenrichtige Addition der in mehreren, beispielsweise in zwei bis vier Primärleitern fließenden elektrischen Ströme ermittelt. Der Summenstromwandler weist hierzu einen ringförmigen Magnetkern auf, durch den die Primärleiter (hin- und rückführende Leitungen) hindurchgeführt sind. Der Magnetkern selbst ist mit einem Sekundärleiter umwickelt. Ist der Stromfluss in den hin- und rückführenden elektrischen Leitungen gleich, so wird in dem Sekundärleiter kein Induktionsstrom induziert. Fließt hingegen ein Fehlerstrom gegen Erde ab, so heben sich die in den Primärleitern fließenden Ströme nicht mehr gegenseitig auf. Dadurch wird in der Sekundärwicklung eine der Stromdifferenz proportionale Spannung induziert, die als Fehlerstromsignal nach Überschreiten eines vorbestimmten Wertes zum Auslösen des Schutzschaltgerätes führt.
  • Da die Funktionsweise eines Summenstromwandlers auf dem induktiven Prinzip beruht, können zunächst nur Ströme mit einem Wechselanteil, also Wechsel-Differenzströme oder pulsierende Gleich-Differenzströme, erfasst werden. Aus der Patentschrift DE 10 2005 007 334 B4 ist hingegen ein allstromsensitiver Summenstromwandler bekannt, der sich in Verbindung mit einer elektronischen Einheit auch zur Erfassung von glatten Gleich-Differenzströmen eignet. Dieser speziell ausgebildete Summenstromwandler umfasst zwei Magnetkerne, von denen einer zur Erfassung der Wechselanteile und der andere zur Erfassung der Gleichanteile bestimmt ist.
  • Da bei Anwendungen in der Elektroinstallationstechnik der zur Verfügung stehende Bauraum - beispielsweise in einem Elektroinstallationsverteiler - zumeist stark begrenzt ist, ist man bestrebt, die Schutzschaltgeräte möglichst kompakt zu gestalten. Auf der anderen Seite werden immer mehr Funktionalitäten in die Geräte integriert bzw. Kombigeräte entwickelt, welche den Funktionsumfang mehrerer Einzelgeräte abgecken: so gibt es beispielsweise sogenannte FILS-Schutzschaltgeräte, welche den Funktionsumfang eines herkömmlichen Fehlerstromschutzschalters (FI) mit dem eines Leitungsschutzschalters (LS) kombinieren. Weiterhin sollen immer höhere Nennstromstärken realisiert werden. Diese Entwicklungen führen insgesamt dazu, dass im Inneren der Geräte immer weniger Bauraum zur Verfügung steht.
  • Die Aufgabe der Erfindung besteht daher darin, einen Summenstromwandler zur allstromsensitiven Differenzstromerfassung, ein elektromechanisches Schutzschaltgerät mit einem derartigen allstromsensitiven Summenstromwandler sowie ein Herstellverfahren zur Montage des allstromsensitiven Summenstromwandlers bereitzustellen, welche eine kompaktere Bauform des Summenstromwandlers - und damit des Schutzschaltgerätes - bei gleichzeitig geringeren Montage- und Herstellkosten ermöglichen.
  • Diese Aufgabe wird erfindungsgemäß durch den allstromsensitiven Summenstromwandler, das elektromechanische Schutzschaltgerät mit einem derartigen Summenstromwandler sowie das Herstellverfahren zur Montage des allstromsensitiven Summenstromwandlers gemäß den unabhängigen Ansprüchen gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen, allstromsensitiven Summenstromwandlers sind Gegenstand der abhängigen Ansprüche.
  • Der erfindungsgemäße allstromsensitive Summenstromwandler zur Erfassung eines elektrischen Differenzstromes ist für ein elektromechanisches Schutzschaltgerät, insbesondere für einen allstromsensitiven Fehlerstromschutzschalter, vorgesehen und weist ein zweiteiliges Gehäuse auf, welches seinerseits ein erstes Gehäuseteil und ein zweites Gehäuseteil aufweist, die fest aber lösbar miteinander verbunden sind. Das Gehäuse weist dabei eine Durchgangsöffnung auf, die entlang einer Mittenachse verläuft und zur Aufnahme mindestens zweier hinsichtlich des Differenzstromes zu überwachender Primärleiter bestimmt ist. Der Summenstromwandler weist dabei einen die Durchgangsöffnung umgebenden ersten Magnetkern zur Erfassung von Wechselfehlerströmen, welcher mit einer ersten Sensorwicklung bewickelt und in dem ersten Gehäuseteil aufgenommen und gehaltert ist, auf. Weiterhin weist der Summenstromwandler einen die Durchgangsöffnung umgebenden zweiten Magnetkern zur Erfassung von Gleichfehlerströmen, welcher mit einer zweiten Sensorwicklung bewickelt und in dem zweiten Gehäuseteil aufgenommen und gehaltert ist, auf. Die beiden Magnetkerne sind dabei in Richtung der Mittenachse übereinander angeordnet. Darüber hinaus weist der Summenstromwandler mehrere Metallstifte auf, welche mit dem Gehäuse fest verbunden sind und über eine Außenkontur des Gehäuses hervorstehen. Die erste Sensorwicklung und die zweite Sensorwicklung weisen dabei jeweils zwei Enden auf, welche mit je einem der Metallstifte, welche zur elektrischen Kontaktierung mit einer Leiterplatte ausgebildet sind, elektrisch leitend verbunden sind.
  • Der erfindungsgemäße, allstromsensitive Summenstromwandler zeichnet sich durch eine äußerst kompakte Gestaltung auf: Zum einen besteht das Gehäuse des Summenstromwandlers aus lediglich zwei Teilen, dem ersten Gehäuseteil zur Aufnahme des ersten Magnetkerns, sowie dem zweiten Gehäuseteil zur Aufnahme des zweiten Magnetkerns, welche bei der Montage unmittelbar, d.h. ohne Verwendung eines weiteren Gehäusezwischenstücks, aneinander montiert werden. Hierdurch ist gegenüber einem drei- oder mehrteiligen Gehäuse eine geringe Bauhöhe des Summenstromwandlers realisierbar. Zum anderen ist der Summenstromwandler über die fest mit dem Wandlergehäuse verbundenen Metallstifte direkt auf einer Leiterplatte montierbar, ohne dass hierfür zusätzliche elektrische Leitungen - und damit zusätzlicher Bauraum - erforderlich sind. Aufgrund der dadurch erzielbaren kompakten Bauform ist der stark begrenzte Bauraum im Inneren des Schutzschaltgerätes besser nutzbar.
  • Die beiden Magnetkerne weisen eine ring- oder hohlzylindrische Form auf, wobei die Mittenachse der Zylinderachse der hohlzylinder- bzw. ringförmigen Magnetkerne entspricht. Entlang dieser Zylinderachse sind die beiden Magnetkerne übereinander, d.h. nebeneinander" bzw. "aufeinander" liegend angeordnet, so dass die Primärleiter durch beide Magnetkerne gerade hindurchführbar sind. Die Sensorwicklungen sind - zumindest abschnittsweise - um den jeweiligen Magnetkern herum gewickelt.
  • Die Metallstifte bilden dabei einen Kontaktierungsbereich des Summenstromwandlers: hier werden während der Montage des Wandlergehäuses zum einen die Enden der Sensorwicklungen mit jeweils einem der Metallstifte elektrisch leitend verbunden, beispielsweise mittels Löten. Zum anderen ist über die im Kontaktierungsbereich angeordneten Metallstifte die elektrisch leitende Verbindung mit einer Leiterplatte des Schutzschaltgerätes, auf der die Elektronik des Schutzschaltgerätes angeordnet ist, realisierbar. Dies kann beispielsweise durch Einpressen der Metallstifte in einen auf der Leiterplatte angeordneten Sockel, oder durch Einstecken der Metallstifte in auf der Leiterplatte vorgesehene Löcher mit anschließendem Wellen-, Schwall- oder Tauch-Löten (sogenannte THT-Technik) erfolgen.
  • In einer vorteilhaften Weiterbildung des Summenstromwandlers sind die Metallstifte L-förmig ausgebildet und weisen jeweils einen kurzen ersten Schenkel sowie einen langen zweiten Schenkel auf. Die Enden der Sensorwicklungen sind dabei im Inneren des Gehäuses jeweils mit einem der ersten Schenkel verbunden. Die zweiten Schenkel sind dabei durch das Gehäuse nach außen hindurchgeführt und zur elektrischen Kontaktierung mit der Leiterplatte ausgebildet.
  • Mit Hilfe der L-förmig ausgebildeten Metallstifte, deren langer zweiter Schenkel derart durch das Gehäuse hindurchgeführt ist und soweit über die Gehäusekontur überstehen, dass sie mit der Leiterplatte kontaktiert werden können, wird auf einfache Art und Weise eine elektrisch leitende Verbindung zwischen den im Inneren des Gehäuses angeordneten Sensorwicklungen und der außerhalb des Gehäuses liegenden Leiterplatte geschaffen.
  • In einer weiteren vorteilhaften Weiterbildung des Summenstromwandlers sind die die Metallstifte u-förmig ausgebildet und weisen jeweils einen ersten Schenkel sowie einen zweiten Schenkel auf, welche beide über die Außenkontur des Gehäuses hervorstehen und über einen Steg miteinander verbunden sind. Die Enden der Sensorwicklungen sind dabei aus dem Gehäuse herausgeführt und jeweils mit einem der ersten Schenkel elektrisch leitend verbunden, während die zweiten Schenkel zur elektrischen Kontaktierung mit der Leiterplatte ausgebildet sind.
  • Der Steg oder Verbindungssteg stellt den mittleren Abschnitt der u-förmigen Metallstifte dar. Auch die u-förmig geformten Metallstifte weisen somit einen ersten Schenkel sowie einen zweiten Schenkel auf, die über den Verbindungssteg sowohl elektrisch als auch mechanisch miteinander verbunden sind, aber beide über die Außenkontur überstehen. D.h. keiner der beiden Schenkel ist durch das Gehäuse hindurch auf dessen Innenseite geführt. Zur Verbindung mit dem jeweiligen ersten Schenkel werden die Enden der Sensorwicklungen daher aus dem Gehäuse heraus an den ersten Schenkel geführt; der zweite Schenkel, welcher über den Steg mit dem ersten Schenkel elektrisch leitend verbunden ist, dient wiederum der Kontaktierung mit der Leiterplatte.
  • Mit Hilfe der Metallstifte - egal ob L-förmig oder u-förmig ausgebildet - können die beiden elektrischen Kontaktierungsprozessschritte, das erste Kontaktieren der Enden der beiden Sensorwicklungen an die Metallstifte sowie das zweite Kontaktieren der Metallstifte mit der Leiterplatte, sowohl zeitlich als auch räumlich voneinander separiert werden. Auf diese Weise ist sowohl eine verbesserte Ergonomie als auch - im Falle thermischer Fügeprozesse - ein geringerer Wärmeeintrag pro Zeit realisierbar, was insbesondere bei Verwendung empfindlicher elektrischer Bauteile von Vorteil ist.
  • In einer weiteren vorteilhaften Weiterbildung des Summenstromwandlers sind die Metallstifte fest mit dem Gehäuse verbunden.
  • Diese feste Verbindung der Metallstifte mit dem Gehäuse kann beispielsweise durch Kleben, Einpressen oder Umspritzen erfolgen. Sowohl das Einpressen bzw. Einkleben der Metallstifte in das Gehäuse, als auch das Umspritzen der Metallstifte beim Spritzgießen des Gehäuses im Kunststoffspritzgussverfahren, stellen einfach zu realisierende Fertigungsverfahren zur mechanischen Befestigung der Metallstifte am Gehäuse dar.
  • In einer weiteren vorteilhaften Weiterbildung des Summenstromwandlers weist zumindest einer der Magnetkerne eine Prüfwicklung auf, deren beide Enden mit jeweils einem der ersten Schenkel der Metallstifte elektrisch leitend verbunden sind.
  • Die Prüfwicklung ist ebenfalls zumindest abschnittsweise um den Magnetkern herumgewickelt und dient dazu, die Funktionsfähigkeit des Summenstromwandlers zu überprüfen. Hierzu wird eine Prüfspannung an die Prüfwicklung angelegt, welche in dem jeweiligen Magnetkern ein Magnetfeld erzeugt, welches in der Sensorwicklung einen Induktionsstrom induziert und damit detektierbar ist. Zur elektrischen Kontaktierung der Prüfwicklung mit der Leiterplatte werden ebenfalls zwei Metallstifte verwendet, welche wie vorstehend beschrieben L-förmig oder u-förmig ausgebildet sein können.
  • In einer weiteren vorteilhaften Weiterbildung weist der Summenstromwandler zumindest ein Positionierungselement auf, welches benachbart zu den Metallstiften an dem Gehäuse ausgebildet ist und zur Positionierung des Summenstromwandlers relativ zur Leiterplatte dient.
  • Da die Metallstifte - insbesondere beim Einpressen in einen auf der Leiterplatte ausgebildeten Sockel - empfindlich sind und leicht verbiegen können, weist das Gehäuse in einem Kontaktbereich, in dem auch die Metallstifte angeordnet sind, zumindest ein Positionierungselement auf. Dieses Positionierungselement ist beispielsweise über das Gehäuse hervorstehend ausgebildet und dient dazu, das Gehäuse des Summenstromwandlers relativ zur Leiterplatte vorzupositionieren, um in einem zweiten Schritt die Metallstifte relativ zu den ihnen zugeordneten Kontaktierungselementen in Position zu bringen und anschließend zu fügen, d.h. sowohl mechanisch als auch elektrisch leitend miteinander zu verbinden. Auf diese Weise ist die Montage des Summenstromwandlers auf der Leiterplatte zumindest teilautomatisiert ausführbar.
  • In einer weiteren vorteilhaften Weiterbildung des Summenstromwandlers ist zwischen dem ersten Gehäuseteil und dem zweiten Gehäuseteil eine durchschlagsfeste Folie angeordnet.
  • Mit Hilfe der durchschlagsfesten Folie werden der im ersten Gehäuseteil aufgenommene erste Magnetkern und der im zweiten Gehäuseteil aufgenommene zweite Magnetkern räumlich voneinander getrennt. Die durchschlagsfeste Folie dient dabei der magnetischen "Isolierung" der beiden Magnetkerne, so dass Wechselwirkungen zwischen den beiden Magnetkernen - und damit Fehlfunktionen des Summenstromwandlers - wirksam vermieden werden können.
  • Das erfindungsgemäße elektromechanische Schutzschaltgerät, welches insbesondere als allstromsensitiver Fehlerstromschutzschalter ausgebildet ist, weist einen allstromsensitiven Summenstromwandler der vorstehend beschriebenen Art, mit einem ersten Magnetkern zur Erfassung von Wechselfehlerströmen sowie einem zweiten Magnetkern zur Erfassung von Gleichfehlerströmen, auf.
  • Hinsichtlich der Vorteile des erfindungsgemäßen elektromechanischen Schutzschaltgerätes wird auf die vorstehenden Ausführungen die Vorteile des erfindungsgemäßen allstromsensitiven Summenstromwandlers betreffend verwiesen.
  • Das erfindungsgemäße Herstellverfahren für einen allstromsensitiven Summenstromwandler der vorstehend beschriebenen Art weist die Schritte:
    1. a) Thermisches Fügen der Enden der ersten Sensorwicklung und der Enden der zweiten Sensorwicklung mit jeweils einem der ersten Schenkel eines diesem Ende zugewiesenen Metallstiftes;
    2. b) Montieren des ersten Gehäuseteils und des zweiten Gehäuseteils; und
    3. c) Herstellen jeweils einer elektrisch leitenden Verbindung zwischen dem zweiten Schenkel der jeweiligen Metallstiftes und einer, dem betreffenden Metallstift eindeutig zugeordneten und auf der Leiterplatte ausgebildeten Kontaktstelle,
    auf.
  • In einer vorteilhaften Weiterbildung des Herstellverfahrens ist zwischen Schritt a) und Schritt b) ein zusätzlicher Schritt
    • a1) Thermisches Fügen jeweils eines der Enden der ersten Prüfwicklung und/oder der Enden der zweiten Prüfwicklung mit jeweils einem der ersten Schenkel eines dem betreffenden Ende zugewiesenen Metallstiftes;
    eingefügt.
  • In einer weiteren vorteilhaften Weiterbildung des Herstellverfahrens wird Schritt c) ebenfalls durch ein thermisches Fügeverfahren realisiert.
  • Die elektrisch leitende Verbindung zwischen den Metallstiften und der ihnen jeweils zugewiesenen Kontaktstelle auf der Leiterplatte kann ebenfalls durch thermisches Fügen hergestellt werden, wobei auch andere Verbindungsverfahren, wie Kaltschweißen oder Crimpen, prinzipiell möglich sind. Neben dem Löten kommen als thermische Fügeverfahren auch Hartlöten oder Schweißen in Betracht.
  • Mit Hilfe des erfindungsgemäßen Herstell- bzw. Montageverfahrens lässt sich der allstromsensitive Summenstromwandler - und damit das elektromechanische Schutzschaltgerät - deutlich einfacher und damit kostengünstiger herstellen. Da die Metallstifte im Vergleich zu Kabelverbindungen starr am Gehäuse ausgebildet sind und sich somit - relativ zum Gehäuse - immer in derselben Fügeposition befinden, ist es möglich, die thermischen Fügeprozesse zur Herstellung einer elektrisch leitenden Verbindung zwischen den Enden der Sensorwicklungen und ggf. der Prüfwicklung(en) mit jeweils einem der Metallstifte, sowie der Metallstifte mit den jeweiligen Kontaktstellen auf der Leiterplatte nicht mehr manuell, sondern zumindest teilautomatisiert auszuführen. Umständliches manuelles Löten an aufgrund der beengten Platzverhältnisse teilweise schwer zugänglichen Stellen ist damit nicht mehr erforderlich. Die Gefahr von Auslöseversagern aufgrund schlechter Lötverbindungen oder abgerissener Sensor- oder Prüfwicklungen kann dadurch deutlich minimiert werden. Insgesamt können durch die (teil-) automatisierte Ausführung der Fügeverbindung die Prozessparameter des Fügeprozesses besser eingehalten und überwacht werden, wodurch auf einfache Art und Weise in kürzerer Zeit qualitativ hochwertigere Fügeverbindungen herstellbar sind.
  • Weiterhin ist es möglich, dass bei einer (teil-)automatisierten Ausführung der Fügeverbindungen nicht alle thermischen Verbindungen gleichzeitig ausgeführt werden. Hierdurch kann der Wärmeeintrag pro Zeiteinheit deutlich reduziert werden, was insbesondere bei Verwendung temperaturempfindlicher Bauteile von großem Vorteil ist.
  • Im Folgenden wird ein Ausführungsbeispiel des erfindungsgemäßen, allstromsensitiven Summenstromwandlers unter Bezug auf die beigefügten Figuren näher erläutert. Die Figuren zeigen:
  • Figuren 1 bis 3
    schematische Darstellungen des montierten allstromsensitiven Summenstromwandlers in verschiedenen Ansichten;
    Figuren 4 bis 6
    schematische Darstellungen des FI-Teils des Summenstromwandlers in verschiedenen Ansichten;
    Figuren 7 bis 9
    schematische Darstellungen des DI-Teils des Summenstromwandlers in verschiedenen Ansichten;
    Figur 10
    eine schematische Schnittdarstellung des Summenstromwandlers;
    Figuren 11 und 12
    schematische Darstellungen des Summenstromwandlers mit einer daran montierten Leiterplatte in verschiedenen Ansichten.
  • In den verschiedenen Figuren der Zeichnung sind gleiche Teile stets mit dem gleichen Bezugszeichen versehen. Die Beschreibung gilt für alle Zeichnungsfiguren, in denen das entsprechende Teil ebenfalls zu erkennen ist.
  • In den Figuren 1 bis 3 ist der erfindungsgemäße, vollständig montierte allstromsensitive Summenstromwandler 1 in verschiedenen Ansichten schematisch dargestellt. Figur 1 zeigt dabei eine perspektivische Ansicht des allstromsensitiven Summenstromwandlers 1; in den Figuren 2 und 3 ist der Summenstromwandler 1 in zwei unterschiedlichen Seitenansichten gezeigt.
  • Der allstromsensitive Summenstromwandler 1 weist ein Gehäuse 10 auf, welches aus zwei Teilen - dem ersten Gehäuseteil 11 sowie dem zweiten Gehäuseteil 12, besteht. Entlang einer Mittenachse a weist das Gehäuse 10 eine Durchgangsöffnung 13 zur Durchführung mehrerer Primärleiter 9 (siehe Figur 11) auf. Die Durchgangsöffnung 13 ist dabei mit Hilfe eines an das Gehäuse 10 angespritzten Isolierkreuzes 16 in vier kreisförmige, voneinander unabhängige Teilöffnungen 17 unterteilt. Hierdurch sind die Primärleiter 9 zum einen im Inneren des Summenstromwandlers 1 elektrisch voneinander isoliert aufgenommen, wodurch die Gefahr von elektrischen Überschlägen wirksam reduziert wird. Zum anderen wird durch das Isolierkreuz 16 verhindert, dass die scharfkantigen Enden der Primärleiter 9 beim Einfädeln in die Durchgangsöffnung 13 andere Primärleiter beschädigen.
  • Der allstromsensitive Summenstromwandler 1 weist einen die Durchgangsöffnung 13 umgebenden ersten Magnetkern 20 zur Erfassung von Wechselfehlerströmen, welcher in dem ersten Gehäuseteil 11 aufgenommen und gehaltert ist (siehe Figuren 4 bis 6), sowie einen die Durchgangsöffnung 13 umgebenden zweiten Magnetkern 30 zur Erfassung von Gleichfehlerströmen, welcher in dem zweiten Gehäuseteil 12 aufgenommen und gehaltert ist (siehe Figuren 7 bis 9), auf. Das Gehäuse 10 des Summenstromwandlers 1 ist ferner zur direkten Montage auf einer Leiterplatte 100 (printed circuit board PCB, siehe Figuren 11 und 12) des Schutzschaltgerätes vorgesehen und weist zur Kontaktierung mit der Leiterplatte 100 mehrere Metallstifte 40 auf, welche in einem Kontaktbereich 18 des Gehäuses 10 sowohl am ersten Gehäuseteil 11 als auch am zweiten Gehäuseteil 12 angeordnet sind und dabei über eine Außenkontur des Gehäuses 10 hervorstehen. Die Metallstifte 40 sind vorliegend als u-förmige Draht-Pins ausgebildet und als Inlays fest, d.h. nicht lösbar, in das erste Gehäuseteil 11 bzw. das zweite Gehäuseteil 12 eingespritzt. Sie weisen jeweils einen ersten Schenkel 41 sowie einen zweiten Schenkel 42 auf, welche über einen Verbindungssteg (nicht dargestellt) des u-förmigen Grundkörpers elektrisch leitend miteinander verbunden sind. Weiterhin weist das Gehäuse 10 zwei Positionierungselemente 14 auf, welche ebenfalls im Kontaktbereich 18 angeordnet sind, ebenfalls über die Außenkontur des Gehäuses 10 hervorstehen und zur Positionierung des Summenstromwandlers 1 relativ zur Leiterplatte 100 des Schutzschaltgerätes dienen.
  • Die Figuren 4 bis 6 zeigen schematische Darstellungen des sogenannten FI-Teils des Summenstromwandlers 1 in verschiedenen Ansichten bzw. Montagezuständen: Die Figuren 5 und 6 zeigen dabei das erste Gehäuseteil 11 mit dem darin aufgenommenen ersten Magnetkern 20, während in Figur 4 der erste Magnetkern 20 vor Einlegen in das ersten Gehäuseteil 11 in einer Art Explosionszeichnung schematisch dargestellt ist.
  • Der erste Magnetkern 20, welcher zur Erfassung von Wechselfehlerströmen dient, ist mit einer ersten Sensorwicklung 21 umwickelt, welche als erster Sekundärleiter des Summenstromwandlers 1 dient. Dies bedeutet, dass bei einer Änderung des magnetischen Feldes, welches durch den ersten Magnetkern 20 geführt ist, in der ersten Sensorwicklung 21 ein Induktionsstrom induziert wird. Die daraus resultierende Induktionsspannung kann dann zwischen den beiden Enden der ersten Sensorwicklung 21 gemessen werden. Zusätzlich ist um den ersten Magnetkern 20 zumindest abschnittsweise eine erste Prüfwicklung 22 gewickelt, welche dazu dient, die Funktionsfähigkeit des FI-Teils des Summenstromwandlers 1 zu überprüfen: wird an die beiden Enden der ersten Prüfwicklung 22 eine Prüfspannung angelegt, so bewirkt der daraus resultierenden Stromfluss in der Prüfwicklung 22 eine Änderung des magnetischen Flusses im ersten Magnetkern 20. Diese Änderung kann dann wiederum mittels der ersten Sensorwicklung 21 erfasst werden.
  • Figur 5 zeigt den ersten Magnetkern 20 in seiner Einbaulage im ersten Gehäuseteil 11. Zur Fixierung kann der erste Magnetkern 20 in das erste Gehäuseteil 11 eingeklebt werden. Im Kontaktbereich 18 des Gehäuses 10 sind mehrere Metallstifte 40 in Gestalt u-förmiger Draht-Pins in das erste Gehäuseteil 11 eingespritzt. Die beiden Enden der ersten Sensorwicklung 21 sind dabei jeweils mit einem zweiten Schenkel 42 des ihnen jeweils zugewiesenen Metallstifts 40 elektrisch leitend verbunden. Ebenso sind die beiden Enden der ersten Prüfwicklung 22 jeweils mit einem zweiten Schenkel 42 des ihnen jeweils zugewiesenen Metallstifts 40 elektrisch leitend verbunden. Die Enden der ersten Sensorwicklung 21 sowie der ersten Prüfwicklung 22 sind hierzu jeweils aus dem ersten Gehäuseteil 11 herausgeführt und um den jeweiligen ersten Schenkel 42 herumgewickelt. In einem weiteren Prozessschritt wird dann eine dauerhafte stabile Verbindung zwischen den Leiterenden der Sensorwicklung 21 bzw. der Prüfwicklung 22 und dem jeweiligen Metallstift 40 hergestellt, beispielsweise mit Hilfe eines thermischen Fügeverfahrens wie Schweißen oder Löten. Das Fügen kann dabei manuell ausgeführt werden; da die Fügepartner - das jeweilige Ende der Sensor- bzw. Prüfwicklung 21 bzw. 22 sowie der zugeordnete erster Schenkel 41 des jeweiligen Metallstiftes 40 - formstabil gehaltert sind, ist es jedoch ebenso möglich und vorteilhafter, den Fügeprozess teilweise oder sogar vollständig zu automatisieren.
  • Figur 6 zeigt den FI-Teil des Summenstromwandlers 1 zu einem weiteren, späteren Montagezeitpunkt. Dabei ist der erste Magnetkern 20 mit einer durchschlagsfesten Folie 15 abgedeckt, um ihn räumlich von dem im zweiten Gehäuseteil 12 aufgenommene zweiten Magnetkern 30 (siehe Figuren 7 bis 9) zu trennen. Die durchschlagsfeste Folie 15 dient dabei der magnetischen "Isolierung" der beiden Magnetkerne 20 und 30, um Wechselwirkungen zwischen den beiden Magnetkernen 20 und 30, und damit Fehlfunktionen des Summenstromwandlers 1, wirksam zu vermeiden. Um die Folie 15 exakt zu positionieren weist das erste Gehäuseteil 11 zwei Montagezapfen 19 auf, welche in damit korrespondierende, am zweiten Gehäuseteil 12 ausgebildete Montageöffnungen 29 eingreifen, um die beiden Gehäuseteile 11 und 12 formschlüssig miteinander zu verbinden. Die Folie 15 ist hinsichtlich ihrer Form an die Trennebene der Gehäuseteile 11 und 12 angepasst und weist im Bereich der beiden Montagezapfen 19 zwei räumlich damit korrespondierenden Öffnungen auf. Durch Einhängen dieser Öffnungen in die Montagezapfen 19 ist die Folie 15 relativ zum ersten Gehäuseteil 11 exakt positionierbar.
  • Die erste Sensorwicklung 21 sowie die erste Prüfwicklung 22 sind vorzugsweise aus Lackdraht gebildet. Dabei handelt sich zumeist um einen Kupferdraht, welcher bei der Fertigung mit einer elektrisch isolierenden Lackschicht überzogen wurde. Da Dicke und Gewicht dieser Lackisolation im Vergleich zu anderen Isolierstoffen mit gleicher Wirkung sehr gering sind, weder derartige Lackdrähte bevorzugt zum Bau von elektrischen Spulen und Transformatoren verwendet. Aufgrund der geringen Dicke der Lackschicht sind sie jedoch auch entsprechend empfindlich gegen äußere mechanische Einwirkungen.
  • Der erste Magnetkern 20 kann aus nanokristallinem Material gebildet sein. Da dieses Material sehr spröde ist und daher zur Bildung von Flittern neigt, ist es in diesem Fall vorteilhaft, den Magnetkern 20 mit einer Schutzhülle zu umgeben, bevor er mit der ersten Sensorwicklung 21 und/oder der ersten Prüfwicklung 22 bewickelt wird, um Beschädigungen der dünnen Lackdrähten der Wicklungen durch die schaftkantigen Flitter zu vermeiden. Der Magnetkern 20 kann zu diesem Zweck mit einem dünnen Papier bewickelt werden. Alternativ ist es ebenso möglich, ihn vor dem Bewickeln in ein Kunstharz zu vergießen.
  • In den Figuren 7 bis 9 ist der sogenannte DI-Teil des Summenstromwandlers 1 in verschiedenen Ansichten bzw. Montagezuständen schematisch dargestellt: Die Figuren 8 und 9 zeigen dabei das zweite Gehäuseteil 12 mit dem darin aufgenommenen zweiten Magnetkern 30, während in Figur 7 der zweite Magnetkern 30 vor dem Einlegen in das zweite Gehäuseteil 12 dargestellt ist.
  • Der zweite Magnetkern 30, welcher zur Erfassung von Gleichfehlerströmen dient, ist mit einer zweiten Sensorwicklung 31 umwickelt, welche als zweiter Sekundärleiter des Summenstromwandlers 1 dient. Dies bedeutet, dass bei einer Änderung des magnetischen Feldes, welches durch den zweiten Magnetkern 30 geführt ist, in der zweiten Sensorwicklung 31 ein Induktionsstrom induziert wird. Die daraus resultierende Induktionsspannung kann dann zwischen den beiden Enden der zweiten Sensorwicklung 31 gemessen werden. Zusätzlich ist um den zweiten Magnetkern 31 zumindest abschnittsweise eine zweite Prüfwicklung 32 gewickelt, welche dazu dient, die Funktionsfähigkeit des DI-Teils des Summenstromwandlers 1 zu überprüfen: wird an die beiden Enden der zweiten Prüfwicklung 32 eine Prüfspannung angelegt, so bewirkt der daraus resultierende Stromfluss in der Prüfwicklung 32 eine Änderung des magnetischen Flusses im zweiten Magnetkern 30. Diese Änderung kann dann wiederum mit Hilfe der zweiten Sensorwicklung 31 erfasst werden.
  • Figur 8 zeigt den zweiten Magnetkern 30 in seiner Einbaulage im zweiten Gehäuseteil 12. Zur Fixierung kann der zweite Magnetkern 30 in das zweite Gehäuseteil 12 eingeklebt werden. Im Kontaktbereich 18 des Gehäuses 10 sind mehrere Metallstifte 40 in Gestalt u-förmiger Draht-Pins in das zweite Gehäuseteil 12 eingespritzt. Die beiden Enden der zweiten Sensorwicklung 31 sind dabei jeweils mit einem zweiten Schenkel 42 des ihnen jeweils zugeordneten Metallstifts 40 elektrisch leitend verbunden. Ebenso sind die beiden Enden der zweiten Prüfwicklung 32 jeweils mit einem zweiten Schenkel 42 des ihnen jeweils zugeordneten Metallstifts 40 elektrisch leitend verbunden. Die Enden der zweiten Sensorwicklung 31 sowie der zweiten Prüfwicklung 32 sind hierzu jeweils aus dem zweiten Gehäuseteil 12 herausgeführt und um den jeweiligen ersten Schenkel 42 herumgewickelt. In einem weiteren Prozessschritt wird dann eine dauerhafte stabile Verbindung zwischen den Leiterenden der Sensorwicklung 31 bzw. der Prüfwicklung 32 und dem jeweils zugeordneten Metallstift 40 hergestellt, beispielsweise durch ein thermisches Fügeverfahren wie Schweißen oder Löten. Das Fügen kann auch manuell ausgeführt werden; da die Fügepartner (das jeweilige Ende der Sensor- bzw. Prüfwicklung 31 bzw. 32 sowie der zugeordnete erster Schenkel 41 des jeweiligen Metallstiftes 40) formstabil gehaltert sind, ist es jedoch ebenso möglich und deutlich vorteilhafter, den Fügeprozess teilweise oder sogar vollständig zu automatisieren.
  • Figur 9 zeigt den DI-Teil des Summenstromwandlers 1 zu einem weiteren, späteren Montagezeitpunkt. Dabei ist der zweite Magnetkern 30 mit einer durchschlagsfesten Folie 15 abgedeckt, um ihn von dem im ersten Gehäuseteil 11 aufgenommene ersten Magnetkern 20 (siehe Figuren 4 bis 6) räumlich zu trennen. Zur Positionierung der Folie 15 weist das zweite Gehäuseteil 12 einen Montagezapfen 19 auf, welcher in eine damit korrespondierende, am ersten Gehäuseteil 11 ausgebildete Montageöffnungen 29 eingreift, um die beiden Gehäuseteile 11 und 12 formschlüssig miteinander zu verbinden. Die Verwendung zweier Folien 15, eine am ersten Gehäuseteil 11 und eine weitere am zweiten Gehäuseteil 12, ist nicht zwingend erforderlich. Vielmehr sollte die durchschlagsfeste Folie 15 entweder am ersten Gehäuseteil 11 oder am zweiten Gehäuseteil 12 positioniert werden.
  • Ferner ist anhand der in den Figuren 4 bis 9 dargestellten Gehäuseteile 11 und 12 auch gut der Übergang der Teilöffnungen 17 vom ersten Gehäuseteil 11 zum zweiten Gehäuseteil 12 zu erkennen: die Übergangsbereiche der Teilöffnungen 17 sind so ausgebildet, dass diese nicht stumpf aufeinander stoßen, sondern im Fügebereich unterschiedliche, abgestufte Querschnitte aufweisen, so dass zwei der Teilöffnungen 17 des ersten Gehäuseteils 11 in die korrespondierenden Teilöffnungen 17 des zweiten Gehäuseteils 12 gesteckt werden und umgekehrt. Auf diese Weise wird ein Labyrinth geschaffen, durch das die Luft- und Kriechstrecken zwischen den Primärleitern 9, die in den Teilöffnungen 17 aufgenommen sind, deutlich verlängert werden, wodurch die Gefahr eines elektrischen Überschlags zwischen den Primärleitern 9 weiter reduziert wird.
  • Figur 10 zeigt schematisch eine Schnittdarstellung des Summenstromwandlers 1 entlang der Mittenachse a. Das erste Gehäuseteil 11 (FI-Teil), in dem der erste Magnetkern 20 zur Erfassung von Wechselfehlerströmen aufgenommen und gehaltert ist, ist dabei in Richtung der Mittenachse a oberhalb des zweiten Gehäuseteils 12, in dem der zweite Magnetkern 30 zur Erfassung von Gleichfehlerströmen aufgenommen und gehaltert ist, angeordnet. Zwischen dem ersten Gehäuseteil 11 und dem zweiten Gehäuseteil 12 ist die durchschlagfeste Folie 15, welche den Aufnahmeraum des ersten Magnetkerns 20 vom Aufnahmeraum des zweiten Magnetkerns 30 räumlich trennt, angeordnet. Mit Hilfe der durchschlagsfesten Folie 15 ist es somit möglich, die Bauhöhe des allstromsensitiven Summenstromwandlers 1 in Richtung der Mittenachse a deutlich kompakter zu halten, als dies bei Verwendung eines weiteren, zusätzlichen Gehäuseteils der Fall wäre.
  • In der Schnittdarstellung der Figur 10 ist ferner gut zu erkennen, dass die Durchgangsöffnung 13 in vier rohrförmige Teilöffnungen 17 unterteilt ist (die Schnittansicht der Figur 10 zeigt deren zwei), in denen die Primärleiter 9 geführt und elektrisch zueinander isoliert sind. An den beiden in Richtung der Mittenachse a distalen Enden des Gehäuses 10 sind die Isolierkreuze 16 zur elektrischen Isolation der Primärleiter 9 außerhalb des Summenstromwandlers 1 angeordnet. Die Isolierkreuze 16 sind dabei mit dem ersten Gehäuseteil 11 bzw. dem zweiten Gehäuseteil 12 einstückig verbunden, wodurch ein zusätzliches Bauteil zur Isolation der Primärleiter 9 im Außenbereich des Gehäuses 10 sowie dessen zusätzliche Montage entfallen. Durch eine optimierte Auswahl des für die Gehäuseteile 11 und 12 verwendeten Kunststoffwerkstoffs kann die Durchschlagsfestigkeit signifikant verbessert werden. Für diesen Zweck kommen beispielsweise glasfaserverstärkte Polyamide in Betracht.
  • In den Figuren 11 und 12 ist der Summenstromwandler 1 mit einer daran montierten Leiterplatte 100, auf der sich die Elektronik des elektromechanischen Schutzschaltgerätes befindet, in zwei unterschiedlichen Ansichten schematisch dargestellt. Die Leiterplatte 100 ist als sogenannte rigid-flex-Leiterplatte ausgebildet, d.h. sie weist starre ("rigid") Bereiche 100a auf, welche durch flexible ("flex") Bereiche 100b miteinander verbunden sind, siehe Figur 11. Die Leiterplatte 100 ist vorliegend um den Summenstromwandler 1 herum "gefaltet" angeordnet. Auf diese Weise kann auch eine vergleichsweise große Leiterplatte neben dem voluminösen Summenstromwandler 1 äußerst platzsparend angeordnet werden, sodass eine kompakte Bauform des elektromechanischen Schutzschaltgerätes realisierbar ist. Dabei können an der Leiterplatte 100 auch weitere Bauteile oder Baugruppen des elektromechanischen Schutzschaltgerätes angeordnet werden.
  • In Figur 11 sind ferner die Primärleiter 9 dargestellt, welche durch die Durchgangsöffnung 13 des Summenstromwandlers 1 hindurchgeführt sind. Außerhalb des Summenstromwandlers 1 sind die Primärleiter 9 in der vorliegenden Darstellung als flach ausgeführte Profile ausgebildet.
  • Figur 12 zeigt eine vergrößerte Darstellung eines Ausschnitts der Leiterplatte 100, welcher mit dem Kontaktbereich 18 des Summenstromwandlers 1 korrespondiert. Dabei wird deutlich, dass der Summenstromwandler 1 direkt auf der Leiterplatte 100 montiert ist. Mittels der am Gehäuse 10 ausgebildeten Positionierungselemente 14 wird das Gehäuse 10 des Summenstromwandlers 1 zunächst relativ zur Leiterplatte 100 positioniert, indem die Positionierungselemente 14 in auf der Leiterplatte 100 ausgebildete Positionieröffnungen 103 eingeführt bzw. eingesteckt werden. Weiterhin weist die Leiterplatte 100 unterschiedlich dimensionierte Bohrungen 101 sowie 102 zur Aufnahme der Schenkel 41 und 42 der Metallstifte 40 auf. Die Positionieröffnungen 103 sind dabei hinsichtlich ihrer Größe so dimensioniert, dass der Summenstromwandler 1 spielfrei geführt ist, derart, dass die Schenkel 41 und 42 der Metallstifte 40 korrespondierend zu den ihnen jeweils zugeordneten Bohrungen 101 und 102 exakt positioniert sind, so dass sie in einem weiteren Schritt in die Bohrungen eingesteckt werden können.
  • Die Bohrungen 102 dienen der Kontaktierung der Metallstifte 40 über ihren jeweils zweiten Schenkel 42. Diese Kontaktierung kann beispielsweise durch Einpressen der zweiten Schenkel 42 in die Bohrungen 102 erfolgen. In diesem Fall sind die Bohrungen 102 kleiner dimensioniert, so dass durch das Einpressen der als Einpressstifte ausgebildeten zweiten Schenkel 42 eine kaltverschweißte Verbindung zwischen dem jeweiligen zweiten Schenkel 42 und der diesem zugeordneten Bohrung 102 gebildet ist. Alternativ dazu können diese elektrischen Verbindungen auch als Durchsteckverbindung ausgeführt sein. Hierzu sind die Bohrungen 102 etwas größer dimensioniert und als durchkontaktierte Bohrungen ausgebildet, durch die die zweiten Schenkel 42 hindurchgesteckt und anschließend verlötet werden. Diese Montageart ist auch als Durchstecktechnik ("THT - Through Hole Technology") bekannt. Das eigentliche thermische Fügen (Löten) kann dann mit Hilfe eines Roboters oder Automaten erfolgen, wodurch eine gleichbleibend gute Qualität der Lötstellen garantiert ist.
  • Die Bohrungen 101 sind im Vergleich zu den Bohrungen 102 deutlich größer dimensioniert und dienen lediglich der Aufnahme der jeweils ersten Schenkel 41 der Metallstifte 40. Da diese ersten Schenkel 41 der Kontaktierung der Enden der Sensorwicklungen 21 und 31 bzw. der Prüfwicklungen 22 und 32 mit dem jeweils zugeordneten Metallstift 40, nicht aber der Kontaktierung der Metallstifte 40 mit der Leiterplatte 100 dienen, stellen die zugeordneten Bohrungen 101 lediglich Aussparungen dar, in denen die ersten Schenkel 41 räumlich aufgenommen sind, um Beschädigungen zu verhindern.
  • Anhand der vorstehend beschriebenen Figuren wird abschließend das erfindungsgemäße Herstellverfahren für den allstromsensitiven Summenstromwandler 1 beschrieben: zunächst werden die Enden der ersten Sensorwicklung 21, welche um den ersten Magnetkern 20 gewickelt ist, und der Enden der zweiten Sensorwicklung 31, die um den zweiten Magnetkern 30 gewickelt ist, mit jeweils einem der ersten Schenkel 41 eines dem Ende der jeweiligen Wicklung zugewiesenen Metallstiftes 40 durch ein thermisches Fügeverfahren - beispielsweise Löten - elektrisch leitend verbunden. Dieses Fügeverfahren kann dabei sowohl manuell als auch automatisiert ausgeführt werden. Anschließend werden das erste Gehäuseteil 11, in dem der erste Magnetkern 20 aufgenommen und gehaltert ist, und das zweite Gehäuseteil 12, in dem der zweite Magnetkern 30 aufgenommen und gehaltert ist, zum Gehäuse 10 montiert. Schließlich wird zwischen den zweiten Schenkeln 42 der Metallstifte 40 und der Leiterplatte 100 über die zugeordnete Bohrung 102 eine zweite elektrisch leitende Verbindung hergestellt. Diese Verbindung kann dabei ebenfalls mit Hilfe eines thermischen Fügeverfahrens ausgeführt werden; dies ist jedoch nicht zwingend erforderlich.
  • Sind Prüfwicklungen 22, 32 vorhanden, so werden parallel zur Kontaktierung der Sensorwicklungen 21, 31 auch die Enden der Prüfwicklungen 22, 32 mit jeweils einem der ersten Schenkel 41 eines diesem Ende zugewiesenen Metallstiftes 40 durch das thermisches Fügeverfahren elektrisch leitend verbunden. Anschließend werden die Gehäuseteile 11 und 12 wiederum zusammengesteckt.
  • Dieses Verfahren hat den Vorteil, dass die Kontaktierung der Sensor- und Prüfwicklungen 21, 22, 31 und 32 mit der Leiterplatte 100 in zwei Schritten, und damit sowohl räumlich als auch zeitlich separiert voneinander, erfolgt. Auf diese Weise ist es möglich, auch bei räumlich beengten Platzverhältnissen und - damit einhergehend - schlechten ergonomischen Verhältnissen zwei qualitativ hochwertige, elektrisch leitende Verbindungen - vorzugsweise Lötverbindungen - auf nur einem Verbindungselement, dem jeweiligen Metallstift 40, herzustellen.
  • Für die technische Realisierung der zweiten elektrisch leitenden Verbindung zwischen den Metallstiften 40 und der Leiterplatte 100 bieten sich verschiedene Möglichkeiten:
    • Zum einen können diese Verbindungen aufgrund der definierten, stets gleichen Position der Metallstifte 40 relativ zum Gehäuse 10 des Summenstromwandlers 1 als Lötverbindungen mit Hilfe eines Roboters oder Automaten einfach, präzise und in kurzer Zeit mit gleichbleibend hoher Qualität hergestellt werden. Die Leiterplatte 100 benötigt hierzu lediglich günstig herzustellende, durchkontaktierte Bohrungen 102.
  • Weiterhin können die Metallstifte 40 als Einpressstifte ausgebildet sein. In diesem Fall kann die Leiterplatte 100, ebenfalls mit durchkontaktierten Bohrungen 102, mit Hilfe einer Einpressvorrichtung mit dem Summenstromwandler 1 elektrisch leitend verbunden werden. Durch die dabei aufzubringende Einpresskraft entsteht eine stabile, kaltverschweißte Verbindung zwischen dem Metallstift 40 und der Bohrung 102.
  • Ferner ist es möglich, auf der Leiterplatte 100 eine Steckerleiste anzuordnen, wobei die elektrisch leitende Verbindung mit dem Summenstromwandler 1 durch Eindrücken der Metallstifte 40 in die Steckerleiste realisiert wird. Schlussendlich können an die zweiten Schenkel 42 der Metallstifte 40 auch flexible Leitungen angelötet werden, um auf herkömmliche Weise eine elektrisch leitende Verbindung zu der Leiterplatte 100 zu realisieren.
  • Wird das Verfahren automatisiert oder teilautomatisiert ausgeführt, so ist es vorteilhaft, den Summenstromwandler 1 durch Schwenken oder durch eine lineare Zuführung derart mit der Leiterplatte 100 in Kontakt zu bringen, dass dabei zunächst die Positionierungselemente 14, und erst anschließend die Metallstifte 40 in Kontakt zur Leiterplatte 100 treten. Dadurch, dass die Positionierungselemente 14 voreilend zu den Metallstiften 40 sind, wird auf einfache Art und Weise eine exakte Positionierung der Metallstifte 40 relativ zur den ihnen zugeordneten Bohrungen 101 bzw. 102 auf der Leiterplatte 100 erreicht. Darüber hinaus können die Positionierungselemente 14 auch als Justage-Elemente für weitere vor- oder nachgelagerte Fertigungsschritte, beispielsweise das nachfolgende thermische Fügeverfahren, dienen.
  • Bezugszeichenliste
  • 1
    Summenstromwandler
    9
    Primärleiter
    10
    Gehäuse
    11
    erstes Gehäuseteil
    12
    zweites Gehäuseteil
    13
    Durchgangsöffnung
    14
    Positionierungselement
    15
    Folie
    16
    Isolierkreuz
    17
    Teilöffnung
    18
    Kontaktbereich
    19
    Montagezapfen
    20
    erster Magnetkern
    21
    erste Sensorwicklung
    22
    erste Prüfwicklung
    29
    Montageöffnung
    30
    zweiter Magnetkern
    31
    zweite Sensorwicklung
    32
    zweite Prüfwicklung
    40
    Metallstifte
    41
    erster Schenkel
    42
    zweiter Schenkel
    100
    Leiterplatte
    100a starre Bereiche
    100b flexible Bereiche
    101
    Bohrung
    102
    Bohrung
    103
    Positionieröffnung
    a
    Mittenachse

Claims (11)

  1. Allstromsensitiver Summenstromwandler (1) zur Erfassung eines elektrischen Differenzstromes,
    - mit einem zweiteiligen Gehäuse (10), aufweisend ein erstes Gehäuseteil (11) und ein zweites Gehäuseteil (12), welche fest aber lösbar miteinander verbunden sind, wobei das Gehäuse (10) eine Durchgangsöffnung (13) aufweist, die entlang einer Mittenachse (a) verläuft und zur Aufnahme mindestens zweier hinsichtlich des Differenzstromes zu überwachenden Primärleiter (9) bestimmt ist,
    - mit einem die Durchgangsöffnung (13) umgebenden ersten Magnetkern (20) zur Erfassung von Wechselfehlerströmen, welcher mit einer ersten Sensorwicklung (21) bewickelt und in dem ersten Gehäuseteil (11) aufgenommen und gehaltert ist,
    - mit einem die Durchgangsöffnung (13) umgebenden zweiten Magnetkern (30) zur Erfassung von Gleichfehlerströmen, welcher mit einer zweiten Sensorwicklung (31) bewickelt und in dem zweiten Gehäuseteil (12) aufgenommen und gehaltert ist,
    - wobei die beiden Magnetkerne (20, 30) in Richtung der Mittenachse (a) übereinander angeordnet sind,
    - mit mehreren Metallstiften (40), welche mit dem Gehäuse (10) fest verbunden sind und über eine Außenkontur des Gehäuses (10) hervorstehen,
    - wobei die erste Sensorwicklung (21) und die zweite Sensorwicklung (31) jeweils zwei Enden aufweisen, welche mit je einem der Metallstifte (40) elektrisch leitend verbunden sind,
    - wobei die Metallstifte (40) zur elektrischen Kontaktierung mit einer Leiterplatte (100) ausgebildet sind.
  2. Summenstromwandler (1) nach Anspruch 1,
    - bei der die Metallstifte (40) L-förmig ausgebildet sind und jeweils einen kurzen ersten Schenkel (41) sowie einen langen zweiten Schenkel (42) aufweisen,
    - wobei die Enden der Sensorwicklungen (21, 31) im Inneren des Gehäuses (10) jeweils mit einem der ersten Schenkel (41) verbunden sind, und
    - wobei die zweiten Schenkel (42) durch das Gehäuse (10) nach außen hindurchgeführt und zur elektrischen Kontaktierung mit der Leiterplatte (100) ausgebildet sind.
  3. Summenstromwandler (1) nach Anspruch 1,
    - bei der die Metallstifte (40) u-förmig ausgebildet sind und jeweils einen ersten Schenkel (41) sowie einen zweiten Schenkel (42) aufweisen, welche über die Außenkontur des Gehäuses (10) hervorstehen und über einen Steg miteinander verbunden sind,
    - wobei die Enden der Sensorwicklungen (21, 31) aus dem Gehäuse (10) herausgeführt und jeweils mit einem der ersten Schenkel (41) elektrisch leitend verbunden sind, und
    - wobei die zweiten Schenkel (42) zur elektrischen Kontaktierung mit der Leiterplatte (100) ausgebildet sind.
  4. Summenstromwandler (1) nach einem der vorhergehenden Ansprüche, wobei die Metallstifte (40) fest mit dem Gehäuse (10) verbunden sind.
  5. Summenstromwandler (1) nach einem der vorhergehenden Ansprüche, bei der zumindest einer der Magnetkerne (20, 30) eine Prüfwicklung (22, 32) aufweist, deren beide Enden mit jeweils einem der ersten Schenkel (41) der Metallstifte (40) elektrisch leitend verbunden sind.
  6. Summenstromwandler (1) nach einem der vorherigen Ansprüche, mit zumindest einem Positionierungselement (14), welches benachbart zu den Metallstiften (140) an dem Gehäuse (10) ausgebildet ist und zur Positionierung des Summenstromwandlers (1) relativ zur Leiterplatte (100) dient.
  7. Summenstromwandler (1) nach einem der vorherigen Ansprüche, bei dem zwischen dem ersten Gehäuseteil (11) und dem zweiten Gehäuseteil (12) eine durchschlagsfeste Folie (15) angeordnet ist.
  8. Elektromechanisches Schutzschaltgerät, insbesondere ein allstromsensitiver Fehlerstromschutzschalter, welcher einen allstromsensitiven Summenstromwandler (1), der nach einem der Ansprüche 1 bis 7 gebildet ist, mit einem ersten Magnetkern (20) zur Erfassung von Wechselfehlerströmen und einem zweiten Magnetkern (30) zur Erfassung von Gleichfehlerströmen, aufweist.
  9. Herstellverfahren für einen allstromsensitiven Summenstromwandler (1), der nach einem der nach einem der Ansprüche 1 bis 7 gebildet ist, mit den Schritten:
    a) Thermisches Fügen der Enden der ersten Sensorwicklung (21) und der Enden der zweiten Sensorwicklung (31) mit jeweils einem der ersten Schenkel (41) eines diesem Ende zugewiesenen Metallstiftes (40);
    b) Montieren des ersten Gehäuseteils (11) und des zweiten Gehäuseteils (12);
    c) Herstellen jeweils einer elektrisch leitenden Verbindung zwischen dem zweiten Schenkel (42) des jeweiligen Metallstiftes (40) und einer, dem betreffenden Metallstift (40) eindeutig zugeordneten und auf der Leiterplatte (100) ausgebildeten Kontaktstelle.
  10. Herstellverfahren nach Anspruch 9, wobei zwischen dem ersten Schritt a) und dem zweiten Schritt b) der weitere Schritt
    a1) Thermisches Fügen jeweils eines der Enden der ersten Prüfwicklung (22) und/oder der Enden der zweiten Prüfwicklung (32) mit jeweils einem der ersten Schenkel (41) eines dem betreffenden Ende zugewiesenen Metallstiftes (40);
    eingefügt ist.
  11. Herstellverfahren nach einem der Ansprüche 9 oder 10, wobei Schritt c) durch ein thermisches Fügeverfahren realisiert wird.
EP17204905.8A 2016-12-21 2017-12-01 Allstromsensitiver summenstromwandler, elektromechanisches schutzschaltgerät und herstellverfahren Active EP3340272B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016225879.6A DE102016225879A1 (de) 2016-12-21 2016-12-21 Allstromsensitiver Summenstromwandler, elektromechanisches Schutzschaltgerät und Herstellverfahren

Publications (2)

Publication Number Publication Date
EP3340272A1 true EP3340272A1 (de) 2018-06-27
EP3340272B1 EP3340272B1 (de) 2019-09-11

Family

ID=60543453

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17204905.8A Active EP3340272B1 (de) 2016-12-21 2017-12-01 Allstromsensitiver summenstromwandler, elektromechanisches schutzschaltgerät und herstellverfahren

Country Status (2)

Country Link
EP (1) EP3340272B1 (de)
DE (1) DE102016225879A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904069A (zh) * 2020-12-29 2021-06-04 宁波中科毕普拉斯新材料科技有限公司 一种注塑成型的电流互感器及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951573B (zh) * 2021-01-29 2022-08-19 杭州萧山玉峰电力科技有限公司 零序互感器
US11946983B2 (en) * 2021-09-10 2024-04-02 Abb Schweiz Ag Current transformer with test wire
US20230127478A1 (en) * 2021-10-26 2023-04-27 Vertiv Corporation Single package, dual current transformer for load and residual current measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8425340U1 (de) * 1984-08-27 1985-05-09 Siemens AG, 1000 Berlin und 8000 München Spulenkoerper
DE4417897A1 (de) * 1994-05-21 1995-11-23 Condor Werke Gebr Frede Gmbh & Verfahren zur Baugruppenmontage eines Summenstromwandlers
EP1693943A2 (de) * 2005-02-17 2006-08-23 Siemens Aktiengesellschaft Vorrichtung zur allstromsensitiven Erfassung eines elektrischen Differenzstromes
DE102005007334B4 (de) * 2005-02-17 2007-02-08 Siemens Ag Summenstromwandler zur allstromsensitiven Erfassung eines elektrischen Differenzstromes
DE102005050318B3 (de) * 2005-10-20 2007-03-15 Siemens Ag Wandlereinheit und Vorrichtung zur allstromsensitiven Erfassung eines elektrischen Differenzstromes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999780A1 (fr) * 2012-12-18 2014-06-20 Schneider Electric Ind Sas Dispositif modulaire de commutation electrique comportant au moins un bloc de coupure unipolaire et ensemble de commutation comportant de tels dispositifs.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8425340U1 (de) * 1984-08-27 1985-05-09 Siemens AG, 1000 Berlin und 8000 München Spulenkoerper
DE4417897A1 (de) * 1994-05-21 1995-11-23 Condor Werke Gebr Frede Gmbh & Verfahren zur Baugruppenmontage eines Summenstromwandlers
EP1693943A2 (de) * 2005-02-17 2006-08-23 Siemens Aktiengesellschaft Vorrichtung zur allstromsensitiven Erfassung eines elektrischen Differenzstromes
DE102005007334B4 (de) * 2005-02-17 2007-02-08 Siemens Ag Summenstromwandler zur allstromsensitiven Erfassung eines elektrischen Differenzstromes
DE102005050318B3 (de) * 2005-10-20 2007-03-15 Siemens Ag Wandlereinheit und Vorrichtung zur allstromsensitiven Erfassung eines elektrischen Differenzstromes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112904069A (zh) * 2020-12-29 2021-06-04 宁波中科毕普拉斯新材料科技有限公司 一种注塑成型的电流互感器及其制备方法

Also Published As

Publication number Publication date
DE102016225879A1 (de) 2018-06-21
EP3340272B1 (de) 2019-09-11

Similar Documents

Publication Publication Date Title
EP3340272B1 (de) Allstromsensitiver summenstromwandler, elektromechanisches schutzschaltgerät und herstellverfahren
EP2756554B1 (de) Elektrische reihenklemme und reihenklemmenblock
EP2580821B1 (de) Elektrische verteilereinrichtung und verfahren zur montage selbiger
WO2006058750A1 (de) Induktives bauelement und verfahren zum herstellen eines solchen induktiven beuelements
DE102015115264B3 (de) Zentrierhalteeinrichtung für eine Rogowski-Spule, Messeinrichtung, Leistungselektronikeinrichtung und ein Verfahren zur Anordnung einer Rogowski-Spule
DE102011012763A1 (de) Verfahren zum Herstellen einer elektrischen Schnittstelle und Schnittstelle
EP2047583A1 (de) Stator mit schaltscheibe
DE102012108276A1 (de) Elektrische Heizvorrichtung mit Anschlussdraht
EP3525227B1 (de) Netzspannungsunabhängiges fehlerstrom-schutzschaltgerät und montageverfahren
DE102014214066A1 (de) Elektrische Leiteranordnung und elektrische Maschine
DE102015205632A1 (de) Stromwandler und Strommesseinrichtung
DE102014208036A1 (de) Fehlerstromschutzschalter und Montageverfahren
DE102015115410A1 (de) Induktive Strommesswandlervorrichtung
EP1807847B1 (de) Gehäuse
EP2378528B1 (de) Stromwandlermodul für ein busfähiges Installationsgerät
DE202013010951U1 (de) Baugruppe zur Leiterplattenbestückung
DE102012201002B4 (de) Summenstromwandlergehäuse, Summenstromwandler und Fehlerstromschutzschalter
DE10104083C2 (de) Baueinheit aus einem Näherungsschalter und einem Kabelanschlußteil und Verfahren zu deren Herstellung
DE102010013764B4 (de) Verfahren zum Herstellen einer Tauchspulenanordnung
DE102006020045B4 (de) Zwischenstecker und Verfahren zur Herstellung eines Zwischensteckers
EP2983191B1 (de) Anordnung zur erfassung von störlichtbögen in einem niederspannungsnetz
DE20022774U1 (de) Kabel mit Anschlußelement
DE102010004223B4 (de) Verfahren zum Herstellen einer Stromerfassungseinrichtung
DE102011083921A1 (de) Schutzschaltgerät
DE102021208516A1 (de) Summenstromwandler und Fehlerstromschutzschalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181217

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 38/30 20060101ALI20190328BHEP

Ipc: H01H 83/14 20060101AFI20190328BHEP

Ipc: H01F 27/02 20060101ALI20190328BHEP

Ipc: H01F 38/40 20060101ALI20190328BHEP

Ipc: H01F 38/38 20060101ALI20190328BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190510

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1179551

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017002278

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017002278

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

26N No opposition filed

Effective date: 20200615

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191201

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231130

Year of fee payment: 7

Ref country code: IT

Payment date: 20231220

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1179551

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 7