EP3525227B1 - Netzspannungsunabhängiges fehlerstrom-schutzschaltgerät und montageverfahren - Google Patents

Netzspannungsunabhängiges fehlerstrom-schutzschaltgerät und montageverfahren Download PDF

Info

Publication number
EP3525227B1
EP3525227B1 EP19155063.1A EP19155063A EP3525227B1 EP 3525227 B1 EP3525227 B1 EP 3525227B1 EP 19155063 A EP19155063 A EP 19155063A EP 3525227 B1 EP3525227 B1 EP 3525227B1
Authority
EP
European Patent Office
Prior art keywords
primary conductor
switching device
protective switching
housing
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19155063.1A
Other languages
English (en)
French (fr)
Other versions
EP3525227A1 (de
Inventor
Andreas Mundt
Gerald NÖRL
Bernhard Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3525227A1 publication Critical patent/EP3525227A1/de
Application granted granted Critical
Publication of EP3525227B1 publication Critical patent/EP3525227B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/08Terminals; Connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/40Combined electrothermal and electromagnetic mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/20Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition
    • H01H83/22Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition the other condition being imbalance of two or more currents or voltages
    • H01H83/226Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition the other condition being imbalance of two or more currents or voltages with differential transformer

Definitions

  • the invention relates to a mains voltage-independent residual current circuit breaker with an insulating material housing which has a first and a second current path area which are separated from one another by a housing partition.
  • the residual current device has a first primary conductor, which is part of a first current path arranged in the first current path area, and a second primary conductor, which is part of a second current path arranged in the second current path area.
  • the residual current protective switching device has a thermal release device for detecting an overload condition and - for detecting a residual current - a summation current transformer through which the two primary conductors are passed.
  • the invention also relates to a method for assembling such a mains voltage-independent residual current circuit breaker.
  • Electromechanical protective switching devices for example circuit breakers, miniature circuit breakers or residual current circuit breakers - are used to monitor and protect an electrical circuit and are used in particular as switching and safety elements in electrical power supply networks.
  • the protective switching device is connected in an electrically conductive manner via two or more connection terminals to an electrical line of the circuit to be monitored in order to interrupt the electrical current in the respective monitored line if necessary.
  • the protective switching device has a switching contact which can be opened when a predefined state occurs, for example when a short circuit or a fault current is detected, in order to connect the monitored circuit from the electrical line network to separate.
  • Such protective switching devices are also known as modular devices in the field of low-voltage technology.
  • a residual current circuit breaker is a protective device to guarantee protection against a dangerous residual current in an electrical system.
  • a fault current - which is also referred to as differential current - occurs when a live part of the line has an electrical contact to earth. This is the case, for example, when a person touches a live part of an electrical system: in this case, the current flows as a fault current through the body of the person concerned to earth.
  • the residual current circuit breaker must quickly and safely disconnect all poles of the electrical system from the line network when such a residual current occurs.
  • FI circuit breaker short: FI switch
  • DI switch differential current circuit breaker
  • RCD residual current protective device
  • residual current circuit breakers To detect a fault or differential current, residual current circuit breakers usually have a summation current transformer, which determines the differential current by adding the electrical currents flowing in several, for example two to four, primary conductors in the correct phase.
  • the summation current transformer has a ring-shaped magnetic core through which the primary conductors (leading and returning lines) are passed. The magnetic core itself is wrapped with a secondary conductor. If the current flow in the electrical lines leading there and back is the same, no induction current is induced in the secondary conductor. On the other hand, if a fault current flows to earth, the currents flowing in the primary conductors no longer cancel each other out. As a result, a voltage proportional to the current difference is induced in the secondary winding, which, as a fault current signal, triggers the protective switching device after a predetermined value has been exceeded.
  • the DE 10 2014 208036 A1 describes a residual current circuit breaker and assembly method for a modular device for use in an electrical installation distributor.
  • the residual current circuit breaker has an insulating material housing with a front side, a fastening side opposite the front side, and narrow and broad sides connecting the front and the fastening side.
  • the DE 10 2011 079593 A1 describes an electromechanical circuit breaker, in particular a line circuit breaker or circuit breaker, with a first triggering device for detecting and disconnecting a short circuit, a second triggering device for detecting and disconnecting an overload condition, a switching contact which has a fixed contact and a moving contact that is movable relative to it, and a trigger lever, which is coupled to the first triggering device in such a way that when the first triggering device and / or the second triggering device is triggered, the triggering lever is actuated and the switching contact is opened.
  • the EP 1 693 943 A2 describes a device for all-current sensitive detection of an electrical differential current.
  • the special arrangement of the, in particular, cylindrical summation current transformer results in the possibility of a special space-saving and in particular also simple to manufacture construction of the device as a whole.
  • the DE 44 17 897 A1 describes a method for assembling a summation current transformer.
  • the formation of assembly groups makes separate pre-assembly of individual functional parts superfluous and these groups can be handled in a closed manner.
  • the object of the invention is therefore to provide a mains voltage-independent residual current circuit breaker with a summation current transformer and an assembly method for such a mains voltage-independent residual current circuit breaker which, with a compact design of the residual current circuit breaker, enable high reliability with lower installation and manufacturing costs.
  • this object is achieved by the mains voltage-independent residual current protective switching device and the method for mounting the summation current converter according to the independent claims.
  • Advantageous embodiments of the residual current circuit breaker according to the invention or the assembly method according to the invention are the subject matter of the dependent claims.
  • the mains voltage-independent residual current circuit breaker has an insulating material housing with a first and a second current path area, which are separated from one another by a housing partition.
  • a first primary conductor which is part of a first current path, is arranged in the first current path area.
  • a second primary conductor which is part of a second current path, is arranged in the second current path area.
  • the protective switching device has a summation current transformer, which is received in an opening in the housing partition, the first primary conductor and the second primary conductor through the summation current transformer are passed through.
  • a first end of the first primary conductor is electrically conductively connected to a first contacting element of the protective switching device assigned to this end by means of a high-temperature-resistant joint, formed by welding or brazing, with a preassembled module through the summation current transformer with the first primary conductor passed through and the first contacting element attached to it is formed. Furthermore, a first and a second end of the second primary conductor are each electrically conductively connected to a contacting element of the protective switching device assigned to the respective end by means of non-high-temperature-resistant joint connections, formed by soft soldering.
  • the heat-resistant joint is formed by welding or brazing.
  • Welding and brazing are integral joining processes, which are characterized by high strength. In this way, the functionality - and thus the reliability of the protective switching device - can be guaranteed.
  • the joint connection which is not highly heat-resistant, is formed by soft soldering.
  • Soft soldering differs from hard soldering or welding in that it has a significantly lower process temperature. With this method, the heat input into the insulating housing can be significantly reduced, whereby the risk of damage to neighboring components of the protective switching device is significantly reduced. Soft soldering is only mentioned here as an example for a joint connection that is not highly heat-resistant; in principle, however, any joining method can be considered in which the energy input into the device can be kept comparatively low.
  • mains voltage independent means that the protective switching device does not need a mains voltage in the event of a fault current to generate a trigger signal (for example to feed a trigger electronics), but that the trigger signal is generated from the detected fault current alone without an additional mains voltage - for example with With the help of a so-called holding magnet.
  • Mains voltage-independent residual current circuit breakers are not dependent on any auxiliary or mains voltage to fulfill their function and therefore do not require any auxiliary or mains voltage to implement the tripping function.
  • the insulating housing is used to accommodate and hold the components and to attach the circuit breaker to a mounting or top hat rail, as used in common electrical installation distributors. It is essentially cuboid and has a front side, a fastening side opposite the front side, and narrow and broad sides connecting the front and fastening sides.
  • the first and second current path areas are separated from one another in the width direction and electrically isolated from one another by the housing partition.
  • the insulating material housing has a width of only one division unit (TE), which corresponds to a housing width of approx. 18 mm.
  • the housing partition which runs parallel to the broad sides of the insulating material housing, can be formed by a housing middle part, which can be closed on both sides with the aid of two housing cover parts after the individual components of the protective switching device have been installed.
  • the cover parts thus represent housing covers which form the broad sides of the insulating material housing and cover the interior of the insulating material housing on these broad sides.
  • the summation current transformer is a ring-shaped magnetic core with a secondary winding, through which the primary conductors are passed.
  • the summation current transformer is received in an opening formed in the housing partition so that the first primary conductor in the first current path area and the second primary conductor in the second current path area can be passed through the annular magnetic core.
  • the functionality of a summation current transformer is based on the magneto-inductive principle: if the electrical current flowing in the first primary conductor is the same as the electrical current flowing back in the second primary conductor, if the two electrical currents are added with the correct sign, the magnetic fields generated by them cancel each other out - consequently, in the secondary winding does not induce an electric current. If, on the other hand, the electrical current flowing back and forth in the two primary conductors is different, the resulting magnetic field induces an induction current in the secondary winding, which then triggers the residual current device.
  • the pre-assembled module enables these assembly processes to be carried out without spatial restrictions (limited space) in parallel with the assembly of the protective switching device.
  • the installation time, and thus the installation effort, can be significantly reduced in this way.
  • the first contacting element is part of a thermal release device for detecting an overload condition.
  • the thermal release device is often part of a circuit breaker. With so-called combination devices, the functionality of a residual current circuit breaker is combined with that of a line circuit breaker: one then speaks of so-called FI / LS or LS / DI switches. In English-speaking countries, the term RCBO (for residual current operated circuit breaker with overcurrent protection) is common.
  • the thermal release device can be formed by a bimetallic element or also by a shape memory element through which the electric current flows directly or indirectly and which heats up in the process. If the temperature is too great, the bimetallic element or the shape memory element deforms. This change in shape is transferred to a trigger mechanism - for example a switch lock of the protective switching device - whereby the protective switching device is triggered and the current in the electrical line to be monitored is interrupted.
  • the protective switching device there is also a second end of the first primary conductor electrically conductively connected by means of a further high-temperature-resistant joint connection to a second contacting element of the protective switching device assigned to this end.
  • connection of the second end of the first primary conductor to the further, second contact-making element can also be produced by a high-temperature-resistant joint outside the insulating material housing. In this way, a reliable, materially bonded connection with high strength is produced - without the high energy input into the insulating housing which is usually associated therewith.
  • the second contacting element is formed by a connection terminal of the protective switching device.
  • the second primary conductor is also part of the preassembled assembly.
  • the second primary conductor does not have to be threaded through the summation current transformer afterwards, but can be passed through the summation current transformer outside the insulating material housing without its spatial restriction. The assembly effort can thereby be further reduced.
  • the first primary conductor and / or the second primary conductor are designed as rigid conductors.
  • Rigid conductors have the advantage of dimensional stability and can be made more massive than flexible strands, which is particularly important for circuit breaker types that are intended for higher currents.
  • a summation current transformer already installed in the insulating material housing, however, it is difficult or even impossible to thread the rigid conductors through the summation current transformer due to the limited space available.
  • the advantage of rigid primary conductors therefore comes into play particularly during the pre-assembly of the module: in this case the assembly time - and thus the assembly effort - can be significantly reduced.
  • the protective switching device is designed as an RCBO combination device which, in addition to the functionality of the residual current circuit breaker, has the functionality of a line circuit breaker.
  • the protective switching device also has the functionality - and thus the components - of a line circuit breaker, for example a thermal release device to detect an overload condition and an electrodynamic release device to detect a short circuit.
  • a line circuit breaker for example a thermal release device to detect an overload condition and an electrodynamic release device to detect a short circuit.
  • Combination devices of this type have the advantage that they combine the functionality of several individual devices in a common housing - with generally the same or less structural volume, compared with the structural volumes of the individual devices.
  • the insulating material housing has a width of only one division unit.
  • Common single-pole miniature circuit breakers mostly have a housing width of one module (corresponds to approx. 18mm), as do common single-pole residual current circuit breakers.
  • a single-pole residual current circuit breaker which with a width of one division unit also has the functionality of a circuit breaker has completely or partially, is characterized by an extremely compact arrangement and represents a space-saving alternative to the use of the corresponding individual devices the first primary conductor and the thermal release device is exposed to a significantly higher thermal load.
  • FILS devices which combine the functional scope of a conventional residual current circuit breaker (FI) with that of a line circuit breaker (LS) with a housing width of two modules.
  • FI residual current circuit breaker
  • LS line circuit breaker
  • mains voltage-dependent residual current circuit breakers which, due to the smaller current transformers used there, offer more space and thus a greater distance between the joints and other device components as well as the insulating housing.
  • the joint connections can optionally also be produced by means of non-heat-resistant joining processes, for example by means of soft soldering.
  • the energy input into the insulating housing which would occur when creating the high-temperature-resistant joint in the installation position in the insulating housing, i.e. in the assembled state, can be avoided. Any damage to the protective switching device that may be caused by this is also effectively avoided in this way. Since significantly lower temperatures occur when creating the non-high-temperature-resistant joints, these can be carried out in the installation position of the components to be joined, i.e. to be connected, in the second current path area of the insulating material housing without temperature-related damage to the protective switching device. This significantly improves the reliability of the assembly process. With regard to the further advantages of the assembly method according to the invention, reference is made to the above statements on the advantages of the protective switching device according to the invention.
  • the preassembled assembly also includes the electrical connection terminal to which the second end of the first primary conductor is connected by means of a further high-temperature joint before the assembly is inserted into the opening formed in the housing partition.
  • the preassembled assembly also contains the second primary conductor.
  • this assembly step can be carried out in a significantly simplified manner outside the insulating material housing before the pre-assembled assembly is inserted into the insulating material housing will.
  • the assembly effort and the associated error rate can be significantly reduced as a result.
  • the advantage of the mains voltage-independent residual current circuit breaker according to the invention and the assembly method according to the invention is essentially based on the fact that the high-temperature-resistant joints are only made where greater strength is required due to the increased temperature stress on the joint during operation of the residual current circuit breaker. This higher thermal load occurs in particular at the joint between the first primary conductor and the thermal release. Since the high-temperature-resistant joint connections are produced outside the insulating material housing, no temperature input into the insulating material housing is connected, so that damage to the insulating material housing caused thereby or the other components of the residual current device included therein are effectively prevented.
  • FIG. 1 shows a view from below of the residual current circuit breaker 1 is shown in FIG Figure 2 a corresponding side view of the circuit breaker 1 is shown; Figure 3 shows a plan view corresponding to this in turn.
  • the mains voltage-independent residual current circuit breaker 1 according to the invention has an insulating material housing 2 with a front side 4, a fastening side 5 opposite the front side 4 and narrow sides 6 and broad sides 7 connecting the front side 4 and the fastening side 5.
  • the insulating material housing 2 has a first current path area 8 and a second current path area 9, which are separated from one another by a housing partition wall 10.
  • the housing partition wall 10 runs parallel to the broad sides 7 from one narrow side 6 to the other narrow side 6 of the insulating material housing 2.
  • the two current path areas 8 and 9 are thus arranged side by side in the width direction.
  • first current path area 8 there is a physical first current path 11 which runs from one narrow side 6 to the other narrow side 6 and is connected in an electrically conductive manner to the phase conductor of the electrical circuit to be monitored during installation.
  • second current path area 9 there is accordingly a physical second current path 12, which also runs from one narrow side 6 to the other narrow side 6 and is connected in an electrically conductive manner to the neutral conductor of the electrical circuit to be monitored during installation.
  • the protective switching device 1 thus has a phase conductor side (P side) in which the first current path is arranged and a neutral conductor side (N side) in which the second current path is arranged.
  • each of the two current path areas 8 and 9 has electrical connection terminals 30 - an input terminal and an output terminal. The respective input terminal of the relevant current path is via the two current paths 11 and 12, respectively 11 and 12 are electrically conductively connected to the respective output terminal of this current path.
  • the mains voltage-independent residual current circuit breaker 1 On its front side 4, the mains voltage-independent residual current circuit breaker 1 according to the invention has an actuating element 3 for manual actuation.
  • the protective switching device 1 can be fastened to a latching or top hat rail via the fastening side 5 opposite the front side 4.
  • Such latching rails or top hat rails are used as standard in electrical installation distributors for the attachment of modular devices.
  • the insulating material housing 2 advantageously has a width of only one division unit (1TE).
  • FIG. 4 shows a schematic side view of a pre-assembled summation current transformer assembly 20.
  • the assembly 20 has a summation current transformer 21, which is simply wrapped with a first primary conductor P, which is part of the first current path 11 arranged in the first current path area 8.
  • a first end P1 of the first primary conductor P is electrically conductively connected by means of a highly heat-resistant joint connection to a first contacting element 27, which is part of a thermal release device 22.
  • the thermal release device 22 also has a bimetal element 23, which is electrically conductively connected to the first contacting element 27, a moving contact 24, which is electrically conductively connected to the bimetal element 23 via a strand 28, as well as a blow loop 25 and an arc guide rail 26 .
  • the first primary conductor P is electrically conductively connected to a connection terminal 30 of the protective switching device 1 by means of a further highly heat-resistant joint connection.
  • the two highly heat-resistant joints between the first primary conductor P and the thermal release device 22 on the one hand and the connecting terminal 30 on the other hand can be formed, for example, by means of welding or brazing.
  • the summation current transformer 21 is with a second Primary conductor N (see Figure 7 ), which is part of the second current path 12 arranged in the second current path area 9, is simply wrapped around it.
  • FIG. 5 shows schematically the preassembled summation current transformer assembly 20 before it is installed in the housing partition wall 10 in a perspective view.
  • the housing partition 10 is designed as part of the housing middle part 14, which contains the housing partition 10 and can be equipped with the components of the residual current circuit breaker 1 on both sides.
  • the housing middle part 14 is closed on both sides by means of two housing covers (not shown) which are fastened to the housing middle part 14.
  • the two housing covers then cover the insulating housing 2 towards the broad sides 7 and thus form the outer broad sides 7 of the insulating housing 2.
  • the housing cover can be fastened to the housing middle part 14, for example, by means of rivets and / or snap-in connections.
  • the summation current transformer assembly 20 inserted into the housing middle part 14 is shown schematically in various side views. It represents Figure 6 represents a side view of the phase conductor side (P-side) of the housing middle part 14, Figure 7 shows a side view of the opposite neutral conductor side (N side). Both on the P-side and on the N-side in the area of the narrow sides 6 there is a terminal receiving space 15 in which the electrical connection terminals 30 of the residual current circuit breaker 1 are received and held during assembly. From the Figures 6 and 7 it becomes clear that the space available in the interior of the insulating housing 2 is very limited. On the one hand, the width of the summation current transformer 21 essentially corresponds to the inside width of the insulating material housing 2 between the two broad sides 7.
  • the opening 13 formed in the housing middle part 14 for receiving the summation current transformer 21 is not much larger than the summation current transformer 21 itself.
  • the two ends N1 and N2 of the second primary conductor N must be guided close to the summation current transformer 21 in order to still fit through the opening 13 when the pre-assembled summation current transformer assembly 20 is installed. For this reason, too, it makes sense to design the second primary conductor N as a rigid conductor.
  • Figure 8 shows schematically a to Figure 7 Corresponding detailed representation of the non-highly heat-resistant joints of the summation current transformer assembly 20 in the assembled state.
  • the non-highly heat-resistant joints serve to connect the first end N1 or the second end N2 of the second primary conductor N with a contact element 16 or 17 (see FIG to connect electrically conductive.
  • Figure 9 the summation current transformer assembly 20, which is completely mounted in the insulating housing 2, is shown schematically in a perspective view.
  • Figure 9 shows again the N-side of the residual current circuit breaker 1, the non-heat-resistant joints of the summation current transformer assembly 20 with the contacting element 16 or 17 assigned to the respective end N1 or N2 have already been made.
  • the first end N1 of the second primary conductor N is connected in an electrically conductive manner via a contacting element 16 to a connection terminal 30 assigned to this end N1.
  • the second end N2 of the second primary conductor N is connected in an electrically conductive manner to the fixed contact 18 of the circuit breaker 1 via a further contacting element 17 which is molded onto the fixed contact carrier 19.
  • the fixed contact 18 forms the N-side switching contact of the protective switching device 1 with a contact element arranged on the moving contact 24.
  • the second end N2 is indirectly electrically conductively connected to the terminal associated with the second primary conductor N via the closed switching contact.
  • the assembly 20 consisting of the summation current transformer 21, the first primary conductor P and the thermal release device 22, is preassembled.
  • the first primary conductor P is first passed through the summation current transformer 21. If necessary, the first primary conductor P can also be wound once or several times around the magnetic core of the summation current transformer 21.
  • the first end P1 of the first primary conductor P is then electrically conductively connected to the first contacting element 27, which is part of the thermal release device 22, by means of a highly heat-resistant joint.
  • the second end P1 of the first primary conductor P is advantageously also connected in an electrically conductive manner to the P-side connection terminal 30 of the protective switching device 1 assigned to this end by means of a further high-temperature-resistant joint. Furthermore, it is advantageous in the first step to already lead the second primary conductor N through the summation current transformer 21 and, if necessary, to wind it once or several times around its magnetic core. However, these two assembly steps do not necessarily have to be carried out in this order in order to carry out the assembly method according to the invention.
  • the pre-assembled assembly 20 is inserted on the P side into the opening 13 formed in the housing partition wall 10, wherein the thermal release device 22 is positioned in the first current path area 8 of the insulating material housing 2.
  • a part of the summation current transformer 21 protrudes through the opening 13 into the second current path area 9 of the insulating material housing 2.
  • the first end N1 and the second end N2 of the second primary conductor N become electrically conductive with the contacting element 16 or 17 directly and clearly assigned to the respective end N1 or N2 in their installation position in the second current path area 9 by means of non-high-temperature-resistant joints tied together.
  • the connection terminal 30 assigned to the first end N1 is plugged onto the first end N1;
  • the fixed contact carrier 19 assigned to the second end N2 is plugged onto the second end N2.
  • Both N-side joining connections are made with the help of a non-heat-resistant joining process, for example by means of soft soldering. Since this is associated with a lower heat input, no device contours or components of the residual current circuit breaker 1 are excessively stressed as a result.
  • the non-heat-resistant joints can also be created using any other joining method, provided that the heat input into the device is low and the plastic walls of the insulating housing 2 are not damaged as a result.
  • those joints that are exposed to high thermal loads due to the device-related technology and design are designed as high-temperature-resistant joints outside the device.
  • those connections that are exposed to a lower thermal load in the device can accordingly be designed as less temperature-stable, not highly heat-resistant joint connections, for example by soft soldering. Since this is associated with a significantly lower heat input, these connections can also be made in the device, ie when the components to be joined are already installed in the insulating material housing 2. Due to the special design of the primary conductors P and N and their ends P1, P2, N1 and N2, it is not necessary to shape the primary conductors P and N after assembly in the insulating housing 2 by a further bending process. This further simplifies assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Breakers (AREA)

Description

  • Die Erfindung betrifft ein netzspannungsunabhängiges Fehlerstrom-Schutzschaltgerät mit einem Isolierstoffgehäuse, das einen ersten und einen zweiten Strompfadbereich aufweist, die durch eine Gehäusetrennwand voneinander getrennt sind. Das Fehlerstrom-Schutzschaltgerät weist hierbei einen ersten Primärleiter, der Teil eines im ersten Strompfadbereich angeordneten ersten Strompfades ist, sowie einen zweiten Primärleiter, der Teil eines im zweiten Strompfadbereich angeordneten zweiten Strompfades ist, auf. Darüber hinaus weist das Fehlerstrom-Schutzschaltgerät zur Erfassung eines Überlastzustandes eine thermischen Auslöseeinrichtung sowie - zur Erfassung eines Fehlerstroms - einen Summenstromwandler, durch den die beiden Primärleiter hindurchgeführt sind, auf. Ferner betrifft die Erfindung ein Verfahren zur Montage eines derartigen netzspannungsunabhängigen Fehlerstrom-Schutzschaltgerätes.
  • Elektromechanische Schutzschaltgeräte - beispielsweise Leistungsschalter, Leitungsschutzschalter oder Fehlerstromschutzschalter - dienen der Überwachung sowie der Absicherung eines elektrischen Stromkreises und werden insbesondere als Schalt- und Sicherheitselemente in elektrischen Energieversorgungsnetzen eingesetzt. Zur Überwachung und Absicherung des elektrischen Stromkreises wird das Schutzschaltgerät über zwei oder mehrere Anschlussklemmen mit einer elektrischen Leitung des zu überwachenden Stromkreises elektrisch leitend verbunden, um bei Bedarf den elektrischen Strom in der jeweiligen überwachten Leitung zu unterbrechen. Das Schutzschaltgerät weist hierzu einen Schaltkontakt auf, der bei Auftreten eines vordefinierten Zustandes, beispielsweise bei Erfassen eines Kurzschlusses oder eines Fehlerstromes, geöffnet werden kann, um den überwachten Stromkreis vom elektrischen Leitungsnetz zu trennen. Derartige Schutzschaltgeräte sind auf dem Gebiet der Niederspannungstechnik auch als Reiheneinbaugeräte bekannt.
  • Ein Fehlerstromschutzschalter ist eine Schutzeinrichtung zur Gewährleistung eines Schutzes gegen einen gefährlichen Fehlerstrom in einer elektrischen Anlage. Ein derartiger Fehlerstrom - welcher auch als Differenzstrom bezeichnet wird - tritt auf, wenn ein spannungsführendes Leitungsteil einen elektrischen Kontakt gegen Erde aufweist. Dies ist beispielsweise dann der Fall, wenn eine Person ein spannungsführendes Teil einer elektrischen Anlage berührt: in diesem Fall fließt der Strom als Fehlerstrom durch den Körper der betreffenden Person gegen die Erdung ab. Zum Schutz gegen derartige Körperströme muss der Fehlerstromschutzschalter bei Auftreten eines derartigen Fehlerstroms die elektrische Anlage schnell und sicher allpolig vom Leitungsnetz trennen. Im Allgemeinen Sprachgebrauch werden anstelle des Begriffs "Fehlerstromschutzschalter" auch die Begriffe FI-Schutzschalter (kurz: FI-Schalter), Differenzstromschutzschalter (kurz: DI-Schalter) oder RCD (für "Residual Current Protective Device") gleichwertig verwendet.
  • Bei Fehlerstromschutzschaltern wird ferner zwischen netzspannungsabhängigen und netzspannungsunabhängigen Geräten unterschieden: während netzspannungsabhängige Fehlerstromschutzschalter eine Steuerungselektronik mit einem Auslöser aufweisen, die zur Erfüllung ihrer Funktion auf eine Hilfs- oder Netzspannung angewiesen ist, benötigen netzspannungsunabhängige Fehlerstromschutzschalter zur Realisierung der Auslösefunktion keine Hilfs- oder Netzspannung, sondern weisen zur Realisierung der netzspannungsunabhängigen Auslösung in der Regel einen großen Summenstromwandler mit einem sogenannten, über die Sekundärwicklung des Summenstromwandlers gekoppelten Haltemagneten auf.
  • Daneben existieren auch Gerätebauformen, bei denen die Funktionalität eines Fehlerstrom-Schutzschalters mit der Funktionalität eines Leitungsschutzschalters kombiniert wird: derartige kombinierte Schutzschaltgeräte werden im Deutschen als FILS oder im englischsprachigen Raum als RCBO (für Residual current operated Circuit-Breaker with Overcurrent protection) bezeichnet. Diese Kombigeräte haben im Vergleich zu getrennten Fehlerstrom- und Leitungsschutzschaltern den Vorteil, dass jeder Stromkreis seinen eigenen Fehlerstrom-Schutzschalter aufweist: Normalerweise wird ein einziger FehlerstromSchutzschalter für mehrere Stromkreise verwendet. Kommt es zu einem Fehlerstrom, werden somit in Folge alle abgesicherten Stromkreise abgeschaltet. Durch den Einsatz von RCBOs wird nur der jeweils betroffene Stromkreis abgeschaltet.
  • Zur Erfassung eines Fehler- oder Differenzstromes weisen Fehlerstromschutzschalter in der Regel einen Summenstromwandler auf, welcher den Differenzstrom durch eine phasenrichtige Addition der in mehreren, beispielsweise in zwei bis vier, Primärleitern fließenden elektrischen Ströme ermittelt. Der Summenstromwandler weist hierzu einen ringförmigen Magnetkern auf, durch den die Primärleiter (hin- und rückführende Leitungen) hindurchgeführt sind. Der Magnetkern selbst ist mit einem Sekundärleiter umwickelt. Ist der Stromfluss in den hin- und rückführenden elektrischen Leitungen gleich, so wird in dem Sekundärleiter kein Induktionsstrom induziert. Fließt hingegen ein Fehlerstrom gegen Erde ab, so heben sich die in den Primärleitern fließenden Ströme nicht mehr gegenseitig auf. Dadurch wird in der Sekundärwicklung eine der Stromdifferenz proportionale Spannung induziert, die als Fehlerstromsignal nach Überschreiten eines vorbestimmten Wertes zum Auslösen des Schutzschaltgerätes führt.
  • Da bei Anwendungen in der Elektroinstallationstechnik der zur Verfügung stehende Bauraum - beispielsweise in einem Elektroinstallationsverteiler - zumeist stark begrenzt ist, besteht die Notwendigkeit, die Schutzschaltgeräte möglichst kompakt zu gestalten. Auf der anderen Seite werden immer mehr Funktionalitäten in die Geräte integriert bzw. Kombigeräte entwickelt, welche den Funktionsumfang mehrerer Einzelgeräte abdecken: so gibt es beispielsweise sogenannte FILS-Schutzschaltgeräte, welche den Funktionsumfang eines herkömmlichen Fehlerstromschutzschalters (FI) mit dem eines Leitungsschutzschalters (LS) kombinieren. Weiterhin sollen immer höhere Nennstromstärken realisiert werden. Diese Entwicklungen führen allesamt dazu, dass im Inneren der Geräte immer weniger Bauraum zur Verfügung steht.
  • Die DE 10 2014 208036 A1 beschreibt einen Fehlerstromschutzschalter und Montageverfahren für ein Reiheneinbaugerät zur Verwendung in einem Elektroinstallationsverteiler. Der Fehlerstromschutzschalter weist ein Isolierstoffgehäuse mit einer Frontseite, eine der Frontseite gegenüberliegende Befestigungsseite, sowie die Front- und die Befestigungsseite verbindende Schmal- und Breitseiten auf.
  • Die DE 10 2011 079593 A1 beschreibt ein elektromechanisches Schutzschaltgerät, insbesondere einen Leitungsschutzschalter oder Leistungsschalter, mit einer ersten Auslöseeinrichtung zur Erfassung und Abschaltung eines Kurzschlusses, einer zweiten Auslöseeinrichtung zur Erfassung und Abschaltung eines Überlastzustandes, einem Schaltkontakt, welcher einen Festkontakt sowie einen relativ dazu beweglichen Bewegkontakt aufweist, sowie einem Auslösehebel, welcher mit der ersten Auslöseeinrichtung derart gekoppelt ist, dass bei Auslösen der ersten Auslöseeinrichtung und/oder der zweiten Auslöseeinrichtung der Auslösehebel betätigt und der Schaltkontakt geöffnet wird.
  • Die EP 1 693 943 A2 beschreibt eine Vorrichtung zur allstromsensitiven Erfassung eines elektrischen Differenzstroms. Die spezielle Anordnung des insbesondere zylinderförmigen Summenstromwandlers ergibt die Möglichkeit zu einer besonders platzsparenden und insbesondere auch einfach herzustellenden Bauweise der Vorrichtung insgesamt.
  • Die DE 44 17 897 A1 beschreibt ein Verfahren zur Baugruppenmontage eines Summenstromwandlers. Durch die Bildung von Montageverbänden wird ein separates Vormontieren einzelner Funktionsteile überflüssig und eine geschlossene Handhabung dieser Verbände möglich.
  • Die Aufgabe der Erfindung besteht somit darin, ein netzspannungsunabhängiges Fehlerstrom-Schutzschaltgerät mit einem Summenstromwandler sowie ein Montageverfahren für ein derartiges netzspannungsunabhängiges Fehlerstromschutzschaltgerät bereitzustellen, welche bei einer kompakten Bauform des Fehlerstrom-Schutzschaltgerätes eine hohe Zuverlässigkeit bei gleichzeitig geringerem Montage- und Herstellaufwand ermöglichen.
  • Diese Aufgabe wird erfindungsgemäß durch das netzspannungsunabhängige Fehlerstrom-Schutzschaltgerät sowie das Verfahren zur Montage des Summenstromwandlers gemäß den unabhängigen Ansprüchen gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Fehlerstrom-Schutzschaltgerätes bzw. des erfindungsgemäßen Montageverfahrens sind Gegenstand der abhängigen Ansprüche.
  • Das erfindungsgemäße netzspannungsunabhängige Fehlerstrom-Schutzschaltgerät weist ein Isolierstoffgehäuse mit einem ersten und einem zweiten Strompfadbereich auf, die durch eine Gehäusetrennwand voneinander getrennt sind. Dabei ist ein erster Primärleiter, der Teil eines ersten Strompfades ist, im ersten Strompfadbereich angeordnet. Ein zweiter Primärleiter, der Teil eines zweiten Strompfades ist, ist im zweiten Strompfadbereich angeordnet. Weiterhin weist das Schutzschaltgerät einen Summenstromwandler auf, der in einer Öffnung der Gehäusetrennwand aufgenommen ist, wobei der erste Primärleiter und der zweite Primärleiter durch den Summenstromwandler hindurchgeführt sind. Ein erstes Ende des ersten Primärleiters ist dabei mittels einer hochwarmfesten Fügeverbindung, gebildet durch Schweißen oder Hartlöten, mit einem diesem Ende zugeordneten ersten Kontaktierungselement des Schutzschaltgerätes elektrisch leitend verbunden, wobei durch den Summenstromwandler mit dem hindurchgeführten ersten Primärleiter sowie dem daran befestigten ersten Kontaktierungselement eine vormontierte Baugruppe gebildet ist. Ferner sind ein erstes und ein zweites Ende des zweiten Primärleiters mittels nicht-hochwarmfester Fügeverbindungen, gebildet durch Weichlöten, jeweils mit einem dem jeweiligen Ende zugeordneten Kontaktierungselement des Schutzschaltgerätes elektrisch leitend verbunden.
  • Die hochwarmfeste Fügeverbindung ist durch Schweißen oder Hartlöten gebildet.
  • Das Schweißen sowie das Hartlöten stellen stoffschlüssige Fügeverfahren dar, welche sich durch eine hohe Festigkeit auszeichnen. Auf diese Weise kann die Funktionsfähigkeit - und damit die Zuverlässigkeit des Schutzschaltgerätes - gewährleistet werden.
  • Die nicht-hochwarmfeste Fügeverbindung ist durch Weichlöten gebildet.
  • Das Weichlöten unterscheidet sich vom Hartlöten oder auch vom Schweißen durch die deutlich geringere Prozess-Temperatur. Durch dieses Verfahren kann der Wärmeeintrag in das Isolierstoffgehäuse signifikant reduziert werden, wodurch die Gefahr von Beschädigungen benachbarter Komponenten des Schutzschaltgerätes deutlich reduziert wird. Das Weichlöten ist an dieser Stelle nur beispielhaft für eine nicht-hochwarmfeste Fügeverbindung genannt; prinzipiell kommt aber jedes Fügeverfahren in Betracht, bei dem der Energieeintrag in das Gerät vergleichsweise gering gehalten werden kann.
  • Unter dem Begriff "netzspannungsunabhängig" ist zu verstehen, dass das Schutzschaltgerät im Falle eines Fehlerstromes zur Generierung eines Auslösesignals (beispielsweise zur Speisung einer Auslöseelektronik) keine Netzspannung benötigt, sondern dass das Auslösesignal ohne eine zusätzliche Netzspannung alleine aus dem detektierten Fehlerstrom generiert wird - beispielsweise mit Hilfe eines sogenannten Haltemagneten. Netzspannungsunabhängige Fehlerstromschutzschalter sind zur Erfüllung ihrer Funktion auf keinerlei Hilfs- oder Netzspannung angewiesen und benötigen somit zur Realisierung der Auslösefunktion keine Hilfs- oder Netzspannung.
  • Das Isolierstoffgehäuse dient der Aufnahme und Halterung der Komponenten sowie der Befestigung des Schutzschaltgerätes an einer Trag- oder Hutschiene, wie sie in gängigen Elektroinstallationsverteilern verwendet werden. Es ist im Wesentlichen quaderförmig ausgebildet und weist eine Frontseite, einer der Frontseite gegenüberliegende Befestigungsseite sowie die Front- und die Befestigungsseite verbindende Schmal- und Breitseiten auf. Durch die Gehäusetrennwand werden der erste und der zweite Strompfadbereich in Breitenrichtung voneinander getrennt sowie elektrisch voneinander isoliert.
  • In Schmalbauweise weist das Isolierstoffgehäuse eine Breite von nur einer Teilungseinheit (TE) auf, was einer Gehäusebreite von ca. 18mm entspricht. Die Gehäusetrennwand, welche parallel zu den Breitseiten des Isolierstoffgehäuses verläuft, kann durch ein Gehäusemittelteil gebildet sein, welches nach der Montage der einzelnen Komponenten des Schutzschaltgerätes mit Hilfe zweier Gehäuse-Abdeckteile beidseitig verschließbar ist. Die Abdeckteile stellen somit Gehäusedeckel dar, welche die Breitseiten des Isolierstoffgehäuses bilden und das Innere des Isolierstoffgehäuses zu diesen Breitseiten hin abdecken.
  • Bei dem Summenstromwandler handelt es sich um einen ringförmigen, mit einer Sekundärwicklung umwickelten Magnetkern, durch den die Primärleiter hindurchgeführt sind. Der Summenstromwandler ist dabei in einer in der Gehäusetrennwand ausgebildeten Öffnung aufgenommen, so dass der erste Primärleiter im ersten Strompfadbereich, und der zweite Primärleiter im zweiten Strompfadbereich durch den ringförmigen Magnetkern hindurchführbar sind. Die Funktionsweise eines Summenstromwandlers beruht auf dem magnetisch-induktiven Prinzip: ist der im ersten Primärleiter hinfließende elektrische Strom gleich dem im zweiten Primärleiter zurückfließende elektrischen Strom, so heben sich bei vorzeichenrichtiger Addition der beiden elektrischen Ströme die von diesen erzeugten Magnetfelder gegenseitig auf - folglich wird in der Sekundärwicklung kein elektrischer Strom induziert. Ist hingegen der in den beiden Primärleitern hin- und zurück-fließende elektrische Strom unterschiedlich, so wird durch das daraus resultierende Magnetfeld ein Induktionsstrom in der Sekundärwicklung induziert, was in der Folge zur Auslösung des Fehlerstrom-Schutzschaltgerätes führt.
  • Da das Herstellen einer stoffschlüssigen hochwarmfesten Fügeverbindung zwischen dem ersten Ende des ersten Primärleiters und dem diesem Ende unmittelbar und eindeutig zugeordneten ersten Kontaktierungselement mit einem hohen Energieeintrag in das Isolierstoffgehäuse verbunden wäre, ist es erfindungsgemäß möglich, diese Fügeverbindung außerhalb des Isolierstoffgehäuses zu erzeugen und die derart gefügten Komponenten erst im Anschluss an den Fügevorgang in das Isolierstoffgehäuse einzusetzen. Die anschließend im montierten Zustand vorzunehmenden Fügeverbindungen der beiden Enden des zweiten Primärleiters mit einem dem jeweiligen Ende entsprechend unmittelbar und eindeutig zugeordneten Kontaktierungselement werden mittels nicht-hochwarmfester Fügeverbindungen ausgeführt, um den damit verbundenen Wärmeeintrag in das Isolierstoffgehäuse möglichst gering zu halten. Somit ist auf einfache Art und Weise eine sichere und zuverlässige Montage des netzspannungsunabhängigen Fehlerstrom-Schutzschaltgerätes auch bei kompakten Bauformen realisierbar.
  • Neben der Reduzierung des Energieeintrags in das Isolierstoffgehäuse durch Erzeugen der hochwarmfesten Fügeverbindung(en) außerhalb des Isolierstoffgehäuses wird durch die vormontierte Baugruppe die Möglichkeit geschaffen, diese Montagevorgänge ohne räumliche Restriktionen (beengten Platzverhältnisse) zeitlich parallel zur Montage des Schutzschaltgerätes auszuführen. Die Montagedauer, und damit der Montageaufwand, können auf diese Weise deutlich reduziert werden.
  • In einer vorteilhaften Weiterbildung des Schutzschaltgerätes ist das erste Kontaktierungselement Bestandteil einer thermischen Auslöseeinrichtung zur Erfassung eines Überlastzustandes.
  • Die thermische Auslöseeinrichtung ist oftmals Bestandteil eines Leitungsschutzschalters. Bei sogenannten Kombigeräten wird die Funktionalität eines Fehlerstrom-Schutzschalters mit der eines Leitungsschutzschalters kombiniert: man spricht dann von sogenannten FI/LS- oder LS/DI-Schaltern. Im englischsprachigen Raum ist die Bezeichnung RCBO (für Residual current operated Circuit-Breaker with Overcurrent Protection) gebräuchlich. Die thermische Auslöseeinrichtung kann durch ein Bimetall- oder auch durch ein Formgedächtniselement gebildet sein, welches direkt oder indirekt vom elektrischen Strom durchflossen wird und sich dabei erwärmt. Bei einer zu starken Erwärmung verformt sich das Bimetall- oder das Formgedächtniselement. Diese Formänderung wird auf ein Auslösemechanik - beispielsweise ein Schaltschloss des Schutzschaltgerätes - übertragen, wodurch das Schutzschaltgerät ausgelöst wird und der Strom in der zu überwachenden elektrischen Leitung unterbrochen wird.
  • In einer weiteren vorteilhaften Weiterbildung des Schutzschaltgerätes ist auch ein zweites Ende des ersten Primärleiters mittels einer weiteren hochwarmfesten Fügeverbindung mit einem diesem Ende zugeordneten zweiten Kontaktierungselement des Schutzschaltgerätes elektrisch leitend verbunden.
  • Auch die Verbindung des zweiten Endes des ersten Primärleiters mit dem weiteren, zweiten Kontaktierungselement ist durch eine hochwarmfeste Fügeverbindung außerhalb des Isolierstoffgehäuses herstellbar. Auf diese Weise wird - ohne den damit in der Regel einhergehenden hohen Energieeintrag in das Isolierstoffgehäuse - eine zuverlässige, stoffschlüssige Verbindung mit hoher Festigkeit erzeugt.
  • In einer weiteren vorteilhaften Weiterbildung des Schutzschaltgerätes ist das zweite Kontaktierungselement durch eine Anschlussklemme des Schutzschaltgerätes gebildet.
  • Je nach der Länge des ersten Primärleiters sowie der Lage des Summenstromwandlers im Gehäuse ist es möglich, das zweite Ende des ersten Primärleiters direkt - d.h. ohne weitere Zwischenteile - mit der diesem Strompfad zugeordneten Anschlussklemme elektrisch leitend zu verbinden.
  • In einer weiteren vorteilhaften Weiterbildung des Schutzschaltgerätes ist auch der zweite Primärleiter Bestandteil der vormontierten Baugruppe.
  • Hieraus ergibt sich der weitere Vorteil, dass der zweite Primärleiter nicht nachträglich durch den Summenstromwandler hindurchgefädelt werden muss, sondern außerhalb des Isolierstoffgehäuses ohne dessen räumliche Restriktion durch den Summenstromwandler hindurchgeführt werden kann. Der Montageaufwand kann dadurch weiter verringert werden.
  • In einer weiteren vorteilhaften Weiterbildung des Schutzschaltgerätes sind der erste Primärleiter und/oder der zweite Primärleiter als starre Leiter ausgebildet.
  • Starre Leiter haben den Vorteil der Formstabilität und können massiver ausgeführt werden als flexible Litzen, was insbesondere bei Schutzschaltgeräte-Typen, die für höhere Ströme vorgesehen sind, wichtig ist. Bei einem bereits im Isolierstoffgehäuse montierten Summenstromwandler ist es jedoch aufgrund der beengten Platzverhältnisse schwierig bis unmöglich, die starren Leiter durch den Summenstromwandler hindurchzufädeln. Der Vorteil starrer Primärleiter kommt daher insbesondere bei der Vormontage der Baugruppe zum Tragen: in diesem Fall kann die Montagedauer - und damit der Montageaufwand - deutlich reduziert werden.
  • In einer weiteren vorteilhaften Weiterbildung ist das Schutzschaltgerät als RCBO-Kombigerät, welches zusätzlich zur Funktionalität des Fehlerstromschutzschalters die Funktionalität eines Leitungsschutzschalters aufweist, ausgebildet.
  • Als RCBO-Kombigerät weist das Schutzschaltgerät zusätzlich die Funktionalität - und damit die Komponenten - eines Leitungsschutzschalters auf, beispielsweise eine thermische Auslöseeinrichtung zur Erkennung eines Überlastzustandes, sowie eine elektrodynamische Auslöseeinrichtung zur Erkennung eines Kurzschlusses. Derartige Kombigeräte haben den Vorteil, dass sie die Funktionalität mehrerer einzelner Geräte in einem gemeinsamen Gehäuse vereinen - bei in der Regel gleichem oder geringerem Bauvolumen, vergleichen mit den Bauvolumina der Einzelgeräte.
  • In einer weiteren vorteilhaften Weiterbildung des Schutzschaltgerätes weist das Isolierstoffgehäuse eine Breite von nur einer Teilungseinheit auf.
  • Gängige einpolige Leitungsschutzschalter weisen zumeist eine Gehäusebreite von einer Teilungseinheit (entspricht ca. 18mm) auf, ebenso gängige einpolige Fehlerstrom-Schutzschaltgeräte. Ein einpoliges Fehlerstrom-Schutzschaltgerät, welches bei einer Breite von einer Teilungseinheit zusätzlich die Funktionalität eines Leitungsschutzschalter vollständig oder teilweise aufweist, zeichnet sich durch eine äußerst kompakte Anordnung aus und stellt eine platzsparende Alternative zur Verwendung der entsprechenden Einzelgeräte dar. Aufgrund der räumlichen Restriktionen ist der Summenstromwandler zur Erkennung eines Fehlerstromes in unmittelbarer Nähe der thermischen Auslöseeinrichtung angeordnet, weswegen die Fügeverbindung zwischen dem ersten Primärleiter und der thermischen Auslöseeinrichtung einer deutlich höheren thermischen Belastung ausgesetzt ist.
  • Dieses Problem ist bei Schaltgeräten, die über einen größeren Bauraum verfügen - beispielsweise FILS-Geräte, welche bei einer Gehäusebreite von zwei Teilungseinheiten (2TE) den Funktionsumfang eines herkömmlichen Fehlerstromschutzschalters (FI) mit dem eines Leitungsschutzschalters (LS) kombinierenweit weniger ausgeprägt. Gleiches gilt für netzspannungsabhängige Fehlerstromschutzschaltgeräte, welche aufgrund der dort verwendeten kleineren Stromwandler mehr Platz und damit einen größeren Abstand der Fügeverbindungen zu anderen Gerätekomponenten sowie zum Isolierstoffgehäuse bieten. In diesen Fällen können die Fügeverbindungen ggf. auch mittels nichthochwarmfester Fügeverfahren, beispielsweise mittels Weichlöten, erzeugt werden.
  • Das erfindungsgemäße Montageverfahren für ein netzspannungsunabhängiges Fehlerstromschutzschaltgerät der vorstehend beschriebenen Art weist die folgenden Schritte auf:
    1. a) Vormontieren einer Baugruppe bestehend aus dem Summenstromwandler, dem ersten Primärleiter sowie der thermischen Auslöseeinrichtung, wobei das erste Ende des ersten Primärleiters mittels einer hochwarmfesten Fügeverbindung, gebildet durch Schweißen oder Hartlöten, mit der thermischen Auslöseeinrichtung verbunden wird;
    2. b) Einsetzen der vormontierten Baugruppe in die Öffnung der Gehäusetrennwand, wobei der erste Primärleiter und die thermische Auslöseeinrichtung im ersten Strompfadbereich positioniert werden;
    3. c) Kontaktieren der beiden Enden des zweiten Primärleiters mittels nicht-hochwarmfester Fügeverbindungen, gebildet durch Weichlöten, mit einem dem jeweiligen Ende jeweils unmittelbar und eindeutig zugeordneten Kontaktierungselement.
  • Durch die Bildung der vormontierten Baugruppe kann der Energieeintrag in das Isolierstoffgehäuse, welcher bei der Erstellung der hochwarmfesten Fügeverbindung in der Einbaulage im Isolierstoffgehäuse, d.h. im montierten Zustand, auftreten würde, vermieden werden. Dadurch möglicherweise verursachte Beschädigungen am Schutzschaltgerät werden auf diese Weise ebenfalls wirksam vermieden. Da bei der Erstellung der nicht-hochwarmfesten Fügeverbindungen deutlich geringere Temperaturen auftreten, können diese in der Einbaulage der zu fügenden, d.h. zu verbindenden Komponenten im zweiten Strompfadbereich des Isolierstoffgehäuses ausgeführt werden, ohne dass dabei temperaturbedingte Beschädigungen am Schutzschaltgerät auftreten. Die Zuverlässigkeit des Montageprozesses wird dadurch deutlich verbessert. Zu den weiteren Vorteilen des erfindungsgemäßen Montageverfahrens wird auf die vorstehenden Ausführungen zu den Vorteilen des erfindungsgemäßen Schutzschaltgerätes verwiesen.
  • In einer vorteilhaften Weiterbildung des Montageverfahrens umfasst die vormontierte Baugruppe auch die elektrische Anschlussklemme, mit der das zweites Ende des ersten Primärleiters mittels einer weiteren hochwarmfesten Fügeverbindung vor dem Einsetzen der Baugruppe in die in der Gehäusetrennwand ausgebildete Öffnung verbunden wird.
  • Die vorstehend genannten Vorteile kommen umso mehr zu tragen, wenn auch die weitere hochwarmfeste Fügeverbindung vor dem Einsetzen der vormontierten Baugruppe in die in der Gehäusetrennwand ausgebildete Öffnung ausgeführt wird. Damit ist durch diesen Fügevorgang kein entsprechender Wärmeeintrag in das Isolierstoffgehäuse des Schutzschaltgerätes verbunden, wodurch die Gefahr von Beschädigungen deutlich reduziert wird.
  • In einer weiteren vorteilhaften Weiterbildung des Montageverfahrens beinhaltet die vormontierte Baugruppe ferner auch den zweiten Primärleiter.
  • Indem das Einfädeln des zweiten Primärleiters durch die Öffnung des Summenstromwandlers, welches zumeist manuell ausgeführt wird, nicht unter den beengten Platzverhältnissen eines bereits im Gehäuse montierten Summenstromwandlers erfolgt, kann dieser Montageschritt deutlich vereinfacht außerhalb des Isolierstoffgehäuses zeitlich vor dem Einsetzen der vormontierten Baugruppe in das Isolierstoffgehäuse ausgeführt werden. Der Montageaufwand sowie die damit verbundene Fehlerrate können dadurch deutlich reduziert werden.
  • Zusammenfassend liegt der Vorteil des erfindungsgemäßen netzspannungsunabhängigen Fehlerstrom-Schutzschaltgerätes sowie des erfindungsgemäßen Montageverfahrens im Wesentlichen darin begründet, dass die hochwarmfesten Fügeverbindungen nur dort ausgeführt werden, wo aufgrund der erhöhten Temperaturbeanspruchung der Fügeverbindung im Betrieb des Fehlerstrom-Schutzschaltgerätes eine höhere Festigkeit erforderlich ist. Diese höhere thermische Belastung tritt insbesondere an der Fügestelle des ersten Primärleiters mit dem thermischen Auslöser auf. Indem die hochwarmfesten Fügeverbindungen außerhalb des Isolierstoffgehäuses erzeugt werden, ist damit kein Temperatureintrag in das Isolierstoffgehäuse verbunden, so dass dadurch verursachte Beschädigungen am Isolierstoffgehäuse oder den darin aufgenommenen, weiteren Komponenten des Fehlerstrom-Schutzschaltgerätes wirksam unterbunden werden.
  • Im Folgenden wird ein Ausführungsbeispiel des netzspannungsunabhängigen Fehlerstrom-Schutzschaltgerätes unter Bezug auf die beigefügten Figuren näher erläutert. In den Figuren sind:
  • Figuren 1 bis 3
    schematische Darstellungen des netzspannungsunabhängigen Fehlerstrom-Schutzschaltgerätes in verschiedenen Ansichten;
    Figur 4
    eine schematische Darstellung einer vormontierten Summenstromwandler-Baugruppe in einer Seitenansicht;
    Figur 5
    eine schematische Darstellung der Summenstromwandler-Baugruppe vor dem Einsetzen in das Isolierstoffgehäuse in perspektivischer Ansicht;
    Figuren 6 und 7
    schematische Darstellungen der in das Isolierstoffgehäuse eingesetzten Summenstromwandler-Baugruppe in verschiedenen Seitenansichten;
    Figur 8
    eine schematische Detaildarstellung der nicht-hochwarmfesten Fügestellen im montierten Zustand;
    Figur 9
    eine schematische Darstellung der vollständig im Isolierstoffgehäuse montierten und gefügten Summenstromwandler-Baugruppe in perspektivischer Ansicht.
  • In den verschiedenen Figuren der Zeichnung sind gleiche Teile stets mit dem gleichen Bezugszeichen versehen. Die Beschreibung gilt für alle Zeichnungsfiguren, in denen das entsprechende Teil ebenfalls zu erkennen ist.
  • In den Figuren 1 bis 3 ist ein Fehlerstrom-Schutzschaltgerät 1 in verschiedenen Ansichten schematisch dargestellt. Während Figur 1 eine Ansicht von unten auf das Fehlerstrom-Schutzschaltgerät 1 zeigt, ist in Figur 2 eine hierzu korrespondierende Seitenansicht des Schutzschaltgerätes 1 dargestellt; Figur 3 zeigt eine hierzu wiederum korrespondierende Draufsicht. Das erfindungsgemäße, netzspannungsunabhängige Fehlerstrom-Schutzschaltgerät 1 weist ein Isolierstoffgehäuse 2 mit einer Frontseite 4, einer der Frontseite 4 gegenüberliegenden Befestigungsseite 5 sowie die Frontseite 4 und die Befestigungsseite 5 verbindenden Schmalseiten 6 und Breitseiten 7 auf. Das Isolierstoffgehäuse 2 weist einen ersten Strompfadbereich 8 sowie einen zweiten Strompfadbereich 9 auf, die durch eine Gehäusetrennwand 10 voneinander getrennt sind. Die Gehäusetrennwand 10 verläuft dabei parallel zu den Breitseiten 7 von der einen Schmalseite 6 zur anderen Schmalseite 6 des Isolierstoffgehäuses 2. Die beiden Strompfadbereiche 8 und 9 sind somit in Breitenrichtung nebeneinander angeordnet.
  • Im ersten Strompfadbereich 8 befindet sich ein physikalischer erster Strompfad 11, welcher von der einen Schmalseite 6 zur anderen Schmalseite 6 verläuft und bei der Installation mit dem Phasenleiter des zu überwachenden elektrischen Stromkreises elektrisch leitend verbunden wird. Im zweiten Strompfadbereich 9 ist dementsprechend ein physikalischer zweiter Strompfad 12 vorhanden, der ebenfalls von der einen Schmalseite 6 zur anderen Schmalseite 6 verläuft und bei der Installation mit dem Neutralleiter des zu überwachenden elektrischen Stromkreises elektrisch leitend verbunden wird. Das Schutzschaltgerät 1 verfügt somit über eine Phasenleiter-Seite (P-Seite), in der der erste Strompfad angeordnet ist, sowie über eine Neutralleiter-Seite (N-Seite), in der der zweite Strompfad angeordnet ist. Im Bereich der Schmalseiten 6 weist jeder der beiden Strompfadbereiche 8 und 9 elektrische Anschlussklemmen 30 - eine Eingangsklemme sowie eine Ausgangsklemme - auf. Über die beiden Strompfade 11 bzw. 12 ist die jeweilige Eingangsklemme des betreffenden Strompfades 11 bzw. 12 mit der jeweiligen Ausgangsklemme dieses Strompfades elektrisch leitend verbunden.
  • An seiner Frontseite 4 weist das erfindungsgemäße, netzspannungsunabhängige Fehlerstrom-Schutzschaltgerät 1 ein Betätigungselement 3 zur manuellen Betätigung auf. Über die der Frontseite 4 gegenüberliegende Befestigungsseite 5 kann das Schutzschaltgerät 1 an einer Rast- oder Hutschiene befestigt werden. Derartige Rast- oder Hutschienen werden in Elektroinstallationsverteilern standardmäßig zur Befestigung von Reiheneinbaugeräten verwendet. Vorteilhafter Weise weist das Isolierstoffgehäuse 2 eine Breite von nur einer Teilungseinheit (1TE) auf.
  • Figur 4 zeigt schematisch eine Seitenansicht eine vormontierte Summenstromwandler-Baugruppe 20. Die Baugruppe 20 weist einen Summenstromwandler 21 auf, welcher mit einem ersten Primärleiter P, der Teil des im ersten Strompfadbereich 8 angeordneten ersten Strompfades 11 ist, einfach umwickelt ist. Ein erstes Ende P1 des ersten Primärleiters P ist dabei mittels einer hochwarmfesten Fügeverbindung mit einem ersten Kontaktierungselement 27, welches Bestandteil einer thermischen Auslöseeinrichtung 22 ist, elektrisch leitend verbunden. Die thermischen Auslöseeinrichtung 22 weist weiterhin ein Bimetallelement 23, welches mit dem ersten Kontaktierungselement 27 elektrisch leitend verbunden ist, einen Bewegkontakt 24, welcher über eine Litze 28 mit dem Bimetallelement 23 elektrisch leitend verbunden ist, sowie eine Blasschleife 25 und eine Lichtbogen-Leitschiene 26 auf. Über sein zweites Ende P2 ist der erste Primärleiter P mittels einer weiteren hochwarmfesten Fügeverbindung mit einer Anschlussklemme 30 des Schutzschaltgerätes 1 elektrisch leitend verbunden. Die beiden hochwarmfesten Fügeverbindungen des ersten Primärleiters P mit der thermischen Auslöseeinrichtung 22 einerseits sowie der Anschlussklemme 30 andererseits können beispielsweise mittels Schweißen oder Hartlöten gebildet sein. Ferner ist der Summenstromwandler 21 mit einem zweiten Primärleiter N (siehe Figur 7), der Teil des im zweiten Strompfadbereich 9 angeordneten zweiten Strompfades 12 ist, einfach umwickelt.
  • Figur 5 zeigt schematisch die vormontierte Summenstromwandler-Baugruppe 20 vor ihrem Einbau in die Gehäusetrennwand 10 in perspektivischer Ansicht. Die Gehäusetrennwand 10 ist dabei als Bestandteil des Gehäusemittelteils 14 ausgebildet, welches die Gehäusetrennwand 10 beinhaltet und beidseitig mit den Komponenten des Fehlerstrom-Schutzschaltgerätes 1 bestückbar ist. Nach der Montage der einzelnen Komponenten wird das Gehäusemittelteil 14 mittels zweier Gehäusedeckel (nicht dargestellt), welche an dem Gehäusemittelteil 14 befestigt werden, beidseitig verschlossen. Die beiden Gehäusedeckel decken dann das Isolierstoffgehäuse 2 zu den Breitseiten 7 hin ab und bilden somit die äußeren Breitseiten 7 des Isolierstoffgehäuses 2. Die Befestigung der Gehäusedeckel am Gehäusemittelteil 14 kann beispielsweise mittels Nieten und/oder Rastverbindungen erfolgen.
  • In den Figuren 6 und 7 ist die in das Gehäusemittelteil 14 eingesetzte Summenstromwandler-Baugruppe 20 in verschiedenen Seitenansichten schematisch dargestellt. Dabei stellt Figur 6 eine Seitenansicht auf die Phasenleiter-Seite (P-Seite) des Gehäusemittelteils 14 dar, Figur 7 zeigt eine Seitenansicht auf die gegenüberliegende Neutralleiter-Seite (N-Seite). Sowohl auf der P-Seite als auch auf der N-Seite ist im Bereich der Schmalseiten 6 jeweils ein Klemmenaufnahmeraum 15 angeordnet, in dem die elektrischen Anschlussklemmen 30 des Fehlerstrom-Schutzschaltgerätes 1 bei der Montage aufgenommen und gehaltert werden. Aus den Figuren 6 und 7 wird deutlich, dass der im Inneren des Isolierstoffgehäuses 2 zur Verfügung stehende Bauraum stark begrenzt ist. Zum einen entspricht die Breite des Summenstromwandlers 21 im Wesentlichen der Innenbreite des Isolierstoffgehäuses 2 zwischen den beiden Breitseiten 7. Zum anderen ist die im Gehäusemittelteil 14 ausgebildete Öffnung 13 zur Aufnahme des Summenstromwandlers 21 ist nicht viel größer dimensioniert als der Summenstromwandlers 21 selbst. Aus diesem Grund müssen die beiden Enden N1 und N2 des zweiten Primärleiters N eng am Summenstromwandler 21 geführt sein, um bei der Montage der vormontierten Summenstromwandler-Baugruppe 20 noch durch die Öffnung 13 zu passen. Auch aus diesem Grund ist es sinnvoll, den zweiten Primärleiter N als starren Leiter auszubilden.
  • Figur 8 zeigt schematisch eine zu Figur 7 korrespondierende Detaildarstellung der nicht-hochwarmfesten Fügestellen der Summenstromwandler-Baugruppe 20 im montierten Zustand. Die nicht-hochwarmfesten Fügestellen dienen dazu, das erste Ende N1 bzw. das zweite Ende N2 des zweiten Primärleiters N mit einem dem jeweiligen Ende N1 bzw. N2 unmittelbar und eindeutig zugeordneten Kontaktierungselement 16 bzw. 17 (siehe Figur 9) des Fehlerstrom-Schutzschaltgerätes 1 elektrisch leitend zu verbinden.
  • In Figur 9 ist die vollständig im Isolierstoffgehäuse 2 montierte Summenstromwandler-Baugruppe 20 in perspektivischer Ansicht schematisch dargestellt. Figur 9 zeigt dabei wiederum die N-Seite des Fehlerstrom-Schutzschaltgerätes 1, wobei die nicht-hochwarmfesten Fügeverbindungen der Summenstromwandler-Baugruppe 20 mit den dem jeweiligen Ende N1 bzw. N2 zugeordneten Kontaktierungselement 16 bzw. 17 bereits ausgeführt sind. Dabei ist das erste Ende N1 des zweiten Primärleiters N über ein Kontaktierungselement 16 mit einer diesem Ende N1 zugeordneten Anschlussklemme 30 elektrisch leitend verbunden. Das zweite Ende N2 des zweiten Primärleiters N ist über ein weiteres Kontaktierungselement 17, welches am Festkontaktträger 19 angeformt ist, mit dem Festkontakt 18 des Schutzschaltgerätes 1 elektrisch leitend verbunden. Der Festkontakt 18 bildet mit einem am Bewegkontakt 24 angeordneten Kontaktelement den N-seitigen Schaltkontakt des Schutzschaltgerätes 1. Über den geschlossenen Schaltkontakt ist das zweite Ende N2 indirekt mit der dem zweiten Primärleiter N zugeordneten Anschlussklemme elektrisch leitend verbunden.
  • Anhand der Figuren wird im Folgenden das erfindungsgemäße Montageverfahren näher beschrieben:
    In einem ersten Schritt wird zunächst die Baugruppe 20, bestehend aus dem Summenstromwandler 21, dem ersten Primärleiter P sowie der thermischen Auslöseeinrichtung 22 vormontiert. Hierzu wird zunächst der erste Primärleiter P durch den Summenstromwandler 21 hindurchgeführt. Gegebenenfalls kann der erste Primärleiter P auch einfach oder mehrfach um den Magnetkern des Summenstromwandlers 21 gewickelt sein. Anschließend wird das erste Ende P1 des ersten Primärleiters P mittels einer hochwarmfesten Fügeverbindung mit dem ersten Kontaktierungselement 27, welches Bestandteil der thermischen Auslöseeinrichtung 22 ist, elektrisch leitend verbunden. Alternativ dazu ist es ebenso möglich, den ersten Primärleiter P zunächst mittels der hochwarmfesten Fügeverbindung mit dem ersten Kontaktierungselement 27 zu verbinden und erst anschließend den ersten Primärleiter P durch den Summenstromwandler 21 hindurchzuführen. Dies ist insbesondere dann vorteilhaft, wenn der Primärleiter P nicht um den Magnetkern des Summenstromwandlers 21 herum gewickelt werden muss.
  • Vorteilhafter Weise wird in diesem ersten Schritt auch das zweite Ende P1 des ersten Primärleiters P mittels einer weiteren hochwarmfesten Fügeverbindung mit der diesem Ende zugeordneten, P-seitigen Anschlussklemme 30 des Schutzschaltgerätes 1 elektrisch leitend verbunden. Weiterhin ist es vorteilhaft, im ersten Schritt auch schon den zweiten Primärleiter N durch den Summenstromwandler 21 hindurchzuführen und ggf. einfach oder mehrfach um dessen Magnetkern herumzuwickeln. Diese beiden Montageschritte sind jedoch zur Ausführung des erfindungsgemäßen Montageverfahrens nicht zwingend in dieser Reihenfolge auszuführen.
  • In einem zweiten Schritt des erfindungsgemäßen Montageverfahrens wird die vormontierte Baugruppe 20 P-seitig in die in der Gehäusetrennwand 10 ausgebildete Öffnung 13 eingesetzt, wobei die thermische Auslöseeinrichtung 22 im ersten Strompfadbereich 8 des Isolierstoffgehäuses 2 positioniert wird. Ein Teil des Summenstromwandlers 21 ragt dabei durch die Öffnung 13 in den zweiten Strompfadbereich 9 des Isolierstoffgehäuses 2 hinein.
  • Im dritten Schritt werden das erste Ende N1 sowie das zweite Ende N2 des zweiten Primärleiters N mit dem dem jeweiligen Ende N1 bzw. N2 jeweils unmittelbar und eindeutig zugeordneten Kontaktierungselement 16 bzw. 17 in ihrer Einbaulage im zweiten Strompfadbereich 9 mittels nicht-hochwarmfester Fügeverbindungen elektrisch leitend verbunden. Dabei wird die dem ersten Ende N1 zugeordnete Anschlussklemme 30 auf das erste Ende N1 aufgesteckt; ebenso wird der dem zweiten Ende N2 zugeordnete Festkontaktträger 19 auf das zweite Ende N2 aufgesteckt. Beide N-seitigen Fügeverbindungen werden mit Hilfe eines nicht-hochwarmfesten Fügeverfahrens, beispielsweise mittels Weichlöten, ausgeführt. Da hiermit ein geringerer Wärmeeintrag verbunden ist, werden hierdurch keine Gerätekonturen oder Komponenten des Fehlerstrom-Schutzschaltgerätes 1 übermäßig belastet. Die nicht-hochwarmfesten Fügeverbindungen sind an dieser Stelle ausreichend, da die thermische Belastung dieser Fügestellen im Betrieb des Schutzschaltgerätes 1 nicht allzu groß ist. Alternativ zum Weichlöten, nur als Ausführungsbeispiel, das nicht zu der Erfindung gehört, kann die Erstellung der nicht-hochwarmfesten Fügeverbindungen auch durch jedes andere Fügeverfahren erfolgen, sofern der Wärmeeintrag in das Gerät gering ist und die Kunststoffwände des Isolierstoffgehäuses 2 hierdurch nicht beschädigt werden.
  • Mit der vorstehend beschriebenen, erfindungsgemäßen Anordnung eines Fehlerstrom-Schutzschaltgerätes 1 sowie des erfindungsgemäßen Montageverfahrens wird überhaupt erst ermöglicht, den bei der netzspannungsunabhängigen FI-Technik notwendigen, deutlich größeren Summenstromwandler 21 in einem kompakten RCBO-Gerät unterzubringen. Aufgrund des geringen Bauraumes sind die Primärleiter P und N im Gerät sehr nahe an den geometrischen Konturen und Wänden des Isolierstoffgehäuses 2 angeordnet, welches der hohen thermischen Belastung (Nähe zur thermischen Auslöseeinrichtung 22) einer hochwarmfesten Verbindungstechnik wie Schweißen oder Hartlöten in der Regel nicht standhält. Hochwarmfeste Verbindungen sind an dieser Stelle jedoch erforderlich, um zu vermeiden, dass die starke Erwärmung der thermischen Auslöseeinrichtung 22 nicht-hochwarmfeste Verbindungen, beispielsweise Weichlöt-Verbindungen, aufschmilzt und somit zerstört. Daher werden diejenigen Fügeverbindungen, die aufgrund der Geräte-bedingten Technik und Bauart hohen thermischen Belastungen ausgesetzt sind, als hochwarmfeste Fügeverbindungen außerhalb des Gerätes ausgeführt. Diejenigen Verbindungen hingegen, die im Gerät einer geringeren thermischen Belastung ausgesetzt sind (geringere Nähe zur thermischen Auslöseeinrichtung 22), können dementsprechend als weniger temperaturstabile, nicht-hochwarmfeste Fügeverbindungen ausgeführt werden, beispielsweise durch Weichlöten. Da hiermit ein deutlich geringerer Wärmeeintrag verbunden ist, können dieser Verbindungen auch im Gerät, d.h. im bereits montierten Zustand der zu fügenden Bauteile im Isolierstoffgehäuse 2, ausgeführt werden. Durch die besondere Ausgestaltung der Primärleiter P und N sowie deren Enden P1, P2, N1 sowie N2 ist es nicht erforderlich, die Primärleiter P und N nach der Montage im Isolierstoffgehäuse 2 noch durch einen weiteren Biegeprozess auszuformen. Die Montage wird hierdurch weiter vereinfacht.
  • Durch die Einführung kompakter Schutzschaltgeräte 1 werden die Ansprüche und Erwartungen auf Kundenseite hinsichtlich einer platzsparenden Bauweise deutlich erhöht. Dabei rücken die verwendeten Komponenten und Baugruppen immer näher zusammen, die ursprünglich noch vorhandenen, vergleichsweise großen Abstände, beispielsweise zwischen dem Summenstromwandler 21 und der thermischen Auslöseeinrichtung 22, werden deutlich geringer oder entfallen beinahe gänzlich. Dies erhöht die Stabilitätsanforderungen an die verwendeten Fügeverbindungen, was erfindungsgemäß durch einen hochwarmfesten Fügeprozess (beispielsweise durch Hartlöten oder Schweißen), der sich durch eine deutlich höhere thermische Stabilität auszeichnet und vorab, d.h. bereits vor der Montage der zu fügenden Komponenten in das Isolierstoffgehäuse 2 des Schutzschaltgerätes 1 ausgeführt wird, gelöst wird. Dabei ist es notwendig, den Summenstromwandler 21 in beide Strompfade 8 und 9 des Schutzschaltgerätes 1 zu integrieren, wobei nicht alle Verbindungen vorab erstellt werden können, da der Summenstromwandler 21 immer von einer Seite montiert werden muss. Nach der Montage des Summenstromwandlers 21 werden die verbleibenden Fügeverbindungen auf der anderen Seite (N-Seite) mit einem bei niedrigeren Temperaturen stattfindenden Fügeprozess, beispielsweise durch Weichlöten, erzeugt.
  • Bezugszeichenliste:
  • 1
    Schutzschaltgerät
    2
    Isolierstoffgehäuse
    3
    Betätigungselement
    4
    Frontseite
    5
    Befestigungsseite
    6
    Schmalseite
    7
    Breitseite
    8
    erster Strompfadbereich
    9
    zweiter Strompfadbereich
    10
    Gehäusetrennwand
    11
    erster Strompfad
    12
    zweiter Strompfad
    13
    Öffnung
    14
    Gehäusemittelteil
    15
    Klemmenaufnahmeraum
    16
    Kontaktierungselement
    17
    Kontaktierungselement
    18
    Festkontakt
    19
    Festkontaktträger
    20
    Baugruppe
    21
    Summenstromwandler
    22
    thermische Auslöseeinrichtung
    23
    Bimetallelement
    24
    Bewegkontakt
    25
    Blasschleife
    26
    Leitschiene
    27
    erstes Kontaktierungselement
    28
    Litze
    30
    Anschlussklemme
    31
    Klemmrahmen
    32
    Klemmschraube
    P
    erster Primärleiter
    P1 erstes Ende
    P2 zweites Ende
    N
    zweiter Primärleiter
    N1 erstes Ende
    N2 zweites Ende

Claims (11)

  1. Netzspannungsunabhängiges Fehlerstrom-Schutzschaltgerät (1),
    - mit einem Isolierstoffgehäuse (2), welches einen ersten (8) und einen zweiten Strompfadbereich (9) aufweist, die durch eine Gehäusetrennwand (10) voneinander getrennt sind,
    - mit einem ersten Primärleiter (P), der Teil eines im ersten Strompfadbereich (8) angeordneten ersten Strompfades (11) ist, sowie mit einem zweiten Primärleiter (N), der Teil eines im zweiten Strompfadbereich (9) angeordneten zweiten Strompfades (12) ist, und
    - mit einem Summenstromwandler (21), der in einer Öffnung (13) der Gehäusetrennwand (10) aufgenommen ist, wobei der erste Primärleiter (P) und der zweite Primärleiter (N) durch den Summenstromwandler (21) hindurchgeführt sind,
    - wobei ein erstes Ende (P1) des ersten Primärleiters (P) mittels einer hochwarmfesten Fügeverbindung, gebildet durch Schweißen oder Hartlöten, mit einem diesem Ende (P1) zugeordneten ersten Kontaktierungselement (27) des Schutzschaltgerätes (1) elektrisch leitend verbunden ist,
    dadurch gekennzeichnet,
    - dass der Summenstromwandler (21) mit dem hindurchgeführten ersten Primärleiter (P) sowie dem daran befestigten ersten Kontaktierungselement (27) eine vormontierte Baugruppe (20) bildet, und
    - dass ein erstes (N1) und ein zweites Ende (N2) des zweiten Primärleiters (N) mittels nicht-hochwarmfester Fügeverbindungen, gebildet durch Weichlöten, jeweils mit einem dem jeweiligen Ende (N1, N2) zugeordneten Kontaktierungselement des Schutzschaltgerätes (1) elektrisch leitend verbunden sind.
  2. Schutzschaltgerät (1) nach Anspruch 1,
    wobei das erste Kontaktierungselement (27) Bestandteil einer thermischen Auslöseeinrichtung (22) zur Erfassung eines Überlastzustandes ist.
  3. Schutzschaltgerät (1) nach einem der vorherigen Ansprüche, wobei ein zweites Ende (P2) des ersten Primärleiters (P) mittels einer weiteren hochwarmfesten Fügeverbindung mit einem diesem Ende zugeordneten zweiten Kontaktierungselement des Schutzschaltgerätes (1) elektrisch leitend verbunden ist.
  4. Schutzschaltgerät (1) nach Anspruch 3,
    wobei das zweite Kontaktierungselement durch eine Anschlussklemme (30) des Schutzschaltgerätes (1) gebildet ist.
  5. Schutzschaltgerät (1) nach einem der vorherigen Ansprüche, wobei auch der zweite Primärleiter (N) Bestandteil der vormontierten Baugruppe (20) ist.
  6. Schutzschaltgerät (1) nach einem der vorherigen Ansprüche, wobei der erste Primärleiter (P) und/oder der zweite Primärleiter (N) als starre Leiter ausgebildet sind.
  7. Schutzschaltgerät (1) nach einem der vorherigen Ansprüche, wobei das Schutzschaltgerät (1) als RCBO-Kombigerät ausgebildet ist, welches zusätzlich zur Funktionalität eines Fehlerstromschutzschalters die Funktionalität eines Leitungsschutzschalters aufweist.
  8. Schutzschaltgerät (1) nach einem der vorherigen Ansprüche, wobei das Isolierstoffgehäuse (2) eine Breite von einer Teilungseinheit (TE) aufweist.
  9. Montageverfahren für ein netzspannungsunabhängiges Fehlerstromschutzschaltgerät (1) nach einem der vorstehenden Ansprüche,
    mit den Schritten:
    - Vormontieren einer Baugruppe (20) bestehend aus dem Summenstromwandler (21), dem ersten Primärleiter (P) sowie der thermischen Auslöseeinrichtung (22), wobei das erste Ende (P1) des ersten Primärleiters (P) mittels einer hochwarmfesten Fügeverbindung, gebildet durch Schweißen oder Hartlöten, mit der thermischen Auslöseeinrichtung (22) verbunden wird;
    - Einsetzen der vormontierten Baugruppe (20) in die Öffnung (13) der Gehäusetrennwand (10), wobei der erste Primärleiter (P) und die thermische Auslöseeinrichtung (22) im ersten Strompfadbereich (8) positioniert werden;
    - Kontaktieren der beiden Enden (N1, N2) des zweiten Primärleiters (N) mittels nichthochwarmfester Fügeverbindungen, gebildet durch Weichlöten, mit einem dem jeweiligen Ende (N1, N2) jeweils zugeordneten Kontaktierungselement.
  10. Montageverfahren nach Anspruch 9,
    wobei die vormontierte Baugruppe (20) die elektrische Anschlussklemme (30) umfasst, mit der das zweites Ende (P2) des ersten Primärleiters (P) mittels einer weiteren hochwarmfesten Fügeverbindung vor dem Einsetzen der Baugruppe (20) in die in der Gehäusetrennwand (10) ausgebildete Öffnung (13) verbunden wird.
  11. Montageverfahren nach einem der Ansprüche 9 oder 10, wobei die vormontierte Baugruppe (20) ferner den zweiten Primärleiter (N) beinhaltet.
EP19155063.1A 2018-02-13 2019-02-01 Netzspannungsunabhängiges fehlerstrom-schutzschaltgerät und montageverfahren Active EP3525227B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018202204.6A DE102018202204A1 (de) 2018-02-13 2018-02-13 Netzspannungsunabhängiges Fehlerstrom-Schutzschaltgerät und Montageverfahren

Publications (2)

Publication Number Publication Date
EP3525227A1 EP3525227A1 (de) 2019-08-14
EP3525227B1 true EP3525227B1 (de) 2021-08-25

Family

ID=65278241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19155063.1A Active EP3525227B1 (de) 2018-02-13 2019-02-01 Netzspannungsunabhängiges fehlerstrom-schutzschaltgerät und montageverfahren

Country Status (2)

Country Link
EP (1) EP3525227B1 (de)
DE (1) DE102018202204A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021160179A1 (zh) * 2020-02-13 2021-08-19 浙江正泰电器股份有限公司 断路器
DE102021208514A1 (de) * 2021-08-05 2023-02-09 Siemens Aktiengesellschaft Einschub-Summenstromwandler, Fehlerstromschutzschalter und Montageverfahren
DE102022200296A1 (de) * 2022-01-13 2023-07-13 Siemens Aktiengesellschaft Einpoliges Gehäusemodul und Niederspannungs-Schutzschaltgerät
DE102022207779A1 (de) * 2022-07-28 2024-02-08 Siemens Aktiengesellschaft Einschub-Summenstromwandler-Baugruppe, Reiheneinbaugerät und Montageverfahren

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4417897A1 (de) * 1994-05-21 1995-11-23 Condor Werke Gebr Frede Gmbh & Verfahren zur Baugruppenmontage eines Summenstromwandlers
EP1693943A3 (de) * 2005-02-17 2015-10-28 Siemens Aktiengesellschaft Vorrichtung zur allstromsensitiven Erfassung eines elektrischen Differenzstromes
DE102011079593B4 (de) * 2011-07-21 2021-09-02 Siemens Aktiengesellschaft Elektromechanisches Schutzschaltgerät
DE102014208036A1 (de) * 2014-04-29 2015-10-29 Siemens Aktiengesellschaft Fehlerstromschutzschalter und Montageverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3525227A1 (de) 2019-08-14
DE102018202204A1 (de) 2019-08-14

Similar Documents

Publication Publication Date Title
EP3525227B1 (de) Netzspannungsunabhängiges fehlerstrom-schutzschaltgerät und montageverfahren
DE3021867A1 (de) Selbstschalter
EP2932521B1 (de) Sicherungsautomat mit hilfskurzschluss
EP3428942B1 (de) Gleichstrom-lichtbogenlöschvorrichtung und elektromechanisches gleichstrom-schaltgerät
DE102014208036A1 (de) Fehlerstromschutzschalter und Montageverfahren
EP3726560A1 (de) Kompakt-schutzschaltgerät
EP3844792B1 (de) Schmelzsicherung mit integrierter messfunktion
EP2286432B1 (de) Elektrischer selektiver selbstschalter
EP3258231A1 (de) Elektromechanisches schutzschaltgerät mit einer überlastauslöseeinrichtung
DE102009031138B4 (de) Schalteinrichtung
EP2919246B1 (de) Rotorwellenmodul für eine Rotorwelle eines Kompaktleistungsschalters, Rotorwelle für einen Kompaktleistungsschalter, Kompaktleistungsschalter sowie Verfahren zur Herstellung eines Rotorwellenmoduls für eine Rotorwelle eines Kompaktleistungsschalters
EP4213175B1 (de) Niederspannungs-schutzschaltgerät mit einer leiterplatte und einem spannungsabgriff und montageverfahren
DE102015106867A1 (de) Auslösung eines Erdungsschalters einer Schaltanlage
EP2983191B1 (de) Anordnung zur erfassung von störlichtbögen in einem niederspannungsnetz
EP4131297A1 (de) Einschub-summenstromwandler, fehlerstromschutzschalter und montageverfahren
EP4312243A1 (de) Einschub-summenstromwandler-baugruppe, reiheneinbaugerät und montageverfahren
EP4274041A1 (de) Modulares isolierstoffgehäuse und mehrpoliges modulares reiheneinbaugerät
DE102021208516A1 (de) Summenstromwandler und Fehlerstromschutzschalter
EP4138112A1 (de) Isolierstoffgehäuse und niederspannungs-schutzschaltgerät
EP0980086B1 (de) Schutzeinrichtung gegen die thermische Überlastung einer Schaltanlage
EP4258310A1 (de) Gehäusemodul, isolierstoffgehäuse und schutzschaltgerät
DE102020211531A1 (de) Niederspannungs-Schutzschaltgerät
EP4213174A1 (de) Einpoliges gehäusemodul und niederspannungs-schutzschaltgerät
EP3057118B1 (de) Schaltmechanik, brandschutzschalter und system
EP4176459A1 (de) Bedienerunabhängiges kompaktsprungschaltwerk und elektromechanisches schutzschaltgerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200107

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200610

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 71/40 20060101ALN20210223BHEP

Ipc: H01H 83/22 20060101ALN20210223BHEP

Ipc: H01H 71/08 20060101ALN20210223BHEP

Ipc: H01H 11/00 20060101ALN20210223BHEP

Ipc: H01H 83/14 20060101AFI20210223BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 11/00 20060101ALN20210309BHEP

Ipc: H01H 83/22 20060101ALN20210309BHEP

Ipc: H01H 71/40 20060101ALN20210309BHEP

Ipc: H01H 71/08 20060101ALN20210309BHEP

Ipc: H01H 83/14 20060101AFI20210309BHEP

INTG Intention to grant announced

Effective date: 20210412

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1424663

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019002093

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019002093

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 5

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240205

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240212

Year of fee payment: 6

Ref country code: IT

Payment date: 20240221

Year of fee payment: 6

Ref country code: FR

Payment date: 20240226

Year of fee payment: 6

Ref country code: BE

Payment date: 20240219

Year of fee payment: 6