EP3339982A1 - Ensemble horloger comprenant un oscillateur mécanique associé à un dispositif de régulation - Google Patents

Ensemble horloger comprenant un oscillateur mécanique associé à un dispositif de régulation Download PDF

Info

Publication number
EP3339982A1
EP3339982A1 EP17203916.6A EP17203916A EP3339982A1 EP 3339982 A1 EP3339982 A1 EP 3339982A1 EP 17203916 A EP17203916 A EP 17203916A EP 3339982 A1 EP3339982 A1 EP 3339982A1
Authority
EP
European Patent Office
Prior art keywords
mechanical
braking
resonator
oscillator
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17203916.6A
Other languages
German (de)
English (en)
Other versions
EP3339982B1 (fr
Inventor
Lionel TOMBEZ
Alexandre Haemmerli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swatch Group Research and Development SA
Original Assignee
Swatch Group Research and Development SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swatch Group Research and Development SA filed Critical Swatch Group Research and Development SA
Publication of EP3339982A1 publication Critical patent/EP3339982A1/fr
Application granted granted Critical
Publication of EP3339982B1 publication Critical patent/EP3339982B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C9/00Electrically-actuated devices for setting the time-indicating means
    • G04C9/04Electrically-actuated devices for setting the time-indicating means by blocking the driving means
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • G04B18/04Adjusting the beat of the pendulum, balance, or the like, e.g. putting into beat
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C11/00Synchronisation of independently-driven clocks
    • G04C11/08Synchronisation of independently-driven clocks using an electro-magnet or-motor for oscillation correction
    • G04C11/081Synchronisation of independently-driven clocks using an electro-magnet or-motor for oscillation correction using an electro-magnet
    • G04C11/084Synchronisation of independently-driven clocks using an electro-magnet or-motor for oscillation correction using an electro-magnet acting on the balance
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C9/00Electrically-actuated devices for setting the time-indicating means
    • G04C9/08Electrically-actuated devices for setting the time-indicating means by electric drive

Definitions

  • the mechanical resonator is a sprung balance and the maintenance device comprises a conventional exhaust, for example with Swiss anchor.
  • the auxiliary oscillator is formed in particular by a quartz resonator or by a resonator integrated in an electronic circuit.
  • Movements forming watch assemblies as defined in the field of the invention have been proposed in a few documents earlier.
  • the patent CH 597 636 published in 1977, proposes such a movement in reference to its figure 3 .
  • the movement is equipped with a resonator formed by a sprung balance and a conventional maintenance device comprising an anchor and an escape wheel in kinematic connection with a barrel provided with a spring.
  • This watch movement comprises a device for regulating the frequency of the mechanical oscillator.
  • This control device comprises an electronic circuit and a magnetic assembly formed of a flat coil, arranged on a support under the beam shank, and two magnets mounted on the balance and arranged close to each other so as to both pass over the coil when the oscillator is on.
  • the electronic circuit comprises a time base comprising a crystal resonator and for generating a reference frequency signal FR, this reference frequency being compared with the frequency FG of the mechanical oscillator.
  • the detection of the frequency FG of the oscillator is performed via the electrical signals generated in the coil by the pair of magnets.
  • the control circuit is arranged to be able momentarily to generate a braking torque via a magnet-coil magnetic coupling and a switchable load connected to the coil.
  • the document CH 597 636 gives the following teaching: "The resonator thus formed must have a frequency of oscillation variable according to the amplitude on either side of the frequency FR (defect of isochronism)".
  • the charge is formed by a switchable rectifier via a transistor which charges a storage capacitor during the pulses of braking, to recover the electrical energy to power the electronic circuit.
  • the constant teaching given in the document CH 597 636 is as follows: When FG> FR the transistor is conductive; a power Pa is then taken from the generator / oscillator. When FG ⁇ FR, the transistor is non-conductive; no more energy is drawn from the generator / oscillator. In other words, it regulates only when the frequency of the generator / oscillator is greater than the reference frequency FR.
  • This regulation consists of braking the generator / oscillator in order to reduce its frequency FG.
  • the mechanical oscillator those skilled in the art understand that regulation is possible only when the mainspring is heavily armed and the free oscillation frequency (natural frequency) of the oscillator mechanical is greater than the reference frequency FR, as a result of a desired isochronism defect of the selected mechanical oscillator.
  • the mechanical oscillator is selected for what is normally a defect in a mechanical movement and the electronic control is functional only when the natural frequency of this oscillator is greater than a nominal frequency.
  • the teaching generally given to those skilled in the art is the following: If we want to electronically regulate the frequency of a sprung balance of a classic watch movement, we must change the sprung balance to first arrange at least a magnet on it and secondly to modify its natural frequency so that this natural frequency is higher than the desired frequency.
  • the consequence of such teaching is clear:
  • the mechanical resonator must be de-tuned to oscillate at a frequency too high to allow the regulating device to constantly reduce its frequency to a frequency less, corresponding to the desired theoretical frequency, by a succession of braking pulses. Consequently, the resulting clock movement is voluntarily adjusted so that a precise step depends on the electronic regulation, otherwise such a watch movement would have a very important time drift.
  • the regulating device is deactivated, in particular because of deterioration, then the watch equipped with such a movement will no longer be precise, and this to an extent that it is in fact more functional. Such a situation is problematic.
  • the arrangement of permanent magnets on the balance means that a magnetic flux is constantly present in the watch movement and that this magnetic flux spatially varies periodically.
  • a magnetic flux can have a detrimental effect on various members or elements of the watch movement, in particular on magnetic material elements such as parts made of ferromagnetic material. This can have repercussions on the smooth running of the watch movement and also increase the wear of rotated elements.
  • a strong external magnetic field can damage the magnetic elements of the electromagnetic system.
  • This concept aims to synchronize the frequency of the oscillator with that of a quartz oscillator by an alleged interaction between the finger and the stop when the mechanical oscillator has a time drift relative to the quartz oscillator, the finger coming either momentarily block the rocker which is then stopped in its movement during a certain time interval (the abutment bearing against the finger moved in its direction during the return of the rocker in the direction of its neutral position), or limit the amplitude of oscillation when the finger comes against the stop while the rocker rotates towards its position of maximum amplitude.
  • An object of the present invention is to find a solution to the technical problems and disadvantages mentioned above in the technological background.
  • a first objective within the framework of the development that led to the present invention, was to propose a watch assembly comprising a mechanical movement, with a conventional mechanical resonator of the spring-balance type, and a regulating device that does not use a system.
  • magnet-coil for coupling the mechanical resonator to this control device, in particular which does not require to arrange at least one permanent magnet on the balance.
  • magnet-coil system generates magnetic braking pulses, a magnetic flux generated by at least one coil being coupled to the magnetic flux of said at least one permanent magnet on board. the mechanical resonator.
  • a second objective within the framework of the development that led to the present invention, was to produce a watch assembly comprising a mechanical movement with a mechanical oscillator and a device for regulating this mechanical oscillator, but without initially having to disturb the mechanical oscillator.
  • a timepiece that has the precision of an auxiliary electronic oscillator (in particular provided with a quartz resonator) when the regulating device is functional and the accuracy of the mechanical oscillator when this control device is deactivated or off, but with a precision that may correspond to the best standard in the latter case.
  • it seeks to add an electronic control to a mechanical movement also set as precisely as possible so that it remains functional, with the best possible operation, when the electronic control is not active.
  • the present invention also aims to provide a watch assembly that meets at least the first objective and is robust, that is to say, that can maintain a high accuracy even after an external disturbance as a shock.
  • the present invention relates to a watch assembly as defined in claim 1, and a control module as defined in claim 16.
  • the watch assembly comprises an electronic control circuit, arranged to be able to generate a control signal which is supplied to the regulation pulse application device to activate it, and a sensor arranged to be able to detect the passage of the mechanical resonator by a certain given position on the axis of oscillation.
  • the control device of this watch assembly comprises a measurement device arranged to be able to measure, on the basis of position signals supplied by the sensor, a time drift of the mechanical oscillator relative to the auxiliary oscillator.
  • the device for applying control pulses of the watch assembly is an electromechanical device arranged so as to be able to generate, in response to the above-mentioned control signal which is a function of the measured time drift, braking pulses.
  • the mechanical resonator defines a braking surface having a certain extent along the axis of oscillation of the mechanical resonator and arranged so as to allow at least the application of a mechanical braking pulse with its release at a given instant.
  • the aforementioned expression also excludes braking resulting from electrical coupling between the oscillating member and a stationary unit of the regulating device.
  • this expression does not exclude electrical and / or magnetic elements incorporated in the electromechanical device that generates mechanical braking pulses applied to the mechanical resonator.
  • electromechanical indicates that at least one electrical element forms the device for applying control pulses.
  • the regulation pulse applying device is formed by an actuator comprising at least one braking member which is arranged to be actuated, in response to the above-mentioned control signal, so as to exert on the oscillating member of the mechanical resonator a certain torque of mechanical force during the mechanical braking pulses. Braking is thus obtained by physical contact between the braking member and the oscillating member.
  • the regulation pulse applying device is arranged in such a way that the braking energy of each mechanical braking pulse is less than a blocking energy, so as not to momentarily stop the mechanical resonator during the braking pulses. Then, the oscillating member and the braking member are arranged so that the mechanical braking pulses can be applied mainly by a dynamic dry friction between the braking member and the braking surface of the oscillating member.
  • the characteristics of the invention it is possible to add to a basic mechanical movement a control module of its mechanical oscillator (comprising a sprung-balance) without having to modify this basic mechanical movement.
  • a control module of its mechanical oscillator comprising a sprung-balance
  • This is a big advantage.
  • a surface treatment (usually partial) of the balance may be provided for the operation of the sensor.
  • Such a treatment can be limited to affixing a black dot on an arm of the balance or under the serge of this balance in the case of an optical sensor.
  • the design of the basic mechanical movement does not have to be changed to produce a watch assembly according to the invention.
  • the watch assembly according to the invention is formed by a basic watch movement already put, at first, on the market in a watch and which is added, in a second step, a control module according to the invention to increase its accuracy.
  • An adaptation to the level of the dressing of the watch may be necessary, but is not necessarily mandatory.
  • machining at the level of a casing ring may prove sufficient to allow the incorporation of the watch assembly into the watch case already in the possession of a user, that is to say with an addition of a regulation module according to the invention, object of appended claims.
  • the measuring device is arranged to determine whether the time drift of the mechanical oscillator corresponds to at least one advance or at least one delay. Then, the control circuit and the regulation pulse application device are arranged to be able to apply selectively to the mechanical resonator, when the measured time drift corresponds to a certain advance, a first mechanical braking pulse of which at least a major part intervenes between the initial moment and the median moment of an alternation (first half-cycle) and, when the measured time drift corresponds to a certain delay, a second mechanical braking pulse of which at least a major part intervenes between the median moment and the final moment of alternation (second half-alternation).
  • each oscillation period of the mechanical oscillator defines a first alternation followed by a second alternation and each alternation has a passage of the mechanical resonator by its neutral position at said median instant.
  • control circuit and the regulation pulse applying device are arranged to selectively apply to the mechanical resonator, when the measured time drift corresponds to a certain advance, a mechanical braking pulse in a first half. alternation of the oscillation of the mechanical resonator and, when the measured time drift corresponds to a certain delay, a mechanical braking pulse in a second half-wave.
  • the regulating device comprises a device for determining the temporal positions of the mechanical resonator which is arranged to be able to determine, in an alternation of an oscillation of the mechanical resonator, a first moment which takes place before the median instant and after the initial moment of this alternation and, also in a alternation of an oscillation of this mechanical resonator, a second moment which intervenes after the median moment and before the final moment of this alternation.
  • the control circuit is arranged to be able to selectively trigger a first mechanical braking pulse substantially at the first instant and a second mechanical braking pulse substantially at the second instant.
  • the braking surface of the mechanical resonator comprises a first sector, along its axis of oscillation, for the application of the first mechanical braking pulse starting substantially at the first moment and a second sector, along the axis. oscillator, for the application of the second mechanical braking pulse beginning substantially at the second instant, regardless of the oscillation amplitude of the mechanical oscillator in its useful operating range.
  • a watch assembly 2 according to the present invention. It comprises a mechanical watch movement 4 which is formed at least by a mechanism comprising a gear 10 driven by a motor-spring arranged in a barrel 8 (this mechanism is shown partially in FIG. Figure 1 ).
  • the watch movement comprises a mechanical resonator 14, formed by a rocker 16 and a hairspring 18, and a maintenance device of the mechanical resonator forming with this mechanical resonator a mechanical oscillator which controls the operation of the mechanism.
  • the maintenance device comprises an escapement 12, formed here by an anchor and an escape wheel which is kinematically connected to the barrel via
  • the mechanical resonator is capable of oscillating along an axis of oscillation, in particular a circular axis, about a neutral position corresponding to a state of minimal mechanical potential energy. Each oscillation of the mechanical resonator defines a period of oscillation.
  • the watch assembly 2 further comprises a device 6 for electronically regulating the frequency of the mechanical oscillator, this regulating device comprising an electronic control circuit 22 associated with an auxiliary oscillator formed by a quartz resonator 23.
  • auxiliary oscillators may be provided, in particular an oscillator integrated entirely in the control circuit.
  • the auxiliary oscillator is more accurate than the mechanical oscillator.
  • the device 6 also comprises a sensor 24 for detecting at least one angular position of the pendulum when it oscillates and a device 26 for applying regulation pulses to the mechanical resonator 14.
  • the watch assembly comprises a source of energy 28 associated with a device 26 for storing the electrical energy generated by the energy source.
  • the energy source is for example formed by a photovoltaic cell or by a thermoelectric element, these examples being in no way limiting. In the case of a battery, the energy source and the storage device together form one and the same electrical component.
  • the regulation device 6 comprises in its control circuit an electronic control circuit arranged to generate a control signal, which is supplied to the regulation pulse application device which is arranged so as to generate, in response to this control signal, successive control pulses each exerting a certain force torque on the mechanical resonator.
  • the sensor 24 is arranged to be able to detect the passage of at least one reference point of the balance 16 by a certain given position relative to a support of this mechanical resonator.
  • the sensor is arranged to detect at least the passage of the mechanical resonator by its neutral position.
  • the sensor may be associated with the anchor of the exhaust so as to detect the tilting of this anchor during oscillation maintenance pulses which are provided substantially when the resonator passes through. its neutral position.
  • the detection of the neutral point of the resonator makes it possible to generate a reference of useful and stable time within the oscillations. Indeed, in the absence of disturbances (in particular caused by the braking pulses provided for regulation), the passage through the neutral point always occurs exactly in the middle of the alternations, regardless of the amplitude of oscillation. On the other hand, the detection of another angular position of the balance does not give a stable and well-defined temporal reference, in particular with regard to the events that are the passage of the balance-spring by its neutral position and the beginning or the end of the alternations, to know the moments when the balance is at maximum amplitude and at zero angular velocity (corresponding to the inversion of the direction of oscillation).
  • the regulating device 6 also comprises a measuring device arranged to measure, on the basis of position signals supplied by the sensor, a time drift of the mechanical oscillator relative to the auxiliary oscillator. It is understood that such a measurement is easy since there is provided a sensor capable of detecting the passage of the mechanical resonator by its neutral point. Such an event takes place every half-period of oscillation of the mechanical oscillator.
  • the measuring circuit will be described in more detail later.
  • the device 26 for applying control pulses is arranged to be able to apply to the balance 16 mechanical braking pulses to regulate the frequency of the mechanical oscillator when a certain time drift of this mechanical oscillator is noted.
  • the braking energy that is taken by the mechanical resonator by any mechanical braking pulse is lower than the blocking energy of the mechanical oscillator, so as not to momentarily stop the oscillation movement.
  • the blocking energy is normally defined as the kinetic energy of the mechanical resonator at the beginning of the braking pulse minus the potential energy difference of this mechanical resonator between the end and the beginning of the braking pulse in question. as long as the mechanical oscillator does not receive maintenance energy during this braking pulse.
  • the braking pulses do not take place during the tilting of the anchor, tilts during which a contribution is made of maintenance energy of the oscillator. Since the tilting of the anchor generally occurs around the neutral position of the mechanical resonator, it will therefore be avoided to disturb by a braking pulse the oscillation movement of the balance spring as it passes through this neutral position.
  • the regulating pulse application device comprises an actuator 36 having a movable braking member 38, which is actuated in response to a control signal so as to exert on the oscillating member, here the balance, the mechanical resonator some mechanical force during mechanical braking pulses.
  • the actuator 36 comprises a piezoelectric element powered by a circuit 39 which generates an electric voltage as a function of a control signal supplied by the regulation circuit 22. When the piezoelectric element is momentarily energized, the braking member comes into contact with a braking surface of the balance to slow it down.
  • the blade 38 forming the braking member curves and its end portion presses against the circular lateral surface 40 of the serge 17 of the rocker 16.
  • the serge 17 defines, at least over a certain angular sector, a substantially circular braking surface.
  • the braking member comprises a movable part, here the end portion of the blade, which defines a braking pad arranged to exert a pressure against the substantially circular braking surface during the application of the pulses.
  • mechanical braking is provided in the context of the present invention that the oscillating member and the braking member are arranged in such a way that the mechanical braking pulses are applied by a dynamic dry friction or a viscous friction between the control member. braking and a braking surface of the oscillating member.
  • the balance comprises a central shaft which defines, respectively which carries a part other than the beam of the beam defining, at least over a certain angular sector, a circular braking surface.
  • a pad of the braking member is arranged to exert a pressure against this circular braking surface during the application of the mechanical braking pulses.
  • a circular braking surface, for an oscillating member which is pivoted (balance), associated with at least one braking pad, carried by the braking device of the regulation device, constitutes a mechanical braking system which has decisive advantages. Indeed, thanks to such a system, braking pulses can be applied to the mechanical resonator at any moment oscillations, and this independently of the amplitude of oscillation of the balance. Then, it is possible to precisely manage the correction generated by a braking pulse, in particular by an appropriate selection of its duration and by the applied braking force torque. It is also possible, in particular by virtue of the position measurement performed by the sensor, to determine the instants during alternations to apply the braking pulses.
  • At least the braking torque, the duration of the pulses and the respective times at which they are generated can be selected and vary according to the time drift of the mechanical oscillator. In particular, it is thus possible to generate small corrections for fine and precise regulation of the oscillation frequency.
  • the amplitude of oscillation generally varies according to the degree of winding of the barrel (unless a specific device to produce a constant force is provided).
  • the angular position of the balance varies as a function of the amplitude of oscillation. If, for example, braking pulses are chosen to regulate the oscillation frequency always at a determined fixed time interval before or after the resonator has passed through its neutral position (see the preferred regulation principle described later), the braking surface must then extend over a certain angular length so that the pad can in all cases exert a braking force on the balance at different angular positions along the braking surface.
  • the mechanical resonator has a braking surface that extends over at least a certain angular sector having a certain angular length that is non-zero (that is to say, an angular sector is considered as non-punctual), to allow the application of mechanical braking pulses at least at a given moment in the oscillation periods of the mechanical oscillator, regardless of the oscillation amplitude of the mechanical resonator for a useful operating range of the mechanical oscillator.
  • the braking surface of the mechanical resonator comprises at least a first angular sector for the application, in alternations, of first mechanical braking pulses substantially at a first instant situated before the median time of passage. of the mechanical resonator by its neutral position and a second angular sector for the application, in alternations, of second mechanical braking pulses substantially at a second instant after the median instant, irrespective of the oscillation amplitude of the resonator mechanical in a useful operating range of the mechanical oscillator considered.
  • the first and second angular sectors are substantially merged and define thus one and the same angular sector of braking.
  • the first and second angular sectors have a common portion or are distinct.
  • the same considerations apply to a first time interval and a second time interval in which it is possible to apply respectively the first and second braking pulses.
  • the braking surface has an extent allowing the application of mechanical braking pulses at any time oscillations of the mechanical resonator.
  • the pad of the braking member may also have a circular contact surface of the same radius as the braking surface, but such a configuration is not required.
  • the contact surface may in particular be flat, as shown in the figures.
  • a flat surface has the advantage of leaving a certain margin in the positioning of the braking member relative to the balance, which makes it possible to have greater manufacturing and mounting tolerances of the braking device in or on the periphery of the watch movement.
  • the sensor 34 is an optical sensor of the photoelectric type. It comprises a light source, arranged so as to be able to send a beam of light towards the beam, and a light detector, arranged to receive back a light signal whose intensity varies periodically depending on the position of the beam.
  • the beam is sent on the lateral surface of the serge 17, this surface having a limited area with a reflectivity different from the two neighboring zones, so that the sensor can detect the passage of this limited area and provide the control device with a signal position when this event occurs.
  • the circular surface having a variable reflection for the light beam may be located at other points of the beam. The variation can in a particular case be produced by a hole in the reflective surface.
  • the sensor can also detect the passage of a certain portion of the beam, for example an arm, the neutral position corresponding for example in the middle of a signal reflected by the arm or at the beginning, respectively at the end of such a signal.
  • modulation the light signal which may consist of a succession of light pulses received in return by the photodetector, may define the angular position of the beam in various ways, by a negative or positive variation of the light captured.
  • the position sensor may be of the capacitive type or of the inductive type and thus be arranged so as to detect a variation in capacitance or inductance respectively as a function of the position of the balance.
  • the inductive sensor preferably operates without presence of magnetized material on the resonator, for example by detecting the presence of a non-magnetic material or simply a variation in distance between such a material and the sensor.
  • the various elements of the control device 6 form a module independent of the watch movement.
  • this module can be assembled or associated with the mechanical movement 4 that during their assembly in particular in a watch case.
  • such a module can be attached to a casing ring that surrounds the watch movement.
  • the electronic control module can be advantageously associated with the watch movement once the latter fully assembled and adjusted, the assembly and disassembly of this module can occur without having to intervene on the mechanical movement itself.
  • the Figure 3 shows four graphs.
  • the first graph gives the digital signal supplied over time by the sensor 34 when the resonator 14 oscillates, that is to say when the mechanical oscillator of the watch ensemble is activated.
  • the digital signal can be provided in a first variant directly by the sensor, but in a second variant the sensor provides an analog signal and it is the control circuit that converts it into a digital signal, in particular by means of a comparator.
  • the sensor and the balance are arranged to allow the sensor to detect the successive passages of the sprung balance by its neutral position. Such an event occurs twice per oscillation period, once in each of the two half-waves at a time tzn at which the sensor provides a pulse 42.
  • Each oscillation period of the mechanical oscillator defines a first alternation followed by a second alternation between two extreme positions defining the oscillation amplitude of this mechanical oscillator, each alternation having a passage of the mechanical resonator by its neutral position to a median time t Zn and a duration between an initial moment t An-1 , respectively t D1 for the alternation A1 at the Figure 3 and t D2 for the alternation A2 at the Figure 4 , and a final moment t An , respectively t F1 for the alternation A1 to the Figure 3 and t F2 for the alternation A2 at the Figure 4 .
  • each oscillation has two successive alternations which are defined in the present text as the two half-periods during which the rocker is respectively subjected to an oscillation movement in one direction and then an oscillation movement in the other direction.
  • an alternation corresponds to a rocking of the rocker in one direction or the other direction between its two extreme positions defining the amplitude of oscillation.
  • each braking pulse is generated by a mechanical braking which exerts a mechanical braking torque on the mechanical resonator, as shown in the third graph representing the angular speed of the beam.
  • the oscillation period T0 corresponds to a 'free' oscillation (that is to say without application of regulation pulses) of the mechanical oscillator of the watch assembly.
  • the two alternations of one oscillation period each have a duration T0 / 2 without disturbance or external stress (in particular by a regulation pulse).
  • the braking pulse is triggered after a time interval T A1 following the last median time t Zn detected by the sensor before the alternation A1.
  • the duration T A1 is selected greater than a half-alternation T0 / 4 and less than an alternation T0 / 2 less the duration of the braking pulse P1.
  • the duration of this braking pulse is much less than a half-alternation T0 / 4.
  • the braking pulse is generated between the beginning of an alternation and the passage of the resonator by its neutral position in this alternation.
  • the angular velocity in absolute value decreases at the moment of the braking pulse P1.
  • Such a braking pulse induces a negative phase shift T C1 in the oscillation of the resonator, as shown by the two graphs of the angular velocity and the angular position at the Figure 3 , a delay relative to the undisturbed theoretical signal (shown in broken lines).
  • the duration of the alternation A1 is increased by a time interval Tci.
  • the period T1 oscillation, comprising the alternation A1 is extended relative to the value T0. This causes a specific decrease in the frequency of the mechanical oscillator and a momentary slowing of the operation of the associated mechanism.
  • the braking pulse P2 at the instant t P2 which is located after the median moment t N2 at which the resonator passes through its neutral position in the alternation A2. Finally, after the braking pulse P2, this alternation A2 ends at the final time t F2 at which the resonator again occupies an extreme position (maximum positive angular position in the period T2).
  • the braking pulse is triggered after a time interval T A2 according to the median time t N2 of the alternation A2.
  • the duration T A2 is selected less than a half-alternation T0 / 4 less the duration of the braking pulse P2. In the example given, the duration of this braking pulse is much less than half a half cycle.
  • the braking pulse is thus generated, in an alternation, between the median instant at which the resonator passes through its neutral position and the final instant at which this alternation ends and at which the resonator occupies an extreme position.
  • the angular speed in absolute value decreases at the moment of the braking pulse P2.
  • the braking impulse induces here a positive temporal phase shift T C2 in the oscillation of the resonator, as shown by the two graphs of the angular velocity and the angular position at the Figure 4 , an advance relative to the undisturbed theoretical signal (shown in broken lines).
  • the duration of the alternation A2 is reduced by the time interval T C2 .
  • the oscillation period T2 comprising the alternation A2 is therefore shorter than the value T0. This therefore generates a point increase in the frequency of the mechanical oscillator and a momentary acceleration of the operation of the associated mechanism. This phenomenon is surprising and unintuitive, which is why the skilled person ignored it in the past.
  • This regulation process is remarkable in that it takes advantage of a surprising physical phenomenon of mechanical oscillators.
  • the inventors have arrived at the following observation: Contrary to the general education in the horological field, it is possible not only to reduce the frequency of a mechanical oscillator by braking pulses, but it is also possible to increase the frequency such a mechanical oscillator also by braking pulses. The person skilled in the art expects to be able to practically only reduce the frequency of a mechanical oscillator by braking pulses and, as a corollary, to be able only to increase the frequency of such a mechanical oscillator by the application of driving pulses. during a supply of energy to this oscillator.
  • auxiliary oscillator comprising, for example, a quartz resonator
  • a mechanical oscillator which is otherwise very precise, which it momentarily exhibits. frequency slightly too high or too low.
  • the inventors have observed that the effect produced by a control pulse on a mechanical resonator depends on the moment when it is applied in an alternation relative to the moment when this mechanical resonator passes through its neutral position.
  • a braking pulse applied, in any alternation between the two extreme positions of the mechanical resonator, substantially before the passage of the mechanical resonator by its neutral position. (rest position) produces a negative temporal phase shift in the oscillation of this resonator and therefore a delay in the operation of the mechanism clocked by the resonator, while a braking pulse applied in this alternation substantially after the passage of the mechanical resonator by its neutral position produces a positive temporal phase shift in the oscillation of this resonator and thus an advance in the operation of the mechanism. It is thus possible to correct a frequency that is too high or a frequency that is too low only by means of braking pulses.
  • the application of a braking torque during an alternation of the oscillation of a sprung balance causes a negative or positive phase shift in the oscillation of this sprung balance depending on whether this braking torque is applied respectively before or after the sprung balance has passed through its neutral position.
  • a main embodiment of the watch assembly according to the invention is characterized by a particular arrangement of the mechanical oscillator control device and in particular the electronic control circuit.
  • this control device comprises a measurement device arranged to measure, if necessary, a temporal drift of the oscillator mechanical relative to an auxiliary oscillator, which is implicitly more accurate than the mechanical resonator, and to determine if this time drift corresponds to at least some advance or at least some delay.
  • the control device comprises a control circuit connected to the regulating pulse application device described above, which are arranged to be able to apply to the mechanical resonator, when the time drift of the mechanical oscillator corresponds to at least some advance, a first braking pulse substantially in a first half-wave before the median time of passage of the mechanical resonator by its neutral position and, when the time drift of the mechanical oscillator corresponds to at least a certain delay, a second pulse braking substantially in a second half-wave after the median time of passage of the mechanical resonator by its neutral position.
  • the control device comprises a device for determining the temporal positions of the mechanical resonator, this determination device being arranged to be able to determine, in an alternation of an oscillation, a first moment which occurs before the median moment of passage of the mechanical resonator by its neutral position and after the initial moment at which this alternation begins, and, in the same alternation or another alternation of an oscillation, a second moment which intervenes after the median moment of passage of the mechanical resonator by its neutral position and before the final moment at which this alternation ends. Then, the control circuit is arranged to selectively trigger a first braking pulse substantially at the first instant and a second braking pulse substantially at the second instant.
  • the device for determining the temporal positions of the mechanical resonator may have elements or members in common with the measuring device, in particular the position measuring sensor, and with the control circuit, for example a logic circuit and possibly a counter.
  • the control circuit for example a logic circuit and possibly a counter.
  • the regulator device 46 comprises an electronic control circuit 48 and an auxiliary resonator 23.
  • This auxiliary resonator is for example an electronic quartz resonator.
  • the sensor 24 here provides an analog signal consisting of pulses involved in the successive passages of the sprung balance by its neutral position. This analog signal is compared with a reference voltage UREF by means of a hysteresis comparator 50 (Schmidt trigger) arranged in the circuit 48 in order to generate a digital signal 'Comp' for the digital electronics of the control circuit.
  • the comparator is an element of a measurement circuit 52 described hereinafter. Since there are two pulses 42 per oscillation period of the mechanical resonator, the digital signal 'Comp' is supplied to a flip-flop 54, which regularly provides one pulse per oscillation period. The flip-flop increments, at the instantaneous frequency of the mechanical oscillator, a bidirectional counter C2, which is decremented at a nominal frequency / reference frequency by a clock signal S hor derived from the auxiliary oscillator which generates a digital signal at a reference frequency. This auxiliary oscillator is formed of the auxiliary resonator 23 and a clock circuit 56.
  • the relatively high frequency reference signal generated by the clock circuit is divided beforehand by dividers DIV1 and DIV2 (these two dividers that can form two floors of the same divider).
  • the state of the counter C2 determines the advance or the delay accumulated over time by the relative mechanical oscillator. to the auxiliary oscillator with a resolution substantially corresponding to a set period, the state of the counter being supplied to a control logic circuit 58.
  • the state of the counter C2 corresponds to the time drift of the mechanical oscillator.
  • this circuit is initialized at the step POR.
  • a reset ('reset') of the counter C2 is performed.
  • the detection of a first rising edge of the digital signal 'Comp' is awaited.
  • the control circuit 58 resets ('reset') the counter C1.
  • the control circuit checks whether a certain time drift has been observed. More particularly, it determines whether the eventual time drift corresponds to a certain advance (C2> N1?) Or to a certain delay (C2 ⁇ - N2?).
  • N1 and N2 are natural numbers (positive integers not equal to zero). In the case where such an advance, respectively such a delay is not noted, the control circuit terminates the sequence (implemented in loop) and it waits for the appearance of a new pulse 42 in the sensor signal.
  • the control circuit waits for the counter C1 to measure a first time interval T A1 (see Figure 3 ) and then it sends a control signal to a timer 60 ('Timer') which immediately closes a switch 62 (which then goes to the 'ON' state) to power up the mechanical braking device, more specifically to that the latter activates its mechanical braking device during a braking period T R.
  • the switch 62 In the case of a piezoelectric element used to move the movable end portion of the blade 38 towards the serge or the balance shaft (see Figure 2 ), the switch 62 then controls the power of this piezoelectric element.
  • the first interval T A1 is selected greater than a half-alternation T0 / 4 and less than an alternation T0 / 2 decreased by at least the duration of the braking pulse, so that the integer of this braking pulse is applied in an alternation before the passage of the mechanical resonator by its neutral position, to cause a decrease in the instantaneous frequency of the mechanical oscillator, since the time drift indicates that its free frequency is higher on average than the nominal frequency, ie greater than the reference frequency determined by the auxiliary oscillator.
  • the sequence is completed and a new sequence is started with the expectation of the appearance of a new pulse 42 in the signal supplied by the sensor.
  • the control circuit waits for the counter C1 to measure a second time interval T A2 (see Figure 4 ) and then it sends a control signal to the timer 60 ('Timer') which immediately closes the switch 62 so that the mechanical braking device activates its mechanical braking member during a braking period T R.
  • the sequence is completed and a new sequence is started with the expectation of the appearance of a new pulse 42 in the signal supplied by the sensor.
  • the second interval T A2 is selected less than a half-alternation T0 / 4 minus the duration of the braking pulse, so that the integer of this braking pulse is applied alternately after the passage of the mechanical resonator by its neutral position and before the end of the alternation in question to generate an increase in the instantaneous frequency of the mechanical oscillator, since the time drift indicates that its free frequency is lower on average than the reference frequency.
  • the time intervals T A1 and T A2 start exactly at the passages of the mechanical resonator by its neutral position. However, if the pulses 42 are centered on such an event and have a certain non-zero duration, the detection of their rising edge or their falling edge then has a certain time shift with respect to this event. Therefore, it will be understood that the ranges of values for the intervals T A1 and T A2 may be here slightly different from those resulting from the Figures 3 and 4 (Small variations of the limit values, substantially half of the duration of the position pulses) to satisfy the two main conditions of the control process.
  • the sensor, the comparator 50, the control circuit 58 and the counter C1, incremented by the clock circuit 60 via the divider DIV1, together form a device for determining the temporal positions of the mechanical resonator which makes it possible to apply pulses of mechanical braking in various alternations selectively before and after the passage of the mechanical resonator by its neutral position.
  • the preferred regulation method described above can be implemented efficiently and safely, so as to correct a natural frequency of the mechanical oscillator which is too high or too low relative to the reference frequency generated by the clock circuit 60 via the dividers.
  • the time position determining device is thus arranged to measure, following the detection of a passage of the resonator by its neutral position, a first time interval and a second time interval whose respective ends respectively define a first time and a second time interval. second moment which are located temporally, in any alternation of the oscillation of the mechanical resonator, respectively before and after the moment of the passage of this resonator by its neutral position.
  • a variant of the second embodiment of the invention which defines an improvement of the regulation device according to the invention in connection with a management of the electrical energy consumed by the sensor.
  • the elements of the regulation circuit 48A which are identical with those of the variant described with reference to the Figures 5 and 6 , will not be described again here, the same for the control method that corresponds to that of this variant described above.
  • the regulating device 66 differs from the regulating device 46 in that the sensor 24 has a standby mode or can even be de-energized. Thus, by 'OFF' state, it is understood that the sensor is rendered momentarily inactive and that it is then in a state of lower power consumption than in its 'ON' state in which it detects the rocking of the mechanical resonator.
  • the control circuit 58A is arranged to supply a control signal S CAP to a switch 68 which controls the supply of the sensor 24, respectively which controls the state of this sensor between its 'ON' state and its state OFF.
  • the duration of T ON is expected to be less than half-alternation T0 / 4 to minimize the energy consumption of the sensor.
  • the digital signal 'Comp' has pulses of relatively short duration, so that the detection of a pulse 42 per oscillation period only requires a relatively small time window T ON .
  • the comparator 50 delivers only one pulse 42 per oscillation period, so that the latch provided in the previous variant is removed.
  • the comparator 50 directly supplies its output signal to the counter C2.
  • the power supply of the sensor appears by putting the sensor in its 'OFF' state in each sequence of the control method after detecting the falling edge of a pulse 42 of the signal 'Comp'.
  • the falling edge of the pulses 42 of the position signal is detected.
  • the sensor can thus detect the integer of a position pulse 42 in the interval T ON .
  • the detection of the rising edge or the falling edge does not change anything.
  • detection of the rising edge of the pulses is also possible to trigger the passage of the sensor from its 'ON' state to its 'OFF' state. In the latter case, the duration of the pulses 42 is greatly reduced since the sensor is rendered inactive directly after the start of these pulses.
  • Such an implementation variant makes it possible to further reduce the consumption of the sensor.
  • the sensor When activating the regulation device, the sensor is put directly in its 'ON' state pending the detection of the falling edge of a first pulse 42 (corresponding to a passage through the neutral position of the mechanical resonator) . As soon as this detection is made, the sensor is set to its 'OFF' state (OFF sensor) and the control sequence continues as in the previous variant. On the other hand, whether a braking pulse is generated or not, the control circuit 58A continues to follow the incrementation of the counter C1 until its value corresponds to the expected time interval T OFF . Then the sequence ends with a new sensor activation (Sensor ON) which also marks the beginning of a next sequence.
  • the algorithm as given to the Figure 9 provides that the duration T OFF is greater than the duration T A1 .
  • This condition indicates that the T OFF interval is substantially greater than an alternation T0 / 2.
  • it is intended to detect the passage through the neutral position only once in a time interval nT0 corresponding to several oscillation periods (n> 1).
  • the measurement device is modified accordingly so that the counter C2 receives only one setpoint pulse, derived from the auxiliary oscillator, in successive intervals nT0.
  • the actuator of this braking device comprises two braking modules 76 and 78 each formed by a blade 38A, respectively 38B actuated by a magnetic magnet-coil system 80A, respectively 80B.
  • the coils of the two magnetic systems are respectively controlled by two power supply circuits 82A and 82B which are electrically connected to the control circuit 22.
  • the blades 38A and 38B define a first braking pad and a second braking pad.
  • These two braking pads are arranged so that, during the application of the mechanical braking pulses, they come to exert on the balance respectively two radial forces diametrically opposed relative to the axis of rotation of the balance 16 and opposite directions.
  • the force torque exerted by each of the two pads during a braking pulse is provided substantially equal to the other.
  • the resultant forces in the general plane of the balance is substantially zero so that no radial force is exerted on the balance shaft during the braking pulses. This avoids mechanical stresses for the pivots of this balance shaft and more generally at the bearings associated with these pivots.
  • Such an arrangement may advantageously be incorporated in a variant where braking is performed on the balance shaft or on a disc of relatively small diameter carried by this shaft.
  • the braking force exerted on the beam may be provided axially.
  • the actuator is arranged so that, during the application of the braking pulses, the first pad and the second pad come to exert on the balance two axial forces substantially aligned and in opposite directions.
  • the force torque exerted by each of the two pads during a braking pulse is provided here also substantially equal to the other.
  • the actuator comprises a clock-type motor 86 and a braking member 90 which is mounted on a rotor 88, with a permanent magnet, of this motor so as to exert a certain pressure on the rocker 16 of the resonator 14 when the rotor carries out a certain rotation, which is generated by a supply of a motor coil during the braking pulses in response to a control signal provided by the control circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromechanical Clocks (AREA)
  • Electric Clocks (AREA)

Abstract

L'ensemble horloger comprend un mouvement mécanique équipé d'un oscillateur mécanique, formé par un résonateur (14) du type balancier-spiral, et un dispositif de régulation de sa fréquence d'oscillation à l'aide d'un oscillateur auxiliaire muni d'un résonateur à quartz. Le dispositif de régulation comprend un capteur (34), agencé pour pouvoir détecter le passage du résonateur par sa position neutre, un dispositif de mesure agencé pour pouvoir mesurer, sur la base de signaux de position fournis par le capteur, une dérive temporelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire, et un dispositif (36) pour appliquer au résonateur des impulsions de freinage mécanique lorsqu'une certaine dérive temporelle est constatée. A cet effet, le résonateur présente une surface de freinage qui s'étend sur au moins un secteur ayant une certaine longueur selon l'axe d'oscillation et contre laquelle un organe de freinage peut venir s'appuyer pour freiner momentanément ce résonateur.

Description

    Domaine technique
  • La présente invention concerne un ensemble horloger, notamment une pièce d'horlogerie, comprenant :
    • un mécanisme, lequel forme notamment en partie un mouvement mécanique,
    • un résonateur mécanique susceptible d'osciller le long d'un axe d'oscillation autour d'une position neutre correspondant à son état d'énergie mécanique potentielle minimale,
    • un dispositif d'entretien du résonateur mécanique formant avec ce dernier un oscillateur mécanique agencé pour cadencer la marche du mécanisme, chaque oscillation du résonateur mécanique présentant deux alternances successives entre deux positions extrêmes sur l'axe d'oscillation qui définissent l'amplitude d'oscillation de l'oscillateur mécanique,
    • un dispositif de régulation agencé pour réguler la fréquence de l'oscillateur mécanique, ce dispositif de régulation comprenant un oscillateur auxiliaire, généralement plus précis que ledit oscillateur mécanique, et un dispositif agencé pour appliquer sur commande des impulsions de régulation au résonateur mécanique qui le freinent momentanément.
  • En particulier, le résonateur mécanique est un balancier-spiral et le dispositif d'entretien comprend un échappement classique, par exemple à ancre suisse. L'oscillateur auxiliaire est formé notamment par un résonateur à quartz ou par un résonateur intégré dans un circuit électronique.
  • Arrière-plan technologique
  • Des mouvements formant des ensembles horlogers tels que définis dans le domaine de l'invention ont été proposés dans quelques documents antérieurs. Le brevet CH 597 636 , publié en 1977, propose un tel mouvement en référence à sa figure 3. Le mouvement est équipé d'un résonateur formé par un balancier-spiral et d'un dispositif d'entretien classique comprenant une ancre et une roue d'échappement en liaison cinématique avec un barillet muni d'un ressort. Ce mouvement horloger comprend un dispositif de régulation de la fréquence de l'oscillateur mécanique. Ce dispositif de régulation comprend un circuit électronique et un ensemble magnétique formé d'une bobine plate, agencée sur un support sous la serge du balancier, et de deux aimants montés sur le balancier et agencés proches l'un de l'autre de manière à passer tous deux au-dessus de la bobine lorsque l'oscillateur est activé.
  • Le circuit électronique comprend une base de temps comprenant un résonateur à quartz et servant à générer un signal de fréquence de référence FR, cette fréquence de référence étant comparée avec la fréquence FG de l'oscillateur mécanique. La détection de la fréquence FG de l'oscillateur est réalisée via les signaux électriques générés dans la bobine par la paire d'aimants. Le circuit de régulation est agencé pour pouvoir engendrer momentanément un couple de freinage via un couplage magnétique aimant-bobine et une charge commutable reliée à la bobine. Le document CH 597 636 donne l'enseignement suivant : « Le résonateur ainsi formé doit présenter une fréquence d'oscillation variable selon l'amplitude de part et d'autre de la fréquence FR (défaut d'isochronisme) ». On enseigne donc que l'on obtient une variation de la fréquence d'oscillation d'un résonateur non isochrone en variant son amplitude d'oscillation. Une analogie est faîte entre l'amplitude d'oscillation d'un résonateur et la vitesse angulaire d'une génératrice comprenant un rotor muni d'aimants et agencé dans un rouage du mouvement horloger pour en réguler sa marche. Comme un couple de freinage diminue la vitesse de rotation d'une telle génératrice et ainsi sa fréquence de rotation, il est ici seulement envisagé de pouvoir diminuer la fréquence d'oscillation d'un résonateur obligatoirement non isochrone par l'application d'un couple de freinage diminuant son amplitude d'oscillation.
  • Pour effectuer une régulation électronique de la fréquence de la génératrice, respectivement de l'oscillateur mécanique, il est prévu dans un mode de réalisation donné que la charge soit formée par un redresseur commutable via un transistor qui charge une capacité de stockage lors des impulsions de freinage, pour récupérer l'énergie électrique afin d'alimenter le circuit électronique. L'enseignement constant donné dans le document CH 597 636 est le suivant : Lorsque FG > FR le transistor est conducteur ; on prélève alors une puissance Pa sur la génératrice / l'oscillateur. Lorsque FG < FR, le transistor est non-conducteur ; on ne prélève donc plus d'énergie sur la génératrice / l'oscillateur. En d'autres termes, on régule seulement lorsque la fréquence de la génératrice / de l'oscillateur est supérieure à la fréquence de référence FR. Cette régulation consiste à freiner la génératrice / l'oscillateur dans le but de diminuer sa fréquence FG. Ainsi, dans le cas de l'oscillateur mécanique, l'homme du métier comprend qu'une régulation n'est possible que lorsque le ressort de barillet est fortement armé et que la fréquence d'oscillation libre (fréquence propre) de l'oscillateur mécanique est supérieure à la fréquence de référence FR, comme résultat d'un défaut d'isochronisme voulu de l'oscillateur mécanique sélectionné. On a donc un double problème, à savoir l'oscillateur mécanique est sélectionné pour ce qui est normalement un défaut dans un mouvement mécanique et la régulation électronique n'est fonctionnelle que lorsque la fréquence propre de cet oscillateur est supérieure à une fréquence nominale.
  • En conclusion, l'enseignement donné généralement à l'homme du métier est le suivant : Si on veut réguler électroniquement la fréquence d'un balancier-spiral d'un mouvement horloger classique, il faut changer le balancier-spiral pour premièrement agencer au moins un aimant dessus et deuxièmement pour modifier sa fréquence propre de manière à ce que cette fréquence propre soit supérieure à la fréquence voulue. La conséquence d'un tel enseignement est claire : On doit dérégler le résonateur mécanique pour qu'il oscille à une fréquence trop élevée de manière à permettre au dispositif de régulation de ramener constamment sa fréquence à une fréquence moindre, correspondant à la fréquence théorique voulue, par une succession d'impulsions de freinage. Par conséquent, le mouvement horloger qui en résulte est volontairement réglé pour qu'une marche précise dépende de la régulation électronique, faute de quoi un tel mouvement horloger aurait une dérive temporelle très importante. Ainsi, si pour une raison ou une autre le dispositif de régulation est désactivé, notamment pour cause de détérioration, alors la montre équipée d'un tel mouvement ne sera plus précise, et ceci dans une mesure telle qu'elle n'est de fait plus fonctionnelle. Une telle situation est problématique.
  • L'utilisation d'un système électromagnétique du type aimant-bobine pour coupler le balancier-spiral avec le circuit électronique de régulation engendre divers problèmes. Premièrement, l'agencement d'aimants permanents sur le balancier a pour conséquence qu'un flux magnétique est constamment présent dans le mouvement horloger et que ce flux magnétique varie spatialement de manière périodique. Un tel flux magnétique peut avoir une action néfaste sur divers organes ou éléments du mouvement horloger, notamment sur des éléments en matériau magnétique comme des pièces en matériau ferromagnétique. Ceci peut avoir des répercussions sur la bonne marche du mouvement horloger et également augmenter des usures d'éléments pivotés. On peut certes penser à blinder dans une certaine mesure le système magnétique en question, mais un blindage nécessite des éléments particuliers qui sont portés par le balancier. Un tel blindage tend à augmenter l'encombrement du résonateur mécanique et son poids. De plus, il limite les possibilités de configurations esthétiques épurées. De plus, un champ magnétique externe de forte intensité peut détériorer les éléments aimantés du système électromagnétique.
  • L'homme du métier connaît des propositions de réalisation de mouvements mécaniques horlogers, comprenant un dispositif de régulation de la fréquence du balancier-spiral, où il est prévu d'agir sur le balancier oscillant par un système électromécanique formé, d'une part, par une butée qui est agencée sur le balancier et, d'autre part, par un actuateur muni d'un doigt mobile qui est actionné à une fréquence de freinage déterminée en direction de la butée. Ce concept vise à synchroniser la fréquence de l'oscillateur sur celle d'un oscillateur à quartz par une prétendue interaction entre le doigt et la butée lorsque l'oscillateur mécanique présente une dérive temporelle relativement à l'oscillateur à quartz, le doigt venant soit bloquer momentanément le balancier qui est alors stoppé dans son mouvement durant un certain intervalle de temps (la butée venant en appui contre le doigt déplacé dans sa direction lors du retour du balancier en direction de sa position neutre), soit limiter l'amplitude d'oscillation lorsque le doigt arrive contre la butée alors que le balancier tourne en direction de sa position d'amplitude maximale.
  • Un tel système de régulation présente de nombreux inconvénients et on peut sérieusement douter qu'il puisse former un système fonctionnel. L'action 'aveugle' du doigt relativement au mouvement de la butée et à un déphasage initial potentiel quelconque de l'oscillation de la butée par rapport à celle du doigt pose de multiples problèmes. De plus, l'action est limitée à une position angulaire donnée par la position de l'actionneur relativement au balancier-spiral. Ainsi, l'effet de l'interaction entre le doigt et la butée dépend de l'amplitude d'oscillation du balancier-spiral et de la position de l'actionneur. En conclusion, de telles réalisations paraissent à l'homme du métier comme hautement improbables, et cet homme du métier se détourne d'un tel enseignement. D'ailleurs, les présents inventeurs n'ont pas connaissance de montres équipées d'un tel système électromécanique qui auraient été mises sur le marché.
  • Résumé de l'invention
  • Un but de la présente invention est de trouver une solution aux problèmes techniques et inconvénients mentionnés ci-avant dans l'arrière-plan technologique.
  • Un premier objectif, dans le cadre du développement ayant conduit à la présente invention, était de proposer un ensemble horloger comprenant un mouvement mécanique, avec un résonateur mécanique classique du type balancier-spiral, et un dispositif de régulation qui n'utilise pas un système aimant-bobine pour coupler le résonateur mécanique à ce dispositif de régulation, en particulier qui ne nécessite pas d'agencer au moins un aimant permanent sur le balancier. On notera que, dans le cadre de la description de la présente invention, un tel système aimant-bobine engendre des impulsions de freinage magnétique, un flux magnétique généré par au moins une bobine étant couplé au flux magnétique dudit au moins un aimant permanent embarqué sur le résonateur mécanique.
  • Un deuxième objectif, dans le cadre du développement ayant conduit à la présente invention, était de réaliser un ensemble horloger comprenant un mouvement mécanique avec un oscillateur mécanique et un dispositif de régulation de cet oscillateur mécanique, mais sans avoir à dérégler initialement l'oscillateur mécanique, pour avoir une pièce d'horlogerie qui a la précision d'un oscillateur électronique auxiliaire (notamment muni d'un résonateur à quartz) lorsque le dispositif de régulation est fonctionnel et la précision de l'oscillateur mécanique lorsque ce dispositif de régulation est désactivé ou hors fonction, mais avec une précision pouvant correspondre au meilleur standard dans ce dernier cas. En d'autres termes, on cherche à adjoindre une régulation électronique à un mouvement mécanique par ailleurs réglé le plus précisément possible de sorte qu'il reste fonctionnel, avec la meilleure marche possible, lorsque la régulation électronique est non active.
  • La présente invention a aussi pour but de proposer un ensemble horloger répondant à au moins au premier objectif et qui soit robuste, c'est-à-dire qui puisse conserver une haute précision même après une perturbation extérieure comme un choc.
  • A cet effet, la présente invention concerne un ensemble horloger tel que défini à la revendication 1, ainsi qu'un module de régulation tel que défini à la revendication 16. Divers modes de réalisation et variantes sont les objets des revendications dépendantes. Ainsi, l'ensemble horloger selon l'invention comprend un circuit électronique de commande, agencé pour pouvoir générer un signal de commande qui est fourni au dispositif d'application d'impulsions de régulation pour l'activer, et un capteur agencé pour pouvoir détecter le passage du résonateur mécanique par une certaine position donnée sur l'axe d'oscillation. Le dispositif de régulation de cet ensemble horloger comprend un dispositif de mesure agencé pour pouvoir mesurer, sur la base de signaux de position fournis par le capteur, une dérive temporelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire. De manière avantageuse, le dispositif d'application d'impulsions de régulation de l'ensemble horloger est un dispositif électromécanique agencé de manière à pouvoir engendrer, en réponse au signal de commande susmentionné qui est fonction de la dérive temporelle mesurée, des impulsions de freinage mécanique appliquées au résonateur mécanique et exerçant chacune un certain couple de force sur ce résonateur mécanique, pour réguler la fréquence moyenne de l'oscillateur mécanique, lorsqu'au moins une certaine dérive temporelle de cet oscillateur mécanique est détectée. Finalement, le résonateur mécanique définit une surface de freinage présentant une certaine étendue selon l'axe d'oscillation du résonateur mécanique et agencée de manière à permettre au moins l'application d'une impulsion de freinage mécanique avec son déclenchement à un certain instant donné au cours d'une alternance, parmi les deux alternances d'une oscillation de l'oscillateur mécanique, quelle que soit l'amplitude d'oscillation de cet oscillateur mécanique dans une plage d'amplitude ayant une certaine étendue et correspondant à une plage de fonctionnement utile de l'oscillateur mécanique, ledit instant donné étant sélectionné de sorte que le passage par la position neutre du résonateur mécanique n'intervienne pas au cours de l'impulsion de freinage mécanique.
  • Par impulsion de freinage mécanique', on comprend un freinage de nature mécanique et non seulement un effet mécanique résultant du freinage. Ainsi, cette expression exclut dans le sens premier qui lui est donné un freinage sans contact via un couplage électromécanique entre une bobine stationnaire et au moins un aimant monté sur le résonateur mécanique, car dans ce dernier cas, le freinage est magnétique et opéré au travers d'un système électromagnétique dont un élément, à savoir ledit au moins un aimant, est fixé à un organe oscillant du résonateur mécanique, changeant ainsi l'agencement classique de l'organe oscillant, par exemple un balancier. Certes, le freinage magnétique a pour effet final une réduction de l'énergie mécanique de l'organe oscillant, mais le freinage n'est pas mécanique dans sa nature. L'expression susmentionnée exclut également un freinage résultant d'un couplage électrique entre l'organe oscillant et une unité stationnaire du dispositif de régulation. Par contre, évidemment, cette expression n'exclut pas des éléments électriques et/ou magnétiques incorporés dans le dispositif électromécanique qui engendre des impulsions de freinage mécanique appliquées au résonateur mécanique. Au contraire, le terme 'électromécanique' indique qu'au moins un élément électrique forme le dispositif d'application d'impulsions de régulation.
  • Dans un mode de réalisation préféré, le dispositif d'application d'impulsions de régulation est formé par un actionneur comprenant au moins un organe de freinage qui est agencé pour être actionné, en réponse au signal de commande susmentionné, de manière à exercer sur l'organe oscillant du résonateur mécanique un certain couple de force mécanique durant les impulsions de freinage mécanique. Le freinage est donc obtenu par un contact physique entre l'organe de freinage et l'organe oscillant.
  • Dans une variante avantageuse du mode de réalisation préféré susmentionné, le dispositif d'application d'impulsions de régulation est agencé de manière que l'énergie de freinage de chaque impulsion de freinage mécanique est inférieure à une énergie de blocage, pour ne pas stopper momentanément le résonateur mécanique au cours des impulsions de freinage. Ensuite, l'organe oscillant et l'organe de freinage sont agencés de manière que les impulsions de freinage mécanique puissent être appliquées principalement par un frottement sec dynamique entre l'organe de freinage et la surface de freinage de l'organe oscillant.
  • Grâce aux caractéristiques de l'invention, il est possible d'adjoindre à un mouvement mécanique de base un module de régulation de son oscillateur mécanique (comprenant un balancier-spiral) sans avoir à modifier ce mouvement mécanique de base. Ceci est un grand avantage. En particulier, on peut réaliser l'ensemble horloger selon l'invention sans avoir à varier les propriétés cinématiques de l'oscillateur mécanique. Si nécessaire, un traitement de surface (généralement partiel) du balancier peut être prévu pour le fonctionnement du capteur. Un tel traitement peut se limiter à apposer un point noir sur un bras du balancier ou sous la serge de ce balancier dans le cas d'un capteur optique. Ainsi, la conception du mouvement mécanique de base n'a pas à être changée pour réaliser un ensemble horloger selon l'invention. Dans un premier cas où l'ensemble horloger est réalisé entièrement à neuf, on peut donc prendre un calibre existant ayant déjà fait ses preuves en production et lui associé un module de régulation additionnel selon l'invention, en agençant en périphérie du mouvement horloger correspondant à ce calibre le module de régulation de manière à permettre l'application des impulsions de freinage mécanique au résonateur mécanique. C'est au niveau de l'habillage de l'ensemble horloger qu'il faudra éventuellement prévoir une adaptation pour permettre l'incorporation du module de régulation additionnel. Dans un deuxième cas, l'ensemble horloger selon l'invention est formé par un mouvement horloger de base déjà mis, dans un premier temps, sur le marché dans une montre et auquel on ajoute, dans un deuxième temps, un module de régulation selon l'invention pour augmenter sa précision. Une adaptation au niveau de l'habillage de la montre peut s'avérer nécessaire, mais n'est pas forcément obligatoire. Par exemple, un usinage au niveau d'un cercle d'emboîtage peut s'avérer suffisant pour permettre l'incorporation de l'ensemble horloger dans la boîte de montre déjà en possession d'un utilisateur, c'est-à-dire avec un ajout d'un module de régulation selon l'invention, objet de revendications annexées.
  • Selon un mode de réalisation principal, le dispositif de mesure est agencé pour déterminer si la dérive temporelle de l'oscillateur mécanique correspond à au moins une avance ou à au moins un retard. Ensuite, le circuit de commande et le dispositif d'application d'impulsions de régulation sont agencés pour pouvoir appliquer sélectivement au résonateur mécanique, lorsque la dérive temporelle mesurée correspond à une certaine avance, une première impulsion de freinage mécanique dont au moins une majeure partie intervient entre l'instant initial et l'instant médian d'une alternance (première demi-alternance) et, lorsque la dérive temporelle mesurée correspond à un certain retard, une deuxième impulsion de freinage mécanique dont au moins une majeure partie intervient entre l'instant médian et l'instant final d'une alternance (seconde demi-alternance). On notera que chaque période d'oscillation de l'oscillateur mécanique définit une première alternance suivie d'une seconde alternance et chaque alternance présente un passage du résonateur mécanique par sa position neutre audit instant médian.
  • Ainsi, en résumé, le circuit de commande et le dispositif d'application d'impulsions de régulation sont agencés pour appliquer sélectivement au résonateur mécanique, lorsque la dérive temporelle mesurée correspond à une certaine avance, une impulsion de freinage mécanique dans une première demi-alternance de l'oscillation du résonateur mécanique et, lorsque la dérive temporelle mesurée correspond à un certain retard, une impulsion de freinage mécanique dans une seconde demi-alternance.
  • Dans une variante principale, le dispositif de régulation comprend un dispositif de détermination de positions temporelles du résonateur mécanique qui est agencé pour pouvoir déterminer, dans une alternance d'une oscillation du résonateur mécanique, un premier instant qui intervient avant l'instant médian et après l'instant initial de cette alternance et, aussi dans une alternance d'une oscillation de ce résonateur mécanique, un deuxième instant qui intervient après l'instant médian et avant l'instant final de cette alternance. Ensuite, le circuit de commande est agencé pour pouvoir déclencher sélectivement une première impulsion de freinage mécanique sensiblement au premier instant et une deuxième impulsion de freinage mécanique sensiblement au deuxième instant. Finalement, la surface de freinage du résonateur mécanique comprend un premier secteur, le long de son axe d'oscillation, pour l'application de la première impulsion de freinage mécanique débutant sensiblement au premier instant et un deuxième secteur, le long de l'axe d'oscillation, pour l'application de la deuxième impulsion de freinage mécanique débutant sensiblement au deuxième instant, quelle que soit l'amplitude d'oscillation de l'oscillateur mécanique dans sa plage de fonctionnement utile.
  • Brève description des figures
  • L'invention sera décrite ci-après de manière plus détaillée à l'aide des dessins annexés, donnés à titre d'exemples nullement limitatifs, dans lesquels :
    • La Figure 1 est une vue de dessus d'un ensemble horloger selon l'invention,
    • La Figure 2 montre un premier mode de réalisation d'un dispositif de régulation pour réguler la fréquence d'oscillation d'un balancier-spiral d'un ensemble horloger selon l'invention,
    • La Figure 3 montre le signal de position fourni par un capteur détectant le passage du balancier-spiral par sa position neutre et l'application d'une première impulsion de freinage dans une certaine alternance avant que le balancier-spiral passe par sa position neutre, ainsi que la vitesse angulaire du balancier et sa position angulaire dans un intervalle temporel au cours duquel intervient la première impulsion de freinage,
    • La Figure 4 est une figure similaire à celle de la Figure 3 avec l'application d'une deuxième impulsion de freinage dans une certaine alternance après que le balancier-spiral a passé par sa position neutre,
    • La Figure 5 montre le schéma électronique d'un deuxième mode de réalisation du dispositif de régulation de l'oscillateur mécanique selon l'invention,
    • La Figure 6 est un organigramme d'un mode de fonctionnement du dispositif de régulation de la Figure 5,
    • La Figure 7 montre le schéma électronique d'une variante du deuxième mode de réalisation du dispositif de régulation de l'oscillateur mécanique,
    • La Figure 8 montre deux signaux digitaux intervenant dans le circuit électronique de la Figure 7,
    • La Figure 9 est un organigramme d'un mode de fonctionnement du dispositif de régulation de la Figure 7,
    • La Figure 10 montre un troisième mode de réalisation d'un dispositif de régulation selon l'invention, et
    • La Figure 11 montre un mode de réalisation particulier du dispositif de freinage d'un dispositif de régulation selon l'invention.
    Description détaillée de l'invention
  • A la Figure 1 est représenté un ensemble horloger 2 selon la présente invention. Il comprend un mouvement horloger mécanique 4 qui est formé au moins par un mécanisme comprenant un rouage 10 entraîné par un ressort-moteur agencé dans un barillet 8 (ce mécanisme est représenté partiellement à la Figure 1). Le mouvement horloger comprend un résonateur mécanique 14, formé par un balancier 16 et un spiral 18, et un dispositif d'entretien du résonateur mécanique formant avec ce résonateur mécanique un oscillateur mécanique qui contrôle la marche du mécanisme. Le dispositif d'entretien comprend un échappement 12, formé ici par une ancre et une roue d'échappement qui est reliée cinématiquement au barillet par l'intermédiaire du rouage 10. Le résonateur mécanique est susceptible d'osciller le long d'un axe d'oscillation, en particulier un axe circulaire, autour d'une position neutre correspondant à un état d'énergie potentielle mécanique minimale. Chaque oscillation du résonateur mécanique définit une période d'oscillation.
  • L'ensemble horloger 2 comprend en outre un dispositif 6 pour réguler électroniquement la fréquence de l'oscillateur mécanique, ce dispositif de régulation comprenant un circuit électronique de régulation 22 associé à un oscillateur auxiliaire formé par un résonateur à quartz 23. On notera que d'autres types d'oscillateurs auxiliaires peuvent être prévus, notamment un oscillateur intégré entièrement dans le circuit de régulation. Par définition, l'oscillateur auxiliaire est plus précis que l'oscillateur mécanique. Le dispositif 6 comprend aussi un capteur 24 pour détecter au moins une position angulaire du balancier lorsqu'il oscille et un dispositif 26 d'application d'impulsions de régulation au résonateur mécanique 14. Finalement, l'ensemble horloger comprend une source d'énergie 28 associée à un dispositif 26 de stockage de l'énergie électrique engendrée par la source d'énergie. La source d'énergie est par exemple formée par une cellule photovoltaïque ou par un élément thermoélectrique, ces exemples étant nullement limitatifs. Dans le cas d'une pile, la source d'énergie et le dispositif de stockage forment ensemble un seul et même composant électrique.
  • De manière générale, le dispositif de régulation 6 comprend dans son circuit de régulation un circuit électronique de commande agencé pour générer un signal de commande, lequel est fourni au dispositif d'application d'impulsions de régulation qui est agencé de manière à pouvoir engendrer, en réponse à ce signal de commande, des impulsions de régulation successives exerçant chacune un certain couple de force sur le résonateur mécanique. Selon l'invention, le capteur 24 est agencé pour pouvoir détecter le passage d'au moins un point de référence du balancier 16 par une certaine position donnée relativement à un support de ce résonateur mécanique. De préférence, le capteur est agencé pour détecter au moins le passage du résonateur mécanique par sa position neutre. On notera que, dans cette variante préférée, le capteur peut être associé à l'ancre de l'échappement de manière à détecter le basculement de cette ancre lors des impulsions d'entretien de l'oscillation qui sont prévues sensiblement lorsque le résonateur passe par sa position neutre.
  • La détection du point neutre du résonateur permet de générer une référence de temps utile et stable au sein des oscillations. En effet, en l'absence de perturbations (notamment engendrées par les impulsions de freinage prévues pour la régulation), le passage par le point neutre intervient toujours exactement au milieu des alternances, indépendamment de l'amplitude d'oscillation. Par contre, la détection d'une autre position angulaire du balancier ne donne pas une référence temporelle stable et bien définie, notamment relativement aux événements que sont le passage du balancier-spiral par sa position neutre et le début ou la fin des alternances, à savoir les instants où le balancier est à amplitude maximale et à vitesse angulaire nulle (correspondant à l'inversion du sens d'oscillation). De plus, comme la vitesse angulaire du balancier-spiral est maximale lors de son passage par sa position neutre, la précision de cette détection et ainsi la détection de l'instant correspondant sont meilleures. On comprendra mieux par la suite le bénéfice de la détection du passage du balancier-spiral par sa position neutre lors de l'exposé du procédé de régulation préféré qui sera fait en référence aux Figures 3 et 4, et des modes de réalisation qui suivent.
  • De manière générale, le dispositif de régulation 6 comprend aussi un dispositif de mesure agencé pour mesurer, sur la base de signaux de position fournis par le capteur, une dérive temporelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire. On comprend qu'une telle mesure est aisée dès lors qu'il est prévu un capteur capable de détecter le passage du résonateur mécanique par son point neutre. Un tel événement à lieu toutes les demi-périodes d'oscillation de l'oscillateur mécanique. Le circuit de mesure sera décrit plus en détails par la suite.
  • Le dispositif 26 d'application d'impulsions de régulation est agencé pour pouvoir appliquer au balancier 16 des impulsions de freinage mécanique pour réguler la fréquence de l'oscillateur mécanique lorsqu'une certaine dérive temporelle de cet oscillateur mécanique est constatée. Dans une variante particulière, l'énergie de freinage qui est prise au résonateur mécanique par une quelconque impulsion de freinage mécanique est prévue inférieure à l'énergie de blocage de l'oscillateur mécanique, ceci afin de ne pas stopper momentanément le mouvement d'oscillation du résonateur mécanique durant les impulsions de régulation. L'énergie de blocage est normalement définie comme l'énergie cinétique du résonateur mécanique au début de l'impulsion de freinage diminuée de la différence d'énergie potentielle de ce résonateur mécanique entre la fin et le début de l'impulsion de freinage en question, pour autant que l'oscillateur mécanique ne reçoive pas d'énergie d'entretien lors de cette impulsion de freinage. Il s'agit donc dans cette variante particulière de diminuer, au cours de l'impulsion de freinage, la vitesse angulaire du balancier-spiral sans le stopper plus ou moins longtemps. On remarquera que pour garantir le bon fonctionnement de l'échappement à ancre suisse d'un oscillateur horloger usuel, il est préférable que les impulsions de freinage n'aient pas lieu lors des basculements de l'ancre, basculements au cours desquels intervient un apport d'énergie d'entretien de l'oscillateur. Comme le basculement de l'ancre intervient généralement autour de la position neutre du résonateur mécanique, on évitera donc de perturber par une impulsion de freinage le mouvement d'oscillation du balancier-spiral lors de son passage par cette position neutre.
  • Selon un premier mode de réalisation représenté à la Figure 2, le dispositif d'application d'impulsions de régulation comprend un actionneur 36 ayant un organe de freinage mobile 38, lequel est actionné en réponse à un signal de commande de manière à exercer sur l'organe oscillant, ici le balancier, du résonateur mécanique une certaine force mécanique durant les impulsions de freinage mécanique. L'actionneur 36 comprend un élément piézoélectrique alimenté par un circuit 39 qui génère une tension électrique en fonction d'un signal de commande fourni par le circuit de régulation 22. Lorsque l'élément piézoélectrique est mis momentanément sous tension, l'organe de freinage vient en contact avec une surface de freinage du balancier pour le freiner. Dans l'exemple représenté à la Figure 2, la lame 38 formant l'organe de freinage se courbe et sa partie d'extrémité vient presser contre la surface latérale circulaire 40 de la serge 17 du balancier 16. Ainsi, la serge 17 définit, au moins sur un certain secteur angulaire, une surface de freinage sensiblement circulaire. Ensuite, l'organe de freinage comprend une partie mobile, ici la partie d'extrémité de la lame, qui définit un patin de freinage agencé de manière à venir exercer une pression contre la surface de freinage sensiblement circulaire lors de l'application des impulsions de freinage mécanique. De préférence, il est prévu dans le cadre de la présente invention que l'organe oscillant et l'organe de freinage sont agencés de manière que les impulsions de freinage mécanique sont appliquées par un frottement sec dynamique ou un frottement visqueux entre l'organe de freinage et une surface de freinage de l'organe oscillant.
  • Dans une variante avantageuse (non représentée), le balancier comprend un arbre central qui définit, respectivement qui porte une partie autre que la serge du balancier définissant, au moins sur un certain secteur angulaire, une surface de freinage circulaire. Dans ce cas, un patin de l'organe de freinage est agencé de manière à venir exercer une pression contre cette surface de freinage circulaire lors de l'application des impulsions de freinage mécanique.
  • Une surface de freinage circulaire, pour un organe oscillant qui est pivoté (balancier), associé à au moins un patin de freinage, porté par le dispositif de freinage du dispositif de régulation, constitue un système mécanique de freinage qui présente des avantages déterminants. En effet, grâce à un tel système, des impulsions de freinage peuvent être appliquées au résonateur mécanique à n'importe quel instant des oscillations, et ceci de manière indépendante de l'amplitude d'oscillation du balancier. Ensuite, on peut gérer précisément la correction engendrée par une impulsion de freinage, en particulier par une sélection appropriée de sa durée et par le couple de force de freinage appliqué. On peut aussi, notamment grâce à la mesure de position effectuée par le capteur, déterminer les instants au cours des alternances pour appliquer les impulsions de freinage. Ainsi, au moins le couple de freinage, la durée des impulsions et les instants respectifs auxquels elles sont engendrées peuvent être sélectionnés et varier en fonction de la dérive temporelle de l'oscillateur mécanique. En particulier il est ainsi possible d'engendrer de faibles corrections pour une régulation fine et précise de la fréquence d'oscillation.
  • On notera que l'amplitude d'oscillation varie généralement en fonction du degré d'armage du barillet (à moins qu'un dispositif spécifique pour produire une force constante soit prévu). Ainsi, à un instant donné non nul avant ou après le passage du résonateur par sa position neutre dans une quelconque alternance de son mouvement d'oscillation, la position angulaire du balancier varie en fonction de l'amplitude d'oscillation. Si on choisit par exemple de donner des impulsions de freinage pour réguler la fréquence d'oscillation toujours à un intervalle de temps fixe déterminé avant ou après le passage du résonateur par sa position neutre (voir le principe de régulation préféré exposé par la suite), la surface de freinage doit alors s'étendre sur une certaine longueur angulaire pour que le patin puisse dans tous les cas exercer une force de freinage sur le balancier à différentes positions angulaires le long de cette surface de freinage. Ainsi, le résonateur mécanique présente une surface de freinage qui s'étend sur au moins un certain secteur angulaire ayant une certaine longueur angulaire qui est non nulle (c'est-à-dire qu'un secteur angulaire est considéré comme non ponctuel), pour permettre l'application d'impulsions de freinage mécanique au moins à un certain instant donné dans les périodes d'oscillation de l'oscillateur mécanique, quelle que soit l'amplitude d'oscillation du résonateur mécanique pour une plage de fonctionnement utile de l'oscillateur mécanique.
  • On remarquera que, selon l'intervalle de temps susmentionné ou selon une plage temporelle choisie pour appliquer des impulsions de freinage avant ou après les instants de passage du résonateur mécanique par sa position neutre dans diverses alternances de son mouvement d'oscillation, instants qui sont détectés par le capteur 34, il suffit que deux secteurs angulaires déterminés du balancier présentent ou définissent respectivement deux surfaces circulaires pour le patin de l'organe de freinage pour que les impulsions de freinage puissent être appliquées dans une plage de fonctionnement utile de l'oscillateur mécanique, c'est-à-dire sur une certaine plage angulaire utile pour l'amplitude de ses oscillations (par exemple entre 200° et 300°). En termes généraux, il est prévu que la surface de freinage du résonateur mécanique comprend au moins un premier secteur angulaire pour l'application, dans des alternances, de premières impulsions de freinage mécanique sensiblement à un premier instant situé avant l'instant médian de passage du résonateur mécanique par sa position neutre et un deuxième secteur angulaire pour l'application, dans des alternances, de deuxièmes impulsions de freinage mécanique sensiblement à un deuxième instant situé après l'instant médian, quelle que soit l'amplitude d'oscillation du résonateur mécanique dans une plage de fonctionnement utile de l'oscillateur mécanique considéré. On remarquera que, dans un cas spécifique où le premier instant et le deuxième instant sont prévus dans les alternances à même distance temporelle de l'instant médian et du même côté de la position neutre, les premier et deuxième secteurs angulaires sont sensiblement confondus et définissent ainsi un seul et même secteur angulaire de freinage. Dans d'autres cas, les premier et deuxième secteurs angulaires ont une partie commune ou sont distincts. Les mêmes considérations s'appliquent à un premier intervalle de temps et un deuxième intervalle de temps dans lesquels on peut prévoir d'appliquer respectivement les premières et deuxièmes impulsions de freinage. Dans la variante représentée à la Figure 2, la surface de freinage présente une étendue permettant l'application d'impulsions de freinage mécanique à n'importe quel instant des oscillations du résonateur mécanique.
  • On notera encore que le patin de l'organe de freinage peut aussi présenter une surface de contact circulaire, de même rayon que la surface de freinage, mais une telle configuration n'est pas requise. La surface de contact peut être notamment plane, comme représenté aux figures. Une surface plane a pour avantage de laisser une certaine marge dans le positionnement de l'organe de freinage relativement au balancier, ce qui permet d'avoir de plus grandes tolérances de fabrication et de montage du dispositif de freinage dans le ou à la périphérie du mouvement horloger.
  • Le capteur 34 est un capteur optique du type photoélectrique. Il comprend une source de lumière, agencée de manière à pouvoir envoyer un faisceau de lumière en direction du balancier, et un détecteur de lumière, agencé pour recevoir en retour un signal lumineux dont l'intensité varie périodiquement en fonction de la position du balancier. Dans l'exemple schématique représenté à la Figure 2, le faisceau est envoyé sur la surface latérale de la serge 17, cette surface présentant une zone limitée avec une réflectivité différente des deux zones avoisinantes, de sorte que le capteur peut détecter le passage de cette zone limitée et fournir au dispositif de régulation un signal de position lorsque cet événement se produit. On comprendra que la surface circulaire présentant une réflexion variable pour le faisceau de lumière peut être située à d'autres endroits du balancier. La variation peut dans un cas particulier être produite par un trou dans la surface réfléchissante. Le capteur peut aussi détecter le passage d'une certaine partie du balancier, par exemple un bras, la position neutre correspondant par exemple au milieu d'un signal réfléchi par ce bras ou au début, respectivement à la fin d'un tel signal. On comprend donc que la modulation du signal lumineux, laquelle peut consister en une succession d'impulsions lumineuses reçues en retour par le photo-détecteur, peut définir la position angulaire du balancier de diverses manières, par une variation négative ou positive de la lumière captée.
  • Dans d'autres variantes, le capteur de position peut être du type capacitif ou du type inductif et être ainsi agencé de manière à pouvoir détecter une variation de capacité, respectivement d'inductance en fonction de la position du balancier. Le capteur inductif fonctionne de préférence sans présence de matière aimantée sur le résonateur, par exemple par détection de la présence d'un matériau non aimanté ou simplement d'une variation de distance entre un tel matériau et le capteur. L'homme du métier connaît de nombreux capteurs qui pourront aisément être incorporés dans l'ensemble horloger selon l'invention.
  • De manière avantageuse, les divers éléments du dispositif de régulation 6 forment un module indépendant du mouvement horloger. Ainsi, ce module peut être assemblé ou associé au mouvement mécanique 4 que lors de leur montage notamment dans une boîte de montre. En particulier, un tel module peut-être fixé à un cercle d'emboîtage qui entoure le mouvement horloger. On comprend que le module de régulation électronique peut donc être avantageusement associé au mouvement horloger une fois ce dernier entièrement monté et réglé, le montage et démontage de ce module pouvant intervenir sans devoir intervenir sur le mouvement mécanique lui-même.
  • On décrira ci-après, en référence aux Figures 3 et 4, un procédé de régulation qui constitue un perfectionnement remarquable de l'invention, puis des modes de réalisations d'ensembles horlogers selon l'invention dans lesquels est implémenté ce procédé de régulation très avantageux.
  • La Figure 3 montre quatre graphes. Le premier graphe donne le signal digital fourni au cours du temps par le capteur 34 lorsque le résonateur 14 oscille, c'est-à-dire lorsque l'oscillateur mécanique de l'ensemble horloger est activé. On remarquera que le signal digital peut être fourni dans une première variante directement par le capteur, mais dans une deuxième variante le capteur fourni un signal analogique et c'est le circuit de régulation qui le convertit en signal digital, notamment au moyen d'un comparateur. Comme exposé précédemment, le capteur et le balancier sont agencés de manière à permettre au capteur de détecter les passages successifs du balancier-spiral par sa position neutre. Un tel événement intervient deux fois par période d'oscillation, une fois dans chacune des deux alternances à un instant tzn auquel le capteur fournit une impulsion 42.
  • Chaque période d'oscillation de l'oscillateur mécanique définit une première alternance suivie d'une deuxième alternance entre deux positions extrêmes définissant l'amplitude d'oscillation de cet oscillateur mécanique, chaque alternance présentant un passage du résonateur mécanique par sa position neutre à un instant médian tZn et une durée entre un instant initial tAn-1, respectivement tD1 pour l'alternance A1 à la Figure 3 et tD2 pour l'alternance A2 à la Figure 4, et un instant final tAn, respectivement tF1 pour l'alternance A1 à la Figure 3 et tF2 pour l'alternance A2 à la Figure 4. Ces instants initiaux et finaux sont définis respectivement par les deux positions extrêmes occupées par le résonateur mécanique respectivement au début et à la fin de chaque alternance. Le deuxième graphe indique l'instant tP1 auquel une impulsion de freinage est appliquée au résonateur mécanique 14 pour effectuer une correction dans la marche du mécanisme cadencé par l'oscillateur mécanique. Les instants auxquels interviennent des impulsions de forme rectangulaire (c'est-à-dire d'un signal binaire) sont définis aux Figures 3 et 4 par les positions temporelles du milieu de ces impulsions. Cependant, on peut aussi considérer, selon la variante et la réalisation du circuit de régulation, le début ou la fin d'une impulsion comme l'instant qui la caractérise, à savoir soit le flanc montant soit le flanc descendant de cette impulsion. Ceci est notamment le cas pour les impulsions de freinage dont on détermine généralement le début (c'est-à-dire le déclenchement) et la durée.
  • On observe une variation de la période d'oscillation au cours de laquelle intervient l'impulsion de freinage et donc une variation ponctuelle de la fréquence de l'oscillateur mécanique. De fait, comme on le voit sur les deux derniers graphes de la Figure 3, qui montrent respectivement la vitesse angulaire (valeurs en radian par seconde : [rad/s]) et la position angulaire (valeurs en radian : [rad]) du balancier au cours du temps, la variation temporelle concerne la seule alternance au cours de laquelle intervient l'impulsion de freinage. On notera que chaque oscillation présente deux alternances successives qui sont définies dans le présent texte comme les deux demi-périodes au cours desquelles le balancier subit respectivement un mouvement d'oscillation dans un sens et ensuite un mouvement d'oscillation dans l'autre sens. En d'autres termes, une alternance correspond à un balancement du balancier dans un sens ou l'autre sens entre ses deux positions extrêmes définissant l'amplitude d'oscillation.
  • Par impulsion de freinage, on comprend une application, substantiellement durant un intervalle de temps limité, d'un certain couple de force au résonateur mécanique qui le freine, c'est-à-dire d'un couple de force qui s'oppose au mouvement d'oscillation de ce résonateur mécanique. Dans le cadre de l'invention, chaque impulsion de freinage est engendrée par un freinage mécanique qui exerce un couple de freinage mécanique sur le résonateur mécanique, comme le montre le troisième graphe représentant la vitesse angulaire du balancier.
  • Dans les Figures 3 et 4, la période d'oscillation T0 correspond à une oscillation 'libre' (c'est-à-dire sans application d'impulsions de régulation) de l'oscillateur mécanique de l'ensemble horloger. Les deux alternances d'une période d'oscillation ont chacune une durée T0/2 sans perturbation ou contrainte extérieure (notamment par une impulsion de régulation). Le temps t = 0 marque le début d'une première alternance. On notera que la fréquence 'libre' F0 de l'oscillateur mécanique est ici approximativement égale à quatre Hertz (F0 = 4 Hz), de sorte que la période T0 = 250 ms environ.
  • On décrira premièrement le comportement de l'oscillateur mécanique dans un premier cas de correction de sa fréquence d'oscillation, qui correspond à celui montré à la Figure 3. Après une première période T0 commence alors une nouvelle période T1, respectivement une nouvelle alternance A1 au cours de laquelle intervient une impulsion de freinage P1. A l'instant initial tD1 débute l'alternance A1, le résonateur 14 occupant une position angulaire positive maximale correspondant à une position extrême. Ensuite intervient l'impulsion de freinage P1 à l'instant tP1 qui est situé avant l'instant médian tN1 auquel le résonateur passe par sa position neutre. Finalement l'alternance A1 se termine à l'instant final tF1. L'impulsion de freinage est déclenchée après un intervalle de temps TA1 suivant le dernier instant médian tZn détecté par le capteur avant l'alternance A1. La durée TA1 est sélectionnée supérieure à une demi-alternance T0/4 et inférieure à une alternance T0/2 diminuée de la durée de l'impulsion de freinage P1. Dans l'exemple donné, la durée de cette impulsion de freinage est bien inférieure à une demi-alternance T0/4. Par instant médian', on comprend un instant intervenant sensiblement au milieu des alternances. Ceci est précisément le cas lorsque l'oscillateur mécanique oscille librement. Par contre, pour les alternances au cours desquelles des impulsions de régulation sont fournies, on remarquera que cet instant médian ne correspond plus exactement au milieu de la durée de chacune de ces alternances du fait de la perturbation de l'oscillateur mécanique engendrée par le dispositif de régulation.
  • Dans ce premier cas, l'impulsion de freinage est générée entre le début d'une alternance et le passage du résonateur par sa position neutre dans cette alternance. Comme prévu, la vitesse angulaire en valeur absolue diminue au moment de l'impulsion de freinage P1. Une telle impulsion de freinage induit un déphasage temporel négatif TC1 dans l'oscillation du résonateur, comme le montrent les deux graphes de la vitesse angulaire et de la position angulaire à la Figure 3, soit un retard relativement au signal théorique non perturbé (représenté en traits interrompus). Ainsi, la durée de l'alternance A1 est augmentée d'un intervalle de temps Tci. La période d'oscillation T1, comprenant l'alternance A1, est donc prolongée relativement à la valeur T0. Ceci engendre une diminution ponctuelle de la fréquence de l'oscillateur mécanique et un ralentissement momentané de la marche du mécanisme associé.
  • En référence à la Figure 4, on décrira ci-après le comportement de l'oscillateur mécanique dans un deuxième cas de correction de sa fréquence d'oscillation. Les graphes de cette Figure 4 montrent l'évolution temporelle des mêmes variables qu'à la Figure 3. Après une première période T0 commence alors une nouvelle période d'oscillation T2, respectivement une alternance A2 au cours de laquelle intervient une impulsion de freinage P2. A l'instant initial tD2 débute l'alternance A2, le résonateur mécanique étant alors dans une position extrême (position angulaire négative maximale). Après un quart de période (T0/4) correspondant à une demi-alternance, le résonateur atteint sa position neutre à l'instant médian tN2. Ensuite intervient l'impulsion de freinage P2 à l'instant tP2 qui est situé après l'instant médian tN2 auquel le résonateur passe par sa position neutre dans l'alternance A2. Finalement, après l'impulsion freinage P2, cette alternance A2 se termine à l'instant final tF2 auquel le résonateur occupe à nouveau une position extrême (position angulaire positive maximale dans la période T2). L'impulsion de freinage est déclenchée après un intervalle de temps TA2 suivant l'instant médian tN2 de l'alternance A2. La durée TA2 est sélectionnée inférieure à une demi-alternance T0/4 diminuée de la durée de l'impulsion de freinage P2. Dans l'exemple donné, la durée de cette impulsion de freinage est bien inférieure à une demi-alternance.
  • Dans le deuxième cas considéré, l'impulsion de freinage est donc générée, dans une alternance, entre l'instant médian auquel le résonateur passe par sa position neutre et l'instant final auquel se termine cette alternance et auquel le résonateur occupe une position extrême. Comme prévu, la vitesse angulaire en valeur absolue diminue au moment de l'impulsion de freinage P2. De manière remarquable, l'impulsion de freinage induit ici un déphasage temporel positif TC2 dans l'oscillation du résonateur, comme le montrent les deux graphes de la vitesse angulaire et de la position angulaire à la Figure 4, soit une avance relativement au signal théorique non perturbé (représenté en traits interrompus). Ainsi, la durée de l'alternance A2 est diminuée de l'intervalle de temps TC2. La période d'oscillation T2 comprenant l'alternance A2 est donc plus courte que la valeur T0. Ceci engendre par conséquent une augmentation ponctuelle de la fréquence de l'oscillateur mécanique et une accélération momentanée de la marche du mécanisme associé. Ce phénomène est surprenant et non intuitif, raison pour laquelle l'homme du métier l'a ignoré par le passé.
  • Ce procédé de régulation est remarquable par le fait qu'il tire profit d'un phénomène physique surprenant des oscillateurs mécaniques. Les inventeurs sont arrivés à la constatation suivante : Contrairement à l'enseignement général dans le domaine horloger, il est possible non seulement de diminuer la fréquence d'un oscillateur mécanique par des impulsions de freinage, mais il est aussi possible d'augmenter la fréquence d'un tel oscillateur mécanique également par des impulsions de freinage. L'homme du métier s'attend à pouvoir pratiquement seulement réduire la fréquence d'un oscillateur mécanique par des impulsions de freinage et, comme corolaire, à pouvoir seulement augmenter la fréquence d'un tel oscillateur mécanique par l'application d'impulsions motrices lors d'un apport d'énergie à cet oscillateur. Une telle intuition, qui s'est imposée dans le domaine horloger et vient donc de prime à bord à l'esprit d'un homme du métier, s'avère fausse pour un oscillateur mécanique. Bien qu'un tel comportement soit correct pour une micro-génératrice, dont le rotor tourne continûment dans un même sens, ceci n'est par contre pas vrai pour un oscillateur mécanique du fait qu'il oscille.
  • En effet, il est possible de réguler électroniquement, via un oscillateur auxiliaire comprenant par exemple un résonateur à quartz, un oscillateur mécanique par ailleurs très précis, qu'il présente momentanément une fréquence légèrement trop haute ou trop basse. Pour ce faire, il est prévu de bien sélectionner, en fonction de la marche du mécanisme en question et donc de la fréquence de l'oscillateur mécanique qui rythme cette marche, le moment pour appliquer une impulsion de freinage mécanique. Les inventeurs ont observé que l'effet produit par une impulsion de régulation sur un résonateur mécanique dépend du moment où elle est appliquée dans une alternance relativement à l'instant où ce résonateur mécanique passe par sa position neutre. Selon ce principe mis en lumière par les inventeurs et utilisé dans un ensemble horloger selon l'invention, une impulsion de freinage appliquée, dans une quelconque alternance entre les deux positions extrêmes du résonateur mécanique, substantiellement avant le passage du résonateur mécanique par sa position neutre (position de repos) produit un déphasage temporel négatif dans l'oscillation de ce résonateur et donc un retard dans la marche du mécanisme cadencée par le résonateur, alors qu'une impulsion de freinage appliquée dans cette alternance substantiellement après le passage du résonateur mécanique par sa position neutre produit un déphasage temporel positif dans l'oscillation de ce résonateur et donc une avance dans la marche du mécanisme. On peut ainsi corriger une fréquence trop haute ou une fréquence trop basse seulement au moyen d'impulsions de freinage. En résumé, l'application d'un couple de freinage pendant une alternance de l'oscillation d'un balancier-spiral provoque un déphasage négatif ou positif dans l'oscillation de ce balancier-spiral selon que ce couple de freinage est appliqué respectivement avant ou après le passage du balancier-spiral par sa position neutre.
  • En exploitant les phénomènes physiques exposés ci-dessus, un mode de réalisation principal de l'ensemble horloger selon l'invention est caractérisé par un agencement particulier du dispositif de régulation de l'oscillateur mécanique et notamment du circuit électronique de régulation. Généralement, ce dispositif de régulation comprend un dispositif de mesure agencé pour mesurer, le cas échéant, une dérive temporelle de l'oscillateur mécanique relativement à un oscillateur auxiliaire, lequel est implicitement plus précis que le résonateur mécanique, et pour déterminer si cette dérive temporelle correspond à au moins une certaine avance ou à au moins un certain retard. Ensuite, le dispositif de régulation comprend un circuit de commande relié au dispositif d'application d'impulsions de régulation décrit précédemment, lesquels sont agencés pour pouvoir appliquer au résonateur mécanique, lorsque la dérive temporelle de l'oscillateur mécanique correspond à au moins une certaine avance, une première impulsion de freinage substantiellement dans une première demi-alternance avant l'instant médian de passage du résonateur mécanique par sa position neutre et, lorsque la dérive temporelle de l'oscillateur mécanique correspond à au moins un certain retard, une deuxième impulsion de freinage substantiellement dans une deuxième demi-alternance après l'instant médian de passage du résonateur mécanique par sa position neutre.
  • Dans un mode de réalisation préféré qui sera décrit par la suite plus en détails, le dispositif de régulation comprend un dispositif de détermination de positions temporelles du résonateur mécanique, ce dispositif de détermination étant agencé pour pouvoir déterminer, dans une alternance d'une oscillation, un premier instant qui intervient avant l'instant médian de passage du résonateur mécanique par sa position neutre et après l'instant initial auquel débute cette alternance, ainsi que, dans la même alternance ou une autre alternance d'une oscillation, un deuxième instant qui intervient après l'instant médian de passage du résonateur mécanique par sa position neutre et avant l'instant final auquel se termine cette alternance. Ensuite, le circuit de commande est agencé pour déclencher sélectivement une première impulsion de freinage sensiblement au premier instant et une deuxième impulsion de freinage sensiblement au deuxième instant.
  • Il faut noter que le dispositif de détermination de positions temporelles du résonateur mécanique peut avoir des éléments ou organes en commun avec le dispositif de mesure, en particulier le capteur de mesure de position, et avec le circuit de commande, par exemple un circuit logique et éventuellement un compteur. Cependant, de tels modes de réalisation ne sont nullement limitatifs dans le cadre de la présente invention.
  • En référence aux Figures 5 et 6, on décrira ci-après un deuxième mode de réalisation d'un ensemble horloger selon l'invention, en particulier de son dispositif de régulation. Le dispositif de régulation 46 comprend un circuit électronique de régulation 48 et un résonateur auxiliaire 23. Ce résonateur auxiliaire est par exemple un résonateur électronique à quartz. Le capteur 24 fournit ici un signal analogique constitué d'impulsions intervenant aux passages successifs du balancier-spiral par sa position neutre. Ce signal analogique est comparé à une tension de référence UREF au moyen d'un comparateur à hystérèse 50 (Schmidt trigger) agencé dans le circuit 48 afin de générer un signal digital 'Comp' pour l'électronique digitale du circuit de régulation. Ce signal digital 'Comp' est constitué d'une succession d'impulsions digitales 42 dont les flancs montants respectifs interviennent respectivement aux instants tzn, n = 1, 2, ..., N, ... (voir Figures 3 et 4).
  • Le comparateur est un élément d'un circuit de mesure 52 décrit ci-après. Etant donné qu'il y a deux impulsions 42 par période d'oscillation du résonateur mécanique, le signal digital 'Comp' est fourni à une bascule 54, laquelle fournit régulièrement une impulsion par période d'oscillation. La bascule incrémente, à la fréquence instantanée de l'oscillateur mécanique, un compteur bidirectionnel C2, lequel est décrémenté à une fréquence nominale / fréquence de consigne par un signal d'horloge Shor dérivé de l'oscillateur auxiliaire qui génère un signal digital à une fréquence de référence. Cet oscillateur auxiliaire est formé du résonateur auxiliaire 23 et d'un circuit d'horloge 56. A cet effet, le signal de référence à relativement haute fréquence généré par le circuit d'horloge est préalablement divisé par les diviseurs DIV1 et DIV2 (ces deux diviseurs pouvant former deux étages d'un même diviseur). Ainsi, l'état du compteur C2 détermine l'avance ou le retard accumulé au cours du temps par l'oscillateur mécanique relativement à l'oscillateur auxiliaire avec une résolution correspondant sensiblement à une période de consigne, l'état du compteur étant fourni à un circuit logique de commande 58. L'état du compteur C2 correspond à la dérive temporelle de l'oscillateur mécanique.
  • Comme indiqué dans l'organigramme de la Figure 6, lors de l'activation du dispositif de régulation et de la mise sous tension de son circuit de régulation 48, ce circuit est initialisé à l'étape POR. En particulier une réinitialisation ('reset') du compteur C2 est effectuée. Ensuite, on attend la détection d'un premier flanc montant du signal digital 'Comp'. A cet instant, le circuit de commande 58 réinitialise ('reset') le compteur C1. Simultanément, le circuit de commande vérifie si une certaine dérive temporelle a été constatée. Plus particulièrement, il détermine si la dérive temporelle éventuelle correspond à une certaine avance (C2 > N1 ?) ou à un certain retard (C2 < - N2 ?). On notera que N1 et N2 sont des nombres naturels (nombres entiers positifs différents de zéro). Dans le cas où une telle avance, respectivement un tel retard ne sont pas constatés, le circuit de commande met fin à la séquence (implémentée en boucle) et il attend l'apparition d'une nouvelle impulsion 42 dans le signal du capteur.
  • Si la condition C2 > N1 est vérifiée ('vrai'), alors le circuit de commande attend que le compteur C1 ait mesuré un premier intervalle de temps TA1 (voir Figure 3) et alors il envoie un signal de commande à un minuteur 60 ('Timer') qui ferme de suite un interrupteur 62 (qui passe alors à l'état 'ON') pour mettre sous tension le dispositif de freinage mécanique, plus précisément pour que ce dernier active son organe de freinage mécanique durant une période de freinage TR. Dans le cas d'un élément piézoélectrique utilisé pour déplacer la partie d'extrémité mobile de la lame 38 en direction de la serge ou de l'arbre du balancier (voir Figure 2), l'interrupteur 62 commande alors la mise sous tension de cet élément piézoélectrique. Le premier intervalle TA1 est sélectionné supérieur à une demi-alternance T0/4 et inférieur à une alternance T0/2 diminuée au moins de la durée de l'impulsion de freinage, de sorte que l'entier de cette impulsion de freinage soit appliqué dans une alternance avant le passage du résonateur mécanique par sa position neutre, pour engendrer une diminution de la fréquence instantanée de l'oscillateur mécanique, étant donné que la dérive temporelle indique que sa fréquence libre est supérieure en moyenne à la fréquence nominale, à savoir supérieure à la fréquence de consigne déterminée par l'oscillateur auxiliaire. Suite à la génération d'une impulsion de freinage (durée TR), la séquence est terminée et une nouvelle séquence est commencée avec l'attente de l'apparition d'une nouvelle impulsion 42 dans le signal fourni par le capteur.
  • Si la condition C2 < - N2 est vérifiée ('vrai'), alors le circuit de commande attend que le compteur C1 ait mesuré un deuxième intervalle de temps TA2 (voir Figure 4) et alors il envoie un signal de commande au minuteur 60 ('Timer') qui ferme de suite l'interrupteur 62 pour que le dispositif de freinage mécanique active son organe de freinage mécanique durant une période de freinage TR. Suite à la génération d'une impulsion de freinage (durée TR), la séquence est terminée et une nouvelle séquence est commencée avec l'attente de l'apparition d'une nouvelle impulsion 42 dans le signal fourni par le capteur. Le deuxième intervalle TA2 est sélectionné inférieur à une demi-alternance T0/4 diminué de la durée de l'impulsion de freinage, de sorte que l'entier de cette impulsion de freinage soit appliqué dans une alternance après le passage du résonateur mécanique par sa position neutre et avant la fin de l'alternance en question pour engendrer une augmentation de la fréquence instantanée de l'oscillateur mécanique, étant donné que la dérive temporelle indique que sa fréquence libre est inférieure en moyenne à la fréquence de consigne.
  • On remarquera que, dans les Figures 3 et 4, les intervalles de temps TA1 et TA2 débutent exactement aux passages du résonateur mécanique par sa position neutre. Cependant, si les impulsions 42 sont centrées sur un tel événement et présentent une certaine durée non nulle, la détection de leur flanc montant ou de leur flanc descendant présente alors un certain décalage temporel par rapport à cet événement. Dès lors, on comprendra que les plages de valeurs pour les intervalles TA1 et TA2 peuvent être ici un peu différentes de celles résultant des Figures 3 et 4 (petites variations des valeurs limites, sensiblement de la moitié de la durée des impulsions de position) pour satisfaire aux deux conditions principales du procédé de régulation.
  • On notera que, dans le cas où C2 > N1 ou C2 < - N2, on peut prévoir, dans une variante, de fournir une pluralité d'impulsions de commande successives à une pluralité d'instants tZn+TA1, respectivement tzn+TA2 selon le procédé décrit. Ceci revient à inhiber l'interrogation de l'état du compteur C2 durant un certain nombre de séquences. Une telle variante permet de fournir une succession d'impulsions de freinage de faible énergie. Pour limiter la plage possible pour la dérive temporelle de l'oscillateur, on prendra de préférence de petites valeurs pour N1 et N2. Par exemple N1 = N2 = 1 ou 2.
  • Le capteur, le comparateur 50, le circuit de commande 58 et le compteur C1, incrémenté par le circuit d'horloge 60 via le diviseur DIV1, forment ensemble un dispositif de détermination de positions temporelles du résonateur mécanique qui permet d'appliquer des impulsions de freinage mécanique dans diverses alternances sélectivement avant et après le passage du résonateur mécanique par sa position neutre. Ainsi, le procédé de régulation préféré décrit précédemment peut être implémenté de manière efficace et sûre, de manière à corriger une fréquence naturelle de l'oscillateur mécanique qui est trop haute ou trop basse relativement à la fréquence de consigne générée par le circuit d'horloge 60 via les diviseurs. Le dispositif de détermination de positions temporelles est donc agencé pour mesurer, suite à la détection d'un passage du résonateur par sa position neutre, un premier intervalle de temps et un deuxième intervalle de temps dont les fins respectives définissent respectivement un premier instant et un deuxième instant qui sont situés temporellement, dans une quelconque alternance de l'oscillation du résonateur mécanique, respectivement avant et après l'instant du passage de ce résonateur par sa position neutre.
  • En référence aux Figures 7 à 9, on décrira une variante du deuxième mode de réalisation de l'invention, laquelle définit un perfectionnement du dispositif de régulation selon l'invention en relation avec une gestion de l'énergie électrique consommée par le capteur. Les éléments du circuit de régulation 48A, qui sont identiques avec ceux de la variante décrite en référence aux Figures 5 et 6, ne seront pas décrits à nouveau ici, de même pour le procédé de régulation qui correspond à celui de cette variante décrite précédemment. Le dispositif de régulation 66 se distingue du dispositif de régulation 46 par le fait que le capteur 24 a un mode de veille ou qu'il peut même être mis hors tension. Ainsi, par état 'OFF', on comprend que le capteur est rendu momentanément inactif et qu'il se trouve alors dans un état de moindre consommation électrique que dans son état 'ON' dans lequel il détecte les balancements du résonateur mécanique.
  • On prévoit, dans la présente variante, de mettre le capteur dans son état 'OFF' durant la majeure partie de chaque oscillation de l'oscillateur mécanique. A cet effet, le circuit de commande 58A est agencé pour fournir un signal de commande SCAP à un interrupteur 68 qui commande l'alimentation du capteur 24, respectivement qui commande l'état de ce capteur entre son état 'ON' et son état 'OFF'. Comme l'indiquent les signaux SCAP et Comp à la Figure 8, il est prévu de mettre le capteur dans son état 'OFF' durant un intervalle de temps TOFF T0 et dans son état 'ON' durant un intervalle de temps TON dans chaque période d'oscillation T0 (à noter que T0 = TOFF + TON). De préférence, la durée de TON est prévue inférieure à une demi-alternance T0/4 pour minimiser la consommation d'énergie du capteur. En effet, il est possible que le signal digital 'Comp' présente des impulsions de relativement courte durée, de sorte que la détection d'une impulsion 42 par période d'oscillation ne nécessite qu'une relativement petite fenêtre temporelle TON. Dans ce cas, le comparateur 50 ne délivre qu'une seule impulsion 42 par période d'oscillation, de sorte que la bascule prévue dans la variante précédente est supprimée. Le comparateur 50 fournit directement son signal de sortie au compteur C2.
  • Dans l'organigramme de la Figure 9, la gestion de l'alimentation du capteur apparaît par la mise du capteur dans son état 'OFF' dans chaque séquence du procédé de régulation après la détection du flanc descendant d'une impulsion 42 du signal 'Comp'. On remarquera que dans cette variante, on détecte le flanc descendant des impulsions 42 du signal de position. Le capteur peut ainsi détecter l'entier d'une impulsion de position 42 dans l'intervalle TON. Toutefois, pour la régulation elle-même, la détection du flanc montant ou du flanc descendant ne change rien. Pour la détection de la position du balancier, la détection du flanc montant des impulsions est également possible pour déclencher le passage du capteur de son état 'ON' à son état 'OFF'. Dans ce dernier cas, la durée des impulsions 42 est diminuée fortement puisque le capteur est rendu inactif directement après le début de ces impulsions. Une telle variante d'implémentation permet de diminuer encore plus la consommation du capteur.
  • Lors de l'activation du dispositif de régulation, le capteur est mis directement dans son état 'ON' dans l'attente de la détection du flanc descendant d'une première impulsion 42 (correspondant à un passage par la position neutre du résonateur mécanique). Dès cette détection effectuée, le capteur est mis dans son état 'OFF' (capteur OFF) et la séquence de régulation continue comme dans la variante précédente. Par contre, qu'une impulsion de freinage soit générée ou non, le circuit de commande 58A continue de suivre l'incrémentation du compteur C1 jusqu'à ce que sa valeur corresponde à l'intervalle de temps TOFF prévu. Alors la séquence se termine par une nouvelle activation du capteur (Capteur ON) qui marque également le début d'une séquence suivante. L'algorithme tel que donné à la Figure 9 prévoit que la durée TOFF soit supérieure à la durée TA1. Cette condition indique que l'intervalle TOFF est sensiblement supérieur à une alternance T0/2. Dans une autre variante, il est prévu de ne détecter le passage par la position neutre qu'une seule fois dans un intervalle de temps nT0 correspondant à plusieurs périodes d'oscillation (n>1). Dans une telle variante, le dispositif de mesure est modifié en conséquence pour que le compteur C2 ne reçoive qu'une seule impulsion de consigne, dérivée de l'oscillateur auxiliaire, dans les intervalles nT0 successifs.
  • En référence à la Figure 10, on décrira ci-après un troisième mode de réalisation d'un ensemble horloger 72, lequel se distingue des modes précédents par l'agencement de son dispositif de freinage 74. L'actionneur de ce dispositif de freinage comprend deux modules de freinage 76 et 78 formés chacun par une lame 38A, respectivement 38B actionnée par un système magnétique aimant-bobine 80A, respectivement 80B. Les bobines des deux systèmes magnétiques sont respectivement commandées par deux circuits d'alimentation 82A et 82B qui sont reliés électriquement au circuit de régulation 22. Les lames 38A et 38B définissent un premier patin de freinage et un deuxième patin de freinage. Ces deux patins de freinage sont agencés de manière que, lors de l'application des impulsions de freinage mécanique, ils viennent exercer sur le balancier respectivement deux forces radiales diamétralement opposées relativement à l'axe de rotation du balancier 16 et de sens opposés. Bien entendu, le couple de force exercé par chacun des deux patins lors d'une impulsion de freinage est prévu sensiblement égale à l'autre. Ainsi, la résultante des forces dans le plan général du balancier est sensiblement nulle de sorte qu'aucune force radiale ne s'exerce sur l'arbre du balancier lors des impulsions de freinage. Ceci évite des contraintes mécaniques pour les pivots de cet arbre de balancier et plus généralement au niveau des paliers associés à ces pivots. Un tel agencement peut avantageusement être incorporé dans une variante où le freinage est effectuée sur l'arbre du balancier ou sur un disque de relativement petit diamètre porté par cet arbre.
  • Dans une variante de réalisation, la force de freinage exercée sur le balancier peut être prévue axiale. Dans une telle variante, il est avantageux de prévoir un dispositif de freinage du type proposé à la Figure 10. Dans ce cas, l'actionneur est agencé de manière que, lors de l'application des impulsions de freinage, le premier patin et le deuxième patin viennent exercer sur le balancier deux forces axiales sensiblement alignées et de sens opposés. Le couple de force exercé par chacun des deux patins lors d'une impulsion de freinage est prévu ici aussi sensiblement égale à l'autre.
  • Un actionneur formant un dispositif de freinage particulier est montré à la Figure 11. L'actionneur comprend un moteur du type horloger 86 et un organe de freinage 90 qui est monté sur un rotor 88, à aimant permanent, de ce moteur de manière à venir exercer une certaine pression sur le balancier 16 du résonateur 14 lorsque le rotor effectue une certaine rotation, laquelle est engendrée par une alimentation d'une bobine du moteur durant les impulsions de freinage en réponse à un signal de commande fourni par le circuit de régulation.

Claims (20)

  1. Ensemble horloger (2), comprenant :
    - un mécanisme,
    - un résonateur mécanique (14) susceptible d'osciller le long d'un axe d'oscillation autour d'une position neutre correspondant à son état d'énergie potentielle mécanique minimale,
    - un dispositif d'entretien (8,10,12) du résonateur mécanique formant avec ce résonateur mécanique un oscillateur mécanique qui est agencé pour cadencer la marche dudit mécanisme, chaque oscillation du résonateur mécanique définissant deux alternances successives entre deux positions extrêmes sur l'axe d'oscillation qui définissent l'amplitude d'oscillation de l'oscillateur mécanique,
    - un dispositif pour réguler la fréquence de l'oscillateur mécanique, ce dispositif de régulation comprenant un oscillateur auxiliaire (23), un dispositif (26,60,62) pour appliquer des impulsions de régulation au résonateur mécanique et un circuit électronique de commande (58, 58A) agencé pour générer un signal de commande qui est fourni au dispositif d'application d'impulsions de régulation pour l'activer,
    - un capteur (24, 34) agencé pour pouvoir détecter le passage du résonateur mécanique par au moins une certaine position donnée sur l'axe d'oscillation ;
    l'ensemble horloger étant caractérisé en ce que le dispositif de régulation comprend un dispositif de mesure (50, C2) agencé pour pouvoir mesurer, sur la base de signaux de position fournis par ledit capteur, une dérive temporelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire; en ce que le dispositif d'application d'impulsions de régulation est formé par un dispositif électromécanique agencé de manière à pouvoir engendrer, en réponse au signal de commande qui est fonction de la dérive temporelle mesurée, des impulsions de freinage mécanique appliquées au résonateur mécanique, notamment au moins une impulsion de freinage mécanique exerçant un certain couple de force sur le résonateur mécanique lorsqu'au moins une certaine dérive temporelle de l'oscillateur mécanique est détectée ; et en ce que le résonateur mécanique définit une surface de freinage présentant une certaine étendue selon ledit axe d'oscillation et agencée de manière à permettre au moins l'application de ladite impulsion de freinage mécanique avec son déclenchement à un certain instant donné au cours d'une alternance parmi les deux alternances d'une oscillation de l'oscillateur mécanique quelle que soit l'amplitude d'oscillation de cet oscillateur mécanique dans une plage d'amplitude ayant une certaine étendue et correspondant à une plage de fonctionnement utile de l'oscillateur mécanique, ledit instant donné étant sélectionné de sorte que le passage par la position neutre du résonateur mécanique n'intervienne pas au cours de ladite impulsion de freinage mécanique.
  2. Ensemble horloger selon la revendication 1, caractérisé en ce que le dispositif d'application d'impulsions de régulation est formé par un actionneur (36, 76,78, 86) comprenant un organe de freinage (38, 38A,38B, 90) qui est agencé pour être actionné, en réponse audit signal de commande, de manière à pouvoir exercer sur un organe oscillant du résonateur mécanique, définissant ladite surface de freinage, un certain couple de force mécanique durant lesdites impulsions de freinage mécanique.
  3. Ensemble horloger selon la revendication 2, caractérisé en ce que le dispositif d'application d'impulsions de régulation est agencé de manière que l'énergie de freinage de chaque impulsion de freinage mécanique soit inférieure à une énergie de blocage, pour ne pas stopper momentanément le résonateur mécanique au cours des impulsions de freinage mécanique ; et en ce que l'organe oscillant et l'organe de freinage sont agencés de manière que les impulsions de freinage mécanique puissent être appliquées principalement par un frottement sec dynamique entre l'organe de freinage et ladite surface de freinage de l'organe oscillant.
  4. Ensemble horloger selon la revendication 2 ou 3, caractérisé en ce que ledit actionneur est agencé pour actionner ledit organe de freinage via un élément piézoélectrique ou via un système électromagnétique.
  5. Ensemble horloger selon la revendication 4, caractérisé en ce que ledit actionneur comprend un moteur du type horloger, ledit organe de freinage étant monté sur un rotor de ce moteur de manière à venir exercer une certaine pression sur l'organe oscillant lorsque le rotor effectue une certaine rotation engendrée par une alimentation d'une bobine du moteur en réponse audit signal de commande.
  6. Ensemble horloger selon l'une quelconque des revendications 2 à 5, caractérisé en ce que l'organe oscillant est formé par un balancier pivotant comprenant une serge qui définit ladite surface de freinage, laquelle est sensiblement circulaire ; et en ce que l'organe de freinage comprend une partie mobile qui définit un patin de freinage agencé de manière à venir exercer une certaine pression contre la surface de freinage circulaire lors de l'application des impulsions de freinage mécanique.
  7. Ensemble horloger selon l'une quelconque des revendications 2 à 5, caractérisé en ce que l'organe oscillant est formé par un balancier pivotant comprenant un arbre central qui définit, respectivement qui porte une partie autre que la serge du balancier définissant ladite surface de freinage, laquelle est sensiblement circulaire ; et en ce que l'organe de freinage comprend une partie mobile qui définit un patin de freinage agencé de manière à venir exercer une certaine pression contre la surface de freinage circulaire lors de l'application des impulsions de freinage mécanique.
  8. Ensemble horloger selon la revendication 6 ou 7, dans lequel ladite partie mobile est une première partie et ledit patin de freinage est un premier patin, caractérisé en ce que ledit organe de freinage ou un autre organe de freinage formant également ledit actionneur comprend au moins une seconde partie mobile qui définit un second patin de freinage ; et en ce que ledit actionneur est agencé de manière que, lors de l'application desdites impulsions de freinage mécanique, les premier et deuxième patins viennent exercer sur le balancier deux forces radiales diamétralement opposées relativement à l'axe de rotation du balancier et de sens opposés.
  9. Ensemble horloger selon la revendication 6 ou 7, dans lequel ladite partie mobile est une première partie et ledit patin de freinage est un premier patin, caractérisé en ce que ledit organe de freinage ou un autre organe de freinage formant également ledit actionneur comprend au moins une seconde partie mobile qui définit un second patin de freinage ; et en ce que ledit actionneur est agencé de manière que, lors de l'application desdites impulsions de freinage, les premier et deuxième patins viennent exercer sur le balancier deux forces axiales sensiblement alignées et de sens opposés.
  10. Ensemble horloger selon l'une quelconque des revendications précédentes, dans lequel chaque période d'oscillation de l'oscillateur mécanique présente une première alternance suivie d'une seconde alternance, chaque première alternance et chaque seconde alternance présentant un passage du résonateur mécanique par sa position neutre à un instant médian et une durée entre un instant initial et un instant final définis respectivement par les deux positions extrêmes occupées par le résonateur mécanique respectivement au début et à la fin de l'alternance ; caractérisé en ce que ledit dispositif de mesure est agencé pour pouvoir déterminer si ladite dérive temporelle correspond à au moins une certaine avance ou à au moins un certain retard ; et en ce que ledit circuit de commande et ledit dispositif d'application d'impulsions de régulation sont agencés pour pouvoir appliquer sélectivement au résonateur mécanique, lorsque la dérive temporelle mesurée correspond à ladite au moins une certaine avance, une première impulsion de freinage mécanique (P1) dont au moins une majeure partie intervient entre ledit instant initial (tD1) et ledit instant médian (tN1) d'une alternance (A1) et, lorsque la dérive temporelle mesurée correspond audit au moins un certain retard, une deuxième impulsion de freinage mécanique (P2) dont au moins une majeure partie intervient entre ledit instant médian (tN2) et ledit instant final (tF2) d'une alternance (A2).
  11. Ensemble horloger selon la revendication 10, caractérisé en ce que le dispositif de régulation comprend un dispositif de détermination de positions temporelles du résonateur mécanique, ce dispositif de détermination étant agencé pour pouvoir déterminer, dans une alternance d'une oscillation du résonateur mécanique, un premier instant qui intervient avant ledit instant médian et après ledit instant initial de cette alternance et, également dans une alternance d'une oscillation du résonateur mécanique, un deuxième instant qui intervient après ledit instant médian et avant ledit instant final de cette alternance ; en ce que ledit circuit de commande est agencé pour pouvoir déclencher sélectivement ladite première impulsion de freinage mécanique sensiblement audit premier instant et ladite deuxième impulsion de freinage mécanique sensiblement audit deuxième instant ; et en ce que ladite surface de freinage du résonateur mécanique comprend un premier secteur, selon ledit axe d'oscillation, pour l'application de la première impulsion de freinage mécanique débutant sensiblement audit premier instant et un deuxième secteur, selon ledit axe d'oscillation, pour l'application de la deuxième impulsion de freinage mécanique débutant sensiblement audit deuxième instant, quelle que soit l'amplitude d'oscillation dudit résonateur mécanique dans ladite plage de fonctionnement utile.
  12. Ensemble horloger selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit capteur est agencé pour détecter au moins le passage du résonateur mécanique par sa position neutre.
  13. Ensemble horloger selon la revendication 12 dépendante de la revendication 11, caractérisé en ce que ledit dispositif de détermination de positions temporelles est agencé pour pouvoir mesurer, suite à la détection d'un passage du résonateur par sa position neutre, un premier intervalle de temps (TA1) et un deuxième intervalle de temps (TA2) dont les fins respectives définissent respectivement ledit premier instant et ledit deuxième instant.
  14. Ensemble horloger selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit capteur est soit un capteur optique comprenant une source de lumière, agencée de manière à pouvoir envoyer un faisceau de lumière en direction du résonateur mécanique, et un détecteur de lumière, agencé pour recevoir en retour un signal lumineux dont l'intensité varie périodiquement en fonction de la position du résonateur mécanique, soit un capteur capacitif ou un capteur inductif agencé de manière à pouvoir détecter une variation de capacité, respectivement d'inductance en fonction de la position du résonateur mécanique, le capteur inductif fonctionnant de préférence sans matière aimantée sur le résonateur.
  15. Ensemble horloger selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite surface de freinage présente une étendue permettant l'application desdites impulsions de freinage mécanique avec un déclenchement sensiblement à n'importe quel instant des alternances respectives dudit oscillateur mécanique.
  16. Module de régulation de la fréquence moyenne d'un oscillateur mécanique dont est muni un mouvement mécanique horloger, ce module de régulation comprenant :
    - un dispositif de régulation comprenant un oscillateur auxiliaire (23), un dispositif (26,60,62) agencé pour pouvoir appliquer des impulsions de régulation à un résonateur mécanique formant ledit oscillateur mécanique et un circuit électronique de commande (58, 58A) agencé pour générer un signal de commande qui est fourni au dispositif d'application d'impulsions de régulation pour l'activer,
    - un capteur (24, 34) agencé pour pouvoir détecter le passage du résonateur mécanique par au moins une certaine position donnée sur son axe d'oscillation ;
    caractérisé en ce que le dispositif de régulation comprend un dispositif de mesure (50, C2) agencé pour pouvoir mesurer, sur la base de signaux de position fournis par ledit capteur, une dérive temporelle de l'oscillateur mécanique relativement à l'oscillateur auxiliaire; en ce que le dispositif d'application d'impulsions de régulation est formé par un dispositif électromécanique agencé de manière à pouvoir engendrer, en réponse au signal de commande qui est fonction de la dérive temporelle mesurée, des impulsions de freinage mécanique susceptibles d'être appliquées audit résonateur mécanique, notamment au moins une impulsion de freinage mécanique capable d'exercer une certaine force de freinage sur une surface de freinage du résonateur mécanique lorsqu'au moins une certaine dérive temporelle de l'oscillateur mécanique est détectée ; et en ce que le dispositif de régulation est agencé de manière à permettre le déclenchement de ladite impulsion de freinage mécanique à un certain instant donné au cours d'une alternance de l'oscillateur mécanique, cet instant donné étant sélectionné de sorte que le passage par la position neutre du résonateur mécanique n'intervienne pas au cours de ladite impulsion de freinage mécanique.
  17. Module de régulation selon la revendication 16, caractérisé en ce que le dispositif d'application d'impulsions de régulation est formé par un actionneur (36, 76,78, 86) comprenant un organe de freinage (38, 38A,38B, 90) qui est agencé pour être actionné, en réponse audit signal de commande, de manière à pouvoir exercer sur un organe oscillant du résonateur mécanique, définissant ladite surface de freinage, une certaine force mécanique durant lesdites impulsions de freinage mécanique.
  18. Module de régulation selon la revendication 17, caractérisé en ce que l'organe de freinage est agencé de manière que les impulsions de freinage mécanique puissent être appliquées principalement par un frottement sec dynamique entre ledit organe de freinage et ladite surface de freinage de l'organe oscillant.
  19. Module de régulation selon la revendication 18, caractérisé en ce que l'organe de freinage comprend une partie mobile qui définit un patin de freinage agencé de manière à pouvoir venir exercer une certaine pression contre ladite surface de freinage lors de l'application des impulsions de freinage mécanique.
  20. Module de régulation selon la revendication 19, dans lequel ladite partie mobile est une première partie et ledit patin de freinage est un premier patin, caractérisé en ce que ledit organe de freinage ou un autre organe de freinage formant également ledit actionneur comprend au moins une seconde partie mobile qui définit un second patin de freinage ; et en ce que ledit actionneur peut être agencé de manière que, lors de l'application desdites impulsions de freinage, les premier et deuxième patins viennent exercer sur le résonateur mécanique deux forces sensiblement alignées et de sens opposés.
EP17203916.6A 2016-12-23 2017-11-27 Régulation par freinage mécanique d'un oscillateur mécanique horloger Active EP3339982B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16206778 2016-12-23
EP17172554 2017-05-23

Publications (2)

Publication Number Publication Date
EP3339982A1 true EP3339982A1 (fr) 2018-06-27
EP3339982B1 EP3339982B1 (fr) 2021-08-25

Family

ID=60409241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17203916.6A Active EP3339982B1 (fr) 2016-12-23 2017-11-27 Régulation par freinage mécanique d'un oscillateur mécanique horloger

Country Status (5)

Country Link
US (1) US10386791B2 (fr)
EP (1) EP3339982B1 (fr)
JP (1) JP6523414B2 (fr)
CN (1) CN108241281B (fr)
HK (1) HK1256649A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3584645A1 (fr) * 2018-06-19 2019-12-25 The Swatch Group Research and Development Ltd Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est régulée par un dispositif électromécanique
EP3629104A1 (fr) 2018-09-27 2020-04-01 The Swatch Group Research and Development Ltd Ensemble horloger comprenant un oscillateur mecanique associe a un dispositif electronique de regulation de sa frequence moyenne
WO2021121711A1 (fr) * 2019-12-17 2021-06-24 The Swatch Group Research And Development Ltd Piece d'horlogerie munie d'un mouvement mecanique et d'un dispositif de correction d'une heure affichee
CN113031424A (zh) * 2019-12-24 2021-06-25 斯沃奇集团研究及开发有限公司 带有机械机芯和用于校正显示时间的校正装置的时计

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3602207B1 (fr) * 2017-03-28 2020-12-30 The Swatch Group Research and Development Ltd Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est améliorée par un dispositif de correction
EP3502798B1 (fr) * 2017-12-20 2020-06-24 The Swatch Group Research and Development Ltd Piece d'horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation
EP3502796B1 (fr) * 2017-12-20 2020-05-20 The Swatch Group Research and Development Ltd Piece d'horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation
EP3502797B1 (fr) * 2017-12-20 2020-07-08 The Swatch Group Research and Development Ltd Piece d'horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation
US10509367B2 (en) * 2018-04-11 2019-12-17 Randy Alarcon Skeletonized electronic tourbillon simulator with repeater
EP3620867B1 (fr) * 2018-09-04 2022-01-05 The Swatch Group Research and Development Ltd Pièce d'horlogerie comprenant un oscillateur mécanique dont la fréquence moyenne est synchronisée sur celle d'un oscillateur électronique de référence
EP3627242B1 (fr) * 2018-09-19 2021-07-21 The Swatch Group Research and Development Ltd Mecanisme d'echappement d'horlogerie magneto-mecanique optimise
EP3663872B1 (fr) * 2018-12-06 2022-06-08 The Swatch Group Research and Development Ltd Procédé de commande d'un moteur électrique à courant continu
EP3663870B1 (fr) * 2018-12-06 2021-08-11 The Swatch Group Research and Development Ltd Moteur electrique à courant continu a inducteurs de stator asymetriques
EP3719588B1 (fr) 2019-04-03 2021-11-03 The Swatch Group Research and Development Ltd Oscillateur horloger auto-réglable
EP3767397B1 (fr) * 2019-07-19 2022-04-20 The Swatch Group Research and Development Ltd Mouvement horloger comprenant un element tournant muni d'une structure aimantee ayant une configuration periodique
JP7277336B2 (ja) * 2019-10-17 2023-05-18 セイコーインスツル株式会社 時計用ムーブメントおよび時計
EP4174586B1 (fr) 2021-10-29 2024-05-29 The Swatch Group Research and Development Ltd Ensemble horloger comprenant une montre et un système de correction de l'heure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH597636B5 (fr) 1972-11-21 1978-04-14 Ebauches Sa
EP1241538A1 (fr) * 1999-12-24 2002-09-18 Seiko Instruments Inc. Dispositif d'horlogerie mecanique pourvu d'un mecanisme de commande generateur de puissance du balancier annulaire regle

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1548069B1 (de) * 1966-07-13 1970-06-18 Staiger Feinmech Elektromechanischer Gangantrieb fuer batteriebetriebene Uhren
CN1348555A (zh) * 1999-06-29 2002-05-08 精工电子有限公司 具有轮系工作控制机构的机械时计
CN1357120A (zh) * 2000-02-29 2002-07-03 精工电子有限公司 具备光式检测部和制动部的机械钟表
EP1359475A1 (fr) * 2000-12-20 2003-11-05 Seiko Instruments Inc. Piece d'horlogerie mecanique a detecteur de position et detecteur de position
ATE363675T1 (de) * 2003-10-01 2007-06-15 Asulab Sa Uhr mit einem mechanischen uhrwerk, das mit einem elektronischen regulator gekoppelt ist
DE602005023633D1 (de) * 2004-10-26 2010-10-28 Tag Heuer Sa Armbanduhr-regulierungsglied und mechanisches uhrwerk mit einem solchen regulierungsglied
EP1710636A1 (fr) * 2005-04-06 2006-10-11 Daniel Rochat Echappement pour montre
CH702187A2 (fr) * 2009-11-02 2011-05-13 Lvmh Swiss Mft Sa Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant.
CH705679B1 (fr) * 2011-10-28 2017-01-31 Swatch Group Res & Dev Ltd Circuit d'autorégulation de la fréquence d'oscillation d'un système mécanique oscillant, et dispositif le comprenant.
JP6087895B2 (ja) * 2013-12-23 2017-03-01 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 磁気脱進機機構を含む時計ムーブメント内のホイールセットのための角速度調節デバイス
WO2015097172A2 (fr) * 2013-12-23 2015-07-02 The Swatch Group Research And Development Ltd Dispositif regulateur de la vitesse angulaire d'un mobile dans un mouvement horloger comprenant un echappement magnetique
EP2908185B1 (fr) * 2014-02-17 2017-09-13 The Swatch Group Research and Development Ltd. Dispositif d'entretien et de régulation d'un résonateur d'horlogerie

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH597636B5 (fr) 1972-11-21 1978-04-14 Ebauches Sa
EP1241538A1 (fr) * 1999-12-24 2002-09-18 Seiko Instruments Inc. Dispositif d'horlogerie mecanique pourvu d'un mecanisme de commande generateur de puissance du balancier annulaire regle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3584645A1 (fr) * 2018-06-19 2019-12-25 The Swatch Group Research and Development Ltd Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est régulée par un dispositif électromécanique
US11599065B2 (en) 2018-06-19 2023-03-07 The Swatch Group Research And Development Ltd Timepiece comprising a mechanical movement wherein the working is regulated by an electromechanical device
EP3629104A1 (fr) 2018-09-27 2020-04-01 The Swatch Group Research and Development Ltd Ensemble horloger comprenant un oscillateur mecanique associe a un dispositif electronique de regulation de sa frequence moyenne
WO2021121711A1 (fr) * 2019-12-17 2021-06-24 The Swatch Group Research And Development Ltd Piece d'horlogerie munie d'un mouvement mecanique et d'un dispositif de correction d'une heure affichee
CN114787723A (zh) * 2019-12-17 2022-07-22 斯沃奇集团研究及开发有限公司 带有机械机芯和用于校正显示时间的校正装置的时计
CN113031424A (zh) * 2019-12-24 2021-06-25 斯沃奇集团研究及开发有限公司 带有机械机芯和用于校正显示时间的校正装置的时计
EP3842876A1 (fr) * 2019-12-24 2021-06-30 The Swatch Group Research and Development Ltd Piece d horlogerie munie d'un mouvement mecanique et d'un dispositif de correction d'une heure affichee
CN113031424B (zh) * 2019-12-24 2022-04-01 斯沃奇集团研究及开发有限公司 带有机械机芯和用于校正显示时间的校正装置的时计
US11586150B2 (en) 2019-12-24 2023-02-21 The Swatch Group Research And Development Ltd Timepiece provided with a mechanical movement and a device for correcting a displayed time

Also Published As

Publication number Publication date
CN108241281B (zh) 2020-12-25
JP6523414B2 (ja) 2019-05-29
EP3339982B1 (fr) 2021-08-25
US20180181073A1 (en) 2018-06-28
HK1256649A1 (zh) 2019-09-27
JP2018105852A (ja) 2018-07-05
CN108241281A (zh) 2018-07-03
US10386791B2 (en) 2019-08-20

Similar Documents

Publication Publication Date Title
EP3339982B1 (fr) Régulation par freinage mécanique d&#39;un oscillateur mécanique horloger
EP3620867B1 (fr) Pièce d&#39;horlogerie comprenant un oscillateur mécanique dont la fréquence moyenne est synchronisée sur celle d&#39;un oscillateur électronique de référence
EP2487547B1 (fr) Régulateur de mobile horloger ou de mobile de sonnerie
EP1521142B1 (fr) Pièce d&#39;horlogerie ayant un mouvement mécanique associé à un régulateur électronique
EP3130966B1 (fr) Mouvement d&#39;horlogerie mecanique muni d&#39;un systeme de retroaction du mouvement
EP3629104B1 (fr) Piece d&#39;horlogerie mécanique comportant un dispositif electronique de regulation de la précision de marche de la pièce d&#39;horlogerie
EP1521141A1 (fr) Pièce d&#39;horlogerie ayant un mouvement mécanique associé à un régulateur électronique
EP3602207B1 (fr) Pièce d&#39;horlogerie comprenant un mouvement mécanique dont la marche est améliorée par un dispositif de correction
EP3602206B1 (fr) Pièce d&#39;horlogerie mécanique comprenant un mouvement dont la marche est améliorée par un dispositif de correction
EP3120199B1 (fr) Oscillateur horloger
CH713306B1 (fr) Ensemble horloger comprenant un oscillateur mécanique associé à un dispositif de régulation de sa fréquence moyenne.
EP3584645B1 (fr) Pièce d&#39;horlogerie comprenant un mouvement mécanique dont la marche est régulée par un dispositif électromécanique
CH713332A2 (fr) Ensemble horloger comprenant un oscillateur mécanique associé à un dispositif de régulation.
US20210191334A1 (en) Timepiece provided with a mechanical movement and a device for correcting a displayed time
EP3502796B1 (fr) Piece d&#39;horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation
EP3502798B1 (fr) Piece d&#39;horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation
EP3502797B1 (fr) Piece d&#39;horlogerie comprenant un oscillateur mecanique associe a un systeme de regulation
CH713637A2 (fr) Pièce d&#39;horlogerie comprenant un mouvement mécanique dont la marche est améliorée par un dispositif de correction.
CH713636A2 (fr) Pièce d&#39;horlogerie mécanique comprenant un mouvement dont la marche est améliorée par un dispositif de correction.
WO2021121711A1 (fr) Piece d&#39;horlogerie munie d&#39;un mouvement mecanique et d&#39;un dispositif de correction d&#39;une heure affichee
CH715295A2 (fr) Pièce d`horlogerie comprenant un oscillateur mécanique dont la fréquence moyenne est synchronisée sur celle d`un oscillateur électronique de référence.
CH714483A2 (fr) Pièce d&#39;horlogerie comprenant un oscillateur mécanique associé à un système de régulation.
CH717000A2 (fr) Pièce d&#39;horlogerie munie d&#39;un mouvement mécanique et d&#39;un dispositif de correction d&#39;une heure affichée.
CH714485A2 (fr) Pièce d&#39;horlogerie comprenant un oscillateur mécanique associé à un système de régulation.
CH711408A2 (fr) Mouvement d&#39;horlogerie mécanique muni d&#39;un système de rétroaction du mouvement.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210617

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1424427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017044630

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210825

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1424427

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211125

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017044630

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211127

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

26N No opposition filed

Effective date: 20220527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211127

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231019

Year of fee payment: 7

Ref country code: DE

Payment date: 20231019

Year of fee payment: 7

Ref country code: CH

Payment date: 20231202

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210825