EP3339508B1 - Process for the treatment of materials containing fibers - Google Patents

Process for the treatment of materials containing fibers Download PDF

Info

Publication number
EP3339508B1
EP3339508B1 EP17207499.9A EP17207499A EP3339508B1 EP 3339508 B1 EP3339508 B1 EP 3339508B1 EP 17207499 A EP17207499 A EP 17207499A EP 3339508 B1 EP3339508 B1 EP 3339508B1
Authority
EP
European Patent Office
Prior art keywords
paper
mixture
polymer
cellulose
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17207499.9A
Other languages
German (de)
French (fr)
Other versions
EP3339508A1 (en
Inventor
Michael Ramin
Klaus Langerbeins
Christian Maier
Karlheinz SÜNKEL
Alexis Krupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMSilk GmbH
Original Assignee
AMSilk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from LU93386A external-priority patent/LU93386B1/en
Application filed by AMSilk GmbH filed Critical AMSilk GmbH
Publication of EP3339508A1 publication Critical patent/EP3339508A1/en
Application granted granted Critical
Publication of EP3339508B1 publication Critical patent/EP3339508B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/02Chemical or biochemical treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/25Cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/30Alginic acid or alginates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/36Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/18After-treatment of paper not provided for in groups D21H17/00 - D21H23/00 of old paper as in books, documents, e.g. restoring

Definitions

  • the invention relates to a method for processing materials containing fibers and to materials and systems obtainable with this method.
  • the invention also relates to the use of a mixture containing a polymer for processing a material containing fibers, the use of dimethyl sulfoxide as an antioxidant in the processing of paper and the use of ionic liquids as an antimicrobial agent for the processing of paper.
  • Organic materials containing fibers experience mechanical destabilization in that the macromolecules forming the fiber, such as cellulose macromolecules, are broken down over time. Especially in the case of paper, this can lead to the paper being so destabilized that the books made from this paper can no longer be used.
  • the problems of destabilization do not only exist with paper and cellulose-containing materials in general, such as wood, but also generally represent a problem for materials containing fibers. To counteract this problem, appropriate processing methods are used for the material containing fibers needed. Paper, in particular printed paper in books, as a material containing fibers, places the highest demands on the processing method, which is why the further discussion should take place using the example of paper, in particular printed paper.
  • the processing method should not only allow single sheet processing. Rather, the process should be able to process multiple sheets at once. The pages should not stick together. In addition, if possible, the method should not damage the cover of a book and / or the binding or spine gluing of the sheets. In this way, the method can be carried out more economically, since several sheets can be processed at the same time or entire books can be processed at once and there is no need to separate the sheets from books. Furthermore, the process should not attack the paper in any other way, in particular the paper should not swell irreversibly. The process should also not wash out the ink and / or printing inks on the paper to be processed. At the same time, however, it is desirable that the processing of the paper does not only take place superficially, but ideally begins throughout the paper.
  • a process for strengthening paper is also known in which the paper is impregnated with acrylic acid derivatives which are polymerized by exposure to gamma rays. Irradiation with gamma rays, however, leads to further damage to the paper, as a result of the impregnation with acrylic acid, paints and inks on the paper at least partially bleed, and residual monomers remaining in the paper lead to an odor nuisance.
  • this process can only be combined with other conventional means of paper restoration with difficulty.
  • the processing of paper by lamination is also known, a thin polymer film or a thin stabilizing paper being applied to one or both sides of the paper.
  • a thin polymer film or a thin stabilizing paper being applied to one or both sides of the paper.
  • a well-known method for processing paper is the so-called Wiener method, which is in the EP 0 273 9602 A2 is described.
  • Wiener method which is in the EP 0 273 9602 A2 is described.
  • the material to be processed is soaked in an aqueous solution that contains methyl cellulose to strengthen the paper.
  • the processing solution is then pumped out, residues of the processing solution are allowed to drip off the processed paper, and the paper is then shock-frozen and freeze-dried.
  • the main disadvantage of this method is that book covers are damaged, which is why the pages of the book have to be removed before processing.
  • a derivatized polymer must be used with methyl cellulose.
  • the DE 100 57 554 A1 describes a process in which the paper to be processed is processed with a silylated polymer derivative such as silylated cellulose, which is dissolved in a non-polar solvent. The silyl groups are then split off by the action of moisture or water.
  • the disadvantage of this process is the compulsory use of derivatized polymers.
  • the EP 3 072 933 A1 describes alkaline nanoparticles containing at least one hydroxide or carbonate or an organic compound of an alkaline earth metal and optionally a hydrophilic cellulose derivative and a stabilizing outer layer made of hydrophobic polymers for deacidifying and strengthening cellulose-based artifacts.
  • the nanoparticles must first be synthesized.
  • the EP 0 285 227 A1 describes a process for the preservation of paper sheets or paper webs, in which the solution of a deacidifying agent and a polymeric reinforcing agent for the paper in an organic solvent or in a mixture of organic solvents is sprayed onto one surface of the paper, and one is sprayed onto the other surface of the paper exerts strong suction to pull the solution through the paper and also to at least partially dry the treated paper.
  • the WO 2014/201544 A1 describes antimicrobial polymers which impart prolonged antimicrobial activity to a surface or in a solution, the polymers comprising as repeating monomers a polymerizable cyclic unit which forms part of the polymer backbone and an antimicrobial unit such as a quaternary ammonium unit in the side chain.
  • the object of the invention is therefore to provide a method for processing, in particular for strengthening, material containing fibers, in particular paper, which at least partially overcomes one or more disadvantages of the methods known from the prior art.
  • the paper to be processed should not be damaged any further.
  • the paper to be processed should be strengthened. Any inks and printing inks on the paper to be processed should not bleed.
  • the bindings and / or the paper backing should not be damaged by the process.
  • substances that are easy to obtain, such as polymers, which in particular are not derivatized, can be used in the process.
  • a particular advantage of the method according to the invention is that, by using a polar aprotic solvent, non-derivatized polymers such as cellulose can also be used as the at least one polymer in the method according to the invention. Furthermore, by using a polar aprotic solvent, mixtures, in particular solutions, with a low viscosity can be produced which are particularly suitable for processing books or similar substrates.
  • the method according to the invention can be combined with other methods, in particular deacidification methods.
  • a solution of the substance in the solvent can be produced which is at least 0.5 Weight%, in particular at least 1 weight%, 2 weight%, 3 weight%, 4 weight%, 5 weight%, 6 weight%, 7 weight%, 8 weight%, 9 weight% or at least 10% by weight, and at most 25% by weight, in particular at most 20% by weight, 15% by weight, 14% by weight, 13% by weight or at most 12% by weight, each based on the total weight of the solution, of the substance.
  • the term "accumulation”, in particular the accumulation of a substance on another substrate, can mean in particular the precipitation, crystallization, deposition, growth and / or settling, in particular on the other substrate .
  • the polymer can be completely or partially attached to the material containing fibers, in particular to the fibers of the material containing fibers. If the polymer only partially attaches to the fibers of the material containing fibers, a residual amount of polymer remains in the mixture.
  • the fibers of the material containing fibers are preferably completely or partially sheathed by attachment. This can strengthen the fiber.
  • “Derivatized polymers” can in particular be those polymers which have been obtained by chemical modification of another polymer.
  • the derivatization can also be reversible, so that the original polymer can be recovered.
  • derivatized polymers are made from naturally occurring polymers such as cellulose or starch.
  • the derivatized polymer methylcellulose can be obtained from nonderivatized cellulose by chemical modification.
  • Further examples of non-derivatized polymers are starch, chitosan, chitin, lignin, viscose, cellulose, silk and alginate.
  • Various chemical modifications can be used for the derivatization.
  • the derivatization can for example by partial or complete alkylation, partial or complete acylation, partial or complete silylation or partial or complete sulfonylation can be achieved.
  • Fiber-containing fibers is also referred to below as “fiber-containing material” or “fiber-containing material”.
  • Steps a. to c. of the method according to the invention are advantageously carried out in the order given.
  • the fiber-containing material can contain a polymer with at least one polar group, in particular in a proportion of 50 wt.%, 60 wt.%, 70 wt.%, 80 wt.%, 90 wt.%, 95 wt.%, 99 wt .%, or consist of it.
  • the at least one polar group can be contained in the polymer backbone and / or be linked to the polymer backbone as a side chain. If several polar groups are contained, these can be the same or different. Polar groups are known to the person skilled in the art.
  • polar groups include the hydroxyl group, acid groups such as the carboxyl group and the sulfonic acid group, the amide group, the amine group, the thiol group, the ether group, in particular the C1-C4- Alkyl ether group, the ester group and the urethane group.
  • the fiber-containing material contains cellulose, microcrystalline cellulose, pulp, hemicellulose, viscose, chitin, chitosan, alginate, starch, lignin, polyvinyl alcohol, proteins or mixtures thereof. Further components of the fiber-containing material can be further polymers, in particular further polymers with at least one polar group, but also, for example, fillers such as calcium carbonate or pigments such as titanium dioxide.
  • the fiber-containing material can be a cellulose-containing material, in particular paper, cardboard, cardboard, textiles or wood.
  • the fiber-containing material is paper, in particular paper sheets. Examples of paper are typewriter paper, printer paper, magazine paper, newsprint, and book paper.
  • a mixture containing a polymer is provided.
  • Various polymers can be used as the polymer.
  • the polymer can be a copolymer or a homopolymer.
  • the polymer can in particular have a mass average molecular weight Mw of 1000 to 10000000 g / mol, in particular from 3000 to 1000000 g / mol, from 5000 to 500000 g / mol or from 10,000 to 100,000 g / mol, exhibit.
  • the polymer can also contain at least one polar group.
  • the at least one polar group can be contained in the polymer backbone and / or be linked to the polymer backbone as a side chain. If several polar groups are contained, these can be the same or different.
  • Polar groups are known to the person skilled in the art. Examples of polar groups include the hydroxyl group, acid groups such as the carboxyl group and the sulfonic acid group, the amide group, the amine group, the thiol group, the ether group, in particular the C1-C4- Alkyl ether group, the ester group and the urethane group.
  • the polymer can have at least one hydroxyl group, at least one amine group, at least one acid group, in particular a carboxyl group, at least one amide group, at least one thiol group, at least one ether group, in particular a C1- C4-alkyl ether group, at least one ester group and / or at least one urethane group, in particular at least one hydroxyl group.
  • the polymer is selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, cellulose, hemicellulose, viscose, chitin, lignin, chitosan, alginate, starch, silk, natural silk, silk biopolymers, polyvinyl alcohol, polyvinyl acetate, polyurethanes, polyamides, proteins , Polymers or copolymers based on acrylic acid and / or its ester and / or amide derivatives, methacrylic acid and / or its ester and / or amide derivatives, vinyl acetate, itaconic acid, maleic acid, fumaric acid, acryloxypropionic acid, methacryloxypropionic acid, styrene sulfonic acid, ethyl methacrylate -2-sulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, phosphoethyl methacrylate, cellulose ethers and mixtures thereof.
  • the polymer can be selected from the group consisting of cellulose, alpha cellulose, microcrystalline cellulose, cellulose, hemicellulose, viscose, chitin, lignin, chitosan, alginate, starch, silk, silk biopolymers, polyvinyl alcohol and mixtures thereof.
  • the polymer is preferably selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, cellulose, silk, silk biopolymers, viscose and mixtures thereof.
  • the polymer is advantageously selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, cellulose, viscose and mixtures thereof.
  • the polymer is alpha-cellulose.
  • the polymer is viscose, in particular essentially non-derivatized viscose. It has been shown that fiber-containing materials can be processed particularly well with the aforementioned polymers. In particular, processing with the above polymers made good Strengthening, especially of cellulosic materials such as paper, cardboard, cardboard and wood can be achieved.
  • the polymer can in particular be used in the form of fibers.
  • Viscose is made up of regenerated cellulose in particular. Viscose can in particular be in the form of fibers. Viscose can in particular be a regenerated cellulose fiber, as it is in FIG EP 2 546 396 (see in particular paragraphs [0026], [0028], [0029], [0030], [0031], [0032], [0033], [0034], [0035], [0036], [0037] and / or [0038]) is described. Accordingly, the viscose can be in the form of fibers which have several legs and in which at least one leg differs from the other legs in terms of its length. In particular, it can be asymmetrical cellulose fibers.
  • the titer of the asymmetrical cellulose fibers can be from 1.3 dtex to 10 dtex, in particular 3.3 dtex.
  • the titer indicates the fineness, with 1 dtex corresponding in particular to a weight of one gram per 10,000 meters of cellulose fibers.
  • Silk biopolymers can, in particular, be silk biopolymers, as described in FIG WO 2014/037453 or in the WO 2011/113446 are described.
  • the silk biopolymers can in particular consist of polypeptides which are essentially built up from one or more repeating polypeptide units and one or more non-repeating polypeptide units.
  • the repeating polypeptide units can in particular contain oligoalanine units.
  • the repeating polypeptide units may comprise or consist thereof, wherein the sequences given in brackets represent amino acids in one-letter code, as it is, for example, in the book " Enzymes - A Practical Introduction to Structure, Mechanism, and Data Analysis ", 2nd Edition by Robert A.
  • Non-repeating polypeptide units can be selected from the WO 2014/037453 , in particular on page 16, described "non-repetitive (NR)" units NR3, NR4, NR5, NR6 or in the WO 2014/037453 be selected variants thereof described.
  • the polymer in step a. of the method according to the invention can be the same as or different from the polymer with at least one polar group, which can be contained in the fiber-containing material.
  • a cellulose-containing material can be brought into contact as a fiber-containing material with a mixture which also contains cellulose as a polymer.
  • a cellulose-containing material can also be brought into contact as a fiber-containing material, for example with a mixture which contains polyvinyl alcohol as a polymer.
  • the polymer contained in the mixture contains a polar group
  • the polar group of the polymer with at least one polar group which can be contained in the fiber-containing material and the polar group of the at least one polymer contained in the mixture can be the same or different.
  • the fiber-containing material can be a cellulosic material and the polar polymer can be a polyurethane.
  • polar aprotic solvents can be used as polar aprotic solvents in the process according to the invention.
  • the molecules can have a dipole moment and / or the polar aprotic solvent can be composed of ions.
  • polar aprotic solvents can be free of groups, in particular polar groups, from which protons can be split off. Examples of such groups are the OH group, acid groups such as the carboxyl group, the sulfonic acid group and hydrogen halide groups, the thiol group, and primary and secondary amines.
  • Particularly suitable polar aprotic solvents are ketones, lactones, lactams, in particular N-alkylated lactams, nitriles, tertiary carboxamides, urea derivatives, in particular alkylated urea derivatives, sulfoxides, sulfones, carbonic acid esters, ionic liquids and / or mixtures thereof.
  • ketones are acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclohexanone and their C1 to C4 alkylated derivatives.
  • lactones examples include propriolactone, gammabutyrolactone, deltavalerolactone, epsiloncaprolactone and their C1- to C4-alkylated derivatives.
  • lactams are propiolactam, gammabutyrolactam and their C1- to C4-alkylated derivatives.
  • alkylated lactams are N-methyl-propiolactam, N-methyl-2-pyrrolidone and their C1- to C4-alkylated derivatives.
  • nitriles examples include acetonitrile, propionitrile, butyronitrile, valeronitrile and their C1 to C4 alkylated derivatives.
  • tertiary carboxamides such as dimethylformamide, dimethylacetamide, dimethylpropionamide and their C1- to C4-alkylated derivatives.
  • urea derivatives in particular alkylated urea derivatives, are dimethylpropylene urea, tetramethylurea and their C1 to C4 alkylated derivatives.
  • sulfoxides are dimethyl sulfoxide, ethyl methyl sulfoxide, diethyl sulfoxide and their C1 to C4 alkylated derivatives.
  • sulfones are sulfolane, ethylmethyl sulfone and their C1 to C4 alkylated derivatives.
  • carbonic acid esters are dimethyl carbonate, ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate and their C1 to C4 alkylated derivatives.
  • the polar aprotic solvent is preferably selected from the group consisting of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate ionic liquids and mixtures thereof
  • the polar aprotic solvent is selected from the group consisting of dimethylacetamide, dimethyl sulfoxide, acetonitrile, ionic liquids and mixtures thereof.
  • Polar aprotic solvents that are a mixture of an ionic liquid and at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate and contain ethylene ionic liquid.
  • the polar aprotic solvent can contain one or more ionic compounds, for example salts, inorganic salts and / or ionic liquids, or in particular consist of one or more ionic liquids.
  • Inorganic salts are, for example, lithium fluoride, lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, potassium fluoride, potassium chloride, potassium bromide or potassium iodide, in particular lithium chloride or lithium bromide and mixtures thereof.
  • Inorganic salts can be present in an amount of 1 to 10% by weight, 3 to 8% by weight or 4 to 6% by weight, based in each case on the total amount of polar aprotic solvent and inorganic salt or inorganic salts.
  • a polar aprotic solvent can be, for example, dimethylacetamide containing 5% by weight of lithium chloride.
  • the polar aprotic solvent contains an ionic liquid. Suitable ionic liquids are described in detail below.
  • the polar aprotic solvent is preferably a mixture of an ionic liquid and at least one of dimethylacetamide, dimethyl sulfoxide and acetonitrile.
  • the polar aprotic solvent is a mixture of an ionic liquid and dimethylacetamide or dimethyl sulfoxide.
  • the polar aprotic solvent is a mixture of an ionic liquid and dimethylacetamide.
  • the polar aprotic solvent is a mixture of an ionic liquid and dimethyl sulfoxide.
  • polar aprotic solvents can be used to produce mixtures, in particular solutions, with the most varied of polymers.
  • many poorly soluble polymers in particular polymers containing at least one polar group, can dissolve well in these polar aprotic solvents.
  • the polar aprotic solvent contains one or more ionic compounds, polymers containing at least one polar group, in particular cellulose, can be better dissolved in them.
  • mixtures, in particular solutions with a content of, for example, 0.5 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, 5 wt.%, 6 wt.
  • the polar aprotic solvent can contain or consist of one or more ionic liquids.
  • Particularly suitable ionic liquids are organic salts, the ions of which hinder the formation of a stable crystal lattice through charge delocalization and steric effects.
  • Ionic liquids have the particular advantage that many poorly soluble polymers such as cellulose dissolve well in them. Furthermore, ionic liquids can be modified well and thus adapted to different requirements.
  • the polar aprotic solvent contains an ionic liquid
  • the ionic liquid contains in particular a cation selected from a 1,3-dialkylimidazolium cation, an alkylpyridinium cation, a tetraalkylammonium cation and a phosphonium cation, and an anion selected from fluoride, chloride, bromide, iodide, formate, Acetate, propionate, butyrate, hydrogen sulfate, tosylate, trifluoromethanesulfonate, bis (trifluoromethanesulfonyl) imide, hexafluorophosphate, tetrafluoroborate, benzoate, glycolate, thioglycolate, lactate and glycinate, or it consists of them.
  • the ionic liquid preferably contains a dialkylimidazolium cation and an anion selected from chloride, bromide and acetate, or it consists of these.
  • the alkyl groups of the dialkylimidazolium cation can in particular be identical or different.
  • the alkyl groups of the dialkylimidazolium cation can in particular be C1 to C10, in particular C1 to C5 alkyl groups.
  • the alkyl groups of the dialkylimidazolium cation independently of one another, can preferably be selected from the group consisting of methyl, ethyl, propyl and butyl.
  • the ionic liquid contains 1-butyl-3-methylimidazolium chloride and / or 1-butyl-3-methylimidazolium acetate or consists thereof.
  • the cations and anions listed above have the particular advantage that many polymers, in particular also sparingly soluble polymers such as cellulose, are readily soluble in ionic liquids that contain or consist of these cations and anions.
  • the acetate anion in particular has the advantage that the pH value of fiber-containing materials with an acidic pH value is brought into contact with a mixture in which the polar aprotic solvent contains an ionic liquid containing acetate anions can be raised. This is particularly important when processing paper, since by increasing the pH value in the paper, the degradation of the cellulose fibers can be slowed down or even prevented.
  • the mixture containing at least one polymer and a polar aprotic solvent is preferably a homogeneous mixture, in particular a solution.
  • the polymer in the mixture can be partially dissolved or swollen by the polar aprotic solvent.
  • Providing a mixture containing a polar aprotic solvent has the advantage, inter alia, that mixtures, in particular solutions, with a low viscosity can be obtained.
  • Such mixtures, in particular solutions are particularly suitable for processing fiber-containing materials, in particular cellulose-containing materials such as paper.
  • the mixture, in particular the solution with which the fiber-containing material to be processed is brought into contact can in particular have a viscosity of 0.01 to 100 mPas, preferably 0.1 to 70 mPas, preferably 0.5 to 50 mPas, more preferably 1 to 30 mPas, even more preferably 1 to 15 mPas.
  • Mixtures, in particular solutions, with such viscosities are particularly suitable for processing fiber-containing materials, especially cellulose-containing materials such as paper, since they can penetrate deep into the fiber-containing material and thus not only allow superficial deposition of the polymer.
  • Methods for determining the viscosity of mixtures, in particular of solutions are known to the person skilled in the art.
  • the viscosity can be determined at 25 ° C. using a "Gemini" rotary viscometer from Bohlin.
  • the fiber-containing material in particular paper
  • the fiber-containing material can be sprayed or coated with the mixture, or the fiber-containing material, in particular paper, can be soaked in the mixture.
  • the fiber-containing material is advantageously soaked in the mixture. If the fiber-containing material is soaked in the mixture, this can be for a period of 0.1 to 10 minutes, in particular 0.2 to 8 minutes, 0.2 to 7 minutes, 0.4 to 6 minutes, 0.5 to 5 minutes Minutes, 0.5 to 4 minutes, 0.5 to 3 minutes, or 0.5 to 2 minutes.
  • the at least one polymer can penetrate well into the fiber-containing material, so that it can easily attach itself to the fibers of the material.
  • the soaked fiber-containing material can then be rinsed off with a polar aprotic solvent, in particular with dimethylacetamide and / or dimethyl sulfoxide, in particular for a period of 10 to 60 seconds, 20 to 50 seconds or 25 to 40 seconds. Rinsing can remove excess polymer.
  • the method according to the invention comprises the step of treating the mixture of the fiber-containing material and the mixture containing at least one polymer and a polar aprotic solvent, so that at least part of the polymer is deposited on the fibers of the material.
  • the mixture can be treated in different ways.
  • the treatment of the mixture in step c. is selected from bringing the mixture into contact with a non-polar solvent.
  • ionic compounds are salts or polymers with at least one ionic side group.
  • Salts consist in particular of at least one cation and at least one anion, it being possible for the cation to be selected from cations which are selected from metals from the group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba , Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Hg, Al, Ga, In, Tl, Ge, Sn, Pb, and wherein the anion can be selected from anions which are derived from elements of the group consisting of F, Cl, Br, I , O, S, Se, Te.
  • cations are ammonium ions.
  • anions are hydride, hydroxide, phosphates, phosphites, sulfates, sulfites, sulfides and carboxylates such as formate, acetate, propionate, salicylate and benzoate.
  • the salt can in particular contain ammonium sulfate or potassium sulfate or a mixture thereof.
  • polymers with ionic side groups are polymers with at least one deprotonated acid group, in particular a deprotonated carboxyl group such as deprotonated polyacrylate, deprotonated polymethacrylate, polymers with at least one quaternary ammonium compound such as quaternized polydimethylaminoethyl methacrylate.
  • the mixture can be brought into contact with the ionic compound by adding the salt directly or in the form of a solution, in particular an aqueous solution.
  • non-ionic compounds are water, alcohols such as methanol, ethanol, propanol, butanol, octane, nonane, isocyanate-containing compounds, hydrocarbons with 1 to 20, in particular 5 to 18, carbon atoms, polymers such as polyethers, polyesters, polyamides, polyurethanes. This can be done directly with the in step b. obtained mixture are brought into contact, for example by adding the respective nonionic compound.
  • acids are hydrochloric acid, sulfuric acid, nitric acid, carboxylic acids having 1 to 20, in particular 1 to 10, carbon atoms, in particular formic acid, acetic acid, propionic acid and benzoic acid, and mixtures thereof.
  • the acid be selected from hydrochloric acid and carboxylic acids having 1 to 10 carbon atoms. This can be done directly with the in step b. obtained mixture are brought into contact, for example by adding the respective acid, or by dipping the mixture in acid. The acid can be concentrated or diluted, for example as a dilute aqueous solution.
  • bases examples include hydroxide bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, amine bases such as primary amines, secondary amines, tertiary amines, in particular triethylamine, pyridine and dimethylaminopyridine and mixtures thereof.
  • hydroxide bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide
  • amine bases such as primary amines, secondary amines, tertiary amines, in particular triethylamine, pyridine and dimethylaminopyridine and mixtures thereof.
  • the respective base can also be used as a solution, in particular as an aqueous solution, with the in step b. obtained mixture are brought into contact, for example by adding a solution, or by immersing the mixture in the solution.
  • polar solvents are water and alcohols such as methanol, ethanol, propanol and butanol, primary and secondary amines, carboxylic acids and mixtures thereof.
  • the polar solvent can be water, an alcohol or a mixture thereof. This can be done directly with the in step b. obtained mixture are brought into contact, for example by adding the polar solvent, or by immersing the mixture in the polar solvent.
  • non-polar solvents are hydrocarbons with 5 to 16 carbon atoms, benzene, toluene, pentane, hexane, heptane, cyclohexane, carbon tetrachloride, tetrachloroethene, trichloroethene, carbon disulfide, tetramethylsilane and hexamethyldisiloxane.
  • the non-polar solvent can in particular be hexamethyldisiloxane. This can be done directly with the in step b. obtained mixture are brought into contact, for example by adding the polar solvent, or by dipping the mixture into the non-polar solvent.
  • Solvent mixtures include, in particular, mixtures of the aforementioned polar and non-polar solvents, in particular mixtures of hexamethyldisiloxane with other solvents such as ethanol, methanol, propanol and butanol. This can be done directly with the in step b. obtained mixture are brought into contact, for example by adding the solvent mixture, or by the mixture is immersed in the solvent mixture. In the case of freeze-drying, the mixture from step b. are first quick-frozen and then dried at temperatures equal to or less than 0 ° C by applying a vacuum.
  • the temperature can in particular be lowered to below the temperature at which the polymer is poorly or no longer soluble in the polar aprotic solvent.
  • the temperature decrease can include a decrease to temperatures from -5 ° C to 15 ° C, in particular 0 ° C to 10 ° C.
  • the temperature can be increased so that the polar aprotic solvent evaporates completely and leaves the polymer on the fibers of the material.
  • the evaporation can be carried out at temperatures from 50 ° C to 250 ° C, in particular from 70 ° C to 200 ° C.
  • the temperature can be increased to temperatures from 50 ° C. to 200 ° C., in particular from 70 ° C. to 150 ° C.
  • the temperature increase can take place gradually or suddenly.
  • the pressure reduction can take place at pressures from 0.1 mbar to 900 mbar, in particular from 1 mbar to 800 mbar, 10 mbar to 700 mbar or 50 mbar to 500 mbar.
  • the reduction in pressure can in particular be combined with the increase in temperature and the decrease in temperature.
  • the lowering of the temperature can also, in particular, involve bringing into contact with an ionic compound, bringing into contact with a non-ionic compound, bringing into contact with an acid, bringing into contact with a base, bringing into contact with a polar solvent , bringing into contact with a non-polar solvent and bringing into contact with a solvent mixture.
  • the treatment of the mixture in step c preferably comprises. bringing into contact with a non-polar solvent, in particular immersion in a non-polar solvent, in particular hexamethyldisiloxane, or consists of it.
  • a non-polar solvent in particular immersion in a non-polar solvent, in particular hexamethyldisiloxane, or consists of it.
  • Optimal results have been achieved when the mixture of the fiber-containing material and the mixture containing at least one polymer and a polar aprotic solvent was brought into contact with hexamethyldisiloxane, in particular immersed in hexamethyldisiloxane.
  • the aforementioned treatment options allow the polymer to accumulate on the fibers of the material containing fibers. Better results were achieved if the deposition took place as slowly as possible.
  • This can be achieved in particular by treating the mixture of the fiber-containing material and the mixture containing at least one polymer and a polar aprotic solvent for at least 15 seconds, in particular 30 seconds, 1 minute, 5 minutes, 15 minutes, 30 minutes Minutes, 45 minutes, 1 hour, 5 hours, 10 hours, 15 hours or 24 hours and at most for a period of 150 hours, in particular 144 hours, 120 hours, 100 hours, 96 hours, 90 hours or 85 hours.
  • Optimal results have been obtained when the treatment in step c. takes place over a period of 24 to 85 hours, in particular 50 to 80 hours or 65 to 75 hours or 72 hours. This results in a slow accumulation of the polymer on the fibers of the material containing fibers.
  • the mixture of the fiber-containing material and the mixture containing at least one polymer and a polar aprotic solvent is advantageously treated by bringing it into contact with a non-polar solvent, in particular immersion in a non-polar solvent, in particular hexamethyldisiloxane, over a period of 65 to 75 hours , especially 72 hours.
  • the method according to the invention can preferably also be used after the treatment in step c. the additional step of drying the in step c. obtained fibrous material comprise.
  • the fiber-containing material obtained in the process according to the invention is preferably carried out at 20 ° C to 100 ° C, in particular 30 ° C to 90 ° C, 40 ° C to 80 ° C, or 45 ° C to 65 ° C. This is done in step c.
  • fiber-containing material obtained by the process according to the invention is preferably dried for 1 to 25 hours, in particular for 5 to 20 hours, 8 to 16 hours, 9 to 15 hours, 10 to 14 hours or 11 to 13 hours.
  • the method according to the invention can also be carried out prior to step a. comprise the further step that the material containing fibers, in particular paper, is predried at a temperature of 40 to 80 ° C., in particular 45 to 70 ° C. or 45 to 65 ° C.
  • the predrying can take place for a period of 1 minute to 60 hours, in particular 1 hour to 50 hours or 12 to 48 hours.
  • the mixture containing at least one polymer and a polar aprotic solvent can be produced in different ways.
  • the mixture can be prepared at room temperature or at a lower or higher temperature, for example at 10 ° C to 150 ° C.
  • the mixture can also be prepared in several steps.
  • the polar aprotic solvent contains an ionic liquid or the polar aprotic solvent is a mixture of an ionic liquid and at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropylene urea , Sulfolane, dimethyl carbonate and ethylene carbonate, in particular at least one of dimethylacetamide, dimethyl sulfoxide and acetonitrile
  • the mixture containing at least one polymer and a polar aprotic solvent can be prepared in particular by first dissolving the polymer in the ionic liquid and then dissolving the resulting solution with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gamm
  • the ionic liquid can first be mixed with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate and ethylene carbonate and then mixed with the, especially dimethyl sulfoxide desired amount of the polymer can be added.
  • the mixture containing at least one polymer and a polar aprotic solvent can in particular 1 to 30% by weight, in particular 3 to 30% by weight, 5 to 30% by weight, 10 to 30% by weight, 12 to 25% by weight or 15% by weight Up to 20% by weight or 17 to 19% by weight of ionic liquid, based in each case on the total weight of the mixture. Mixtures with the abovementioned contents of ionic liquids can be easily produced; in particular, solutions can be obtained in this way that allow the fiber-containing material to be processed effectively.
  • the mixing, in particular the swelling, dissolving or dissolving, of the polymer and / or the subsequent dilution can take place at temperatures from 10 ° C. to 150 ° C., in particular from 20 ° C. to 140 ° C., 30 ° C. to 130 ° C., 40 ° C. ° C to 120 ° C, 50 ° C to 110 ° C or 60 ° C to 100 ° C be performed.
  • a mixture in particular a solution, with a concentration of the polymer of 5 to 20% by weight, in particular 7 to 15% by weight, 8 to 13% by weight or 9 to 11% by weight, can be obtained in each case based on the total weight of the polymer and the ionic liquid in which the ionic liquid is produced.
  • This solution can then in particular with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate and ethylene carbonate, in particular at least one of dimetonethylsulfamide, dimetonethyl sulfoxide, and in particular at least one of dimetonethylsulfamide , can be diluted to the desired concentration.
  • the ionic liquid can also be mixed with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate, especially dimethyl carbonate, with a concentration of the ionic liquid of 1 to 30% by weight, in particular 3 to 30% by weight or 5 to 30% by weight or 10 to 30% by weight or 12 to 25% by weight or 15 to 20% by weight or 17 to 19% by weight, based in each case on the total weight of the mixture, in particular the ionic liquid and dimethyl sulfoxide, are mixed.
  • the polymer can then be added to this solution in the desired amount.
  • the mixture containing at least one polymer and a polar aprotic solvent can be produced in a simple manner. Furthermore, the concentration of the polymer in the mixture can be adjusted well in this way.
  • the mixture containing at least one polymer and a polar aprotic solvent advantageously contains 0.1 to 10% by weight, in particular 0.5 to 8% by weight or 1 to 5% by weight, based in each case on the total weight of the mixture, of polymer. Solutions with these concentrations have in particular a suitable viscosity for the method according to the invention.
  • a material containing fibers, in particular paper, can be obtained by the process according to the invention.
  • a system comprising at least two materials containing fibers can be obtained by the method according to the invention, in particular a book.
  • the materials of the system can be the same or different.
  • the materials containing fibers can have been processed simultaneously or at different times by the method according to the invention.
  • the system can furthermore also comprise materials, in particular materials containing fibers, which have not been processed with the method according to the invention.
  • the system can in particular be a book, a booklet, a magazine or a newspaper.
  • the material containing fibers can in particular be paper.
  • a book in particular can contain further material containing fibers, in particular cardboard, cardboard, textiles or wood.
  • the system contains materials containing different fibers, these can be processed separately or together using the method according to the invention.
  • the paper can be processed separately from the rest of the book, in particular separately from the cover.
  • the book can, however, also be edited without first separating any components, especially with its cover. Whether the components are processed separately can be decided in particular on the basis of the way in which the materials containing fibers are held together in the system, in particular in the book. Examples of ways in which the fiber-containing materials in the system can be held together include thread stitching and adhesive binding.
  • the invention also relates to the use of a mixture containing at least one polymer and a polar aprotic solvent for processing material containing fibers, in particular paper, in the process according to the invention.
  • the invention also relates to the use of dimethyl sulfoxide as an antioxidant for processing paper in the process according to the invention.
  • the invention also relates to the use of an ionic liquid containing a quaternary ammonium cation, in particular an ionic liquid containing a dialkylimidazolium cation, in particular 1-butyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium acetate, as an antimicrobial agent for processing paper, in the process according to the invention.
  • an ionic liquid containing a quaternary ammonium cation in particular an ionic liquid containing a dialkylimidazolium cation, in particular 1-butyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium acetate, as an antimicrobial agent for processing paper, in the process according to the invention.
  • BMIM-Cl 1-butyl-3-methylimidazolium chloride
  • BMIM-OAc 1-butyl-3-methylimidazolium acetate
  • Viscose danufil, 3.3 dtex / 0.3 mm, hereinafter: "Danufil”
  • DMAc Dimethylacetamide
  • DMSO Dimethyl sulfoxide
  • HMDO Hexamethyldisiloxane
  • MCC microcrystalline cellulose
  • ENO PINE ECF Pulp
  • Stora Enso Oyj alpha-cellulose, Sigma-Aldrich.
  • Example 1 processing of paper with viscose in a mixture of DMAc and BMIM-OAc
  • a solution containing 10% by weight of Danufil in BMIM-OAc was produced, which was then diluted to a viscose content of 2% by weight, based on the total weight of the solution, by adding DMAc, the solution of BMIM-OAc and DMAc 18% by weight BMIM-OAc and 82% by weight DMAc, each based on the weight of BMIM-OAc and DMAc.
  • the viscosity of the solution was 10 mPa ⁇ s.
  • the paper to be processed was soaked in the prepared solution for one minute and then rinsed with DMAc for 30 seconds.
  • Table 2 shows that the breaking force, the elongation at break and the pH value when using mixtures containing viscose and mixtures of BMIM-OAc and DMAc can be significantly increased by the processing according to the invention compared to unprocessed paper.
  • the processed paper was visually and haptically equivalent to unprocessed paper. In particular, no bleeding of the ink or the printing inks was observed.
  • Example 2 processing of paper with viscose in a mixture of DMAc and BMIM-Cl
  • a solution containing 10% by weight of Danufil in BMIM-CI was prepared, which was then diluted by adding DMAc to a viscose content of 2% by weight, based on the total weight of the solution, the solution being made up of BMIM-CI and DMAc 18% by weight BMIM-CI and 82% by weight DMAc, each based on the weight of BMIM-CI and DMAc.
  • the viscosity of the solution was 10 mPa ⁇ s.
  • the paper to be processed was then soaked in the prepared solution for one minute and then rinsed with DMAc for 30 seconds.
  • Table 3 shows that the breaking force and elongation at break when using mixtures containing viscose and mixtures of BMIM-CI and DMAc can be significantly increased by the processing according to the invention compared to unprocessed paper.
  • the processed paper was visually and haptically equivalent to unprocessed paper. In particular, no bleeding of the ink or the printing inks was observed. Furthermore, the pH of the processed paper increased.
  • a solution containing 2% by weight of microcrystalline cellulose in DMAc (containing 5% by weight of LiCl, based on the total weight of LiCl and DMAc), based on the total weight of the solution, was prepared.
  • the viscosity of the solution was 13 mPa ⁇ s.
  • the paper to be processed was then soaked in the prepared solution for five minutes.
  • the paper obtained in this way was then immersed in HMDO (500 g) for 72 hours, as a result of which the viscose attached to the paper fibers. After treatment in HMDO, the paper was heated at 55 ° C for 12 hours.
  • Table 4 shows that the breaking force and elongation at break when using mixtures containing MCC and DMAc (containing 5% by weight LiCl) are significantly higher due to the processing according to the invention compared to paper that has not come into contact with a polymer such as MCC .
  • the processed paper was visually and haptically equivalent to unprocessed paper. In particular, no bleeding of the ink or the printing inks was observed.
  • Test papers were soaked with a solution according to Example 1, MCC being used instead of viscose. After soaking in the solution, the papers were rinsed with DMAc as in Example 1 and immersed in the solvents listed in Table 5 for the specified duration.
  • Table 5 Treatments sample Solvent (duration of impregnation) Test paper 4 HMDO (72 h) Test paper 5 5 wt.% EtOH / 95 wt.% HMDO (24 h) Test paper 6 EtOH ( ⁇ 1 min)
  • test papers 4 to 6 After being immersed in the solvents listed in Table 5, the test papers 4 to 6 were heated at 55 ° C. for 12 hours. While test paper 4 had a matt appearance, was flexible and was still stable even after being folded several times, test papers 5 and 6 partly showed a gloss. This suggests that in test paper 4 the MCC accumulated on the paper fibers as above, while in test papers 5 and 6 an inhomogeneous, rather superficial accumulation of the MCC took place.
  • the duration of the treatment and the accumulation of the polymer can thus be influenced by the choice of treatment, in particular by the choice of the solvent in which the dipping is carried out.
  • Test papers were first soaked in the solution for five minutes. The test papers obtained in each case were then immersed in HMDO (500 g) for 72 hours, as a result of which the polymers indicated in Table 6 were attached to the paper fibers. After the treatment in HMDO, the test papers were heated at 55 ° C. for 12 hours. The breaking force and elongation at break of the processed papers were then determined.
  • the reference sample in Table 6 was soaked in a mixture of BMIM-CI and DMAc without the polymer for five minutes and then immersed in HMDO for 72 hours and then heated at 55 ° C. for 12 hours. It is noticeable from Table 6 that the breaking force as a result of the processing according to the invention has increased significantly compared to the reference paper, while the elongation at break has decreased somewhat.
  • the abovementioned polymers are therefore suitable for strengthening paper in the process according to the invention.
  • Example 6 (can be combined with deacidification process)
  • Example 7 application of different polymers to deacidified and non-deacidified substrate
  • Tables 8 and 9 show that processing according to the method according to the invention enables, in particular, a higher breaking force to be achieved for deacidified and non-deacidified papers.
  • a higher breaking force for starch, in the case of paper that has not been deacidified, an increase in elongation at break can also be observed (see Table 8).
  • chitin in the case of deacidified paper (see Table 9).
  • Tables 8 and 9 thus show that the mechanical properties of the papers can be improved by the process according to the invention.
  • a solution was prepared according to Example 2. This solution was applied to one side of a wooden board with a brush, rinsed with water and dried for 16 hours at 25 ° C. The surface of the wood shows a clear smoothing of the surface in the processed areas. Varnishes can also be easily applied to the processed areas.
  • Fluorescence-marked cellulose is made of, for example W. Helbert et al. Biomacromolecules 2003, 4, 481-471 , known.
  • the fluorescent marker used was a DTAF marker which is excited at 488 nm, the emission being measured at 515 nm.
  • Two test papers were soaked in this solution for one minute and then rinsed off with DMSO for 30 seconds. The first of these papers (test paper 7) was then immersed for 72 hours in HMDO containing 1% by volume of ethanol (500 g in total).
  • test paper 8 The second of these papers (test paper 8) was immersed in HMDO (500 g) for 72 hours. After the treatment in HDMO or in HMDO / ethanol, the papers were heated at 55 ° C. for 12 hours. A blank sample was also created by first soaking a third test paper (test paper 9) in a mixture of DMSO containing 13% by weight BMIM-OAc but without polymer, then immersing it in HMDO (500 g) for 72 hours and then at 55 ° C was heated for 12 hours. A fourth test paper (test paper 10) that was not processed was used as a reference.
  • Fig. 1 shows a picture of layer 3 of test paper 7. It can be clearly seen that the fibers of the paper stand out against the background with a very high contrast.
  • Fig. 2 shows a photograph of layer 3 of test paper 8. It can be clearly seen that the fibers of the paper stand out against the background with a very high contrast.
  • Fig. 3 shows a photograph of layer 3 of the reference. The cellulose fibers can be distinguished from the background, but do not stand out from the background as well as in Fig. 1 and Fig. 2 .
  • Fig. 4 shows a photograph of layer 3 of the blank sample. Here, too, the cellulose fibers can be distinguished from the background, but do not stand out from the background in such a high contrast as in Fig. 1 and Fig. 2 .
  • the figures are consistent with an accumulation of the fluorescence-labeled cellulose from the mixture on the fibers of the paper.
  • the paper fibers were thus coated with fluorescence-marked cellulose, which strengthened the paper fibers and thus the paper.
  • a solution containing 1% by weight of alpha-cellulose in a mixture of DMSO and BMIM-OAc, the DMSO containing 6.5% by weight of BMIM-OAc, and a solution containing 2% by weight of alpha-cellulose in a mixture were produced from DMSO and BMIM-OAc, the DMSO containing 11.3% by weight of BMIM-OAc.
  • the middle part of the book was then placed in a vessel, fanned out, after which the vessel was filled with the above-described solution containing 1% by weight of alpha-cellulose and closed.
  • the middle part of the book would be soaked in the solution for 1 minute.
  • the middle part of the book was fanned out in a second vessel and rinsed with DMSO for 30 seconds.
  • the middle part of the book was fanned out and placed in a third vessel, after which the vessel was filled with HMDO and sealed.
  • the middle part of the book was removed, 6 hours at 55 ° C and dried over orange gel in a desiccator for a week.
  • the upper part of the book was processed like the middle part of the book with the difference that instead of the solution containing 1% by weight of alpha-cellulose, the solution containing 2% by weight of alpha-cellulose was used.
  • the lower part of the book was not edited and served as a reference.
  • the cover sheet which is the sheet that forms the first and last pages
  • a center sheet which in this case is the sheet that forms the 4th page from the front and the 4th page from the back
  • the inner leaf which is the arch that forms the two innermost pages. None of the constituent parts of the parts of the edited book were impaired by the editing according to the invention. The color impression was almost unchanged.
  • the mechanical properties of the various components of the edited book as well as the reference are listed in Tables 10 (1% by weight alpha-cellulose) and 11 (2% by weight alpha-cellulose).
  • Tables 10 and 11 show for all components of the processed parts of the book more than a doubling of both the breaking force and the breaking elongation compared to the non-processed reference. Books can thus be processed as a whole using the method according to the invention.
  • a solution containing 1% by weight of Danufil in a mixture of DMSO and BMIM-Cl, the DMSO containing 9.9% by weight of BMIM-CI (hereinafter: “DMSO solution”), and a solution containing 1% by weight were obtained.
  • DMSO solution a solution containing 1% by weight of Danufil in a mixture of DMAc and BMIM-Cl, the DMAc containing 9.9% by weight of BMIM-CI
  • Test paper 11 was soaked in the DMSO solution for one minute, then rinsed with DMSO for 30 seconds, immersed in HMDO (500 g) for 72 hours and then heated at 55 ° C. for 12 hours.
  • Test paper 12 (blind test without Danufil) was soaked for one minute in DMSO containing 9.9% by weight BMIM-CI, then rinsed with DMSO for 30 seconds, immersed in HMDO (500 g) for 72 hours and then at 55 ° C for Heated for 12 hours.
  • Test paper 13 was soaked in DMSO for 1.5 minutes, then immersed in HMDO (500 g) for 72 hours and then heated at 55 ° C. for 12 hours.
  • Test paper 14 was soaked in the DMAc solution for one minute, then rinsed with DMAc for 30 seconds, immersed in HMDO (500 g) for 72 hours and then heated at 55 ° C. for 12 hours.
  • Test paper 15 (blank test without Danufil) was soaked for one minute in DMAc containing 9.9% by weight of BMIM-CI, then rinsed with DMAc for 30 seconds, immersed in HMDO (500 g) for 72 hours and then at 55 ° C. for Heated for 12 hours.
  • Test paper 16 was soaked in DMAc for 1.5 minutes, then immersed in HMDO (500 g) for 72 hours and then heated at 55 ° C. for 12 hours.
  • test papers 11 to 16 and of the reference were determined and are listed in Table 12 below.
  • Table 12 Mechanical properties of test papers 11 to 13 and the reference Substrate Breaking force [N] Elongation at break [%] Test paper 11 8.1 ⁇ 0.9 0.55 ⁇ 0.10 Test paper 12 5.0 ⁇ 1.6 0.65 ⁇ 0.36 Test paper 13 5.9 ⁇ 1.1 0.55 ⁇ 0.19 Test paper 14 7.1 ⁇ 1.2 0.52 ⁇ 0.11 Test paper 15 5.8 ⁇ 1.0 0.60 ⁇ 0.12 Test paper 16 6.1 ⁇ 1.5 0.59 ⁇ 0.20 reference 3.5 ⁇ 0.64 0.16 ⁇ 0.03
  • Table 12 shows that the test papers 11 and 14 that were brought into contact with a solution containing Danufil had a higher breaking strength than the test papers 12, 13, 15 and 16 and the reference that was not with a solution containing Danufil in Were brought into contact.
  • the elongation at break values of the test papers 11 to 16 differed only slightly.
  • the test papers 11 to 16 had both a significantly increased breaking force and a significantly increased elongation at break, the increase in breaking force in the test papers 11 and 14, in which the test paper was each brought into contact with a solution containing Danufil, turned out to be the highest.
  • This example also shows that the mechanical properties can be improved by machining with the method according to the invention.
  • BMIM-Cl and Danufil to be somewhat more suitable than DMAc in the method according to the invention, especially in combination with BMIM-Cl and Danufil. In terms of elongation at break, no clear difference could be seen between test papers 11 and 14.
  • the above exemplary embodiments show that the mechanical properties of substrates such as paper can be improved by the method according to the invention. Furthermore, the pH of paper can be increased.
  • the method according to the invention is therefore suitable, for example, for the preservation of books.
  • other substrates such as wood can also be subjected to the method according to the invention. In this way, among other things, smoothing of surface unevenness can be achieved, especially with massive material application.
  • various polymers can be used in the process according to the invention.
  • the process according to the invention can be combined with paper deacidification processes such as the papersave process.
  • the method is also suitable for processing books as a whole.

Description

Die Erfindung betrifft ein Verfahren zur Bearbeitung von Materialien enthaltend Fasern sowie mit diesem Verfahren erhältliche Materialien und Systeme. Die Erfindung betrifft ferner die Verwendung eines Gemischs enthaltend ein Polymer zur Bearbeitung von einem Material enthaltend Fasern, die Verwendung von Dimethylsulfoxid als Antioxidationsmittel in der Bearbeitung von Papier und die Verwendung von ionischen Flüssigkeiten als antimikrobielles Mittel zur Bearbeitung von Papier.The invention relates to a method for processing materials containing fibers and to materials and systems obtainable with this method. The invention also relates to the use of a mixture containing a polymer for processing a material containing fibers, the use of dimethyl sulfoxide as an antioxidant in the processing of paper and the use of ionic liquids as an antimicrobial agent for the processing of paper.

Organische Materialien enthaltend Fasern, insbesondere Papier, erfahren eine mechanische Destabilisierung, indem die die Faser bildenden Makromoleküle wie zum Beispiel Cellulosemakromoleküle im Laufe der Zeit abgebaut werden. Speziell im Falle von Papier kann das dazu führen, dass das Papier so stark destabilisiert wird, dass die Bücher aus diesem Papier nicht mehr verwendet werden können. Die Probleme der Destabilisierung, insbesondere durch Alterung, bestehen jedoch nicht nur bei Papier und cellulosehaltigen Materialien allgemein wie zum Beispiel Holz, sondern stellen generell für Materialien enthaltend Fasern ein Problem dar. Um diesem Problem entgegen zu wirken, werden entsprechende Bearbeitungsverfahren für das Material enthaltend Fasern benötigt. Papier, insbesondere bedrucktes Papier in Büchern, als Material enthaltend Fasern stellt hierbei mit die höchsten Anforderungen an das Bearbeitungsverfahren, weshalb die weitere Diskussion am Beispiel von Papier, insbesondere von bedrucktem Papier erfolgen soll.Organic materials containing fibers, in particular paper, experience mechanical destabilization in that the macromolecules forming the fiber, such as cellulose macromolecules, are broken down over time. Especially in the case of paper, this can lead to the paper being so destabilized that the books made from this paper can no longer be used. The problems of destabilization, especially due to aging, do not only exist with paper and cellulose-containing materials in general, such as wood, but also generally represent a problem for materials containing fibers. To counteract this problem, appropriate processing methods are used for the material containing fibers needed. Paper, in particular printed paper in books, as a material containing fibers, places the highest demands on the processing method, which is why the further discussion should take place using the example of paper, in particular printed paper.

Bei Dokumenten aus Papier, zum Beispiel alten Handschriften oder alten Büchern, kann die Destabilisierung dazu führen, dass das Papier brüchig wird. Dieses Papier muss gefestigt werden, um seine Brüchigkeit zu reduzieren.In the case of documents made of paper, for example old manuscripts or old books, the destabilization can lead to the paper becoming brittle. This paper must be strengthened to reduce its brittleness.

Bei der Bearbeitung von Papier, speziell von bedrucktem Papier in Büchern, ist es wünschenswert, dass das Bearbeitungsverfahren mehrere Anforderungen erfüllt. Zum einen sollte das Bearbeitungsverfahren nicht nur eine Einzelblattbearbeitung erlauben. Mit dem Verfahren sollten vielmehr mehrere Blätter auf einmal bearbeitet werden können. Dabei sollte ein Verkleben der Seiten miteinander vermieden werden. Zudem sollte das Verfahren nach Möglichkeit auch den Einband eines Buchs und/oder die Bindung oder Rückenleimung der Blätter nicht beschädigen. Auf diese Weise kann das Verfahren wirtschaftlicher durchgeführt werden, da mehrere Blätter gleichzeitig bzw. ganze Bücher auf einmal bearbeitet werden können und das Heraustrennen der Blätter aus Büchern entfällt. Ferner sollte das Verfahren das Papier nicht auf andere Weise angreifen, insbesondere sollte das Papier nicht irreversibel aufquellen. Ebenfalls sollten die Tinte und/oder Druckfarben auf dem zu bearbeitenden Papier durch das Verfahren nicht ausgewaschen werden. Gleichzeitig ist es aber wünschenswert, dass die Bearbeitung des Papiers nicht nur oberflächlich erfolgt, sondern idealerweise im gesamten Papier ansetzt.When processing paper, especially printed paper in books, it is desirable that the processing method meet several requirements. On the one hand, the processing method should not only allow single sheet processing. Rather, the process should be able to process multiple sheets at once. The pages should not stick together. In addition, if possible, the method should not damage the cover of a book and / or the binding or spine gluing of the sheets. In this way, the method can be carried out more economically, since several sheets can be processed at the same time or entire books can be processed at once and there is no need to separate the sheets from books. Furthermore, the process should not attack the paper in any other way, in particular the paper should not swell irreversibly. The process should also not wash out the ink and / or printing inks on the paper to be processed. At the same time, however, it is desirable that the processing of the paper does not only take place superficially, but ideally begins throughout the paper.

Für die Bearbeitung von Papier sind verschiedene Verfahren entwickelt worden. Eine gute Festigung von Papier kann beispielsweise dadurch erreicht werden, dass das geschädigte Papier gespalten wird und zusammen mit einer dünnen Zwischenlage und einem speziellen Klebstoff, der Celluloseether und Entsäuerungsmittel enthält, wieder verklebt wird. Diese Bearbeitung ist jedoch mit einem hohen handwerklichen Aufwand verbunden und somit kostenintensiv.Various methods have been developed for processing paper. A good strengthening of paper can be achieved, for example, by splitting the damaged paper and gluing it back together with a thin intermediate layer and a special adhesive that contains cellulose ether and deacidifying agent. However, this processing is associated with a high level of manual effort and is therefore cost-intensive.

Ebenfalls ist ein Verfahren zur Verfestigung von Papier bekannt, bei dem man das Papier mit Acrylsäurederivaten tränkt, die durch Bestrahlung mit Gammastrahlen zur Polymerisation gebracht werden. Die Bestrahlung mit Gammastrahlen führt allerdings zu einer weiteren Schädigung des Papiers, durch die Tränkung mit Acrylsäure bluten Farben und Tinten auf dem Papier zumindest teilweise aus, und im Papier verbleibende Rückstandsmonomere führen zur einer Geruchsbelästigung. Außerdem ist dieses Verfahren nur schwer mit weiteren üblichen Mitteln der Papierrestaurierung kombinierbar.A process for strengthening paper is also known in which the paper is impregnated with acrylic acid derivatives which are polymerized by exposure to gamma rays. Irradiation with gamma rays, however, leads to further damage to the paper, as a result of the impregnation with acrylic acid, paints and inks on the paper at least partially bleed, and residual monomers remaining in the paper lead to an odor nuisance. In addition, this process can only be combined with other conventional means of paper restoration with difficulty.

Ebenso ist die Bearbeitung von Papier durch Laminieren bekannt, wobei eine dünne Polymerfolie oder ein dünnes Stabilisierungspapier einseitig oder beidseitig auf das Papier aufgebracht wird. Bei diesem mit einzelnen Blättern durchgeführten Verfahren passt der bearbeitete Papierstapel nach der Bearbeitung aufgrund der zunehmenden Papierdicke oft nicht mehr in den Bucheinband. Außerdem werden der Griff und das Aussehen des Papiers geändert. Weiterhin nimmt der Kontrast durch die aufgebrachten Schichten ab. Ferner ist dieses Verfahren nur schwer mit weiteren üblichen Mitteln der Papierrestaurierung kombinierbar.The processing of paper by lamination is also known, a thin polymer film or a thin stabilizing paper being applied to one or both sides of the paper. With this method, which is carried out with individual sheets, the processed paper stack often no longer fits into the book cover after processing due to the increasing paper thickness. It also changes the feel and appearance of the paper. Furthermore, the contrast decreases due to the layers applied. Furthermore is this process can only be combined with other conventional means of paper restoration with difficulty.

Ein bekanntes Verfahren zur Bearbeitung von Papier ist das sogenannte Wiener Verfahren, das in der EP 0 273 9602 A2 beschrieben ist. In diesem Verfahren wird das Bearbeitungsgut in einer wässrigen Lösung, die zur Festigung des Papiers Methylcellulose enthält, getränkt. Anschließend wird die Bearbeitungslösung abgepumpt, Reste der Bearbeitungslösung lässt man vom bearbeiteten Papier abtropfen, und das Papier wird danach schockgefroren und gefriergetrocknet. Nachteilig an diesem Verfahren ist vor allem, dass Bucheinbände geschädigt werden, weshalb die Blätter des Buches vor der Bearbeitung herausgenommen werden müssen. Außerdem muss mit Methylcellulose ein derivatisiertes Polymer verwendet werden.A well-known method for processing paper is the so-called Wiener method, which is in the EP 0 273 9602 A2 is described. In this process, the material to be processed is soaked in an aqueous solution that contains methyl cellulose to strengthen the paper. The processing solution is then pumped out, residues of the processing solution are allowed to drip off the processed paper, and the paper is then shock-frozen and freeze-dried. The main disadvantage of this method is that book covers are damaged, which is why the pages of the book have to be removed before processing. In addition, a derivatized polymer must be used with methyl cellulose.

Die DE 100 57 554 A1 beschreibt ein Verfahren, in dem das zu bearbeitende Papier mit einem silylierten Polymerderivat wie z.B. siliylierter Cellulose, das in einem unpolaren Lösungsmittel gelöst ist, bearbeitet wird. Die Silylgruppen werden anschließend durch Einwirkung von Feuchtigkeit oder Wasser abgespalten. Nachteilig an diesem Verfahren ist der zwingende Einsatz von derivatisierten Polymeren.The DE 100 57 554 A1 describes a process in which the paper to be processed is processed with a silylated polymer derivative such as silylated cellulose, which is dissolved in a non-polar solvent. The silyl groups are then split off by the action of moisture or water. The disadvantage of this process is the compulsory use of derivatized polymers.

Die EP 3 072 933 A1 beschreibt alkalische Nanopartikel enthaltend mindestens ein Hydroxid oder Carbonat oder eine organische Verbindung eines Erdalkalimetalls und wahlweise ein hydrophiles Cellulosederivat sowie eine stabilisierende Außenschicht aus hydrophoben Polymeren zur Entsäuerung und Festigung von cellulosebasierten Artefakten. Die Nanopartikel müssen jedoch zunächst synthetisiert werden.The EP 3 072 933 A1 describes alkaline nanoparticles containing at least one hydroxide or carbonate or an organic compound of an alkaline earth metal and optionally a hydrophilic cellulose derivative and a stabilizing outer layer made of hydrophobic polymers for deacidifying and strengthening cellulose-based artifacts. However, the nanoparticles must first be synthesized.

Die EP 0 285 227 A1 beschreibt ein Verfahren zur Konservierung von Papierblättern oder Papierbahnen, bei dem man auf eine Oberfläche des Papiers die Lösung eines Entsäuerungsmittels und eines polymeren Verstärkungsmittels für das Papier in einem organischen Lösungsmittel oder in einem Gemisch organischer Lösungsmittel aufsprüht, und man auf der anderen Oberfläche des Papiers eine starke Saugwirkung ausübt, um die Lösung durch das Papier zu ziehen und auch das behandelte Papier zumindest teilweise zu trocknen.The EP 0 285 227 A1 describes a process for the preservation of paper sheets or paper webs, in which the solution of a deacidifying agent and a polymeric reinforcing agent for the paper in an organic solvent or in a mixture of organic solvents is sprayed onto one surface of the paper, and one is sprayed onto the other surface of the paper exerts strong suction to pull the solution through the paper and also to at least partially dry the treated paper.

In der US 3 529 925 A ist ein Verfahren beschrieben zur Zwischenfaserbindung von Cellulosefaserbahnen, umfassend das Inkontaktbringen der Cellulosefaserbahn mit einer Lösung von Dimethylsulfoxid, die etwa 3 bis 30 Gew.-% Stickstoffdioxid enthält, für eine Zeitdauer von etwa 10 bis 300 Sekunden, Waschen der Bahn, um die Lösung zu entfernen, und Trocknen der Cellulosefaserbahn.In the U.S. 3,529,925 A describes a process for inter-fiber bonding of cellulose fiber webs, comprising contacting the cellulose fiber web with a solution of dimethyl sulfoxide which contains about 3 to 30% by weight of nitrogen dioxide for a Duration of about 10 to 300 seconds, washing the web to remove the solution, and drying the cellulosic fiber web.

Die WO 2014/201544 A1 beschreibt antimikrobielle Polymere, die einer Oberfläche oder in einer Lösung eine verlängerte antimikrobielle Aktivität verleihen, wobei die Polymere als Wiederholungsmonomere eine polymerisierbare cyclische Einheit umfassen, die einen Teil des Polymerrückgrats bildet, und eine antimikrobielle Einheit wie eine quaternäre Ammoniumeinheit in der Seitenkette.The WO 2014/201544 A1 describes antimicrobial polymers which impart prolonged antimicrobial activity to a surface or in a solution, the polymers comprising as repeating monomers a polymerizable cyclic unit which forms part of the polymer backbone and an antimicrobial unit such as a quaternary ammonium unit in the side chain.

Die im Stand der Technik bekannten Verfahren weisen verschiedene Nachteile wie zum Beispiel die notwendige Einzelblattbearbeitung, Verkleben von Seiten, Ausbluten von Farben und/oder Tinten, Geruchsbelästigung, starke Zunahme der Papierdicke, Verwendung von derivatisierten Polymeren, mangelnde Kompatibilität mit anderen üblichen Mitteln der Papierrestaurierung sowie Schädigung von Bucheinbänden und/oder Rückenleimungen auf.The methods known in the prior art have various disadvantages such as the necessary single sheet processing, sticking of pages, bleeding of paints and / or inks, odor nuisance, strong increase in paper thickness, use of derivatized polymers, lack of compatibility with other conventional means of paper restoration and Damage to book covers and / or spine gluing.

Aufgabe der Erfindung ist es daher, ein Verfahren zur Bearbeitung, insbesondere zur Festigung, von Material enthaltend Fasern, insbesondere Papier, bereit zu stellen, das einen oder mehrere Nachteile der aus dem Stand der Technik bekannten Verfahren zumindest teilweise überwindet. Insbesondere ist ein Verfahren wünschenswert, mit dem eine Massenbearbeitung von geschädigtem Papier erfolgen kann. Das zu bearbeitende Papier sollte dabei nicht weiter geschädigt werden. Insbesondere sollte das zu bearbeitende Papier gefestigt werden. Auf dem zu bearbeitenden Papier etwaige vorhandene Tinten und Druckerfarben sollten nicht ausbluten. Ferner sollten die Einbände und/oder die Papierrückenleimungen durch das Verfahren nicht geschädigt werden. Außerdem ist es wünschenswert, wenn einfach zu erhaltende Substanzen wie Polymere, die insbesondere nicht derivatisiert sind, im Verfahren eingesetzt werden können.The object of the invention is therefore to provide a method for processing, in particular for strengthening, material containing fibers, in particular paper, which at least partially overcomes one or more disadvantages of the methods known from the prior art. In particular, it is desirable to have a method by which damaged paper can be mass processed. The paper to be processed should not be damaged any further. In particular, the paper to be processed should be strengthened. Any inks and printing inks on the paper to be processed should not bleed. Furthermore, the bindings and / or the paper backing should not be damaged by the process. In addition, it is desirable if substances that are easy to obtain, such as polymers, which in particular are not derivatized, can be used in the process.

Diese Aufgabe wird erfindungsgemäß durch das Verfahren nach Anspruch 1, das Material enthaltend Fasern nach Anspruch 19, das System nach Anspruch 20, die Verwendung nach Anspruch 21, die Verwendung nach Anspruch 23 sowie die Verwendung nach Anspruch 24 gelöst.This object is achieved according to the invention by the method according to claim 1, the material containing fibers according to claim 19, the system according to claim 20, the use according to claim 21, the use according to claim 23 and the use according to claim 24.

Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben und werden nachfolgend im Einzelnen erläutert.Advantageous refinements are specified in the subclaims and are explained in detail below.

Das erfindungsgemäße Verfahren zur Bearbeitung eines Materials enthaltend Fasern, wobei das Material Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Chitosan, Alginat, Stärke, Lignin, Polyvinylalkohol, Proteine oder Mischungen davon enthält, umfasst die folgenden Schritte:

  1. a. Bereitstellen eines Gemischs enthaltend (i) mindestens ein Polymer ausgewählt aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Lignin, Chitosan, Alginat, Stärke, Seide, natürliche Seide, Seidenbiopolymere, Polyvinylalkohol, Polyvinylacetat, Polyurethane, Polyamide, Proteine, Polymere oder Copolymere auf Basis von Acrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Methacrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Vinylacetat, Itaconsäure, Maleinsäure, Fumarsäure, Acryloxypropionsäure, Methacryloxypropionsäure, Styrolsulfonsäure, Ethylmethacrylat-2-sulfonsäure, 2-Acrylamido-2-methylpropansulfonsäure, Phosphoethylmethacrylat, Celluloseether und Mischungen davon, und (ii) ein polar aprotisches Lösemittel,
  2. b. in Kontakt bringen des zu bearbeitenden Materials mit dem in Schritt a. bereitgestellten Gemisch, um eine Mischung aus dem Material und dem in Schritt a. bereitgestellten Gemisch zu erhalten,
  3. c. Behandeln der in Schritt b. erhaltenen Mischung, so dass sich mindestens ein Teil des Polymers an den Fasern des Materials anlagert, dadurch gekennzeichnet, dass die Behandlung der Mischung in Schritt c. das in Kontakt Bringen der Mischung mit einem unpolaren Lösemittel umfasst oder daraus besteht.
The method according to the invention for processing a material containing fibers, the material containing cellulose, microcrystalline cellulose, cellulose, hemicellulose, viscose, chitin, chitosan, alginate, starch, lignin, polyvinyl alcohol, proteins or mixtures thereof comprises the following steps:
  1. a. Providing a mixture containing (i) at least one polymer selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, cellulose, hemicellulose, viscose, chitin, lignin, chitosan, alginate, starch, silk, natural silk, silk biopolymers, polyvinyl alcohol, Polyvinyl acetate, polyurethanes, polyamides, proteins, polymers or copolymers based on acrylic acid and / or its ester and / or amide derivatives, methacrylic acid and / or its ester and / or amide derivatives, vinyl acetate, itaconic acid, maleic acid, fumaric acid, Acryloxypropionic acid, methacryloxypropionic acid, styrene sulfonic acid, ethyl methacrylate-2-sulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, phosphoethyl methacrylate, cellulose ether and mixtures thereof, and (ii) a polar aprotic solvent,
  2. b. bringing the material to be processed into contact with that in step a. provided mixture in order to produce a mixture of the material and the in step a. to obtain the mixture provided,
  3. c. Treating the in step b. obtained mixture, so that at least a part of the polymer is deposited on the fibers of the material, characterized in that the treatment of the mixture in step c. comprises or consists of bringing the mixture into contact with a non-polar solvent.

Überraschend wurde gefunden, dass Materialien enthaltend Fasern mit dem erfindungsgemäßen Verfahren sehr effizient, effektiv und sicher zur Materialfestigung und/oder Oberflächenglättung, insbesondere bei massivem Materialauftrag, bearbeitet werden können.Surprisingly, it has been found that materials containing fibers can be processed very efficiently, effectively and safely for material strengthening and / or surface smoothing, in particular with massive material application, using the method according to the invention.

Dabei liegt ein besonderer Vorteil des erfindungsgemäßen Verfahrens darin, dass durch den Einsatz eines polar aprotischen Lösemittels auch nicht derivatisierte Polymere wie z.B. Cellulose als das mindestens eine Polymer im erfindungsgemäßen Verfahren eingesetzt werden können. Ferner können durch den Einsatz eines polar aprotischen Lösemittels Gemische, insbesondere Lösungen, mit einer geringen Viskosität hergestellt werden, welche sich insbesondere zur Bearbeitung von Büchern oder ähnlichen Substraten eignen.A particular advantage of the method according to the invention is that, by using a polar aprotic solvent, non-derivatized polymers such as cellulose can also be used as the at least one polymer in the method according to the invention. Furthermore, by using a polar aprotic solvent, mixtures, in particular solutions, with a low viscosity can be produced which are particularly suitable for processing books or similar substrates.

Überraschenderweise kann mit dem erfindungsgemäßen Verfahren trotz des Einsatzes von Polymeren ein Verkleben der Seiten vermieden werden. Der Einsatz des polar aprotischen Lösemittels erlaubt weiterhin ein großes Spektrum an Möglichkeiten, um die Mischung aus dem zu bearbeitenden Material enthaltend Fasern und dem Gemisch zu behandeln, so dass sich zumindest ein Teil des Polymers an den Fasern des Materials enthaltend Fasern anlagert. Ferner kann das erfindungsgemäße Verfahren mit anderen Verfahren, insbesondere Entsäuerungsverfahren, kombiniert werden.Surprisingly, with the method according to the invention, sticking of the pages can be avoided despite the use of polymers. The use of the polar aprotic solvent also allows a wide range of options for treating the mixture of the material to be processed containing fibers and the mixture, so that at least part of the polymer is deposited on the fibers of the material containing fibers. Furthermore, the method according to the invention can be combined with other methods, in particular deacidification methods.

Wenn hier oder an anderer Stelle von "Lösen" die Rede ist, insbesondere davon, dass sich ein Stoff in einem Lösemittel löst, so kann damit insbesondere gemeint sein, dass eine Lösung des Stoffs in dem Lösemittel hergestellt werden kann, die mindestens 0,5 Gew.%, insbesondere mindestens 1 Gew.%, 2 Gew.%, 3 Gew.%, 4 Gew.%, 5 Gew.%, 6 Gew.%, 7 Gew.%, 8 Gew.%, 9 Gew.% oder mindestens 10 Gew.%, und höchstens 25 Gew.%, insbesondere höchstens 20 Gew.%, 15 Gew.%, 14 Gew.%, 13 Gew.% oder höchstens 12 Gew.%, jeweils bezogen auf das Gesamtgewicht der Lösung, des Stoffs enthält.When "dissolving" is mentioned here or elsewhere, in particular that a substance dissolves in a solvent, this can in particular mean that a solution of the substance in the solvent can be produced which is at least 0.5 Weight%, in particular at least 1 weight%, 2 weight%, 3 weight%, 4 weight%, 5 weight%, 6 weight%, 7 weight%, 8 weight%, 9 weight% or at least 10% by weight, and at most 25% by weight, in particular at most 20% by weight, 15% by weight, 14% by weight, 13% by weight or at most 12% by weight, each based on the total weight of the solution, of the substance.

Wenn hier oder an anderer Stelle von "Anlagern", insbesondere von Anlagern eines Stoffs an einem anderen Substrat, die Rede ist, so kann damit insbesondere das Ausfallen, Auskristallisieren, Abscheiden, Aufwachsen und/oder Absetzen, insbesondere an dem anderen Substrat, gemeint sein. Das Polymer kann sich vollständig oder zum Teil an das Material enthaltend Fasern, insbesondere an die Fasern des Materials enthaltend Fasern, anlagern. Wenn sich das Polymer nur zum Teil an die Fasern des Materials enthaltend Fasern anlagert, verbleibt eine Restmenge an Polymer in dem Gemisch. Durch Anlagerung werden die Fasern des Materials enthaltend Fasern vorzugsweise ganz oder teilweise ummantelt. Dadurch kann eine Festigung der Faser erreicht werden.If here or elsewhere the term "accumulation", in particular the accumulation of a substance on another substrate, can mean in particular the precipitation, crystallization, deposition, growth and / or settling, in particular on the other substrate . The polymer can be completely or partially attached to the material containing fibers, in particular to the fibers of the material containing fibers. If the polymer only partially attaches to the fibers of the material containing fibers, a residual amount of polymer remains in the mixture. The fibers of the material containing fibers are preferably completely or partially sheathed by attachment. This can strengthen the fiber.

"Derivatisierte Polymere" können insbesondere solche Polymere sein, die durch eine chemische Modifizierung eines anderen Polymers erhalten wurden. Die Derivatisierung kann dabei auch reversibel sein, so dass das ursprüngliche Polymer zurückerhalten werden kann. Derivatisierte Polymere werden zum Beispiel von natürlich vorkommenden Polymeren wie Cellulose oder Stärke hergestellt. Beispielsweise kann aus nicht derivatisierter Cellulose durch chemische Modifizierung das derivatisierte Polymer Methylcellulose erhalten werden. Weitere Beispiele für nicht derivatisierte Polymere sind Stärke, Chitosan, Chitin, Lignin, Viskose, Zellstoff, Seide und Alginat. Für die Derivatisierung kommen verschiedene chemische Modifizierungen in Betracht. Die Derivatisierung kann beispielsweise durch teilweise oder vollständige Alkylierung, teilweise oder vollständige Acylierung, teilweise oder vollständige Silylierung oder teilweise oder vollständige Sulfonylierung erreicht werden.“Derivatized polymers” can in particular be those polymers which have been obtained by chemical modification of another polymer. The derivatization can also be reversible, so that the original polymer can be recovered. For example, derivatized polymers are made from naturally occurring polymers such as cellulose or starch. For example, the derivatized polymer methylcellulose can be obtained from nonderivatized cellulose by chemical modification. Further examples of non-derivatized polymers are starch, chitosan, chitin, lignin, viscose, cellulose, silk and alginate. Various chemical modifications can be used for the derivatization. The derivatization can for example by partial or complete alkylation, partial or complete acylation, partial or complete silylation or partial or complete sulfonylation can be achieved.

"Material enthaltend Fasern" wird nachfolgend auch als "faserhaltiges Material" oder "Fasern enthaltendes Material" bezeichnet."Material containing fibers" is also referred to below as "fiber-containing material" or "fiber-containing material".

Die Schritte a. bis c. des erfindungsgemäßen Verfahrens werden vorteilhafterweise in der angegebenen Reihenfolge durchgeführt.Steps a. to c. of the method according to the invention are advantageously carried out in the order given.

Mit dem erfindungsgemäßen Verfahren können die verschiedensten faserhaltigen Materialien bearbeitet werden. Das faserhaltige Material kann ein Polymer mit mindestens einer polaren Gruppe enthalten, insbesondere in einem Anteil von 50 Gew.%, 60 Gew.%, 70 Gew.%, 80 Gew.%, 90 Gew.%, 95 Gew.%, 99 Gew.%, oder daraus bestehen. Die mindestens eine polare Gruppe kann im Polymerrückgrat enthalten sein und/oder als Seitenkette mit dem Polymerrückgrat verknüpft sein. Sind mehrere polare Gruppen enthalten, können diese gleich oder verschieden sein. Polare Gruppen sind dem Fachmann bekannt. Beispiele für polare Gruppen sind unter anderem die Hydroxyl-Gruppe, Säure-Gruppen wie die Carboxyl-Gruppe und die Sulfonsäuregruppe, die Amid-Gruppe, die Amin-Gruppe, die Thiol-Gruppe, die Ether-Gruppe, insbesondere die C1-C4-Alkyl-Ether-Gruppe, die Ester-Gruppe sowie die Urethan-Gruppe. Das faserhaltige Material enthält Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Chitosan, Alginat, Stärke, Lignin, Polyvinylalkohol, Proteine oder Mischungen davon. Weitere Bestandteile des faserhaltigen Materials können weitere Polymere, insbesondere weitere Polymere mit mindestens einer polaren Gruppe, aber auch zum Beispiel Füllstoffe wie Calciumcarbonat oder Pigmente wie Titandioxid sein. Insbesondere kann es sich bei dem faserhaltigen Material um ein cellulosehaltiges Material handeln, insbesondere um Papier, Pappe, Karton, Textilien oder Holz. Gemäß einer bevorzugten Ausführungsform der Erfindung handelt es sich bei dem faserhaltigen Material um Papier, insbesondere um Papierblätter. Beispiele für Papier sind Schreibmaschinenpapier, Druckerpapier, Zeitschriftenpapier, Zeitungspapier und Buchpapier.The most varied of fiber-containing materials can be processed with the method according to the invention. The fiber-containing material can contain a polymer with at least one polar group, in particular in a proportion of 50 wt.%, 60 wt.%, 70 wt.%, 80 wt.%, 90 wt.%, 95 wt.%, 99 wt .%, or consist of it. The at least one polar group can be contained in the polymer backbone and / or be linked to the polymer backbone as a side chain. If several polar groups are contained, these can be the same or different. Polar groups are known to the person skilled in the art. Examples of polar groups include the hydroxyl group, acid groups such as the carboxyl group and the sulfonic acid group, the amide group, the amine group, the thiol group, the ether group, in particular the C1-C4- Alkyl ether group, the ester group and the urethane group. The fiber-containing material contains cellulose, microcrystalline cellulose, pulp, hemicellulose, viscose, chitin, chitosan, alginate, starch, lignin, polyvinyl alcohol, proteins or mixtures thereof. Further components of the fiber-containing material can be further polymers, in particular further polymers with at least one polar group, but also, for example, fillers such as calcium carbonate or pigments such as titanium dioxide. In particular, the fiber-containing material can be a cellulose-containing material, in particular paper, cardboard, cardboard, textiles or wood. According to a preferred embodiment of the invention, the fiber-containing material is paper, in particular paper sheets. Examples of paper are typewriter paper, printer paper, magazine paper, newsprint, and book paper.

In dem erfindungsgemäßen Verfahren wird ein Gemisch enthaltend ein Polymer bereitgestellt. Als Polymer kommen verschiedene Polymere in Frage. Das Polymer kann ein Copolymer oder ein Homopolymer sein. Das Polymer kann insbesondere ein massenmittleres Molekulargewicht Mw von 1000 bis 10000000 g/mol, insbesondere von 3000 bis 1000000 g/mol, von 5000 bis 500000 g/mol oder von 10000 bis 100000 g/mol, aufweisen. Das Polymer kann ferner mindestens eine polare Gruppe enthalten. Die mindestens eine polare Gruppe kann im Polymerrückgrat enthalten sein und/oder als Seitenkette mit dem Polymerrückgrat verknüpft sein. Sind mehrere polare Gruppen enthalten, können diese gleich oder verschieden sein. Polare Gruppen sind dem Fachmann bekannt. Beispiele für polare Gruppen sind unter anderem die Hydroxyl-Gruppe, Säure-Gruppen wie die Carboxyl-Gruppe und die Sulfonsäuregruppe, die Amid-Gruppe, die Amin-Gruppe, die Thiol-Gruppe, die Ether-Gruppe, insbesondere die C1-C4-Alkyl-Ether-Gruppe, die Ester-Gruppe sowie die Urethan-Gruppe. Insbesondere kann das Polymer mindestens eine Hydroxyl-Gruppe, mindestens eine Amin-Gruppe, mindestens eine Säure-Gruppe, insbesondere eine Carboxyl-Gruppe, mindestens eine Amid-Gruppe, mindestens eine Thiol-Gruppe, mindestens eine Ether-Gruppe, insbesondere eine C1-C4-Alkyl-Ether-Gruppe, mindestens eine Ester-Gruppe und/oder mindestens eine Urethan-Gruppe, insbesondere mindestens eine Hydroxyl-Gruppe, enthalten. Das Polymer ist ausgewählt aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Lignin, Chitosan, Alginat, Stärke, Seide, natürliche Seide, Seidenbiopolymere, Polyvinylalkohol, Polyvinylacetat, Polyurethane, Polyamide, Proteine, Polymere oder Copolymere auf Basis von Acrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Methacrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Vinylacetat, Itaconsäure, Maleinsäure, Fumarsäure, Acryloxypropionsäure, Methacryloxypropionsäure, Styrolsulfonsäure, Ethylmethacrylat-2-sulfonsäure, 2-Acrylamido-2-methylpropansulfonsäure, Phosphoethylmethacrylat, Celluloseether und Mischungen davon. Vorzugsweise ist das Polymer ein nicht derivatisiertes Polymer wie zum Beispiel Cellulose und/oder Viskose. Bevorzugt enthält das Polymer mindestens eine Hydroxylgruppe.In the method according to the invention, a mixture containing a polymer is provided. Various polymers can be used as the polymer. The polymer can be a copolymer or a homopolymer. The polymer can in particular have a mass average molecular weight Mw of 1000 to 10000000 g / mol, in particular from 3000 to 1000000 g / mol, from 5000 to 500000 g / mol or from 10,000 to 100,000 g / mol, exhibit. The polymer can also contain at least one polar group. The at least one polar group can be contained in the polymer backbone and / or be linked to the polymer backbone as a side chain. If several polar groups are contained, these can be the same or different. Polar groups are known to the person skilled in the art. Examples of polar groups include the hydroxyl group, acid groups such as the carboxyl group and the sulfonic acid group, the amide group, the amine group, the thiol group, the ether group, in particular the C1-C4- Alkyl ether group, the ester group and the urethane group. In particular, the polymer can have at least one hydroxyl group, at least one amine group, at least one acid group, in particular a carboxyl group, at least one amide group, at least one thiol group, at least one ether group, in particular a C1- C4-alkyl ether group, at least one ester group and / or at least one urethane group, in particular at least one hydroxyl group. The polymer is selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, cellulose, hemicellulose, viscose, chitin, lignin, chitosan, alginate, starch, silk, natural silk, silk biopolymers, polyvinyl alcohol, polyvinyl acetate, polyurethanes, polyamides, proteins , Polymers or copolymers based on acrylic acid and / or its ester and / or amide derivatives, methacrylic acid and / or its ester and / or amide derivatives, vinyl acetate, itaconic acid, maleic acid, fumaric acid, acryloxypropionic acid, methacryloxypropionic acid, styrene sulfonic acid, ethyl methacrylate -2-sulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, phosphoethyl methacrylate, cellulose ethers and mixtures thereof. Preferably the polymer is a nonderivatized polymer such as cellulose and / or viscose. The polymer preferably contains at least one hydroxyl group.

Insbesondere kann das Polymer ausgewählt sein aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Lignin, Chitosan, Alginat, Stärke, Seide, Seidenbiopolymere, Polyvinylalkohol und Mischungen davon. Vorzugsweise ist das Polymer ausgewählt aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalliner Cellulose, Zellstoff, Seide, Seidenbiopolymere, Viskose und Mischungen davon. Vorteilhafterweise ist das Polymer ausgewählt ist aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalliner Cellulose, Zellstoff, Viskose und Mischungen davon. Gemäß einer bevorzugten Ausführungsform ist das Polymer alpha-Cellulose. Gemäß einer weiteren bevorzugten Ausführungsform ist das Polymer Viskose, insbesondere im Wesentlichen nicht derivatisierte Viskose. Es hat sich gezeigt, dass sich mit den vorstehend genannten Polymeren faserhaltige Materialien besonders gut bearbeiten ließen. Insbesondere konnten durch eine Bearbeitung mit den vorstehenden Polymeren gute Festigungen, insbesondere von cellulosehaltigen Materialien wie Papier, Pappe, Karton und Holz, erreicht werden.In particular, the polymer can be selected from the group consisting of cellulose, alpha cellulose, microcrystalline cellulose, cellulose, hemicellulose, viscose, chitin, lignin, chitosan, alginate, starch, silk, silk biopolymers, polyvinyl alcohol and mixtures thereof. The polymer is preferably selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, cellulose, silk, silk biopolymers, viscose and mixtures thereof. The polymer is advantageously selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, cellulose, viscose and mixtures thereof. According to a preferred embodiment, the polymer is alpha-cellulose. According to a further preferred embodiment, the polymer is viscose, in particular essentially non-derivatized viscose. It has been shown that fiber-containing materials can be processed particularly well with the aforementioned polymers. In particular, processing with the above polymers made good Strengthening, especially of cellulosic materials such as paper, cardboard, cardboard and wood can be achieved.

Das Polymer kann insbesondere in Form von Fasern eingesetzt werden.The polymer can in particular be used in the form of fibers.

Viskose ist insbesondere aus regenerierter Cellulose aufgebaut. Viskose kann dabei insbesondere in Form von Fasern vorliegen. Bei Viskose kann es sich insbesondere um eine regenerierte Cellulosefaser handeln, wie sie in der EP 2 546 396 (siehe insbesondere Absatz [0026], [0028], [0029], [0030], [0031], [0032], [0033], [0034], [0035], [0036], [0037] und/oder [0038]) beschrieben ist. Entsprechend kann die Viskose in Form von Fasern, die mehrere Schenkel aufweisen und bei denen zumindest ein Schenkel hinsichtlich seiner Länge von den anderen Schenkeln abweicht, vorliegen. Insbesondere kann es sich um asymmetrische Cellulosefasern handeln. Der Titer der asymmetrischen Cellulosefasern kann von 1,3 dtex bis 10 dtex, insbesondere 3,3 dtex, betragen. Der Titer gibt dabei die Feinheit an, wobei 1 dtex insbesondere einem Gewicht von einem Gramm pro 10000 Meter der Cellulosefasern entspricht.Viscose is made up of regenerated cellulose in particular. Viscose can in particular be in the form of fibers. Viscose can in particular be a regenerated cellulose fiber, as it is in FIG EP 2 546 396 (see in particular paragraphs [0026], [0028], [0029], [0030], [0031], [0032], [0033], [0034], [0035], [0036], [0037] and / or [0038]) is described. Accordingly, the viscose can be in the form of fibers which have several legs and in which at least one leg differs from the other legs in terms of its length. In particular, it can be asymmetrical cellulose fibers. The titer of the asymmetrical cellulose fibers can be from 1.3 dtex to 10 dtex, in particular 3.3 dtex. The titer indicates the fineness, with 1 dtex corresponding in particular to a weight of one gram per 10,000 meters of cellulose fibers.

Bei Seidenbiopolymeren kann es sich insbesondere um Seidenbiopolymere handeln, wie sie in der WO 2014/037453 oder in der WO 2011/113446 beschrieben sind. Entsprechend können die Seidenbiopolymere insbesondere aus Polypeptiden bestehen, die im Wesentlichen aus einer oder mehreren sich wiederholenden Polypeptid-Einheiten und einer oder mehreren sich nicht wiederholenden Polypeptid-Einheiten aufgebaut sind. Die sich wiederholenden Polypeptid-Einheiten können insbesondere Oligoalanin-Einheiten enthalten. Die sich wiederholenden Polypeptid-Einheiten können die Module AC (GPYGPGASAAAAAAGGYGPGCGQQ), AK (GPYGPGASAAAAAAGGYGPGKGQQ), CC (GSSAAAAAAAASGPGGYGPENQGPCGPGGYGPGGP), CK1 (GSSAAAAAAAASGPGGYGPENQGPKGPGGYGPGGP), CK2 (GSSAAAAAAAASGPGGYGPKNQGPSGPGGYGPGGP) oder CKC (GSSAAAAAAAASGPGGYGPKNQGPCGPGGYGPGGP) umfassen oder daraus bestehen, wobei die in Klammern angegebenen Sequenzen Aminosäuren im Einbuchstaben-Code darstellen, wie er beispielsweise in dem Buch " Enzymes - A Practical Introduction to Structure, Mechanism, and Data Analysis", 2nd Edition von Robert A. Copeland, Wiley-VCH, 2000 , in Tabelle 3.1 auf Seite 45 beschrieben ist. Die sich nicht wiederholenden Polypeptid-Einheiten können aus den in der WO 2014/037453 , insbesondere auf Seite 16, beschriebenen "non-repetitive (NR)" Einheiten NR3, NR4, NR5, NR6 oder den in der WO 2014/037453 beschriebenen Varianten davon ausgewählt sein.Silk biopolymers can, in particular, be silk biopolymers, as described in FIG WO 2014/037453 or in the WO 2011/113446 are described. Correspondingly, the silk biopolymers can in particular consist of polypeptides which are essentially built up from one or more repeating polypeptide units and one or more non-repeating polypeptide units. The repeating polypeptide units can in particular contain oligoalanine units. The repeating polypeptide units, the modules A C (GPYGPGASAAAAAAGGYGPGCGQQ), A K (GPYGPGASAAAAAAGGYGPGKGQQ), C C (GSSAAAAAAAASGPGGYGPENQGPCGPGGYGPGGP), C K1 (GSSAAAAAAAASGPGGYGPENQGPKGPGGYGPGGP), C K2 (GSSAAAAAAAASGPGGYGPKNQGPSGPGGYGPGGP) or C KC (GSSAAAAAAAASGPGGYGPKNQGPCGPGGYGPGGP) may comprise or consist thereof, wherein the sequences given in brackets represent amino acids in one-letter code, as it is, for example, in the book " Enzymes - A Practical Introduction to Structure, Mechanism, and Data Analysis ", 2nd Edition by Robert A. Copeland, Wiley-VCH, 2000 , is described in table 3.1 on page 45. The non-repeating polypeptide units can be selected from the WO 2014/037453 , in particular on page 16, described "non-repetitive (NR)" units NR3, NR4, NR5, NR6 or in the WO 2014/037453 be selected variants thereof described.

Das Polymer in Schritt a. des erfindungsgemäßen Verfahrens kann gleich oder verschieden sein von dem Polymer mit mindestens einer polaren Gruppe, welches in dem faserhaltigen Material enthalten sein kann. Beispielsweise kann ein cellulosehaltiges Material als faserhaltiges Material mit einem Gemisch in Kontakt gebracht werden, das ebenfalls Cellulose als Polymer enthält. Ebenso kann aber auch ein cellulosehaltiges Material als faserhaltiges Material zum Beispiel mit einem Gemisch in Kontakt gebracht werden, das Polyvinylalkohol als Polymer enthält. Enthält das im Gemisch enthaltene Polymer eine polare Gruppen, so können die polare Gruppe des Polymers mit mindestens einer polaren Gruppe, das in dem faserhaltigen Material enthalten sein kann, und die polare Gruppe des im Gemisch enthaltenen mindestens einen Polymers gleich oder verschieden sein. So kann das faserhaltige Material ein cellulosehaltiges Material sein und das polare Polymer kann ein Polyurethan sein.The polymer in step a. of the method according to the invention can be the same as or different from the polymer with at least one polar group, which can be contained in the fiber-containing material. For example, a cellulose-containing material can be brought into contact as a fiber-containing material with a mixture which also contains cellulose as a polymer. Likewise, however, a cellulose-containing material can also be brought into contact as a fiber-containing material, for example with a mixture which contains polyvinyl alcohol as a polymer. If the polymer contained in the mixture contains a polar group, the polar group of the polymer with at least one polar group which can be contained in the fiber-containing material and the polar group of the at least one polymer contained in the mixture can be the same or different. For example, the fiber-containing material can be a cellulosic material and the polar polymer can be a polyurethane.

Als polar aprotisches Lösemittel kommen in dem erfindungsgemäßen Verfahren die verschiedensten Lösemittel in Frage. In polar aprotischen Lösemitteln können die Moleküle ein Dipolmoment aufweisen und/oder das polar aprotische Lösemittel kann aus Ionen aufgebaut sein. Ferner können polar aprotische Lösemittel frei von Gruppen, insbesondere polaren Gruppen, sein, von denen Protonen abgespalten werden können. Beispiele für derartige Gruppen sind die OH-Gruppe, Säure-Gruppen wie die Carboxylgruppe, die Sulfonsäuregruppe und Halogenwasserstoffgruppen, die Thiol-Gruppe, sowie primäre und sekundäre Amine. Als polar aprotische Lösemittel kommen insbesondere Ketone, Lactone, Lactame, insbesondere N-alkylierte Lactame, Nitrile, Tertiäre Carbonsäureamide, Harnstoffderivate, insbesondere alkylierte Harnstoffderivate, Sulfoxide, Sulfone, Kohlensäureester, ionische Flüssigkeiten und/oder Mischungen davon in Frage.A wide variety of solvents can be used as polar aprotic solvents in the process according to the invention. In polar aprotic solvents, the molecules can have a dipole moment and / or the polar aprotic solvent can be composed of ions. Furthermore, polar aprotic solvents can be free of groups, in particular polar groups, from which protons can be split off. Examples of such groups are the OH group, acid groups such as the carboxyl group, the sulfonic acid group and hydrogen halide groups, the thiol group, and primary and secondary amines. Particularly suitable polar aprotic solvents are ketones, lactones, lactams, in particular N-alkylated lactams, nitriles, tertiary carboxamides, urea derivatives, in particular alkylated urea derivatives, sulfoxides, sulfones, carbonic acid esters, ionic liquids and / or mixtures thereof.

Beispiele für Ketone sind Aceton, Methylethylketon, 2-Pentanon, 3-Pentanon, 2-Hexanon, 3-Hexanon, Cyclohexanon und deren C1- bis C4-alkylierte Derivate.Examples of ketones are acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclohexanone and their C1 to C4 alkylated derivatives.

Beispiele für Lactone sind Propriolacton, Gammabutyrolacton, Deltavalerolacton, Epsiloncaprolacton und deren C1- bis C4-alkylierte Derivate.Examples of lactones are propriolactone, gammabutyrolactone, deltavalerolactone, epsiloncaprolactone and their C1- to C4-alkylated derivatives.

Beispiele für Lactame sind Propiolactam, Gammabutyrolactam und deren C1- bis C4-alkylierte Derivate.Examples of lactams are propiolactam, gammabutyrolactam and their C1- to C4-alkylated derivatives.

Beispiele für alkylierte Lactame sind N-Methyl-Propiolactam, N-Methyl-2-pyrrolidon und deren C1- bis C4-alkylierte Derivate.Examples of alkylated lactams are N-methyl-propiolactam, N-methyl-2-pyrrolidone and their C1- to C4-alkylated derivatives.

Beispiele für Nitrile sind Acetonitril, Propionitril, Butyronitril, Valeronitril und deren C1- bis C4-alkylierte Derivate.Examples of nitriles are acetonitrile, propionitrile, butyronitrile, valeronitrile and their C1 to C4 alkylated derivatives.

Beispiele für Tertiäre Carbonsäureamide wie Dimethylformamid, Dimethylacetamid, Dimethylpropionamid und deren C1- bis C4-alkylierte Derivate.Examples of tertiary carboxamides such as dimethylformamide, dimethylacetamide, dimethylpropionamide and their C1- to C4-alkylated derivatives.

Beispiele für Harnstoffderivate, insbesondere alkylierte Harnstoffderivate, sind Dimethylpropylenharnstoff, Tetramethylharnstoff und deren C1- bis C4-alkylierte Derivate.Examples of urea derivatives, in particular alkylated urea derivatives, are dimethylpropylene urea, tetramethylurea and their C1 to C4 alkylated derivatives.

Beispiele für Sulfoxide sind Dimethylsulfoxid, Ethylmethylsulfoxid, Diethylsulfoxid und deren C1- bis C4-alkylierte Derivate.Examples of sulfoxides are dimethyl sulfoxide, ethyl methyl sulfoxide, diethyl sulfoxide and their C1 to C4 alkylated derivatives.

Beispiele für Sulfone sind Sulfolan, Ethylmethylsulfon und deren C1- bis C4-alkylierte Derivate.Examples of sulfones are sulfolane, ethylmethyl sulfone and their C1 to C4 alkylated derivatives.

Beispiele für Kohlensäureester sind Dimethylcarbonat, Ethylencarbonat, Propylencarbonat, 1,2-Butylencarbonat, 1,3-Butylencarbonat und deren C1- bis C4-alkylierte Derivate.Examples of carbonic acid esters are dimethyl carbonate, ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate and their C1 to C4 alkylated derivatives.

Beispiele für ionische Flüssigkeiten sind weiter unten angegeben.Examples of ionic liquids are given below.

Vorzugsweise ist das polar aprotische Lösemittel ausgewählt aus der Gruppe bestehend aus Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat, Ethylencarbonat, ionischen Flüssigkeiten und Mischungen davon. Insbesondere ist das polar aprotische Lösemittel ausgewählt aus der Gruppe bestehend aus Dimethylacetamid, Dimethylsulfoxid, Acetonitril, ionischen Flüssigkeiten und Mischungen davon. Polar aprotische Lösemittel, die eine Mischung aus einer ionischen Flüssigkeit und mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat sind, enthalten eine ionische Flüssigkeit.The polar aprotic solvent is preferably selected from the group consisting of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate ionic liquids and mixtures thereof In particular, the polar aprotic solvent is selected from the group consisting of dimethylacetamide, dimethyl sulfoxide, acetonitrile, ionic liquids and mixtures thereof. Polar aprotic solvents that are a mixture of an ionic liquid and at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate and contain ethylene ionic liquid.

Das polar aprotische Lösemittel kann eine oder mehrere ionische Verbindungen, beispielsweise Salze, anorganische Salze und/oder ionische Flüssigkeiten enthalten oder insbesondere aus einer oder mehreren ionischen Flüssigkeiten bestehen.The polar aprotic solvent can contain one or more ionic compounds, for example salts, inorganic salts and / or ionic liquids, or in particular consist of one or more ionic liquids.

Als anorganische Salze kommen beispielsweise Lithiumfluorid, Lithiumchlorid, Lithiumbromid, Lithiumiodid, Natriumfluorid, Natriumchlorid, Natriumbromid, Natriumiodid, Kaliumfluorid, Kaliumchlorid, Kaliumbromid oder Kaliumiodid, insbesondere Lithiumchlorid oder Lithiumbromid und Mischungen davon in Frage. Anorganische Salze können in einer Menge von 1 bis 10 Gew.%, 3 bis 8 Gew.% oder 4 bis 6 Gew.%, jeweils bezogen auf die Gesamtmenge an polar aprotischem Lösemittel und anorganischem Salz oder anorganischen Salzen, enthalten sein. Dementsprechend kann ein polar aprotisches Lösemittel beispielsweise Dimethylacetamid enthaltend 5 Gew.% Lithiumchlorid sein.Inorganic salts are, for example, lithium fluoride, lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, potassium fluoride, potassium chloride, potassium bromide or potassium iodide, in particular lithium chloride or lithium bromide and mixtures thereof. Inorganic salts can be present in an amount of 1 to 10% by weight, 3 to 8% by weight or 4 to 6% by weight, based in each case on the total amount of polar aprotic solvent and inorganic salt or inorganic salts. Accordingly, a polar aprotic solvent can be, for example, dimethylacetamide containing 5% by weight of lithium chloride.

Besonders gute Ergebnisse lassen sich erzielen, wenn das polar aprotische Lösemittel eine ionische Flüssigkeit enthält. Geeignete ionische Flüssigkeiten werden weiter unten im Detail beschrieben. Bevorzugt ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril. Gemäß einer bevorzugten Ausführungsform ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und Dimethylacetamid oder Dimethylsulfoxid. Gemäß einer weiteren bevorzugten Ausführungsform ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und Dimethylacetamid. Gemäß einer weiteren bevorzugten Ausführungsform ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und Dimethylsulfoxid.Particularly good results can be achieved if the polar aprotic solvent contains an ionic liquid. Suitable ionic liquids are described in detail below. The polar aprotic solvent is preferably a mixture of an ionic liquid and at least one of dimethylacetamide, dimethyl sulfoxide and acetonitrile. According to a preferred embodiment, the polar aprotic solvent is a mixture of an ionic liquid and dimethylacetamide or dimethyl sulfoxide. According to a further preferred embodiment, the polar aprotic solvent is a mixture of an ionic liquid and dimethylacetamide. According to a further preferred embodiment, the polar aprotic solvent is a mixture of an ionic liquid and dimethyl sulfoxide.

Mit den vorstehend genannten polar aprotischen Lösemitteln können Gemische, insbesondere Lösungen, mit den verschiedensten Polymeren hergestellt werden. Insbesondere können sich viele schlecht lösliche Polymere, insbesondere Polymere enthaltend mindestens eine polare Gruppe, gut in diesen polar aprotischen Lösemitteln lösen. Enthält das polar aprotische Lösemittel eine oder mehrere ionische Verbindungen, können Polymere enthaltend mindestens eine polare Gruppe, insbesondere Cellulose, besser in ihnen gelöst werden. Auf diese Weise können Gemische, insbesondere Lösungen, mit einem Gehalt von beispielsweise 0,5 Gew.%, 1 Gew.%, 2 Gew.%, 3 Gew.%, 4 Gew.%, 5 Gew.%, 6 Gew.%, 7 Gew.%, 8 Gew.%, 9 Gew.%, 10 Gew.%, 11 Gew.%, 12 Gew.%, 13 Gew.%, 14 Gew.% oder 15 Gew.%, jeweils bezogen auf das Gesamtgewicht des Gemischs, an Polymer erhalten werden. Dadurch kann die Konzentration des Polymers in einem weiten Bereich an die Bedürfnisse des zu bearbeitenden faserhaltigen Materials angepasst werden, was eine effektive Bearbeitung des faserhaltigen Materials erlaubt.The abovementioned polar aprotic solvents can be used to produce mixtures, in particular solutions, with the most varied of polymers. In particular, many poorly soluble polymers, in particular polymers containing at least one polar group, can dissolve well in these polar aprotic solvents. If the polar aprotic solvent contains one or more ionic compounds, polymers containing at least one polar group, in particular cellulose, can be better dissolved in them. In this way, mixtures, in particular solutions, with a content of, for example, 0.5 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, 5 wt.%, 6 wt. , 7% by weight, 8% by weight, 9% by weight, 10% by weight, 11% by weight, 12% by weight, 13% by weight, 14% by weight or 15% by weight, each based on the Total weight of the mixture, of polymer. This allows the concentration of the polymer to be widened Area to be adapted to the needs of the fiber-containing material to be processed, which allows effective processing of the fiber-containing material.

Das polar aprotische Lösemittel kann eine oder mehrere ionische Flüssigkeiten enthalten oder daraus bestehen. Als ionische Flüssigkeiten kommen insbesondere organische Salze in Betracht, deren Ionen durch Ladungsdelokalisation und sterische Effekte die Bildung eines stabilen Kristallgitters behindern. Ionische Flüssigkeiten haben insbesondere den Vorteil, dass sich viele schwer lösliche Polymere wie zum Beispiel Cellulose in ihnen gut lösen. Ferner können ionische Flüssigkeiten gut modifiziert und so an unterschiedliche Anforderungen angepasst werden.The polar aprotic solvent can contain or consist of one or more ionic liquids. Particularly suitable ionic liquids are organic salts, the ions of which hinder the formation of a stable crystal lattice through charge delocalization and steric effects. Ionic liquids have the particular advantage that many poorly soluble polymers such as cellulose dissolve well in them. Furthermore, ionic liquids can be modified well and thus adapted to different requirements.

Enthält das polar aprotische Lösemittel eine ionische Flüssigkeit, so enthält die ionische Flüssigkeit insbesondere ein Kation ausgewählt aus einem 1,3-Dialkylimidazoliumkation, einem Alkylpyridiniumkation, einem Tetraalkylammoniumkation und einem Phosphoniumkation, und ein Anion ausgewählt aus Fluorid, Chlorid, Bromid, lodid, Formiat, Acetat, Propionat, Butyrat, Hydrogensulfat, Tosylat, Trifluormethansulfonat, Bis(trifluoromethansulfonyl)imid, Hexafluorophosphat, Tetrafluoroborat, Benzoat, Glykolat, Thioglykolat, Lactat und Glycinat, oder sie besteht daraus. Vorzugsweise enthält die ionische Flüssigkeit ein Dialkylimidazoliumkation und ein Anion ausgewählt aus Chlorid, Bromid und Acetat oder sie besteht daraus. Die Alkylgruppen des Dialkylimidazoliumkations können insbesondere gleich oder verschieden sein. Die Alkylgruppen des Dialkylimidazoliumkations können insbesondere C1- bis C10-, insbesondere C1- bis C5-Alkylgruppen, sein. Die Alkylgruppen des Dialkylimidazoliumkations können unabhängig voneinander bevorzugt ausgewählt sein aus der Gruppe bestehend aus Methyl, Ethyl, Propyl und Butyl. Gemäß einer bevorzugten Ausführungsform enthält die ionische Flüssigkeit 1-Butyl-3-methylimidazoliumchlorid und/oder 1-Butyl-3-methylimidazoliumacetat oder besteht daraus.If the polar aprotic solvent contains an ionic liquid, the ionic liquid contains in particular a cation selected from a 1,3-dialkylimidazolium cation, an alkylpyridinium cation, a tetraalkylammonium cation and a phosphonium cation, and an anion selected from fluoride, chloride, bromide, iodide, formate, Acetate, propionate, butyrate, hydrogen sulfate, tosylate, trifluoromethanesulfonate, bis (trifluoromethanesulfonyl) imide, hexafluorophosphate, tetrafluoroborate, benzoate, glycolate, thioglycolate, lactate and glycinate, or it consists of them. The ionic liquid preferably contains a dialkylimidazolium cation and an anion selected from chloride, bromide and acetate, or it consists of these. The alkyl groups of the dialkylimidazolium cation can in particular be identical or different. The alkyl groups of the dialkylimidazolium cation can in particular be C1 to C10, in particular C1 to C5 alkyl groups. The alkyl groups of the dialkylimidazolium cation, independently of one another, can preferably be selected from the group consisting of methyl, ethyl, propyl and butyl. According to a preferred embodiment, the ionic liquid contains 1-butyl-3-methylimidazolium chloride and / or 1-butyl-3-methylimidazolium acetate or consists thereof.

Die vorstehend angeführten Kationen und Anionen haben insbesondere den Vorteil, dass viele Polymere, insbesondere auch schwer lösliche Polymere wie Cellulose, in ionischen Flüssigkeiten, die diese Kationen und Anionen enthalten oder daraus bestehen, gut löslich sind. Ferner weist insbesondere das Acetat-Anion den Vorteil auf, dass der pH-Wert von faserhaltigen Materialien mit einem sauren pH-Wert, die mit einem Gemisch, in dem das polar aprotische Lösemittel eine Acetat-Anionen-haltige ionische Flüssigkeit enthält, in Kontakt gebracht wurden, angehoben werden kann. Dies ist insbesondere bei der Bearbeitung von Papier von Bedeutung, da durch eine Anhebung des pH-Werts im Papier der Abbau der Cellulosefasern verlangsamt oder sogar unterbunden werden kann.The cations and anions listed above have the particular advantage that many polymers, in particular also sparingly soluble polymers such as cellulose, are readily soluble in ionic liquids that contain or consist of these cations and anions. Furthermore, the acetate anion in particular has the advantage that the pH value of fiber-containing materials with an acidic pH value is brought into contact with a mixture in which the polar aprotic solvent contains an ionic liquid containing acetate anions can be raised. This is particularly important when processing paper, since by increasing the pH value in the paper, the degradation of the cellulose fibers can be slowed down or even prevented.

Das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel ist vorzugsweise ein homogenes Gemisch, insbesondere eine Lösung. Alternativ kann in dem Gemisch das Polymer durch das polar aprotische Lösemittel angelöst oder gequollen sein.The mixture containing at least one polymer and a polar aprotic solvent is preferably a homogeneous mixture, in particular a solution. Alternatively, the polymer in the mixture can be partially dissolved or swollen by the polar aprotic solvent.

Das Bereitstellen eines Gemischs enthaltend ein polar aprotisches Lösemittel hat unter anderem den Vorteil, dass dadurch Gemische, insbesondere Lösungen, mit einer geringen Viskosität erhalten werden können. Derartige Gemische, insbesondere Lösungen, sind besonders gut zur Bearbeitung von faserhaltigen Materialien, insbesondere cellulosehaltigen Materialien wie Papier, geeignet. Dabei kann das Gemisch, insbesondere die Lösung, mit dem das zu bearbeitende faserhaltige Material in Kontakt gebracht wird, insbesondere eine Viskosität von 0,01 bis 100 mPa·s, vorzugsweise 0,1 bis 70 mPa·s, bevorzugt 0,5 bis 50 mPa·s, weiter bevorzugt 1 bis 30 mPa·s, noch weiter bevorzugt 1 bis 15 mPa·s, aufweisen. Gemische, insbesondere Lösungen, mit derartigen Viskositäten eignen sich besonders gut zur Bearbeitung von faserhaltigen Materialien, insbesondere cellulosehaltigen Materialien wie Papier, da sie tief in das faserhaltige Material eindringen können und somit nicht nur eine oberflächliche Anlagerung des Polymers ermöglicht wird. Methoden zur Bestimmung der Viskosität von Gemischen, insbesondere von Lösungen, sind dem Fachmann bekannt. Insbesondere kann die Viskosität mit einem Rotationsviskosimeter "Gemini" der Firma Bohlin bei 25°C bestimmt werden.Providing a mixture containing a polar aprotic solvent has the advantage, inter alia, that mixtures, in particular solutions, with a low viscosity can be obtained. Such mixtures, in particular solutions, are particularly suitable for processing fiber-containing materials, in particular cellulose-containing materials such as paper. The mixture, in particular the solution with which the fiber-containing material to be processed is brought into contact, can in particular have a viscosity of 0.01 to 100 mPas, preferably 0.1 to 70 mPas, preferably 0.5 to 50 mPas, more preferably 1 to 30 mPas, even more preferably 1 to 15 mPas. Mixtures, in particular solutions, with such viscosities are particularly suitable for processing fiber-containing materials, especially cellulose-containing materials such as paper, since they can penetrate deep into the fiber-containing material and thus not only allow superficial deposition of the polymer. Methods for determining the viscosity of mixtures, in particular of solutions, are known to the person skilled in the art. In particular, the viscosity can be determined at 25 ° C. using a "Gemini" rotary viscometer from Bohlin.

Das in Kontakt bringen des faserhaltigen Materials mit dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel kann auf verschiedene Weisen durchgeführt werden. Beispielsweise kann das faserhaltige Material, insbesondere Papier, mit dem Gemisch besprüht oder beschichtet werden oder das faserhaltige Material, insbesondere Papier, kann in dem Gemisch getränkt werden. Vorteilhafterweise wird das faserhaltige Material in dem Gemisch getränkt. Wird das faserhaltige Material in dem Gemisch getränkt, so kann dies für einen Zeitraum von 0,1 bis 10 Minuten, insbesondere 0,2 bis 8 Minuten, 0,2 bis 7 Minuten, 0,4 bis 6 Minuten, 0,5 bis 5 Minuten, 0,5 bis 4 Minuten, 0,5 bis 3 Minuten oder 0,5 bis 2 Minuten erfolgen. Dadurch kann das mindestens eine Polymer gut in das faserhaltige Material eindringen, so dass es sich gut an die Fasern des Materials anlagern kann. Anschließend kann das getränkte faserhaltige Material mit einem polar aprotischen Lösemittel, insbesondere mit Dimethylacetamid und/oder Dimethylsulfoxid, abgespült werden, insbesondere für einen Zeitraum von 10 bis 60 Sekunden, 20 bis 50 Sekunden oder 25 bis 40 Sekunden. Durch das Abspülen kann überschüssiges Polymer entfernt werden.Bringing the fiber-containing material into contact with the mixture containing at least one polymer and a polar aprotic solvent can be carried out in various ways. For example, the fiber-containing material, in particular paper, can be sprayed or coated with the mixture, or the fiber-containing material, in particular paper, can be soaked in the mixture. The fiber-containing material is advantageously soaked in the mixture. If the fiber-containing material is soaked in the mixture, this can be for a period of 0.1 to 10 minutes, in particular 0.2 to 8 minutes, 0.2 to 7 minutes, 0.4 to 6 minutes, 0.5 to 5 minutes Minutes, 0.5 to 4 minutes, 0.5 to 3 minutes, or 0.5 to 2 minutes. As a result, the at least one polymer can penetrate well into the fiber-containing material, so that it can easily attach itself to the fibers of the material. The soaked fiber-containing material can then be rinsed off with a polar aprotic solvent, in particular with dimethylacetamide and / or dimethyl sulfoxide, in particular for a period of 10 to 60 seconds, 20 to 50 seconds or 25 to 40 seconds. Rinsing can remove excess polymer.

Das erfindungsgemäße Verfahren umfasst den Schritt des Behandelns der Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel, so dass sich mindestens ein Teil des Polymers an den Fasern des Materials anlagert. Dabei kann die Behandlung der Mischung auf unterschiedliche Weise ausgestaltet sein. Die Behandlung der Mischung in Schritt c. ist ausgewählt aus in Kontakt bringen der Mischung mit einem unpolaren Lösemittel.The method according to the invention comprises the step of treating the mixture of the fiber-containing material and the mixture containing at least one polymer and a polar aprotic solvent, so that at least part of the polymer is deposited on the fibers of the material. The mixture can be treated in different ways. The treatment of the mixture in step c. is selected from bringing the mixture into contact with a non-polar solvent.

Beispiele für ionische Verbindungen sind Salze oder Polymere mit mindestens einer ionischen Seitengruppe. Salze bestehen insbesondere aus mindestens einem Kation und mindestens einem Anion, wobei das Kation ausgewählt sein kann aus Kationen die sich von Metallen ausgewählt aus der Gruppe bestehend aus, Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Ge, Sn, Pb ableiten lassen, und wobei das Anion ausgewählt sein kann aus Anionen, die sich von Elementen der Gruppe bestehend aus F, Cl, Br, I, O, S, Se, Te. Weitere Beispiele für Kationen sind Ammoniumionen. Weitere Beispiele für Anionen sind Hydrid, Hydroxid, Phosphate, Phosphite, Sulfate, Sulfite, Sulfide und Carboxylate wie Formiat, Acetat, Proprionat, Salicylat und Benzoat. Das Salz kann insbesondere Ammoniumsulfat oder Kaliumsulfat oder eine Mischung davon enthalten. Beispiele für Polymere mit ionischen Seitengruppen sind Polymere mit mindestens einer deprotonierten Säuregruppe, insbesondere einer deprotonierten Carboxylgruppe wie deprotoniertes Polyacrylat, deprotoniertes Polymethacrylat, Polymere mit mindestens einer quartären Ammoniumverbindung wie quatärnisiertes Polydimethylaminoethylmethacrylat. Die Mischung kann dabei mit der ionischen Verbindung in Kontakt gebracht werden, indem das Salz direkt oder in Form einer Lösung, insbesondere einer wässrigen Lösung, zugegeben wird.Examples of ionic compounds are salts or polymers with at least one ionic side group. Salts consist in particular of at least one cation and at least one anion, it being possible for the cation to be selected from cations which are selected from metals from the group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba , Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Hg, Al, Ga, In, Tl, Ge, Sn, Pb, and wherein the anion can be selected from anions which are derived from elements of the group consisting of F, Cl, Br, I , O, S, Se, Te. Further examples of cations are ammonium ions. Further examples of anions are hydride, hydroxide, phosphates, phosphites, sulfates, sulfites, sulfides and carboxylates such as formate, acetate, propionate, salicylate and benzoate. The salt can in particular contain ammonium sulfate or potassium sulfate or a mixture thereof. Examples of polymers with ionic side groups are polymers with at least one deprotonated acid group, in particular a deprotonated carboxyl group such as deprotonated polyacrylate, deprotonated polymethacrylate, polymers with at least one quaternary ammonium compound such as quaternized polydimethylaminoethyl methacrylate. The mixture can be brought into contact with the ionic compound by adding the salt directly or in the form of a solution, in particular an aqueous solution.

Beispiele für nicht-ionische Verbindungen sind Wasser, Alkohole wie Methanol, Ethanol, Propanol, Butanol, Octan, Nonan, isocyanathaltige Verbindungen, Kohlenwasserstoffe mit 1 bis 20, insbesondere 5 bis 18, Kohlenstoffatomen, Polymere wie Polyether, Polyester, Polyamide, Polyurethane. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe der jeweiligen nicht-ionischen Verbindung.Examples of non-ionic compounds are water, alcohols such as methanol, ethanol, propanol, butanol, octane, nonane, isocyanate-containing compounds, hydrocarbons with 1 to 20, in particular 5 to 18, carbon atoms, polymers such as polyethers, polyesters, polyamides, polyurethanes. This can be done directly with the in step b. obtained mixture are brought into contact, for example by adding the respective nonionic compound.

Beispiele für Säuren sind Salzsäure, Schwefelsäure, Salpetersäure, Carbonsäuren mit 1 bis 20, insbesondere 1 bis 10, Kohlenstoffatomen, insbesondere Ameisensäure, Essigsäure, Propionsäure und Benzoesäure, und Mischungen davon. Insbesondere kann die Säure ausgewählt sein aus Salzsäure und Carbonsäuren mit 1 bis 10 Kohlenstoffatomen. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe der jeweiligen Säure, oder indem die Mischung in Säure getaucht wird. Die Säure kann dabei konzentriert oder verdünnt sein, beispielsweise als verdünnte wässrige Lösung.Examples of acids are hydrochloric acid, sulfuric acid, nitric acid, carboxylic acids having 1 to 20, in particular 1 to 10, carbon atoms, in particular formic acid, acetic acid, propionic acid and benzoic acid, and mixtures thereof. In particular, the acid be selected from hydrochloric acid and carboxylic acids having 1 to 10 carbon atoms. This can be done directly with the in step b. obtained mixture are brought into contact, for example by adding the respective acid, or by dipping the mixture in acid. The acid can be concentrated or diluted, for example as a dilute aqueous solution.

Beispiele für Basen sind Hydroxid-Basen wie Natriumhydroxid, Kaliumhydroxid, Calciumhydroxid, Aminbasen wie, primäre Amine, sekundäre Amine, tertiäre Amine, insbesondere Triethylamin, Pyridin und Dimethylaminopyridin und Mischungen davon. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch direkte Zugabe der jeweiligen Base. Alternativ kann die jeweilige Base auch als Lösung, insbesondere als wässrige Lösung, mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe einer Lösung, oder indem die Mischung in die Lösung getaucht wird.Examples of bases are hydroxide bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, amine bases such as primary amines, secondary amines, tertiary amines, in particular triethylamine, pyridine and dimethylaminopyridine and mixtures thereof. This can be done directly with the in step b. obtained mixture are brought into contact, for example by direct addition of the respective base. Alternatively, the respective base can also be used as a solution, in particular as an aqueous solution, with the in step b. obtained mixture are brought into contact, for example by adding a solution, or by immersing the mixture in the solution.

Beispiele für polare Lösemittel sind Wasser und Alkohole wie Methanol, Ethanol, Propanol und Butanol, primäre und sekundäre Amine, Carbonsäuren und Mischungen davon. Insbesondere kann das polare Lösemittel Wasser, ein Alkohol oder eine Mischung davon sein. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe des polaren Lösemittels, oder indem die Mischung in das polare Lösemittel getaucht wird.Examples of polar solvents are water and alcohols such as methanol, ethanol, propanol and butanol, primary and secondary amines, carboxylic acids and mixtures thereof. In particular, the polar solvent can be water, an alcohol or a mixture thereof. This can be done directly with the in step b. obtained mixture are brought into contact, for example by adding the polar solvent, or by immersing the mixture in the polar solvent.

Beispiele für unpolare Lösemittel sind Kohlenwasserstoffe mit 5 bis 16 Kohlenstoffatomen, Benzol, Toluol, Pentan, Hexan, Heptan, Cyclohexan, Tetrachlorkohlenstoff, Tetrachlorethen, Trichlorethen, Kohlenstoffdisulfid, Tetramethylsilan und Hexamethyldisiloxan. Das unpolare Lösemittel kann insbesondere Hexamethyldisiloxan sein. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe des polaren Lösemittels, oder indem die Mischung in das unpolare Lösemittel getaucht wird.Examples of non-polar solvents are hydrocarbons with 5 to 16 carbon atoms, benzene, toluene, pentane, hexane, heptane, cyclohexane, carbon tetrachloride, tetrachloroethene, trichloroethene, carbon disulfide, tetramethylsilane and hexamethyldisiloxane. The non-polar solvent can in particular be hexamethyldisiloxane. This can be done directly with the in step b. obtained mixture are brought into contact, for example by adding the polar solvent, or by dipping the mixture into the non-polar solvent.

Lösemittelgemische umfassen insbesondere Mischungen aus den vorgenannten polaren und unpolaren Lösemitteln, insbesondere Mischungen von Hexamethyldisiloxan mit anderen Lösemitteln wie Ethanol, Methanol, Propanol und Butanol. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe der Lösemittelmischung, oder indem die Mischung in die Lösemittelmischung getaucht wird. Beim Gefriertrocknen kann die Mischung aus Schritt b. zunächst schockgefroren werden und anschließend bei Temperaturen von gleich oder weniger als 0°C durch Anlegen von Vakuum getrocknet werden.Solvent mixtures include, in particular, mixtures of the aforementioned polar and non-polar solvents, in particular mixtures of hexamethyldisiloxane with other solvents such as ethanol, methanol, propanol and butanol. This can be done directly with the in step b. obtained mixture are brought into contact, for example by adding the solvent mixture, or by the mixture is immersed in the solvent mixture. In the case of freeze-drying, the mixture from step b. are first quick-frozen and then dried at temperatures equal to or less than 0 ° C by applying a vacuum.

Eine Temperaturerniedrigung kann insbesondere bis unter die Temperatur erfolgen, bei der Polymer schlecht oder nicht mehr löslich im polar aprotischen Lösemittel ist. Die Temperaturerniedrigung kann eine Erniedrigung auf Temperaturen von -5°C bis 15°C, insbesondere 0°C bis 10°C, beinhalten.The temperature can in particular be lowered to below the temperature at which the polymer is poorly or no longer soluble in the polar aprotic solvent. The temperature decrease can include a decrease to temperatures from -5 ° C to 15 ° C, in particular 0 ° C to 10 ° C.

Beim Eindampfen kann die Temperatur so erhöht werden, dass das polar aprotische Lösemittel vollständig verdampft und das Polymer an den Fasern des Materials zurücklässt. Das Eindampfen kann bei Temperaturen von 50°C bis 250°C, insbesondere von 70°C bis 200°C, durchgeführt werden.During evaporation, the temperature can be increased so that the polar aprotic solvent evaporates completely and leaves the polymer on the fibers of the material. The evaporation can be carried out at temperatures from 50 ° C to 250 ° C, in particular from 70 ° C to 200 ° C.

Eine Temperaturerhöhung kann auf Temperaturen von 50°C bis 200°C, insbesondere von 70°C bis 150°C, erfolgen. Die Temperaturerhöhung kann schrittweise oder schlagartig erfolgen.The temperature can be increased to temperatures from 50 ° C. to 200 ° C., in particular from 70 ° C. to 150 ° C. The temperature increase can take place gradually or suddenly.

Die Druckerniedrigung kann auf Drücke von 0,1 mbar bis 900 mbar, insbesondere von 1 mbar bis 800 mbar, 10 mbar bis 700 mbar oder 50 mbar bis 500 mbar, erfolgen. Die Druckerniedrigung kann insbesondere mit der Temperaturerhöhung und der Temperaturerniedrigung kombiniert werden.The pressure reduction can take place at pressures from 0.1 mbar to 900 mbar, in particular from 1 mbar to 800 mbar, 10 mbar to 700 mbar or 50 mbar to 500 mbar. The reduction in pressure can in particular be combined with the increase in temperature and the decrease in temperature.

Ebenfalls kann die Temperaturerniedrigung insbesondere mit dem in Kontakt bringen mit einer ionischen Verbindung, dem in Kontakt bringen mit einer nicht-ionische Verbindung, dem in Kontakt bringen mit einer Säure, dem in Kontakt bringen mit einer Base, dem in Kontakt bringen mit einem polaren Lösemittel, dem in Kontakt bringen mit einem unpolaren Lösemittel und dem in Kontakt bringen mit einem Lösemittelgemisch kombiniert werden.The lowering of the temperature can also, in particular, involve bringing into contact with an ionic compound, bringing into contact with a non-ionic compound, bringing into contact with an acid, bringing into contact with a base, bringing into contact with a polar solvent , bringing into contact with a non-polar solvent and bringing into contact with a solvent mixture.

Vorzugsweise umfasst die Behandlung der Mischung in Schritt c. das in Kontakt Bringen mit einem unpolaren Lösemittel, insbesondere das Tauchen in ein unpolares Lösemittel, insbesondere Hexamethyldisiloxan, oder besteht daraus. Optimale Ergebnisse haben sich eingestellt, wenn die Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel mit Hexamethyldisiloxan in Kontakt gebracht, insbesondere in Hexamethyldisiloxan getaucht, wurde.The treatment of the mixture in step c preferably comprises. bringing into contact with a non-polar solvent, in particular immersion in a non-polar solvent, in particular hexamethyldisiloxane, or consists of it. Optimal results have been achieved when the mixture of the fiber-containing material and the mixture containing at least one polymer and a polar aprotic solvent was brought into contact with hexamethyldisiloxane, in particular immersed in hexamethyldisiloxane.

Die vorgenannten Behandlungsmöglichkeiten erlauben eine Anlagerung des Polymers an den Fasern des Materials enthaltend Fasern. Dabei wurden bessere Ergebnisse erzielt, wenn die Anlagerung möglichst langsam erfolgte. Dies kann insbesondere dadurch erreicht werden, dass die Behandlung der Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel mindestens für einen Zeitraum von 15 Sekunden, insbesondere 30 Sekunden, 1 Minute, 5 Minuten, 15 Minuten, 30 Minuten, 45 Minuten, 1 Stunde, 5 Stunden, 10 Stunden, 15 Stunden oder 24 Stunden und höchstens für einen Zeitraum von 150 Stunden, insbesondere 144 Stunden, 120 Stunden, 100 Stunden, 96 Stunden, 90 Stunden oder 85 Stunden durchgeführt wird. Optimale Ergebnisse wurden erzielt, wenn die Behandlung in Schritt c. über einen Zeitraum von 24 bis 85 Stunden, insbesondere 50 bis 80 Stunden oder 65 bis 75 Stunden oder 72 Stunden, erfolgt. Dadurch wird eine langsame Anlagerung des Polymers an die Fasern des Materials enthaltend Fasern erreicht.The aforementioned treatment options allow the polymer to accumulate on the fibers of the material containing fibers. Better results were achieved if the deposition took place as slowly as possible. This can be achieved in particular by treating the mixture of the fiber-containing material and the mixture containing at least one polymer and a polar aprotic solvent for at least 15 seconds, in particular 30 seconds, 1 minute, 5 minutes, 15 minutes, 30 minutes Minutes, 45 minutes, 1 hour, 5 hours, 10 hours, 15 hours or 24 hours and at most for a period of 150 hours, in particular 144 hours, 120 hours, 100 hours, 96 hours, 90 hours or 85 hours. Optimal results have been obtained when the treatment in step c. takes place over a period of 24 to 85 hours, in particular 50 to 80 hours or 65 to 75 hours or 72 hours. This results in a slow accumulation of the polymer on the fibers of the material containing fibers.

Vorteilhafterweise erfolgt die Behandlung der Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel durch in Kontakt bringen mit einem unpolaren Lösemittel, insbesondere das Tauchen in ein unpolares Lösemittel, insbesondere Hexamethyldisiloxan, über einen Zeitraum von 65 bis 75 Stunden, insbesondere 72 Stunden.The mixture of the fiber-containing material and the mixture containing at least one polymer and a polar aprotic solvent is advantageously treated by bringing it into contact with a non-polar solvent, in particular immersion in a non-polar solvent, in particular hexamethyldisiloxane, over a period of 65 to 75 hours , especially 72 hours.

Das erfindungsgemäße Verfahren kann vorzugsweise ferner nach dem Behandeln in Schritt c. den zusätzlichen Schritt des Trocknens des in Schritt c. erhaltenen faserhaltigen Materials umfassen.The method according to the invention can preferably also be used after the treatment in step c. the additional step of drying the in step c. obtained fibrous material comprise.

Das Trocknen des in Schritt c. des erfindungsgemäßen Verfahrens erhaltenen faserhaltigen Materials wird vorzugsweise bei 20°C bis 100°C, insbesondere 30°C bis 90°C, 40°C bis 80°C, oder 45°C bis 65°C durchgeführt. Dabei wird das in Schritt c. des erfindungsgemäßen Verfahrens erhaltene faserhaltige Material bevorzugt für 1 bis 25 Stunden, insbesondere für 5 bis 20 Stunden, 8 bis 16 Stunden, 9 bis 15 Stunden, 10 bis 14 Stunden oder 11 bis 13 Stunden getrocknet.The drying of the in step c. The fiber-containing material obtained in the process according to the invention is preferably carried out at 20 ° C to 100 ° C, in particular 30 ° C to 90 ° C, 40 ° C to 80 ° C, or 45 ° C to 65 ° C. This is done in step c. fiber-containing material obtained by the process according to the invention is preferably dried for 1 to 25 hours, in particular for 5 to 20 hours, 8 to 16 hours, 9 to 15 hours, 10 to 14 hours or 11 to 13 hours.

Das erfindungsgemäße Verfahren kann ferner vor dem Schritt a. den weiteren Schritt umfassen, dass das Material enthaltend Fasern, insbesondere Papier, bei einer Temperatur von 40 bis 80°C, insbesondere 45 bis 70°C oder 45 bis 65°C vorgetrocknet wird. Die Vortrocknung kann für einen Zeitraum von 1 Minute bis 60 Stunden, insbesondere 1 Stunde bis 50 Stunden oder 12 bis 48 Stunden erfolgen.The method according to the invention can also be carried out prior to step a. comprise the further step that the material containing fibers, in particular paper, is predried at a temperature of 40 to 80 ° C., in particular 45 to 70 ° C. or 45 to 65 ° C. The predrying can take place for a period of 1 minute to 60 hours, in particular 1 hour to 50 hours or 12 to 48 hours.

Das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel kann auf unterschiedliche Weisen hergestellt werden. Beispielsweise kann das Gemisch bei Raumtemperatur oder bei tieferer oder höherer Temperatur, zum Beispiel bei 10°C bis 150°C hergestellt werden. Das Gemisch kann auch in mehreren Schritten hergestellt werden. Enthält das polar aprotische Lösemittel eine ionische Flüssigkeit bzw. ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere mindestens einem vom Dimethylacetamid, Dimethylsulfoxid und Acetonitril, so kann das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel insbesondere hergestellt werden, indem zunächst das Polymer in der ionischen Flüssigkeit gelöst wird und anschließend die so erhaltene Lösung mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril, verdünnt wird. Alternativ kann zunächst die ionische Flüssigkeit mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere Dimethylsulfoxid, vermischt werden und anschließend die gewünschte Menge des Polymers zugegeben werden.The mixture containing at least one polymer and a polar aprotic solvent can be produced in different ways. For example, the mixture can be prepared at room temperature or at a lower or higher temperature, for example at 10 ° C to 150 ° C. The mixture can also be prepared in several steps. If the polar aprotic solvent contains an ionic liquid or the polar aprotic solvent is a mixture of an ionic liquid and at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropylene urea , Sulfolane, dimethyl carbonate and ethylene carbonate, in particular at least one of dimethylacetamide, dimethyl sulfoxide and acetonitrile, the mixture containing at least one polymer and a polar aprotic solvent can be prepared in particular by first dissolving the polymer in the ionic liquid and then dissolving the resulting solution with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate and ethylene carbonate, especially min at least one of dimethylacetamide, dimethyl sulfoxide and acetonitrile is diluted. Alternatively, the ionic liquid can first be mixed with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate and ethylene carbonate and then mixed with the, especially dimethyl sulfoxide desired amount of the polymer can be added.

Das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel kann insbesondere 1 bis 30 Gew.%, insbesondere 3 bis 30 Gew.%, 5 bis 30 Gew.%, 10 bis 30 Gew.%, 12 bis 25 Gew.% oder 15 bis 20 Gew.% oder 17 bis 19 Gew.% ionische Flüssigkeit enthalten, jeweils bezogen auf das Gesamtgewicht des Gemischs. Gemische mit den vorgenannten Gehalten an ionischen Flüssigkeiten lassen sich gut herstellen, insbesondere können auf diese Weise einfach Lösungen erhalten werden, die eine effektive Bearbeitung des faserhaltigen Materials erlauben.The mixture containing at least one polymer and a polar aprotic solvent can in particular 1 to 30% by weight, in particular 3 to 30% by weight, 5 to 30% by weight, 10 to 30% by weight, 12 to 25% by weight or 15% by weight Up to 20% by weight or 17 to 19% by weight of ionic liquid, based in each case on the total weight of the mixture. Mixtures with the abovementioned contents of ionic liquids can be easily produced; in particular, solutions can be obtained in this way that allow the fiber-containing material to be processed effectively.

Das Mischen, insbesondere das Quellen, Anlösen oder Lösen, des Polymers und/oder das anschließende Verdünnen kann bei Temperaturen von 10°C bis 150°C, insbesondere von 20°C bis 140°C, 30°C bis 130°C, 40°C bis 120°C, 50°C bis 110°C oder 60°C bis 100°C durchgeführt werden. Auf diese Weise kann zunächst ein Gemisch, insbesondere eine Lösung, mit einer Konzentration des Polymers von 5 bis 20 Gew.%, insbesondere von 7 bis 15 Gew.%, 8 bis 13 Gew.% oder 9 bis 11 Gew.%, jeweils bezogen auf das Gesamtgewicht des Polymers und der ionischen Flüssigkeit, in der ionischen Flüssigkeit hergestellt werden. Diese Lösung kann anschließend insbesondere mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril, auf die gewünschte Konzentration verdünnt werden. Ferner kann die ionische Flüssigkeit bei den vorstehend genannten Temperaturen auch mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere Dimethylsulfoxid, mit einer Konzentration der ionischen Flüssigkeit von 1 bis 30 Gew.%, insbesondere 3 bis 30 Gew.% oder 5 bis 30 Gew.% oder 10 bis 30 Gew.% oder 12 bis 25 Gew.% oder 15 bis 20 Gew.% oder 17 bis 19 Gew.%, jeweils bezogen auf das Gesamtgewicht der Mischung insbesondere der ionischen Flüssigkeit und Dimethylsulfoxid, vermischt werden. Dieser Lösung kann anschließend das Polymer in der gewünschten Menge zugefügt werden. Auf diese Weise kann das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel einfach hergestellt werden. Ferner kann so die Konzentration des Polymers im Gemisch gut eingestellt werden.The mixing, in particular the swelling, dissolving or dissolving, of the polymer and / or the subsequent dilution can take place at temperatures from 10 ° C. to 150 ° C., in particular from 20 ° C. to 140 ° C., 30 ° C. to 130 ° C., 40 ° C. ° C to 120 ° C, 50 ° C to 110 ° C or 60 ° C to 100 ° C be performed. In this way, a mixture, in particular a solution, with a concentration of the polymer of 5 to 20% by weight, in particular 7 to 15% by weight, 8 to 13% by weight or 9 to 11% by weight, can be obtained in each case based on the total weight of the polymer and the ionic liquid in which the ionic liquid is produced. This solution can then in particular with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate and ethylene carbonate, in particular at least one of dimetonethylsulfamide, dimetonethyl sulfoxide, and in particular at least one of dimetonethylsulfamide , can be diluted to the desired concentration. In addition, the ionic liquid can also be mixed with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethyl sulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate, especially dimethyl carbonate, with a concentration of the ionic liquid of 1 to 30% by weight, in particular 3 to 30% by weight or 5 to 30% by weight or 10 to 30% by weight or 12 to 25% by weight or 15 to 20% by weight or 17 to 19% by weight, based in each case on the total weight of the mixture, in particular the ionic liquid and dimethyl sulfoxide, are mixed. The polymer can then be added to this solution in the desired amount. In this way, the mixture containing at least one polymer and a polar aprotic solvent can be produced in a simple manner. Furthermore, the concentration of the polymer in the mixture can be adjusted well in this way.

Vorteilhafterweise enthält das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel 0,1 bis 10 Gew.%, insbesondere 0,5 bis 8 Gew.% oder 1 bis 5 Gew.%, jeweils bezogen auf das Gesamtgewicht des Gemischs, an Polymer. Lösungen mit diesen Konzentrationen weisen insbesondere eine geeignete Viskosität für das erfindungsgemäße Verfahren auf.The mixture containing at least one polymer and a polar aprotic solvent advantageously contains 0.1 to 10% by weight, in particular 0.5 to 8% by weight or 1 to 5% by weight, based in each case on the total weight of the mixture, of polymer. Solutions with these concentrations have in particular a suitable viscosity for the method according to the invention.

Ein Material enthaltend Fasern, insbesondere Papier, ist nach dem erfindungsgemäßen Verfahren erhältlich.A material containing fibers, in particular paper, can be obtained by the process according to the invention.

Ein System umfassend mindestens zwei Materialien enthaltend Fasern, ist nach dem erfindungsgemäßen Verfahren erhältlich, insbesondere ein Buch.A system comprising at least two materials containing fibers can be obtained by the method according to the invention, in particular a book.

Die Materialien des Systems können gleich oder verschieden sein. Die Fasern enthaltenden Materialien können gleichzeitig oder zu verschiedenen Zeiten nach dem erfindungsgemäßen Verfahren bearbeitet worden sein. Das System kann ferner auch Materialien, insbesondere Materialien enthaltend Fasern, umfassen, die nicht mit dem erfindungsgemäßen Verfahren bearbeitet worden sind.The materials of the system can be the same or different. The materials containing fibers can have been processed simultaneously or at different times by the method according to the invention. The system can furthermore also comprise materials, in particular materials containing fibers, which have not been processed with the method according to the invention.

Das System kann insbesondere ein Buch, ein Heft, eine Zeitschrift oder eine Zeitung sein. Das Fasern enthaltende Material kann insbesondere Papier sein. Insbesondere in einem Buch kann neben dem Papier noch weiteres Fasern enthaltendes Material, insbesondere Karton, Pappe, Textilien oder Holz, enthalten sein.The system can in particular be a book, a booklet, a magazine or a newspaper. The material containing fibers can in particular be paper. In addition to paper, a book in particular can contain further material containing fibers, in particular cardboard, cardboard, textiles or wood.

Enthält das System verschiedene Fasern enthaltende Materialien, so können diese getrennt oder zusammen nach dem erfindungsgemäßen Verfahren bearbeitet werden. So kann im Falle eines Buches zum Beispiel das Papier getrennt vom Rest des Buches, insbesondere getrennt vom Einband, bearbeitet werden. Das Buch kann aber auch bearbeitet werden, ohne dass vorher Bestandteile abgetrennt werden, insbesondere mit seinem Einband. Ob eine getrennte Bearbeitung der Bestandteile erfolgt, kann insbesondere aufgrund der Weise entschieden werden, wie die Fasern enthaltenden Materialien im System, insbesondere im Buch, zusammengehalten werden. Beispiele für Weisen, wie die Fasern enthaltenden Materialien im System zusammengehalten werden können, umfassen Fadenheftung und Klebebindung.If the system contains materials containing different fibers, these can be processed separately or together using the method according to the invention. In the case of a book, for example, the paper can be processed separately from the rest of the book, in particular separately from the cover. The book can, however, also be edited without first separating any components, especially with its cover. Whether the components are processed separately can be decided in particular on the basis of the way in which the materials containing fibers are held together in the system, in particular in the book. Examples of ways in which the fiber-containing materials in the system can be held together include thread stitching and adhesive binding.

Gegenstand der Erfindung ist außerdem die Verwendung eines Gemischs enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel zur Bearbeitung von Material enthaltend Fasern, insbesondere Papier, im erfindungsgemäßen Verfahren.The invention also relates to the use of a mixture containing at least one polymer and a polar aprotic solvent for processing material containing fibers, in particular paper, in the process according to the invention.

Dabei gilt für die Verwendung des Gemischs das vorstehend für das polar aprotische Lösemittel, für das Material enthaltend Fasern und/oder für das Polymer Gesagte analog.The statements made above for the polar aprotic solvent, for the material containing fibers and / or for the polymer apply analogously to the use of the mixture.

Gegenstand der Erfindung ist ferner die Verwendung von Dimethylsulfoxid als Antioxidationsmittel zur Bearbeitung von Papier, im erfindungsgemäßen Verfahren.The invention also relates to the use of dimethyl sulfoxide as an antioxidant for processing paper in the process according to the invention.

Gegenstand der Erfindung ist außerdem die Verwendung einer ionischen Flüssigkeit enthaltend ein quartäres Ammoniumkation, insbesondere einer ionischen Flüssigkeit enthaltend ein Dialkylimidazoliumkation, insbesondere 1-Butyl-3-methylimidazoliumchlorid oder 1-Butyl-3-methylimidazoliumacetat, als antimikrobielles Mittel zur Bearbeitung von Papier, im erfindungsgemäßen Verfahren.The invention also relates to the use of an ionic liquid containing a quaternary ammonium cation, in particular an ionic liquid containing a dialkylimidazolium cation, in particular 1-butyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium acetate, as an antimicrobial agent for processing paper, in the process according to the invention.

Die beigefügten Figuren zeigen:

Fig. 1
zeigt eine fluoreszenzmikroskopische Aufnahme einer Schicht eines Papiers, das erfindungsgemäß bearbeitet wurde, wobei als Polymer fluoreszenzmarkierte Cellulose verwendet wurde und wobei die Behandlung durch Tauchen des mit dem Gemisch getränkten Papiers in eine Mischung aus Hexamethyldisiloxan enthaltend 1 Vol.% Ethanol erfolgte. Die Cellulosefasern des Substrats heben sich sehr kontrastreich vom dunklen Hintergrund ab.
Fig. 2
zeigt eine fluoreszenzmikroskopische Aufnahme einer Schicht eines Papiers, das erfindungsgemäß bearbeitet wurde, wobei als Polymer fluoreszenzmarkierte Cellulose verwendet wurde und wobei die Behandlung durch Tauchen des mit dem Gemisch getränkten Papiers in Hexamethyldisiloxan erfolgte. Die Cellulosefasern des Substrats heben sich sehr kontrastreich vom dunklen Hintergrund ab.
Fig. 3
zeigt als Referenz eine fluoreszenzmikroskopische Aufnahme einer Schicht eines nicht bearbeiteten Papiers. Die Cellulosefasern des Substrats sind vom Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie die Cellulosefasern in Fig. 1 oder Fig. 2.
Fig. 4
zeigt eine fluoreszenzmikroskopische Aufnahme einer Schicht eines Papiers, das mit einem Gemisch bearbeitet wurde, das kein Polymer enthielt. Die Cellulosefasern des Substrats sind vom Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie die Cellulosefasern in Fig. 1 oder Fig. 2.
The attached figures show:
Fig. 1
shows a fluorescence microscope image of a layer of paper that has been processed according to the invention using fluorescence-marked cellulose as the polymer and the treatment being carried out by dipping the paper soaked with the mixture in a mixture of hexamethyldisiloxane containing 1% by volume of ethanol. The cellulose fibers of the substrate stand out against the dark background with great contrast.
Fig. 2
shows a fluorescence microscope image of a layer of paper which has been processed according to the invention using fluorescence-marked cellulose as the polymer and the treatment being carried out by immersing the paper soaked with the mixture in hexamethyldisiloxane. The cellulose fibers of the substrate stand out against the dark background with great contrast.
Fig. 3
shows, as a reference, a fluorescence microscope image of a layer of unprocessed paper. The cellulose fibers of the substrate can be distinguished from the background, but do not stand out from the background as well as the cellulose fibers in Fig. 1 or Fig. 2 .
Fig. 4
Figure 3 shows a fluorescence micrograph of a layer of paper processed with a mixture containing no polymer. The cellulose fibers of the substrate can be distinguished from the background, but do not stand out from the background as well as the cellulose fibers in Fig. 1 or Fig. 2 .

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben, die jedoch nur der Veranschaulichung dienen und nicht beschränkend sind.The invention is described in more detail below on the basis of exemplary embodiments, which, however, only serve for illustration and are not restrictive.

AusführungsbeispieleEmbodiments ChemikalienChemicals

1-Butyl-3-methylimidazoliumchlorid (BMIM-Cl), Sigma-Aldrich; 1-Butyl-3-methylimidazoliumacetat (BMIM-OAc), erhalten durch Anionenaustausch ausgehend von BMIM-Cl; Viskose (danufil, 3,3 dtex/0,3 mm, nachfolgend: "Danufil"), Kelheim Fibres GmbH; Dimethylacetamid (DMAc), CSC Jäklechemie GmbH & Co. KG; Dimethylsulfoxid (DMSO), CSC Jäklechemie GmbH & Co. KG; Hexamethyldisiloxan (HMDO), Chemische Fabrik Karl Bucher GmbH; mikrokristalline Cellulose (MCC), Sigma-Aldrich; Zellstoff (ENO PINE ECF); Stora Enso Oyj; alpha-Cellulose, Sigma-Aldrich.1-butyl-3-methylimidazolium chloride (BMIM-Cl), Sigma-Aldrich; 1-butyl-3-methylimidazolium acetate (BMIM-OAc), obtained by anion exchange starting from BMIM-Cl; Viscose (danufil, 3.3 dtex / 0.3 mm, hereinafter: "Danufil"), Kelheim Fibers GmbH; Dimethylacetamide (DMAc), CSC Jäklechemie GmbH & Co. KG; Dimethyl sulfoxide (DMSO), CSC Jäklechemie GmbH & Co. KG; Hexamethyldisiloxane (HMDO), Chemische Fabrik Karl Bucher GmbH; microcrystalline cellulose (MCC), Sigma-Aldrich; Pulp (ENO PINE ECF); Stora Enso Oyj; alpha-cellulose, Sigma-Aldrich.

MessmethodenMeasurement methods

Messungen wurden gemäß der nachfolgenden Tabelle durchgeführt. Tabelle 1: Messmethoden Eigenschaft Messmethode Bruchkraft von Papier EN ISO 1924-2:2008 D Bruchdehnung von Papier EN ISO 1924-2:2008 D pH Wert ISO 6588-1:2012 Viskosität Bestimmung mit einem Rotationsviskosimeter "Gemini" der Firma Bohlin bei 25°C Measurements were carried out according to the table below. Table 1: Measurement methods property Measurement method Breaking strength of paper EN ISO 1924-2: 2008 D. Elongation at break of paper EN ISO 1924-2: 2008 D. PH value ISO 6588-1: 2012 viscosity Determination with a "Gemini" rotational viscometer from Bohlin at 25 ° C

Alle Substrate bzw. Papiere wurden in einem vorgeschalteten Schritt bei 55°C für 24 Stunden erhitzt soweit nicht anders angegeben. Da in den verschiedenen Beispielen verschiedene Papiere verwendet wurden, können die in verschiedenen Beispielen verwendeten Papiere Abweichungen in den gemessenen Werten voneinander aufweisen, weshalb nur die Werte innerhalb eines Beispiels unmittelbar miteinander verglichen werden können.All substrates or papers were heated in a preceding step at 55 ° C. for 24 hours unless otherwise stated. Since different papers were used in the different examples, the papers used in different examples may have deviations in the measured values from one another, which is why only the values within one example can be directly compared with one another.

Beispiel 1 (Bearbeitung von Papier mit Viskose in einer Mischung aus DMAc und BMIM-OAc)Example 1 (processing of paper with viscose in a mixture of DMAc and BMIM-OAc)

Zunächst wurde eine Lösung enthaltend 10 Gew.% Danufil in BMIM-OAc hergestellt, welche anschließend durch Zugabe von DMAc auf einen Viskosegehalt von 2 Gew.%, bezogen auf das Gesamtgewicht der Lösung, verdünnt wurde, wobei die Lösung aus BMIM-OAc und DMAc 18 Gew.% BMIM-OAc und 82 Gew.% DMAc, jeweils bezogen auf das Gewicht von BMIM-OAc und DMAc, enthielt. Die Viskosität der Lösung betrug 10 mPa·s. Anschließend wurde das zu bearbeitende Papier in der hergestellten Lösung für eine Minute getränkt und danach für 30 Sekunden mit DMAc abgespült. Das so erhaltene Papier wurde anschließend für 72 Stunden in HMDO (500 g) getaucht, wodurch sich die Viskose an den Papierfasern anlagerte. Nach der Behandlung in HMDO wurde das Papier bei 55°C für 12 Stunden erhitzt. Die Bruchkraft, die Bruchdehnung sowie der pH Wert des bearbeiteten Papiers 1 wurden anschließend bestimmt und mit einem nicht bearbeiteten Papier als Referenz verglichen. Tabelle 2: Mechanische Eigenschaften und pH Wert Probe pH Wert Bruchkraft [N] Bruchdehnung [%] Referenz 4,57 23 ± 2 0,76 ± 0,20 Papier 1 6,64 28 ± 2 0,85 ± 0,07 First, a solution containing 10% by weight of Danufil in BMIM-OAc was produced, which was then diluted to a viscose content of 2% by weight, based on the total weight of the solution, by adding DMAc, the solution of BMIM-OAc and DMAc 18% by weight BMIM-OAc and 82% by weight DMAc, each based on the weight of BMIM-OAc and DMAc. The viscosity of the solution was 10 mPa · s. Subsequently the paper to be processed was soaked in the prepared solution for one minute and then rinsed with DMAc for 30 seconds. The paper obtained in this way was then immersed in HMDO (500 g) for 72 hours, as a result of which the viscose attached to the paper fibers. After treatment in HMDO, the paper was heated at 55 ° C for 12 hours. The breaking force, elongation at break and the pH value of the processed paper 1 were then determined and compared with an unprocessed paper as a reference. Table 2: Mechanical properties and pH value sample PH value Breaking force [N] Elongation at break [%] reference 4.57 23 ± 2 0.76 ± 0.20 Paper 1 6.64 28 ± 2 0.85 ± 0.07

Tabelle 2 zeigt, dass die Bruchkraft, die Bruchdehnung sowie der pH-Wert bei Einsatz von Gemischen enthaltend Viskose sowie Mischungen aus BMIM-OAc und DMAc durch die erfindungsgemäße Bearbeitung im Vergleich zu nicht bearbeitetem Papier deutlich gesteigert werden können. Das bearbeitete Papier war vom optischen und haptischen Eindruck gleichwertig zu nicht bearbeitetem Papier. Insbesondere wurde kein Ausbluten der Tinte bzw. der Druckerfarben beobachtet.Table 2 shows that the breaking force, the elongation at break and the pH value when using mixtures containing viscose and mixtures of BMIM-OAc and DMAc can be significantly increased by the processing according to the invention compared to unprocessed paper. The processed paper was visually and haptically equivalent to unprocessed paper. In particular, no bleeding of the ink or the printing inks was observed.

Beispiel 2 (Bearbeitung von Papier mit Viskose in einer Mischung aus DMAc und BMIM-Cl)Example 2 (processing of paper with viscose in a mixture of DMAc and BMIM-Cl)

Zunächst wurde eine Lösung enthaltend 10 Gew.% Danufil in BMIM-CI hergestellt, welche anschließend durch Zugabe von DMAc auf einen Viskosegehalt von 2 Gew.%, bezogen auf das Gesamtgewicht der Lösung, verdünnt wurde, wobei die Lösung aus BMIM-CI und DMAc 18 Gew.% BMIM-CI und 82 Gew.% DMAc, jeweils bezogen auf das Gewicht von BMIM-CI und DMAc, enthielt. Die Viskosität der Lösung betrug 10 mPa·s. Anschließend wurde das zu bearbeitende Papier in der hergestellten Lösung für eine Minute getränkt und danach für 30 Sekunden mit DMAc abgespült. Das so erhaltene Papier wurde anschließend für 72 Stunden in HDMO (500 g) getaucht, wodurch sich die Viskose an den Papierfasern anlagerte. Nach der Behandlung in HDMO wurde das Papier bei 55°C für 12 Stunden erhitzt. Die Bruchkraft, die Bruchdehnung sowie der pH Wert des bearbeiteten Papiers 2 wurden anschließend bestimmt und mit einem nicht bearbeiteten Papier als Referenz verglichen. Tabelle 3: Mechanische Eigenschaften und pH Wert Probe pH Wert Bruchkraft [N] Bruchdehnung [%] Referenz 4,14 29 ± 2 0,66 ± 0,10 Papier 2 4,24 36 ± 3 0,84 ± 0,10 First, a solution containing 10% by weight of Danufil in BMIM-CI was prepared, which was then diluted by adding DMAc to a viscose content of 2% by weight, based on the total weight of the solution, the solution being made up of BMIM-CI and DMAc 18% by weight BMIM-CI and 82% by weight DMAc, each based on the weight of BMIM-CI and DMAc. The viscosity of the solution was 10 mPa · s. The paper to be processed was then soaked in the prepared solution for one minute and then rinsed with DMAc for 30 seconds. The paper obtained in this way was then immersed in HDMO (500 g) for 72 hours, as a result of which the viscose adhered to the paper fibers. After the treatment in HDMO, the paper was heated at 55 ° C for 12 hours. The breaking force, the elongation at break and the pH value of the processed paper 2 were then determined and compared with a non-processed paper as a reference. Table 3: Mechanical properties and pH value sample PH value Breaking force [N] Elongation at break [%] reference 4.14 29 ± 2 0.66 ± 0.10 Paper 2 4.24 36 ± 3 0.84 ± 0.10

Tabelle 3 zeigt, dass die Bruchkraft und die Bruchdehnung bei Einsatz von Gemischen enthaltend Viskose sowie Mischungen aus BMIM-CI und DMAc durch die erfindungsgemäße Bearbeitung im Vergleich zu nicht bearbeitetem Papier deutlich gesteigert werden können. Das bearbeitete Papier war vom optischen und haptischen Eindruck gleichwertig zu nicht bearbeitetem Papier. Insbesondere wurde kein Ausbluten der Tinte bzw. der Druckerfarben beobachtet. Ferner stieg der pH Wert des bearbeiteten Papiers an.Table 3 shows that the breaking force and elongation at break when using mixtures containing viscose and mixtures of BMIM-CI and DMAc can be significantly increased by the processing according to the invention compared to unprocessed paper. The processed paper was visually and haptically equivalent to unprocessed paper. In particular, no bleeding of the ink or the printing inks was observed. Furthermore, the pH of the processed paper increased.

Beispiel 3 (Bearbeitung von Papier mit MCC in 5% LiCI in DMAc)Example 3 (processing of paper with MCC in 5% LiCI in DMAc)

Zunächst wurde eine Lösung enthaltend 2 Gew.% mikrokristalline Cellulose in DMAc (enthaltend 5 Gew.% LiCI, bezogen auf das Gesamtgewicht aus LiCI und DMAc), bezogen auf das Gesamtgewicht der Lösung, hergestellt. Die Viskosität der Lösung betrug 13 mPa·s. Anschließend wurde das zu bearbeitende Papier in der hergestellten Lösung für fünf Minuten getränkt. Das so erhaltene Papier wurde anschließend für 72 Stunden in HMDO (500 g) getaucht, wodurch sich die Viskose an den Papierfasern anlagerte. Nach der Behandlung in HMDO wurde das Papier bei 55°C für 12 Stunden erhitzt. Die Bruchkraft sowie die Bruchdehnung des bearbeiteten Papiers 3 wurden anschließend bestimmt und mit einem Papier als Referenz verglichen, das in DMAc (enthaltend 5 Gew.% LiCI, bezogen auf das Gesamtgewicht aus LiCI und DMAc) für eine Minute getränkt wurde, anschließend für 72 Stunden in HMDO (500 g) getaucht wurde und zuletzt bei 60°C für 12 Stunden erhitzt wurde. Tabelle 4: Mechanische Eigenschaften Probe Bruchkraft [N] Bruchdehnung [%] Referenz 22 ± 4 0,67 ± 0,2 Papier 3 41 ±3 0,76 ± 0,3 First, a solution containing 2% by weight of microcrystalline cellulose in DMAc (containing 5% by weight of LiCl, based on the total weight of LiCl and DMAc), based on the total weight of the solution, was prepared. The viscosity of the solution was 13 mPa · s. The paper to be processed was then soaked in the prepared solution for five minutes. The paper obtained in this way was then immersed in HMDO (500 g) for 72 hours, as a result of which the viscose attached to the paper fibers. After treatment in HMDO, the paper was heated at 55 ° C for 12 hours. The breaking strength and elongation at break of the processed paper 3 were then determined and compared with a paper as a reference which was soaked in DMAc (containing 5% by weight LiCl, based on the total weight of LiCl and DMAc) for one minute, then for 72 hours was immersed in HMDO (500 g) and finally heated at 60 ° C for 12 hours. Table 4: Mechanical properties sample Breaking force [N] Elongation at break [%] reference 22 ± 4 0.67 ± 0.2 Paper 3 41 ± 3 0.76 ± 0.3

Tabelle 4 zeigt, dass die Bruchkraft sowie die Bruchdehnung bei Einsatz von Gemischen enthaltend MCC sowie DMAc (enthaltend 5 Gew.% LiCI) durch die erfindungsgemäße Bearbeitung im Vergleich zu Papier, das nicht mit einem Polymer wie MCC in Kontakt gekommen ist, deutlich höher ist. Das bearbeitete Papier war vom optischen und haptischen Eindruck gleichwertig zu nicht bearbeitetem Papier. Insbesondere wurde kein Ausbluten der Tinte bzw. der Druckerfarben beobachtet.Table 4 shows that the breaking force and elongation at break when using mixtures containing MCC and DMAc (containing 5% by weight LiCl) are significantly higher due to the processing according to the invention compared to paper that has not come into contact with a polymer such as MCC . The processed paper was visually and haptically equivalent to unprocessed paper. In particular, no bleeding of the ink or the printing inks was observed.

Beispiel 4 (Anlagern durch unterschiedliche Behandlungen (Schritt c.))Example 4 (attachment by different treatments (step c.))

Testpapiere wurden mit einer Lösung gemäß Beispiel 1 getränkt, wobei anstelle von Viskose MCC verwendet wurde. Nach der Tränkung in der Lösung wurden die Papiere wie in Beispiel 1 mit DMAc abgespült und für die angegebene Dauer in die in Tabelle 5 aufgeführten Lösemittel getaucht. Tabelle 5: Behandlungen Probe Lösemittel (Dauer der Tränkung) Testpapier 4 HMDO (72 h) Testpapier 5 5 Gew.% EtOH/ 95 Gew.% HMDO (24 h) Testpapier 6 EtOH (< 1 min) Test papers were soaked with a solution according to Example 1, MCC being used instead of viscose. After soaking in the solution, the papers were rinsed with DMAc as in Example 1 and immersed in the solvents listed in Table 5 for the specified duration. Table 5: Treatments sample Solvent (duration of impregnation) Test paper 4 HMDO (72 h) Test paper 5 5 wt.% EtOH / 95 wt.% HMDO (24 h) Test paper 6 EtOH (<1 min)

Nach dem Tauchen in die in Tabelle 5 aufgeführten Lösemittel wurden die Testpapiere 4 bis 6 bei 55°C für 12 Stunden erhitzt. Während Testpapier 4 ein mattes Erscheinungsbild aufwies, flexibel war und auch nach mehrmaligem Falzen noch stabil war, zeigten die Testpapiere 5 und 6 teilweise einen Glanz. Dies spricht dafür, dass in Testpapier 4 die Anlagerung der MCC wie oben an den Papierfasern erfolgte, während in Testpapieren 5 und 6 eine inhomogene, eher oberflächliche Anlagerung der MCC stattfand. Somit kann durch die Wahl der Behandlung, insbesondere durch die Wahl des Lösemittels in das getaucht wird, die Dauer der Behandlung und die Anlagerung des Polymers beeinflusst werden.After being immersed in the solvents listed in Table 5, the test papers 4 to 6 were heated at 55 ° C. for 12 hours. While test paper 4 had a matt appearance, was flexible and was still stable even after being folded several times, test papers 5 and 6 partly showed a gloss. This suggests that in test paper 4 the MCC accumulated on the paper fibers as above, while in test papers 5 and 6 an inhomogeneous, rather superficial accumulation of the MCC took place. The duration of the treatment and the accumulation of the polymer can thus be influenced by the choice of treatment, in particular by the choice of the solvent in which the dipping is carried out.

Beispiel 5 (Vergleich verschiedener Polymere)Example 5 (comparison of different polymers)

Es wurden gemäß Beispiel 2 Lösungen hergestellt, wobei als Polymer die in Tabelle 6 angegebenen Polymere eingesetzt wurden. Testpapiere wurden zunächst für fünf Minuten in der Lösung getränkt. Die jeweils erhaltenen Testpapiere wurden anschließend für 72 Stunden in HMDO (500 g) getaucht, wodurch sich die in Tabelle 6 angegebenen Polymere jeweils an den Papierfasern anlagerten. Nach der Behandlung in HMDO wurden die Testpapiere bei 55°C für 12 Stunden erhitzt. Die Bruchkraft und die Bruchdehnung der bearbeiteten Papiere wurden anschließend bestimmt. Tabelle 6: Mechanische Eigenschaften Referenz MCC MCC + ENO PINE ENO PINE Viskose PVA Bruchkraft [N] 17 ± 2 23 ± 6 22 ± 2 23 ± 5 28 ± 1 26 ± 2 Bruchdehnung [%] 1,00± 0,12 0,72 ± 0,27 0,81 ± 0,15 0,84 ± 0,33 1,11± 0,10 0,99 ± 0,12 Solutions were prepared according to Example 2, the polymers given in Table 6 being used as the polymer. Test papers were first soaked in the solution for five minutes. The test papers obtained in each case were then immersed in HMDO (500 g) for 72 hours, as a result of which the polymers indicated in Table 6 were attached to the paper fibers. After the treatment in HMDO, the test papers were heated at 55 ° C. for 12 hours. The breaking force and elongation at break of the processed papers were then determined. Table 6: Mechanical properties reference MCC MCC + ENO PINE ENO PINE viscose PVA Breaking force [N] 17 ± 2 23 ± 6 22 ± 2 23 ± 5 28 ± 1 26 ± 2 Elongation at break [%] 1.00 ± 0.12 0.72 ± 0.27 0.81 ± 0.15 0.84 ± 0.33 1.11 ± 0.10 0.99 ± 0.12

Die Referenzprobe in Tabelle 6 wurde in einem Gemisch aus BMIM-CI und DMAc ohne das Polymer für fünf Minuten getränkt und anschließend für 72 Stunden in HMDO getaucht und danach bei 55°C für 12 Stunden erhitzt. Aus Tabelle 6 fällt auf, dass die Bruchkraft durch die erfindungsgemäße Bearbeitung im Vergleich zum Referenzpapier deutlich gestiegen ist, während die Bruchdehnung etwas gesunken ist. Somit eignen sich die oben genannten Polymere für die Festigung von Papier im erfindungsgemäßen Verfahren.The reference sample in Table 6 was soaked in a mixture of BMIM-CI and DMAc without the polymer for five minutes and then immersed in HMDO for 72 hours and then heated at 55 ° C. for 12 hours. It is noticeable from Table 6 that the breaking force as a result of the processing according to the invention has increased significantly compared to the reference paper, while the elongation at break has decreased somewhat. The abovementioned polymers are therefore suitable for strengthening paper in the process according to the invention.

Beispiel 6 (Kombinierbarkeit mit Entsäuerungsverfahren)Example 6 (can be combined with deacidification process)

Es wurden gemäß Beispiel 1 Lösungen hergestellt, in denen jeweils ein nach dem papersave Verfahren entsäuertes Papier und ein nicht entsäuertes Papier für eine Minute getränkt wurden. Nach der Tränkung wurden die Papiere für 30 Sekunden mit DMAc abgespült und die so erhaltenen Papiere jeweils für 72 Stunden in HMDO (500 g) getaucht, wodurch sich die Viskose an die Papierfasern anlagerte. Nach der Behandlung in HMDO wurden die Papiere bei 55°C für 12 Stunden erhitzt. Die Bruchkraft und die Bruchdehnung der bearbeiteten Papiere ("verfestigt" bzw. "entsäuert/verfestigt" in Tabelle 7) und eines nach dem papersave Verfahren entsäuerten Papiers ("entsäuert" in Tabelle 7) wurden anschließend bestimmt. Ebenfalls wurden die Bruchkraft und die Bruchdehnung des Ausgangspapiers bestimmt ("Referenz" in Tabelle 7), das also weder nach dem papersave Verfahren entsäuert noch gemäß dem erfindungsgemäßen Verfahren bearbeitet wurde. Tabelle 7: Mechanische Eigenschaften Referenz entsäuert verfestigt entsäuert/verfestigt Bruchkraft [N] 29 ± 3 32 ± 4 28 ± 1 35 ± 4 Bruchdehnung [%] 0,66 ± 0,11 0,55 ± 0,01 1,11 ± 0,09 0,84 ± 0,11 Solutions were prepared according to Example 1 in which a paper that had been deacidified by the papersave method and a paper that had not been deacidified were soaked for one minute. After the impregnation, the papers were rinsed for 30 seconds with DMAc and the papers obtained in this way were each immersed in HMDO (500 g) for 72 hours, as a result of which the viscose was attached to the paper fibers. After treatment in HMDO, the papers were heated at 55 ° C for 12 hours. The breaking force and elongation at break of the processed papers ("solidified" or "deacidified / solidified" in Table 7) and a paper deacidified by the papersave method ("deacidified" in Table 7) were then determined. The breaking force and elongation at break of the starting paper were also determined (“reference” in Table 7), which was neither deacidified according to the papersave method nor processed according to the method according to the invention. Table 7: Mechanical properties reference deacidified solidified deacidified / solidified Breaking force [N] 29 ± 3 32 ± 4 28 ± 1 35 ± 4 Elongation at break [%] 0.66 ± 0.11 0.55 ± 0.01 1.11 ± 0.09 0.84 ± 0.11

Im direkten Vergleich nimmt bei der Entsäuerung nach dem papersave Verfahren die Bruchkraft zu, während die Bruchdehnung abnimmt. Bei dem erfindungsgemäßen Verfahren wurde in diesem Versuch keine deutliche Veränderung der Bruchkraft beobachtet, während die Bruchdehnung deutlich anstieg. Bei der Probe, die sowohl entsäuert als auch verfestigt wurde, stiegen sowohl die Bruchkraft als auch die Bruchdehnung deutlich an. Tabelle 6 zeigt, dass das erfindungsgemäße Verfahren mit Entsäuerungsverfahren wie dem papersave Verfahren kombinierbar ist. Dabei ist insbesondere die Erhöhung der Bruchdehnung durch das erfindungsgemäße Verfahren von Bedeutung, da so die Brüchigkeit von Papieren reduziert werden kann.In direct comparison, deacidification using the papersave process increases the breaking force while the elongation at break decreases. In the method according to the invention no significant change in the breaking force was observed in this test, while the elongation at break increased significantly. In the case of the sample, which was both deacidified and solidified, both the breaking force and the elongation at break increased significantly. Table 6 shows that the process according to the invention can be combined with deacidification processes such as the papersave process. The increase in elongation at break by the method according to the invention is particularly important here, since the brittleness of papers can be reduced in this way.

Beispiel 7 (Anwendung verschiedener Polymere bei entsäuertem und nicht entsäuertem Substrat)Example 7 (application of different polymers to deacidified and non-deacidified substrate)

Es wurden gemäß Beispiel 1 Lösungen hergestellt, wobei jeweils als Polymer die in Tabelle 8 (nicht entsäuerte Papiere) und Tabelle 9 (nach dem papersave Verfahren entsäuerte Papiere) angegebenen Polymere eingesetzt wurden und als ionische Flüssigkeit BMIM-CI verwendet wurde. Die Testpapiere wurden eine Minute in der jeweiligen Lösung getränkt und anschließend für 30 Sekunden mit DMAc abgespült. Die so erhaltenen Papiere wurde für72 Stunden in HMDO getaucht, wodurch sich die in Tabelle 8 bzw. 9 angegebenen Polymere jeweils an die Papierfasern anlagerten. Nach der Behandlung in HMDO wurden die Papiere bei 55°C für 24 Stunden erhitzt. Die Bruchkraft und die Bruchdehnung der bearbeiteten Papiere wurden anschließend bestimmt. Das Referenzpapier wurde im Wesentlichen derselben Bearbeitung unterzogen wie die anderen Papiere, mit dem Unterschied, dass die Lösung im ersten Schritt kein Polymer enthielt, sondern nur Dimethylacetamid und BMIM-Cl. Tabelle 8: Mechanische Eigenschaften der bearbeiteten, nicht entsäuerten Papiere Referenz Chitin Stärke PVA Bruchkraft [N] 17 ± 2 16 ± 1 N 25 ± 2 26 ± 2 Bruchdehnung [%] 1,00 ± 0,12 0,93 ± 0,19 1,24 ± 0,07 0,99 ± 0,12 Tabelle 9: Mechanische Eigenschaften der bearbeiteten, entsäuerten Papiere Referenz Chitin Stärke PVA Bruchkraft [N] 17 ± 2 26 ± 2 N 32 ± 1 35 ± 3 Bruchdehnung [%] 1,00 ± 0,12 1,12 ± 0,12 0,74 ± 0,07 0,86 ± 1,12 Solutions were prepared according to Example 1, the polymers used in each case in Table 8 (papers not deacidified) and Table 9 (papers deacidified according to the papersave process) and BMIM-CI as the ionic liquid. The test papers were soaked in the respective solution for one minute and then rinsed with DMAc for 30 seconds. The papers obtained in this way were immersed in HMDO for 72 hours, as a result of which the polymers shown in Tables 8 and 9 respectively attached to the paper fibers. After treatment in HMDO, the papers were heated at 55 ° C for 24 hours. The breaking force and elongation at break of the processed papers were then determined. The reference paper was subjected to essentially the same processing as the other papers, with the difference that the solution in the first step did not contain any polymer, but only dimethylacetamide and BMIM-Cl. Table 8: Mechanical properties of the processed, non-deacidified papers reference Chitin Strength PVA Breaking force [N] 17 ± 2 16 ± 1N 25 ± 2 26 ± 2 Elongation at break [%] 1.00 ± 0.12 0.93 ± 0.19 1.24 ± 0.07 0.99 ± 0.12 reference Chitin Strength PVA Breaking force [N] 17 ± 2 26 ± 2N 32 ± 1 35 ± 3 Elongation at break [%] 1.00 ± 0.12 1.12 ± 0.12 0.74 ± 0.07 0.86 ± 1.12

Die Tabellen 8 und 9 zeigen, dass durch die Bearbeitung nach dem erfindungsgemäßen Verfahren insbesondere eine höhere Bruchkraft für entsäuerte und nicht entsäuerte Papiere erreicht werden kann. Für Stärke ist im Falle des nicht entsäuerten Papiers auch eine Erhöhung der Bruchdehnung zu beobachten (vgl. Tabelle 8). Gleiches gilt für Chitin im Falle des entsäuerten Papiers (vgl. Tabelle 9). Neben der Kombinierbarkeit mit dem papersave Verfahren geht aus den Tabellen 8 und 9 somit hervor, dass durch das erfindungsgemäße Verfahren die mechanischen Eigenschaften der Papiere verbessert werden können.Tables 8 and 9 show that processing according to the method according to the invention enables, in particular, a higher breaking force to be achieved for deacidified and non-deacidified papers. For starch, in the case of paper that has not been deacidified, an increase in elongation at break can also be observed (see Table 8). The same applies to chitin in the case of deacidified paper (see Table 9). In addition to the ability to be combined with the papersave process, Tables 8 and 9 thus show that the mechanical properties of the papers can be improved by the process according to the invention.

Beispiel 8 (Bearbeitung von Holz)Example 8 (processing of wood)

Es wurde gemäß Beispiel 2 eine Lösung hergestellt. Diese Lösung wurde auf einer Seite eines Holzbretts mit einem Pinsel aufgetragen, mit Wasser abgespült und für 16 Stunden bei 25°C getrocknet. Die Oberfläche des Holzes zeigt an den bearbeiteten Stellen eine deutliche Glättung der Oberfläche. Lacke lassen sich auch auf den bearbeiteten Stellen gut aufbringen.A solution was prepared according to Example 2. This solution was applied to one side of a wooden board with a brush, rinsed with water and dried for 16 hours at 25 ° C. The surface of the wood shows a clear smoothing of the surface in the processed areas. Varnishes can also be easily applied to the processed areas.

Beispiel 9 (Fluoreszenzmikroskopische Aufnahmen)Example 9 (fluorescence microscope images)

Es wurde eine Lösung enthaltend 2 Gew.% fluoreszenzmarkierte Cellulose in einer Mischung aus DMSO und BMIM-OAc, wobei das DMSO 20 Gew.% BMIM-OAc enthielt, hergestellt. Fluoreszenzmarkierte Cellulose ist beispielsweise aus W. Helbert et al. Biomacromolecules 2003, 4, 481-471 , bekannt. Als Fluoreszenzmarker wurde ein DTAF-Marker verwendet, der bei 488 nm angeregt wird, wobei die Emission bei 515 nm gemessen wird. Zwei Testpapiere wurden in dieser Lösung für eine Minute getränkt und anschließend für 30 Sekunden mit DMSO abgespült. Das erste dieser Papiere (Testpapier 7) wurde anschließend für 72 Stunden in HMDO enthaltend 1 Vol.% Ethanol (insges. 500 g) getaucht. Das zweite dieser Papiere (Testpapier 8) wurde für 72 Stunden in HMDO (500 g) getaucht. Nach der Behandlung in HDMO bzw. in HMDO/Ethanol wurden die Papiere bei 55°C für 12 Stunden erhitzt. Ebenfalls wurde eine Blindprobe erstellt, indem ein drittes Testpapier (Testpapier 9) zunächst in einer Mischung aus DMSO enthaltend 13 Gew.% BMIM-OAc jedoch ohne Polymer getränkt wurde, danach für 72 Stunden in HMDO (500 g) getaucht wurde und anschließend bei 55°C für 12 Stunden erhitzt wurde. Als Referenz diente ein viertes Testpapier (Testpapier 10), das nicht bearbeitet wurde.A solution containing 2% by weight of fluorescence-labeled cellulose in a mixture of DMSO and BMIM-OAc, the DMSO containing 20% by weight of BMIM-OAc, was produced. Fluorescence-marked cellulose is made of, for example W. Helbert et al. Biomacromolecules 2003, 4, 481-471 , known. The fluorescent marker used was a DTAF marker which is excited at 488 nm, the emission being measured at 515 nm. Two test papers were soaked in this solution for one minute and then rinsed off with DMSO for 30 seconds. The first of these papers (test paper 7) was then immersed for 72 hours in HMDO containing 1% by volume of ethanol (500 g in total). The second of these papers (test paper 8) was immersed in HMDO (500 g) for 72 hours. After the treatment in HDMO or in HMDO / ethanol, the papers were heated at 55 ° C. for 12 hours. A blank sample was also created by first soaking a third test paper (test paper 9) in a mixture of DMSO containing 13% by weight BMIM-OAc but without polymer, then immersing it in HMDO (500 g) for 72 hours and then at 55 ° C was heated for 12 hours. A fourth test paper (test paper 10) that was not processed was used as a reference.

Von den Testpapieren 7 bis 10 wurden mit Klebefilm an einer Stelle nacheinander mehrere Schichten abgenommen, wobei von der nicht bearbeiteten Referenz acht Schichten abgenommen werden konnten und von den übrigen bearbeiteten Testpapieren zehn Schichten abgenommen werden konnten. Von den Schichten wurden unter einem Mikroskop (Nikon FN-C LWD mit Objektiv Nikon 10x/0.25) bei 488 nm eine Aufnahme mit gleicher Belichtungszeit gemacht (220 ms mit Q-IMAGING RETIGA 200 RV). Repräsentative Abbildungen der Schichten sind in den Figuren Fig. 1 bis Fig. 4 gezeigt.From the test papers 7 to 10, several layers were removed one after the other with adhesive film at one point, with eight layers being able to be removed from the non-processed reference and ten layers being able to be removed from the remaining processed test papers. A picture was taken of the layers under a microscope (Nikon FN-C LWD with Nikon 10x / 0.25 objective) at 488 nm with the same exposure time (220 ms with Q-IMAGING RETIGA 200 RV). Representative illustrations of the layers are in the figures FIGS. 1 to 4 shown.

Fig. 1 zeigt eine Aufnahme von Schicht 3 von Testpapier 7. Es ist deutlich zu erkennen, dass sich die Fasern des Papiers sehr kontrastreich vom Hintergrund abheben. Fig. 2 zeigt eine Aufnahme von Schicht 3 von Testpapier 8. Es ist deutlich zu erkennen, dass sich die Fasern des Papiers sehr kontrastreich vom Hintergrund abheben. Fig. 3 zeigt eine Aufnahme von Schicht 3 der Referenz. Die Cellulosefasern sind von dem Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie in Fig. 1 und Fig. 2. Fig. 4 zeigt eine Aufnahme von Schicht 3 der Blindprobe. Auch hier sind die Cellulosefasern von dem Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie in Fig. 1 und Fig. 2. Fig. 1 shows a picture of layer 3 of test paper 7. It can be clearly seen that the fibers of the paper stand out against the background with a very high contrast. Fig. 2 shows a photograph of layer 3 of test paper 8. It can be clearly seen that the fibers of the paper stand out against the background with a very high contrast. Fig. 3 shows a photograph of layer 3 of the reference. The cellulose fibers can be distinguished from the background, but do not stand out from the background as well as in Fig. 1 and Fig. 2 . Fig. 4 shows a photograph of layer 3 of the blank sample. Here, too, the cellulose fibers can be distinguished from the background, but do not stand out from the background in such a high contrast as in Fig. 1 and Fig. 2 .

Die Figuren stehen im Einklang mit einer Anlagerung der fluoreszenzmarkierten Cellulose aus dem Gemisch an den Fasern des Papiers. Es erfolgte also eine Art Ummantelung der Papierfasern durch die fluoreszenzmarkierte Cellulose, wodurch die Papierfasern und damit das Papier gefestigt werden.The figures are consistent with an accumulation of the fluorescence-labeled cellulose from the mixture on the fibers of the paper. The paper fibers were thus coated with fluorescence-marked cellulose, which strengthened the paper fibers and thus the paper.

Beispiel 10 (Bearbeitung eines Buchs)Example 10 (editing a book)

Es wurden eine Lösung enthaltend 1 Gew.% alpha-Cellulose in einer Mischung aus DMSO und BMIM-OAc, wobei das DMSO 6,5 Gew.% BMIM-OAc enthielt, sowie eine Lösung enthaltend 2 Gew.% alpha-Cellulose in einer Mischung aus DMSO und BMIM-OAc, wobei das DMSO 11,3 Gew.% BMIM-OAc enthielt, hergestellt.A solution containing 1% by weight of alpha-cellulose in a mixture of DMSO and BMIM-OAc, the DMSO containing 6.5% by weight of BMIM-OAc, and a solution containing 2% by weight of alpha-cellulose in a mixture were produced from DMSO and BMIM-OAc, the DMSO containing 11.3% by weight of BMIM-OAc.

Als Substrat wurde ein 16-seitiges Buch aus dem Jahre 1943 mit dem Titel "Tabellenbuch für Metallgewerbe" verwendet, das in einem Exsikkator über Orangegel über einen Zeitraum von einer Woche getrocknet worden war, wobei der Feuchtigkeitsgehalt des Buchs von 6,9 Gew.% auf 1,2 Gew.% gesunken war. Das Buch wurde durch zwei horizontale Schnitte in drei nahezu gleich große Teile geteilt.A 16-page book from 1943 with the title "Tables for Metalworking" was used as the substrate, which had been dried in a desiccator over orange gel for a period of one week, the moisture content of the book being 6.9% by weight. had decreased to 1.2 wt.%. The book was divided into three almost equal parts by two horizontal cuts.

Der mittlere Teile des Buchs wurde anschließend aufgefächert in einem Gefäß aufgestellt, wonach das Gefäß mit der voranstehend beschriebenen Lösung enthaltend 1 Gew.% alpha-Cellulose gefüllt und geschlossen wurde. Der mittlere Teil des Buchs würde für 1 Minute in der Lösung getränkt. Daraufhin wurde der mittlere Teil des Buchs aufgefächert in einem zweiten Gefäß aufgestellt und mit DMSO für 30 Sekunden abgespült. Anschließend wurde der mittlere Teil des Buchs aufgefächert in einem dritten Gefäß aufgestellt, wonach das Gefäß mit HMDO gefüllt und verschlossen wurde. Nach 72 Stunden wurde der mittlere Teil des Buchs entnommen, 6 Stunden bei 55°C und für eine Woche über Orangegel im Exsikkator getrocknet.The middle part of the book was then placed in a vessel, fanned out, after which the vessel was filled with the above-described solution containing 1% by weight of alpha-cellulose and closed. The middle part of the book would be soaked in the solution for 1 minute. Then the middle part of the book was fanned out in a second vessel and rinsed with DMSO for 30 seconds. Then the middle part of the book was fanned out and placed in a third vessel, after which the vessel was filled with HMDO and sealed. After 72 hours, the middle part of the book was removed, 6 hours at 55 ° C and dried over orange gel in a desiccator for a week.

Der obere Teil des Buchs wurde wie der mittlere Teil des Buchs bearbeitet mit dem Unterschied, dass anstelle der Lösung enthaltend 1 Gew.% alpha-Cellulose die Lösung enthaltend 2 Gew.% alpha-Cellulose eingesetzt wurde. Der untere Teil des Buchs wurde nicht bearbeitet und diente als Referenz.The upper part of the book was processed like the middle part of the book with the difference that instead of the solution containing 1% by weight of alpha-cellulose, the solution containing 2% by weight of alpha-cellulose was used. The lower part of the book was not edited and served as a reference.

Bei der Analyse der bearbeiteten Teile des Buches wurden die folgenden Bestandteile der Teile des Buchs untersucht: das Deckblatt, welches der Bogen ist, der die erste und die letzte Seite bildet; ein Mittelblatt, welches in diesem Fall der Bogen ist, der die 4. Seite von vorn und die 4. Seite von hinten bildet; das Innenblatt, welches der Bogen ist, der die beiden innersten Seiten bildet. Keiner der Bestandteile der Teile des bearbeiteten Buchs zeigte Beeinträchtigungen durch die erfindungsgemäße Bearbeitung. Der Farbeindruck war nahezu unverändert. Die mechanischen Eigenschaften der verschiedenen Bestandteile des bearbeiteten Buches sowie der Referenz (des unteren, nicht bearbeiteten Teils des Buchs) sind in den nachfolgenden Tabellen 10 (1 Gew.% alpha-Cellulose) und 11 (2 Gew.% alpha-Cellulose) aufgeführt. Tabelle 10: Mechanische Eigenschaften der Bestandteile des mittleren Teils des bearbeiteten Buchs (1 Gew.% alpha-Cellulose) sowie des nicht bearbeiteten unteren Teils des Buchs (Referenz) Bruchkraft Referenz [N] Bruchkraft bearbeitet [N] Bruchdehnung Referenz [%] Bruchdehnung bearbeitet [%] Deckblatt 3,5 ± 0,64 9,3 ± 2,5 0,16 ± 0,03 0,61 ± 0,23 Mittelblatt 3,5 ± 0,64 8,7 ± 2,4 0,16 ± 0,03 0,61 ± 0,28 Innenblatt 3,5 ± 0,64 10 ± 2 0,16 ± 0,03 0,74 ± 0,21 Tabelle 11: Mechanische Eigenschaften der Bestandteile des oberen Teils des bearbeiteten Buchs (2 Gew.% alpha-Cellulose) sowie des nicht bearbeiteten unteren Teils des Buchs (Referenz) Bruchkraft Referenz [N] Bruchkraft bearbeitet [N] Bruchdehnung Referenz [%] Bruchdehnung bearbeitet [%] Deckblatt 3,5 ± 0,64 9,3 ± 1,1 0,16 ± 0,03 0,52 ± 0,11 Mittelblatt 3,5 ± 0,64 8,1 ± 2,2 0,16 ± 0,03 0,49 ± 0,21 Innenblatt 3,5 ± 0,64 9,4 ± 2,1 0,16 ± 0,03 0,63 ± 0,26 In analyzing the processed parts of the book, the following components of the parts of the book were examined: the cover sheet, which is the sheet that forms the first and last pages; a center sheet, which in this case is the sheet that forms the 4th page from the front and the 4th page from the back; the inner leaf, which is the arch that forms the two innermost pages. None of the constituent parts of the parts of the edited book were impaired by the editing according to the invention. The color impression was almost unchanged. The mechanical properties of the various components of the edited book as well as the reference (the lower, non-edited part of the book) are listed in Tables 10 (1% by weight alpha-cellulose) and 11 (2% by weight alpha-cellulose). Table 10: Mechanical properties of the components of the middle part of the processed book (1% by weight alpha-cellulose) as well as the unprocessed lower part of the book (reference) Breaking force reference [N] Machined breaking force [N] Elongation at break reference [%] Elongation at break machined [%] cover sheet 3.5 ± 0.64 9.3 ± 2.5 0.16 ± 0.03 0.61 ± 0.23 Middle sheet 3.5 ± 0.64 8.7 ± 2.4 0.16 ± 0.03 0.61 ± 0.28 Inner sheet 3.5 ± 0.64 10 ± 2 0.16 ± 0.03 0.74 ± 0.21 Breaking force reference [N] Machined breaking force [N] Elongation at break reference [%] Elongation at break machined [%] cover sheet 3.5 ± 0.64 9.3 ± 1.1 0.16 ± 0.03 0.52 ± 0.11 Middle sheet 3.5 ± 0.64 8.1 ± 2.2 0.16 ± 0.03 0.49 ± 0.21 Inner sheet 3.5 ± 0.64 9.4 ± 2.1 0.16 ± 0.03 0.63 ± 0.26

Die Tabellen 10 und 11 zeigen für alle Bestandteile der bearbeiteten Teile des Buchs mehr als eine Verdopplung sowohl der Bruchkraft als auch der Bruchdehnung im Vergleich zur nicht bearbeiteten Referenz. Somit können mit dem erfindungsgemäßen Verfahren Bücher als Ganzes bearbeitet werden.Tables 10 and 11 show for all components of the processed parts of the book more than a doubling of both the breaking force and the breaking elongation compared to the non-processed reference. Books can thus be processed as a whole using the method according to the invention.

Beispiel 11 (Vergleich von DMSO und DMAc)Example 11 (comparison of DMSO and DMAc)

Es wurden eine Lösung enthaltend 1 Gew.% Danufil in einer Mischung aus DMSO und BMIM-Cl, wobei das DMSO 9,9 Gew.% BMIM-CI enthielt, (nachfolgend: "DMSO-Lösung") sowie eine Lösung enthaltend 1 Gew.% Danufil in einer Mischung aus DMAc und BMIM-Cl, wobei das DMAc 9,9 Gew.% BMIM-CI enthielt, (nachfolgend: "DMAc-Lösung") hergestellt.A solution containing 1% by weight of Danufil in a mixture of DMSO and BMIM-Cl, the DMSO containing 9.9% by weight of BMIM-CI (hereinafter: "DMSO solution"), and a solution containing 1% by weight were obtained. % Danufil in a mixture of DMAc and BMIM-Cl, the DMAc containing 9.9% by weight of BMIM-CI (hereinafter: “DMAc solution”).

Testpapier 11 wurde für eine Minute in der DMSO-Lösung getränkt, anschließend für 30 Sekunden mit DMSO abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.Test paper 11 was soaked in the DMSO solution for one minute, then rinsed with DMSO for 30 seconds, immersed in HMDO (500 g) for 72 hours and then heated at 55 ° C. for 12 hours.

Testpapier 12 (Blindversuch ohne Danufil) wurde für eine Minute in DMSO enthaltend 9,9 Gew.% BMIM-CI getränkt, anschließend für 30 Sekunden mit DMSO abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.Test paper 12 (blind test without Danufil) was soaked for one minute in DMSO containing 9.9% by weight BMIM-CI, then rinsed with DMSO for 30 seconds, immersed in HMDO (500 g) for 72 hours and then at 55 ° C for Heated for 12 hours.

Testpapier 13 wurde für 1,5 Minuten in DMSO getränkt, anschließend für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.Test paper 13 was soaked in DMSO for 1.5 minutes, then immersed in HMDO (500 g) for 72 hours and then heated at 55 ° C. for 12 hours.

Testpapier 14 wurde für eine Minute in der DMAc-Lösung getränkt, anschließend für 30 Sekunden mit DMAc abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.Test paper 14 was soaked in the DMAc solution for one minute, then rinsed with DMAc for 30 seconds, immersed in HMDO (500 g) for 72 hours and then heated at 55 ° C. for 12 hours.

Testpapier 15 (Blindversuch ohne Danufil) wurde für eine Minute in DMAc enthaltend 9,9 Gew.% BMIM-CI getränkt, anschließend für 30 Sekunden mit DMAc abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.Test paper 15 (blank test without Danufil) was soaked for one minute in DMAc containing 9.9% by weight of BMIM-CI, then rinsed with DMAc for 30 seconds, immersed in HMDO (500 g) for 72 hours and then at 55 ° C. for Heated for 12 hours.

Testpapier 16 wurde für 1,5 Minuten in DMAc getränkt, anschließend für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.Test paper 16 was soaked in DMAc for 1.5 minutes, then immersed in HMDO (500 g) for 72 hours and then heated at 55 ° C. for 12 hours.

Als Referenz diente ein unbearbeitetes Testpapier.An unprocessed test paper served as a reference.

Die mechanischen Eigenschaften der Testpapiere 11 bis 16 sowie der Referenz wurden bestimmt und sind in den nachfolgenden Tabellen 12 aufgeführt. Tabelle 12: Mechanische Eigenschaften der Testpapiere 11 bis 13 sowie der Referenz Substrat Bruchkraft [N] Bruchdehnung [%] Testpapier 11 8,1 ± 0,9 0,55 ± 0,10 Testpapier 12 5,0 ± 1,6 0,65 ± 0,36 Testpapier 13 5,9 ± 1,1 0,55 ± 0,19 Testpapier 14 7,1 ± 1,2 0,52 ± 0,11 Testpapier 15 5,8 ± 1,0 0,60 ± 0,12 Testpapier 16 6,1 ± 1,5 0,59 ± 0,20 Referenz 3,5 ± 0,64 0,16 ± 0,03 The mechanical properties of the test papers 11 to 16 and of the reference were determined and are listed in Table 12 below. Table 12: Mechanical properties of test papers 11 to 13 and the reference Substrate Breaking force [N] Elongation at break [%] Test paper 11 8.1 ± 0.9 0.55 ± 0.10 Test paper 12 5.0 ± 1.6 0.65 ± 0.36 Test paper 13 5.9 ± 1.1 0.55 ± 0.19 Test paper 14 7.1 ± 1.2 0.52 ± 0.11 Test paper 15 5.8 ± 1.0 0.60 ± 0.12 Test paper 16 6.1 ± 1.5 0.59 ± 0.20 reference 3.5 ± 0.64 0.16 ± 0.03

Aus Tabelle 12 geht hervor, dass die Testpapiere 11 und 14, die mit einer Lösung enthaltend Danufil in Kontakt gebracht wurden, eine höhere Bruchkraft aufwiesen als die Testpapiere 12, 13, 15 und 16 sowie die Referenz, die nicht mit eine Lösung enthaltend Danufil in Kontakt gebracht wurden. Die Werte der Bruchdehnung der Testpapiere 11 bis 16 unterschieden sich nur geringfügig. Ferner wiesen die Testpapier 11 bis 16 gegenüber der Referenz sowohl eine deutlich gesteigerte Bruchkraft als auch eine deutlich gesteigerte Bruchdehnung auf, wobei die Steigerung der Bruchkraft bei den Testpapieren 11 und 14, in denen das Testpapier jeweils mit einer Lösung enthaltend Danufil in Kontakt gebracht wurde, am höchsten ausfiel. Somit zeigt auch dieses Beispiel, dass durch die Bearbeitung mit dem erfindungsgemäßen Verfahren die mechanischen Eigenschaften verbessert werden können.Table 12 shows that the test papers 11 and 14 that were brought into contact with a solution containing Danufil had a higher breaking strength than the test papers 12, 13, 15 and 16 and the reference that was not with a solution containing Danufil in Were brought into contact. The elongation at break values of the test papers 11 to 16 differed only slightly. Furthermore, compared to the reference, the test papers 11 to 16 had both a significantly increased breaking force and a significantly increased elongation at break, the increase in breaking force in the test papers 11 and 14, in which the test paper was each brought into contact with a solution containing Danufil, turned out to be the highest. This example also shows that the mechanical properties can be improved by machining with the method according to the invention.

Ferner geht aus Tabelle 12 hervor, dass die Bruchkraft von Testpapier 11 geringfügig höher ist als für Testpapier 14. Dementsprechend scheint DMSO, insbesondere in Kombination mitIt can also be seen from Table 12 that the breaking strength of test paper 11 is slightly higher than that of test paper 14. DMSO appears accordingly, especially in combination with

BMIM-Cl und Danufil, im erfindungsgemäßen Verfahren etwas besser geeignet zu sein als DMAc, insbesondere in Kombination mit BMIM-Cl und Danufil. Für die Bruchdehnung war kein deutlicher Unterschied zwischen den Testpapieren 11 und 14 auszumachen.BMIM-Cl and Danufil to be somewhat more suitable than DMAc in the method according to the invention, especially in combination with BMIM-Cl and Danufil. In terms of elongation at break, no clear difference could be seen between test papers 11 and 14.

Die obigen Ausführungsbeispiele zeigen, dass durch das erfindungsgemäße Verfahren die mechanischen Eigenschaften von Substraten wie Papier verbessert werden können. Ferner kann der pH von Papier erhöht werden. Somit eignet sich das erfindungsgemäße Verfahren beispielsweise für die Konservierung von Büchern. Ferner können auch andere Substrate wie beispielsweise Holz dem erfindungsgemäßen Verfahren unterzogen werden. Damit kann, insbesondere bei massivem Materialauftrag, unter anderem eine Glättung von Oberflächenunebenheiten erreicht werden. Außerdem lassen sich im erfindungsgemäßen Verfahren verschiedene Polymere einsetzen. Ferner kann das erfindungsgemäße Verfahren mit Papierentsäuerungsverfahren wie dem papersave Verfahren kombiniert werden. Schließlich eignet sich das Verfahren auch zur Bearbeitung von Büchern als Ganzes.The above exemplary embodiments show that the mechanical properties of substrates such as paper can be improved by the method according to the invention. Furthermore, the pH of paper can be increased. The method according to the invention is therefore suitable, for example, for the preservation of books. Furthermore, other substrates such as wood can also be subjected to the method according to the invention. In this way, among other things, smoothing of surface unevenness can be achieved, especially with massive material application. In addition, various polymers can be used in the process according to the invention. Furthermore, the process according to the invention can be combined with paper deacidification processes such as the papersave process. Finally, the method is also suitable for processing books as a whole.

Claims (19)

  1. Process for processing a material containing fibres, said material containing cellulose, microcrystalline cellulose, pulp, hemicellulose, viscose, chitin, chitosan, alginate, starch, lignin, polyvinyl alcohol, proteins or mixtures thereof, comprising the following steps:
    a. Providing a mixture comprising
    (i) at least one polymer selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, pulp, hemicellulose, viscose, chitin, lignin, chitosan, alginate, starch, silk, natural silk, silk biopolymers, polyvinyl alcohol, polyvinyl acetate, polyurethanes, polyamides, proteins, polymers or copolymers based on acrylic acid and/or its ester and/or amide derivatives, methacrylic acid and/or its ester and/or amide derivatives, vinyl acetate, itaconic acid, maleic acid, fumaric acid, acryloxypropionic acid, methacryloxypropionic acid, styrene sulfonic acid, ethyl methacrylate-2-sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, phosphoethyl methacrylate, cellulose ethers and mixtures thereof, and
    (ii) a polar aprotic solvent,
    b. contacting the material to be processed with the mixture provided in step a. to obtain a mixture of the material and the mixture provided in step a,
    c. treating the mixture obtained in step b. so that at least part of the polymer attaches itself to the fibres of the material,
    characterized in that the treatment of the mixture in step c.
    comprises or consists of bringing the mixture into contact with a non-polar solvent.
  2. Process according to claim 1, characterized in that the material is a cellulose-containing material, in particular paper, cardboard, textiles or wood, in particular paper.
  3. Process according to any of the preceding claims, characterized in that the polymer is selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, pulp, viscose and mixtures thereof.
  4. Process according to any of the preceding claims, characterized in that the polymer is viscose, in particular substantially non-derivatized viscose.
  5. Process according to any of the preceding claims, characterized in that the polar aprotic solvent is selected from the group consisting of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethylsulfoxide, acetone, gamma-butyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate, ethylene carbonate, ionic liquids and mixtures thereof.
  6. Process according to any of the preceding claims, characterized in that the polar aprotic solvent is selected from the group consisting of dimethylacetamide, dimethylsulfoxide, acetonitrile, ionic liquids and mixtures thereof.
  7. Process according to any of the preceding claims, characterized in that polar aprotic solvents comprise an ionic liquid.
  8. Process according to any of the preceding claims, characterized in that the polar aprotic solvent is a mixture of an ionic liquid and at least one of dimethylacetamide, dimethylsulfoxide and acetonitrile.
  9. Process according to any of claims 5 to 8, characterized in that the ionic liquid comprises or consists of a cation selected from a 1,3-dialkylimidazolium cation, an alkylpyridinium cation, a tetraalkylammonium cation and a phosphonium cation, and an anion selected from fluoride, chloride, bromide, iodide, formate, acetate, propionate, butyrate, hydrogen sulphate, tosylate, trifluoromethanesulphonate, bis(trifluoromethanesulphonyl)imide, hexafluorophosphate, tetrafluoroborate, benzoate, glycolate, thioglycolate, lactate and glycinate.
  10. Process according to any of claims 5 to 9, characterized in that the ionic liquid contains or consists of a dialkylimidazolium cation and an anion selected from chloride, bromide and acetate.
  11. Process according to any of the preceding claims, characterized in that the contacting with a non-polar solvent comprises or consists of dipping into the non-polar solvent, in particular hexamethyldisiloxane.
  12. Process according to any of the preceding claims, characterized in that the process comprises, after the treatment in step c., the additional step of drying the fibrous material obtained in step c.
  13. Process according to any of claims 7 to 12, characterized in that the mixture containing (i) at least one polymer and (ii) a polar aprotic solvent is prepared by first dissolving the polymer in the ionic liquid and then diluting the solution thus obtained with at least one of dimethylacetamide, dimethylsulfoxide and acetonitrile, in particular dimethylacetamide.
  14. Process according to any of claims 7 to 13, characterized in that the mixture comprising (i) at least one polymer and (ii) a polar aprotic solvent contains 1 to 30 wt.-%, in particular 3 to 30 wt.-% or 5 to 30 wt.-% or 10 to 30 wt.-% or 12 to 25 wt.-% or 15 to 20 wt.-% or 17 to 19 wt.-% of ionic liquid, in each case based on the total weight of the mixture.
  15. Process according to any of the preceding claims, characterized in that the mixture comprising (i) at least one polymer and (ii) a polar aprotic solvent contains 0.1 to 10 wt.-%, in particular 0.5 to 8 wt.-% or 1 to 5 wt.-%, in each case based on the total weight of the mixture, of polymer.
  16. Use of a mixture containing (i) at least one polymer and (ii) a polar aprotic solvent for processing material containing fibres, in particular paper, in a process according to any of claims 1 to 15.
  17. Use according to claim 16, characterized in that the polar aprotic solvent is characterized by at least one feature of claims 5 to 10 and/or the polymer is characterized by at least one feature of claims 3 to 4.
  18. Use of dimethyl sulfoxide as antioxidant for processing paper in a process according to any of claims 1 to 15.
  19. Use of an ionic liquid containing a quaternary ammonium cation, in particular an ionic liquid containing a dialkylimidazolium cation, in particular 1-butyl-3-methylimidazolium chloride or 1-butyl-3-methylimidazolium acetate, as an antimicrobial agent for processing paper in a process according to any of claims 1 to 15.
EP17207499.9A 2016-12-20 2017-12-14 Process for the treatment of materials containing fibers Active EP3339508B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16205513 2016-12-20
LU93386A LU93386B1 (en) 2016-12-20 2016-12-20 Process for processing materials containing fibers

Publications (2)

Publication Number Publication Date
EP3339508A1 EP3339508A1 (en) 2018-06-27
EP3339508B1 true EP3339508B1 (en) 2021-02-24

Family

ID=60915216

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17207499.9A Active EP3339508B1 (en) 2016-12-20 2017-12-14 Process for the treatment of materials containing fibers

Country Status (1)

Country Link
EP (1) EP3339508B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957993A (en) * 2019-02-20 2019-07-02 常州苏达欧包装材料有限公司 A kind of waterproof tensile stretches abrasive base paper
CN114113361A (en) * 2021-10-15 2022-03-01 中科院广州化学有限公司 Extraction paper, preparation method thereof and application of extraction paper in detection of acidic drugs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529925A (en) * 1967-09-25 1970-09-22 Itt Rayonier Inc Process for interfiber bonding of cellulosic fibrous webs
NL8700766A (en) * 1987-04-01 1988-11-01 Guillaume Petrus Gerardus Mari METHOD FOR THE PRESERVATION OF SHEET OR PAPER PAPER AND LIQUID USED THEREIN AND DEVICE FOR EXPORTING THEREOF
CA2952867C (en) * 2013-06-18 2022-05-03 Chemgreen Innovation Inc. An antimicrobial polymer wherein an aromatic moiety is covalently incorporated into the polymer backbone through loss of aromaticity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3339508A1 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
DE1720106B2 (en) COLLAGEN-CONTAINING COATING COMPOUNDS FOR THE PRODUCTION OF SELF-ADHESIVE COATINGS ON ANY SUBSTRATE
DE3342823C2 (en)
WO2014165881A1 (en) Polysaccharide film and method for the production thereof
EP3339508B1 (en) Process for the treatment of materials containing fibers
DE1719297C3 (en) Fasnge paper web and food casings made from it
EP3827026B1 (en) Methods for the isolation of cellulose or chitin nanocrystals by peroxide oxidation
DE1468735A1 (en) Process for dealkalization of polysaccharide xanthate solutions and dealkalized polysaccharide xanthate
DE2614869C3 (en) Crosslinking agent and process for its preparation
LU93386B1 (en) Process for processing materials containing fibers
DE1918415C3 (en) Surface sizing of a cellulose web
DE10057554B4 (en) Stabilizing and / or stabilizing agents, strengthening / stabilization methods and use
DE2350226A1 (en) METHOD FOR TREATMENT OF PAPER
DE2616695C3 (en) Agent based on dispersed cellulose for the treatment of cellulosic fibrous materials
DE2801685C2 (en) Process for the production of micro-filter foils or filter plates
DE112006003232T5 (en) Nanostructured backing paper
EP0261316B1 (en) Process for producing yellowing-resistant papers, in particular against the action of heat
DE2510337C2 (en) Method of making a hemodialysis polycarbonate membrane
DE1696266A1 (en) Process for treating paper
DE1901790A1 (en) Absorbent paper for use as wiping cloths - hand towels etc
DE2416891A1 (en) Process for the production of a plasticized molded body based on cellulose derivatives
DE102022119507A1 (en) Process for producing a paper with improved grease and oil resistance, paper produced and its use
DE1204518B (en) Process for the production of paper-like structures from polyamide fibers
DE1803677A1 (en) Process for the production of textile-like material from cellulose fibers
EP1663444A1 (en) Method for producing a filter material
DE2660381C3 (en) paper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181220

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190717

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200414

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMSILK GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009455

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1364581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009455

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

26N No opposition filed

Effective date: 20211125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 7

Ref country code: DE

Payment date: 20231213

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1364581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221214