EP3332041B1 - Method for heat treatment of a sheet steel component and heat treatment apparatus therefor - Google Patents
Method for heat treatment of a sheet steel component and heat treatment apparatus therefor Download PDFInfo
- Publication number
- EP3332041B1 EP3332041B1 EP16750160.0A EP16750160A EP3332041B1 EP 3332041 B1 EP3332041 B1 EP 3332041B1 EP 16750160 A EP16750160 A EP 16750160A EP 3332041 B1 EP3332041 B1 EP 3332041B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- steel component
- sheet
- component
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 57
- 239000010959 steel Substances 0.000 title claims description 57
- 238000000034 method Methods 0.000 title claims description 38
- 238000010438 heat treatment Methods 0.000 title claims description 33
- 238000011282 treatment Methods 0.000 claims description 31
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 230000005855 radiation Effects 0.000 claims description 17
- 239000000463 material Substances 0.000 description 7
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910000760 Hardened steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910000952 Be alloy Inorganic materials 0.000 description 1
- 229910000712 Boron steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/06—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
- F27B9/062—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated
- F27B9/066—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated electrically heated heated by lamps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0405—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/12—Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2221/00—Treating localised areas of an article
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/12—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
- F27B2009/122—Preheating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/12—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity with special arrangements for preheating or cooling the charge
- F27B2009/124—Cooling
Definitions
- the invention relates to a method for targeted, component-zone-specific heat treatment of sheet metal components and to a heat treatment device for carrying out the method.
- press hardening was developed to produce a component from hardened steel sheet.
- Steel sheets are first heated to an austenite temperature of between 850°C and 950°C, then placed in a press tool, quickly formed and rapidly quenched to a martensite temperature of around 250°C using the water-cooled tool.
- This creates a hard, solid martensite structure with a strength of around 1,500 MPa.
- a steel sheet hardened in this way has only a low elongation at break, which is disadvantageous in certain areas in the event of a vehicle collision. The kinetic energy cannot be converted into deformation heat. In this case, the component will break brittlely and also risk injuring the occupants.
- the furnace system has a conventional, universal production furnace for heating the sheet steel parts to a temperature close to, but below, the AC3 temperature, i.e. the temperature at which the transformation of the ferrite into austenite ends, wherein the furnace system also has a profiling furnace with at least one level.
- the at least one level has an upper and a lower part, as well as a product-specific intermediate flange inserted into a corresponding holder, wherein the product-specific intermediate flange is designed to impose a predetermined temperature profile on the component with temperatures above the AC3 temperature for areas to be hardened and below the AC3 temperature for softer areas.
- the temperature profile is imposed by means of heat radiation. Since the process provides for heating the components in the production furnace only to a temperature below the AC3 temperature and the heat for heating defined areas to a temperature above the AC3 temperature is introduced in a later process step in the profiling furnace, very precise temperature control in the production furnace is not necessary, so that the disadvantage of the poorer controllability of gas burners compared to electric heaters can be accepted in favor of the cost-effectiveness of the cheaper energy source gas. The disadvantage of this process is that the areas with different temperatures cannot be separated exactly. In addition, the heat exchange via radiation takes place relatively slowly, so that several profiling furnaces have to be operated in parallel in order to be able to utilize the possible capacity of the continuous furnace.
- a furnace system and a method for operating a furnace system are known, wherein a radiant heat source is arranged within the furnace system and a metallic component can be thermally treated within the furnace system with two different temperature ranges. Furthermore, an air flow is circulated in a second area of the furnace system, with which a second temperature range is thermally treated due to forced convection.
- the first area of the metallic component is heated to at least AC3 by means of radiant heat and/or its temperature is kept at at least AC3 and the second area is cooled by convection from a temperature of at least AC3 to a temperature below AC3 or the second area is heated by convection to a temperature below AC3, the different temperature zones created thereby being thermally separated from one another by a separating device. It is difficult to thermally separate the temperature ranges in the furnace from one another.
- the separating device must be adapted to the contour of the metallic component in order to enable effective temperature separation. As a result, the furnace can only be used for other applications after conversion. Component geometries can be used, although furnace conversion is complex due to the size of the furnace, especially the size of a roller hearth furnace.
- an AlSi layer to form on the component as corrosion protection during heat treatment and to be firmly bonded to the component.
- the AlSi can be diffused into the surface of the component. This usually occurs at temperatures of more than 930°C.
- All known devices require a relatively large amount of space.
- All known types of heat introduction have the disadvantage that the energy cannot be introduced into specific areas of the component in a selective manner, but rather neighboring areas are also exposed to heat energy, so that a selective temperature generation above the AC3 temperature directly next to areas with temperatures below the AC3 temperature is only possible to a limited extent.
- measures must be taken, for example in the form of partitions, in order to maintain hard and ductile component areas directly next to one another after press hardening.
- the object of the invention is to provide a method for the targeted heat treatment of sheet metal components, whereby a demarcation with minimized transition zones can be created between component areas with temperatures above the AC3 temperature and component areas with temperatures below the AC3 temperature.
- a further object of the invention is to provide a heat treatment device for the targeted, component-zone-specific heat treatment of sheet metal components, which takes up relatively little space and with which it is possible to achieve a demarcation between component areas with temperatures above the AC3 temperature and component areas with temperatures below the AC3 temperature without any sealing measures, whereby the transition zones between the areas are minimized.
- this object is achieved by a method having the features of independent claim 1.
- Advantageous further developments of the method arise from the subclaims 2 to 8.
- the object is further achieved by a heat treatment device according to claim 9.
- Advantageous further developments of the heat treatment device arise from the subclaims 10 to 14.
- a temperature below the AC3 temperature can be impressed on the sheet steel component in one or more first areas and a temperature above the AC3 temperature in one or more second areas.
- the AC3 temperature like the recrystallization temperature, is alloy-dependent. For the materials usually used for vehicle body components, the AC3 temperature is around 870°C, while the recrystallization temperature at which the ferrite-pearlite structure is established is around 800°C.
- the method is characterized in that the sheet steel component is first preheated in a gas-heated production furnace, the sheet steel component is then transferred to a thermal post-treatment station, wherein in the thermal post-treatment station a radiant heat source is brought over the component, with which the first region or the plurality of first regions of the sheet steel component are optionally held at a temperature below the AC3 temperature or are further cooled and the second region or the plurality of second regions of the sheet steel component are optionally heated to or held at a temperature above the AC3 temperature.
- the component can be brought to a temperature below the AC3 temperature or above the AC3 temperature.
- the one or more first areas of the sheet steel component are kept at a temperature below the AC3 temperature or are cooled further in the post-treatment station and the one or more second areas of the sheet steel component are heated to a temperature above the AC3 temperature if they have a lower temperature when they are introduced into the post-treatment station, or kept at a temperature above the AC3 temperature if they already have this temperature when they are introduced into the post-treatment station.
- Natural convection for example, can be used for cooling. Forced convection by blowing on the corresponding areas of the component is also possible. The blowing can be provided from above, i.e. the side of the component facing the radiant heat source, or from below, i.e. the side of the sheet steel component facing away from the radiant heat source. It is also conceivable to provide contact cooling from the underside of the component, i.e. the side of the sheet steel component facing away from the radiant heat source.
- the gas-heated production furnace does not have to be adapted to the geometry of the sheet steel component to be treated, in particular no part geometry-dependent separating device is provided in the furnace.
- a standard furnace can be used that does not need to be converted when production changes.
- a standard roller hearth furnace or a batch furnace can be used.
- Continuous furnaces generally have a large capacity and are particularly suitable for mass production because they can be loaded and operated without great effort.
- the production furnace is gas-fired.
- gas firing is the most economical way of heating a production furnace. Controlling the furnace temperature does not place any increased quality requirements, as the entire sheet steel component is heated to an essentially uniform temperature.
- the radiant heat source can be moved over the component.
- the radiant heat source is pivotable, for example pivotable essentially horizontally, arranged in the post-treatment station and pivotable over the component and also pivotable away again. This means that after heat treatment, the component can easily be picked up by a handling device, for example an industrial robot, and transported further without the radiant heat source interfering with the movement.
- the post-treatment station is directly connected to the production furnace.
- the production furnace can be a roller hearth furnace, for example.
- the components are transported through the furnace using rollers.
- the post-treatment station can be directly connected to the furnace by extending the roller conveyor accordingly.
- One possible effect of this arrangement is, for example, that the component cools down as little as possible in the ambient air. It is also possible to have several post-treatment stations connected to the furnace in order to minimize the cycle time.
- the production furnace is gas-fired and can be heated with gas burners, for example.
- the radiant heat source is a field with surface emitters, so-called VCSELs (Vertical Cavity Surface Emitting Lasers), which emit radiation in the infrared range.
- VCSELs Vertical Cavity Surface Emitting Lasers
- Such a field consists of a large number, typically several thousand, very small lasers (microlasers) with diameters in the ⁇ m range, which are arranged in the field with a typical distance of approx. 40 ⁇ m between the individual lasers.
- Such VCSELs deliver radiation with a very narrow line width compared to infrared LEDs and an extremely forward-directed radiation characteristic. This makes it possible to imprint different temperatures on a substrate with great edge accuracy. Furthermore, very high power densities of over 100 W/cm2 are achieved on the irradiated area with this microlaser technology.
- the surface emitters emit radiation in the near infrared range between 780 nm and 3 ⁇ m, for example radiation of 808 nm or 980 nm wavelength.
- the surface emitters can be controlled in groups.
- the surface emitters can also be controlled individually. Mixed forms are also possible, whereby individual surface emitters can be controlled individually and other surface emitters can be controlled in groups.
- the surface emitters located above the first areas of the component can be controlled so that they radiate with less power than the Surface emitters that are located above the second areas of the component. It is also possible to adapt the radiation power to a three-dimensional component profile in which, for example, the areas of the component that are closer to the surface emitters are irradiated with lower power than the component areas that are further away from the surface emitters due to the three-dimensional geometry of the component.
- the control can, for example, relate to the pulse lengths and/or the frequency.
- the control can also be based on which temperature is to be reached in the individual areas.
- the corresponding temperature for example the AC3 temperature, depends on the alloy.
- Another parameter for the control can be the thermal conductivity of the substrate, which can also be alloy-dependent.
- the production furnace has several zones with different temperatures, whereby the sheet steel component is heated in a first zone or one of the first zones to a temperature above approximately 900°C, and whereby it is cooled in the zones following in the direction of flow to such an extent that it has a temperature of less than approximately 900°C, for example approximately 600°C, when transferred to the post-treatment station.
- an AlSi coating can diffuse into the component and the component can then cool down to such an extent that a pearlitic-ferritic structure is established.
- the second areas of the component can be heated up very quickly to temperatures above the AC3 temperature again using the surface emitter field, so that an austenitic structure is formed in these areas.
- a heat treatment device comprises a gas-heated production furnace for preheating a sheet steel component and a thermal post-treatment station for imparting a temperature profile to the sheet steel component, and is characterized in that the post-treatment station comprises a radiant heat source, wherein the radiant heat source comprises an array of surface emitters (VCSELs) which emit radiation in the infrared range.
- VCSELs surface emitters
- a corresponding temperature profile can be economically imposed on sheet steel components with several first and/or second regions, which can also have a complex shape, since the surface emitters used here result in a more selective treatment of the first and second regions of the sheet steel component in the post-treatment station than is possible in the production furnace.
- Fig.1 shows a heat treatment device 100 according to the invention in a plan view.
- a sheet steel component 200 is placed on an infeed table 120 of the heat treatment device 100 by a first handling device 130. From the infeed table 120, sheet steel components 200 enter the continuous furnace designed production furnace 110 and pass through it in the direction of the arrow, whereby their temperature increases to a temperature, for example, above the AC3 temperature. Viewed in the direction of flow behind the production furnace 110 there is an outlet table 121 designed as a post-treatment station 150, onto which the heated sheet steel components 200 arrive after passing through the production furnace 110.
- the post-treatment station 150 has a radiant heat source 151 in the form of a surface radiator with an array of surface emitters.
- the radiant heat source 151 is designed to be pivotable.
- the figure shows the situation in which the temperature profile has already been impressed on the sheet steel component 200.
- the radiant heat source 151 was pivoted over the sheet steel component 200 so that the infrared radiation could hit the sheet steel component.
- the radiant heat source is now pivoted away from the sheet steel component 200 so that a second handling device 131 can grip the sheet steel component 200 and transport it further without the radiant heat source 151 disturbing the movement.
- thermal post-treatment stations 150 can also be provided.
- the number of thermal post-treatment stations 150 that can advantageously be provided depends on the ratio of the cycle times of the production furnace 110 and the thermal post-treatment station 150, wherein the cycle times depend on the temperatures to be reached and thus depend, among other things, on the material being processed as well as the geometry and material thickness of the sheet steel component 200.
- Fig.2 shows a sheet steel component 200 with first areas 210 and second areas 220 in a top view.
- the first areas 210 should have a high degree of ductility in the later finished part. If the sheet steel component 200 is a vehicle body part, these first areas 210 can be, for example, the areas where the later finished part is connected to the rest of the vehicle body.
- the second areas 220 of the sheet steel component 200 should have a high degree of hardness in the later finished part.
- Fig.3 shows an example of another sheet steel component 200, here a B-pillar 200 for vehicles in plan view after carrying out the method according to the invention.
- the B-pillar is the connection between the vehicle floor and the vehicle roof in the middle of the passenger compartment.
- the pillars in the vehicle, and therefore also the B-pillar have the life-saving task of stabilizing the passenger compartment against vertical deformation. Much more important is the absorption of forces in the event of a side impact so that the vehicle occupants remain unharmed.
- the B-pillar 200 has first areas 210 with high ductility and second areas 220 with high hardness.
- the B-pillar 200 was provided with the first areas 210 and second areas 220 shown here by means of the method according to the invention in the heat treatment device according to the invention, with the second areas 220 additionally being tempered.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
Die Erfindung betrifft ein Verfahren zur gezielten bauteilzonenindividuellen Wärmebehandlung von Blechbauteilen sowie eine Wärmebehandlungsvorrichtung zur Durchführung des Verfahrens.The invention relates to a method for targeted, component-zone-specific heat treatment of sheet metal components and to a heat treatment device for carrying out the method.
In der Technik besteht bei vielen Anwendungsfällen in unterschiedlichen Branchen der Wunsch nach hochfesten Metallblechteilen bei geringem Teilegewicht. Beispielsweise ist es in der Fahrzeugindustrie das Bestreben, den Kraftstoffverbrauch von Kraftfahrzeugen zu reduzieren und den CO2-Ausstoß zu senken, dabei aber gleichzeitig die Insassensicherheit zu erhöhen. Es besteht daher ein stark zunehmender Bedarf an Karosseriebauteilen mit einem günstigen Verhältnis von Festigkeit zu Gewicht. Zu diesen Bauteilen gehören insbesondere A- und B-Säulen, Seitenaufprallschutzträger in Türen, Schweller, Rahmenteile, Stoßstangenfänger, Querträger für Boden und Dach, vordere und hintere Längsträger. Bei modernen Kraftfahrzeugen besteht die Rohkarosse mit einem Sicherheitskäfig üblicherweise aus einem gehärteten Stahlblech mit ca. 1.500MPa Festigkeit. Dabei werden vielfach AlSi-beschichtete, also mit Aluminium-Silizium beschichtete Stahlbleche verwendet. Zur Herstellung eines Bauteils aus gehärtetem Stahlblech wurde der Prozess des so genannten Presshärtens entwickelt. Dabei werden Stahlbleche zuerst auf Austenittemperatur zwischen 850°C und 950°C erwärmt, dann in ein Pressenwerkzeug gelegt, schnell geformt und durch das wassergekühlte Werkzeug zügig auf Martensittemperatur von ca. 250°C abgeschreckt. Dabei entsteht hartes, festes Martensitgefüge mit ca. 1.500MPa Festigkeit. Ein solcherart gehärtetes Stahlblech weist aber nur eine geringe Bruchdehnung auf, was in speziellen Bereichen im Falle einer Kollision eines Fahrzeugs nachteilig ist. Die kinetische Energie kann dabei nicht in Verformungswärme umgesetzt werden. Vielmehr wird in diesem Fall das Bauteil spröd brechen und droht zusätzlich die Insassen zu verletzen.In technology, there is a desire for high-strength sheet metal parts with low part weight in many applications in different industries. For example, the automotive industry is striving to reduce the fuel consumption of motor vehicles and lower CO2 emissions, while at the same time increasing passenger safety. There is therefore a rapidly increasing demand for body components with a favorable strength-to-weight ratio. These components include in particular A and B pillars, side impact protection beams in doors, sills, frame parts, bumper guards, cross members for the floor and roof, front and rear longitudinal members. In modern motor vehicles, the body shell with a safety cage usually consists of a hardened steel sheet with a strength of approx. 1,500 MPa. AlSi-coated steel sheets, i.e. steel sheets coated with aluminum-silicon, are often used. The process of so-called press hardening was developed to produce a component from hardened steel sheet. Steel sheets are first heated to an austenite temperature of between 850°C and 950°C, then placed in a press tool, quickly formed and rapidly quenched to a martensite temperature of around 250°C using the water-cooled tool. This creates a hard, solid martensite structure with a strength of around 1,500 MPa. However, a steel sheet hardened in this way has only a low elongation at break, which is disadvantageous in certain areas in the event of a vehicle collision. The kinetic energy cannot be converted into deformation heat. In this case, the component will break brittlely and also risk injuring the occupants.
Für die Automobilindustrie ist es daher wünschenswert, Karosseriebauteile zu erhalten, die mehrere unterschiedliche Dehnungs- und Festigkeitszonen im Bauteil aufweisen, so dass sehr feste Bereiche einerseits und sehr dehnfähige Bereiche andererseits in einem Bauteil vorliegen. Dabei sollten die allgemeinen Ansprüche an eine Produktionsanlage weiterhin beachtet sein: so sollte es zu keiner Taktzeiteinbuße an der Form-Härteanlage kommen, die Gesamtanlage sollte uneingeschränkt allgemein verwendet und schnell kundenspezifisch umgerüstet werden können. Der Prozess sollte robust und wirtschaftlich sein und die Produktionsanlage nur minimalen Platz benötigen. Die Form und Kantengenauigkeit des Bauteils sollte so hoch sein, dass Hartbeschnitt weitgehend entfallen kann, um Material und Arbeit einzusparen.For the automotive industry, it is therefore desirable to obtain body components that have several different expansion and strength zones in the component, so that very strong areas on the one hand and very elastic areas on the other are present in one component. The general requirements for a production plant should still be taken into account: there should be no loss of cycle time on the mold hardening plant, the entire plant should be able to be used without restrictions and quickly converted to customer-specific requirements. The process should be robust and economical and the production plant should only require minimal space. The shape and edge accuracy of the component should be so high that hard trimming can be largely eliminated in order to save material and labor.
Zur Erzeugung eines Bauteils mit Bereichen unterschiedlicher Härte und Duktilität können unterschiedliche Stähle miteinander verschweißt werden, so dass nicht härtbarer Stahl in den weichen und härtbarer Stahl in den harten Zonen vorliegt. Bei einem anschließenden Härteprozess kann das gewünschte Härteprofil über dem Bauteil erreicht werden. Die Nachteile dieses Verfahrens liegen in der gelegentlich unsicheren Schweißnaht bei einem üblicherweise für Karosserieteile verwendeten Al-Si-beschichteten ca. 0,8-1,5mm dicken Blech, des dortigen schroffen Härteübergangs sowie in den wegen des zusätzlichen Fertigungsschritts des Verschweißens erhöhten Kosten des Bleches. In Tests kam es gelegentlich zu Ausfällen durch Bruch in der Nähe der Schweißnaht, so dass der Prozess nicht als robust bezeichnet werden kann. Darüber hinaus sind dem Prozess bei komplexen Geometrien Grenzen gesetzt.To produce a component with areas of different hardness and ductility, different steels can be welded together so that non-hardenable steel is in the soft zones and hardenable steel is in the hard zones. In a subsequent hardening process, the desired hardness profile can be achieved over the component. The disadvantages of this process are the occasionally unsafe weld seam on an Al-Si-coated sheet of approximately 0.8-1.5 mm thick, which is usually used for body parts, the abrupt hardness transition there, and the increased cost of the sheet due to the additional manufacturing step of welding. In tests, failures due to breakage near the weld seam occasionally occurred, so the process cannot be described as robust. In addition, the process has limitations when it comes to complex geometries.
Aus der deutschen Patentschrift
Mit diesem Verfahren ist es allerdings nur möglich, relativ einfache und großflächige Geometrien mit üblicherweise nur zwei unterschiedlichen Bereichen einer unterschiedlichen Wärmebehandlung zu unterziehen. Komplexe Geometrien, wie beispielsweise nahezu beliebig im Raum geformte duktile Punkt-Schweißränder einer ansonsten mit hoher Härte versehenen B-Säule, lassen sich mit diesem Verfahren nicht entsprechend wärmebehandeln. Darüber hinaus müssen die Temperaturen der einzelnen Zonen des Ofens sehr genau geregelt sein, wobei Durchlauföfen andererseits aus wirtschaftlichen Gründen üblicherweise mit Gasbrennern geheizt werden, womit sich allerdings die Temperaturen der einzelnen Zonen nicht mit der erforderlichen Genauigkeit auf einfache und günstige Weise regeln lassen.However, this process only allows relatively simple and large-area geometries, usually with only two different areas, to be subjected to different heat treatments. Complex geometries, such as ductile spot weld edges of almost any shape in space on a B-pillar that is otherwise very hard, cannot be heat treated accordingly using this process. In addition, the temperatures of the individual zones of the furnace must be regulated very precisely. On the other hand, continuous furnaces are usually heated with gas burners for economic reasons, but this does not allow the temperatures of the individual zones to be regulated with the required accuracy in a simple and inexpensive way.
Aus der europäischen Offenlegungsschrift
Aus der deutschen Offenlegungsschrift
Darüber hinaus ist es wünschenswert, wenn bei der Wärmebehandlung des Bauteils eine AlSi-Schicht als Korrosionsschutz auf dem Bauteil entsteht, die fest mit dem Bauteil verbunden ist. Dazu kann das AlSi in die Oberfläche des Bauteils eindiffundiert werden. Dies geschieht üblicherweise bei Temperaturen von größer 930°C.In addition, it is desirable for an AlSi layer to form on the component as corrosion protection during heat treatment and to be firmly bonded to the component. To do this, the AlSi can be diffused into the surface of the component. This usually occurs at temperatures of more than 930°C.
Aus der
Alle bekannten Vorrichtungen weisen einen relativ großen Platzbedarf auf. Dazu ist es bei allen bekannten Vorrichtungen und Verfahren schwierig, die Heizenergie gezielt bereichsweise in das Bauteil einzubringen. Alle bekannten Arten der Wärmeeinbringung weisen den Nachteil auf, dass die Energie nicht trennscharf nur in bestimmte Bauteilbereiche einbringbar ist, sondern auch Nachbarbereiche noch mit Wärmeenergie beaufschlagt werden, so dass eine trennscharfe Temperaturerzeugung oberhalb der AC3-Temperatur unmittelbaren neben Bereichen mit Temperaturen unterhalb der AC3-Temperatur nur eingeschränkt darstellbar ist. Insbesondere müssen Maßnahmen beispielsweise in Form von Abschottungen vorgesehen werden, um nach dem Presshärten harte und duktile Bauteilbereiche unmittelbar nebeneinander zu erhalten.All known devices require a relatively large amount of space. In addition, it is difficult with all known devices and methods to introduce the heat energy into the component in a targeted manner. All known types of heat introduction have the disadvantage that the energy cannot be introduced into specific areas of the component in a selective manner, but rather neighboring areas are also exposed to heat energy, so that a selective temperature generation above the AC3 temperature directly next to areas with temperatures below the AC3 temperature is only possible to a limited extent. In particular, measures must be taken, for example in the form of partitions, in order to maintain hard and ductile component areas directly next to one another after press hardening.
Aus dem wissenschaftlichen Journal Laser Technik und insbesondere aus dem darin enthaltenen Artikel "
Aufgabe der Erfindung ist es, ein Verfahren zur gezielten Wärmebehandlung von Blechbauteilen bereitzustellen, wobei eine Abgrenzung mit minimierten Übergangszonen zwischen Bauteilbereichen mit Temperaturen oberhalb der AC3-Temperatur und Bauteilbereichen mit Temperaturen unterhalb der AC3-Temperatur erzeugbar sind. Eine weitere Aufgabe der Erfindung besteht darin, eine Wärmebehandlungsvorrichtung zur gezielten bauteilzonenindividuellen Wärmebehandlung von Blechbauteilen bereit zu stellen, die relativ wenig Platz einnimmt und mit der es möglich ist, ohne Abschottungsmaßnahmen eine Abgrenzung zwischen Bauteilbereichen mit Temperaturen oberhalb der AC3- Temperatur und Bauteilbereichen mit Temperaturen unterhalb der AC3-Temperatur zu erreichen, wobei die Übergangszonen zwischen den Bereichen minimiert sind.The object of the invention is to provide a method for the targeted heat treatment of sheet metal components, whereby a demarcation with minimized transition zones can be created between component areas with temperatures above the AC3 temperature and component areas with temperatures below the AC3 temperature. A further object of the invention is to provide a heat treatment device for the targeted, component-zone-specific heat treatment of sheet metal components, which takes up relatively little space and with which it is possible to achieve a demarcation between component areas with temperatures above the AC3 temperature and component areas with temperatures below the AC3 temperature without any sealing measures, whereby the transition zones between the areas are minimized.
Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den Merkmalen des unabhängigen Anspruches 1 gelöst. Vorteilhafte Weiterbildungen des Verfahrens ergeben sich aus den Unteransprüchen 2 bis 8. Die Aufgabe wird ferner durch Wärmebehandlungsvorrichtung nach Anspruch 9 gelöst. Vorteilhafte Weiterbildungen der Wärmebehandlungsvorrichtung ergeben sich aus den Unteransprüchen 10 bis 14. Mit dem erfinderischen Verfahren zur Aufprägung eines Temperaturprofils auf ein Stahlblechbauteil ist dem Stahlblechbauteil in einem oder mehreren ersten Bereichen eine Temperatur unterhalb der AC3-Temperatur und ein einem oder mehreren zweiten Bereich eine Temperatur oberhalb der AC3-Temperatur auf prägbar. Die AC3-Temperatur ist ebenso wie die Rekristallisationstemperatur legierungsabhängig. Bei den üblicherweise für Fahrzeugkarosseriebauteile eingesetzten Materialien liegt die AC3-Temperatur bei circa 870°C, während die Rekristallisationstemperatur, bei welcher sich Ferrit-Perlitgefüge einstellt, bei circa 800°C liegt. Das Verfahren zeichnet sich dadurch aus, dass das Stahlblechbauteil zunächst in einem gasbeheizten Produktionsofen vorgeheizt wird, das Stahlblechbauteil anschließend in eine thermische Nachbehandlungsstation transferiert wird, wobei in der thermischen Nachbehandlungsstation eine Strahlungswärmequelle über das Bauteil verbracht wird, mit der erste Bereich oder die mehreren ersten Bereiche des Stahlblechbauteils wahlweise auf einer Temperatur unterhalb der AC3-Temperatur gehalten oder weiter abgekühlt werden und der zweite Bereich oder die mehreren zweiten Bereiche des Stahlblechbauteils wahlweise auf eine Temperatur oberhalb der AC3-Temperatur aufgeheizt oder gehalten werden. Während der Vorheizung kann das Bauteil auf eine Temperatur unterhalb der AC3-Tempertur oder oberhalb der AC3-Temperatur gebracht werden. Abhängig von der Temperatur, die es in beim Einbringen die Nachbehandlungsstation aufweist, werden in der Nachbehandlungsstation die ein oder mehreren ersten Bereiche des Stahlblechbauteils auf einer Temperatur unterhalb der AC3-Temperatur gehalten oder weiter abgekühlt und die ein oder mehreren zweiten Bereiche des Stahlblechbauteils auf eine Temperatur oberhalb der AC3-Temperatur aufgeheizt, sofern sie beim Einbringen in die Nachbehandlungsstation eine niedrigere Temperatur aufweisen, oder auf einer Temperatur oberhalb der AC3-Temperatur gehalten, sofern sie diese beim Einbringen in die Nachbehandlungsstation bereits aufweisen. Dabei kann zur Kühlung beispielsweise natürliche Konvektion eingesetzt werden. Auch Zwangskonvektion durch Anblasen der entsprechenden Bereiche des Bauteils ist möglich. Dabei kann die Anblasung von oben, d.h. der der Strahlungswärmequelle zugewandten Seite des Bauteils, ober auch von unten, d.h. der der Strahlungswärmequelle abgewandten Seite des Stahlblechbauteils vorgesehen werden. Ebenfalls ist vorstellbar, eine Kontaktkühlung auch von der Unterseite des Bauteils, d.h. der der Strahlungswärmequelle abgewandten Seite des Stahlblechbauteils vorzusehen.According to the invention, this object is achieved by a method having the features of independent claim 1. Advantageous further developments of the method arise from the subclaims 2 to 8. The object is further achieved by a heat treatment device according to claim 9. Advantageous further developments of the heat treatment device arise from the subclaims 10 to 14. With the inventive method for impressing a temperature profile on a sheet steel component, a temperature below the AC3 temperature can be impressed on the sheet steel component in one or more first areas and a temperature above the AC3 temperature in one or more second areas. The AC3 temperature, like the recrystallization temperature, is alloy-dependent. For the materials usually used for vehicle body components, the AC3 temperature is around 870°C, while the recrystallization temperature at which the ferrite-pearlite structure is established is around 800°C. The method is characterized in that the sheet steel component is first preheated in a gas-heated production furnace, the sheet steel component is then transferred to a thermal post-treatment station, wherein in the thermal post-treatment station a radiant heat source is brought over the component, with which the first region or the plurality of first regions of the sheet steel component are optionally held at a temperature below the AC3 temperature or are further cooled and the second region or the plurality of second regions of the sheet steel component are optionally heated to or held at a temperature above the AC3 temperature. During preheating, the component can be brought to a temperature below the AC3 temperature or above the AC3 temperature. Depending on the temperature it has when it is introduced into the post-treatment station, the one or more first areas of the sheet steel component are kept at a temperature below the AC3 temperature or are cooled further in the post-treatment station and the one or more second areas of the sheet steel component are heated to a temperature above the AC3 temperature if they have a lower temperature when they are introduced into the post-treatment station, or kept at a temperature above the AC3 temperature if they already have this temperature when they are introduced into the post-treatment station. Natural convection, for example, can be used for cooling. Forced convection by blowing on the corresponding areas of the component is also possible. The blowing can be provided from above, i.e. the side of the component facing the radiant heat source, or from below, i.e. the side of the sheet steel component facing away from the radiant heat source. It is also conceivable to provide contact cooling from the underside of the component, i.e. the side of the sheet steel component facing away from the radiant heat source.
Der gasbeheizte Produktionsofen muss bei dem erfinderischen Verfahren nicht der Geometrie des zu behandelnden Stahlblechbauteils angepasst werden, insbesondere muss keine bauteilgeometrieabhängige Trennvorrichtung in dem Ofen vorgesehen werden. Es kann im Gegenteil ein Standardofen eingesetzt werden, der bei einem Produktionswechsel nicht umgerüstet werden muss. Insbesondere kann ein standardmäßiger Rollenherdofen oder ein Batchofen eingesetzt werden. Durchlauföfen weisen in der Regel eine große Kapazität auf und sind für die Massenproduktion besonders gut geeignet, da sie sich ohne großen Aufwand beschicken und betreiben lassen. Der Produktionsofen ist erfindungsgemäß gasbefeuert.In the inventive method, the gas-heated production furnace does not have to be adapted to the geometry of the sheet steel component to be treated, in particular no part geometry-dependent separating device is provided in the furnace. On the contrary, a standard furnace can be used that does not need to be converted when production changes. In particular, a standard roller hearth furnace or a batch furnace can be used. Continuous furnaces generally have a large capacity and are particularly suitable for mass production because they can be loaded and operated without great effort. According to the invention, the production furnace is gas-fired.
Die Gasbefeuerung ist in den meisten Fällen die wirtschaftlichste Art der Beheizung eines Produktionsofens. Die Regelung der Ofentemperatur stellt keine erhöhten Qualitätsanforderungen, da das gesamte Stahlblechbauteil auf eine im Wesentlichen einheitliche Temperatur aufgeheizt wird.In most cases, gas firing is the most economical way of heating a production furnace. Controlling the furnace temperature does not place any increased quality requirements, as the entire sheet steel component is heated to an essentially uniform temperature.
Die Strahlungswärmequelle ist über das Bauteil verbringbar. In einer Ausführungsform ist die Strahlungswärmequelle schwenkbar, beispielsweise im Wesentlichen horizontal schwenkbar, in der Nachbehandlungsstation angeordnet und über das Bauteil schwenkbar und auch wieder wegschwenkbar. Dadurch kann das Bauteil nach erfolgter Wärmebehandlung leicht von einem Handlingsgerät, beispielsweise einem Industrieroboter gegriffen und weiter transportiert werden, ohne dass die Strahlungswärmequelle die Bewegung stören würde.The radiant heat source can be moved over the component. In one embodiment, the radiant heat source is pivotable, for example pivotable essentially horizontally, arranged in the post-treatment station and pivotable over the component and also pivotable away again. This means that after heat treatment, the component can easily be picked up by a handling device, for example an industrial robot, and transported further without the radiant heat source interfering with the movement.
Es hat sich als vorteilhaft erwiesen, wenn die Nachbehandlungsstation sich unmittelbar an den Produktionsofen anschließt. Der Produktionsofen kann beispielsweise ein Rollenherdofen sein. In einem Rollenherdofen werden die Bauteile mittels Rollen durch den Ofen transportiert. Die Nachbehandlungsstation kann sich dabei unmittelbar an den Ofen anschließen, indem die Rollenbahn entsprechend verlängert ist. Ein möglicher Effekt dieser Anordnung ist beispielsweise, dass sich das Bauteil an der hier herrschenden Umgebungsluft möglichst wenig abkühlt. Es ist auch möglich, mehrere Nacharbeitsstationen an den Ofen anschließen zu lassen, um damit die Taktzeit zu minimieren.It has proven to be advantageous if the post-treatment station is directly connected to the production furnace. The production furnace can be a roller hearth furnace, for example. In a roller hearth furnace, the components are transported through the furnace using rollers. The post-treatment station can be directly connected to the furnace by extending the roller conveyor accordingly. One possible effect of this arrangement is, for example, that the component cools down as little as possible in the ambient air. It is also possible to have several post-treatment stations connected to the furnace in order to minimize the cycle time.
Der Produktionsofen ist gasbefeuert und beispielsweise mit Gasbrennern beheizbar.The production furnace is gas-fired and can be heated with gas burners, for example.
In der thermischen Nachbehandlungsstation ist die Strahlungswärmequelle ein Feld mit Oberflächenemittern, sogenannten VCSELs (Vertical Cavity Surface Emitting Laser), die Strahlung im Infrarotbereich aussenden. Ein solches Feld besteht aus einer Vielzahl, typischerweise mehreren tausend, sehr kleiner Laser (Mikrolaser) mit Durchmessern im µm-Bereich, die mit einem typischen Abstand von ca. 40 µm zwischen den einzelnen Lasern in dem Feld angeordnet sind. Solche VCSELs liefern Strahlung mit im Vergleich zu Infrarot-LEDs sehr schmaler Linienbreite und einer extrem vorwärts gerichteten Abstrahlcharakteristik. Dadurch ist es möglich, unterschiedliche Temperaturen sehr kantengetreu auf ein Substrat aufzuprägen. Weiterhin werden mit dieser Mikorlasertechnologie sehr hoche Leistungsdichten von über 100 W/cm2 auf der bestrahlten Fläche erreicht.In the thermal post-treatment station, the radiant heat source is a field with surface emitters, so-called VCSELs (Vertical Cavity Surface Emitting Lasers), which emit radiation in the infrared range. Such a field consists of a large number, typically several thousand, very small lasers (microlasers) with diameters in the µm range, which are arranged in the field with a typical distance of approx. 40 µm between the individual lasers. Such VCSELs deliver radiation with a very narrow line width compared to infrared LEDs and an extremely forward-directed radiation characteristic. This makes it possible to imprint different temperatures on a substrate with great edge accuracy. Furthermore, very high power densities of over 100 W/cm2 are achieved on the irradiated area with this microlaser technology.
In einer vorteilhaften Ausführungsform senden die Oberflächenemittern Strahlung im nahen Infrarotbereich zwischen 780 nm und 3 µm aus, beispielsweise Strahlung von 808nm oder 980 nm Wellenlänge.In an advantageous embodiment, the surface emitters emit radiation in the near infrared range between 780 nm and 3 µm, for example radiation of 808 nm or 980 nm wavelength.
Es hat sich weiterhin als vorteilhaft erwiesen, wenn die Oberflächenemitter in Gruppen ansteuerbar sind. Alternativ können die Oberflächenemitter auch einzeln ansteuerbar sein. Auch Mischformen sind möglich, wobei einzelne Oberflächenemitter einzeln und andere Oberflächenemitter in Gruppen zusammengefasst ansteuerbar sind.It has also proven to be advantageous if the surface emitters can be controlled in groups. Alternatively, the surface emitters can also be controlled individually. Mixed forms are also possible, whereby individual surface emitters can be controlled individually and other surface emitters can be controlled in groups.
Durch die Ansteuerung von einzelnen Emittern oder von Gruppen von Oberflächenemittern ist es möglich, unterschiedliche Strahlungsintensitäten zu erzeugen und damit ein Temperaturprofil auf ein Substrat aufzuprägen. Beispielsweise können die Oberflächenemitter, die sich über den ersten Bereichen des Bauteils befinden, so angesteuert werden, dass sie mit geringerer Leistung strahlen, als die Oberflächenemitter, die sich über den zweiten Bereichen des Bauteils befinden. Ebenso ist es möglich, die Strahlungsleistung einem dreidimensionalen Bauteilprofil anzupassen, in dem beispielsweise die Bereiche des Bauteils, die sich näher an den Oberflächenemittern befinden, mit geringerer Leistung bestrahlt werden, als die Bauteilbereiche, die sich wegen der dreidimensionalen Geometrie des Bauteils weiter entfernt von den Oberflächenemittern befinden. Handelt es sich bei den Oberflächenemittern um gepulste Laser, kann sich die Ansteuerung beispielsweise auf die Pulslängen und/oder die Frequenz beziehen. Die Ansteuerung kann sich auch danach richten, welche Temperatur in den einzelnen Bereichen erreicht werden soll. Dabei ist die entsprechende Temperatur, beispielsweise die AC3-Temperatur, legierungsabhängig. Ein weiterer Parameter für die Ansteuerung kann die Wärmeleitfähigkeit des Substrats sein, die ebenfalls legierungsabhängig sein kann.By controlling individual emitters or groups of surface emitters, it is possible to generate different radiation intensities and thus impose a temperature profile on a substrate. For example, the surface emitters located above the first areas of the component can be controlled so that they radiate with less power than the Surface emitters that are located above the second areas of the component. It is also possible to adapt the radiation power to a three-dimensional component profile in which, for example, the areas of the component that are closer to the surface emitters are irradiated with lower power than the component areas that are further away from the surface emitters due to the three-dimensional geometry of the component. If the surface emitters are pulsed lasers, the control can, for example, relate to the pulse lengths and/or the frequency. The control can also be based on which temperature is to be reached in the individual areas. The corresponding temperature, for example the AC3 temperature, depends on the alloy. Another parameter for the control can be the thermal conductivity of the substrate, which can also be alloy-dependent.
In einer besonders vorteilhaften Ausführungsform weist der Produktionsofen mehrere Zonen unterschiedlicher Temperatur auf, wobei das Stahlblechbauteil in einer ersten Zone oder einer der ersten Zonen auf eine Temperatur oberhalb ca. 900°C aufgeheizt wird, und wobei es in den in Durchflussrichtung folgenden Zonen soweit abgekühlt wird, dass es bei dem Transfer in die Nachbehandlungsstation eine Temperatur von weniger als ca. 900°C, beispielsweise ca. 600°C aufweist. Dabei kann in der ersten Zone beziehungsweise in den ersten Zonen eine AlSi-Beschichtung in das Bauteil eindiffundieren und das Bauteil anschließend soweit abkühlen, dass sich ein perlitisch-ferritisches Gefüge einstellt. Dabei können in der Nachbehandlungsstation die zweiten Bereiche des Bauteils mittels des Oberflächenemitterfelds sehr schnell wieder auf Temperaturen oberhalb der AC3-Temperatur aufgeheizt werden, so dass sich in diesen Bereichen austenitisches Gefüge ausbildet.In a particularly advantageous embodiment, the production furnace has several zones with different temperatures, whereby the sheet steel component is heated in a first zone or one of the first zones to a temperature above approximately 900°C, and whereby it is cooled in the zones following in the direction of flow to such an extent that it has a temperature of less than approximately 900°C, for example approximately 600°C, when transferred to the post-treatment station. In the first zone or zones, an AlSi coating can diffuse into the component and the component can then cool down to such an extent that a pearlitic-ferritic structure is established. In the post-treatment station, the second areas of the component can be heated up very quickly to temperatures above the AC3 temperature again using the surface emitter field, so that an austenitic structure is formed in these areas.
Eine erfindungsgemäße Wärmebehandlungsvorrichtung weist einen gasbeheizten Produktionsofen zur Vorheizung eines Stahlblechbauteils und eine thermische Nachbehandlungsstation zum Aufprägen eines Temperaturprofils auf das Stahlblechbauteil auf, und ist dadurch gekennzeichnet, dass die Nachbehandlungsstation eine Strahlungswärmequelle aufweist, wobei die Strahlungswärmequelle ein Feld mit Oberflächenemittern (VCSELs) aufweist, die Strahlung im Infrarotbereich aussenden.A heat treatment device according to the invention comprises a gas-heated production furnace for preheating a sheet steel component and a thermal post-treatment station for imparting a temperature profile to the sheet steel component, and is characterized in that the post-treatment station comprises a radiant heat source, wherein the radiant heat source comprises an array of surface emitters (VCSELs) which emit radiation in the infrared range.
Mit der erfindungsgemäßen Verfahren und der erfindungsgemäßen Wärmebehandlungsvorrichtung kann Stahlblechbauteilen mit mehreren ersten und/oder zweiten Bereichen, die auch komplex geformt sein können, wirtschaftlich ein entsprechendes Temperaturprofil aufgeprägt werden, da es in der Nachbehandlungsstation durch die hier eingesetzten Oberflächenemitter zu einer trennschärferen Behandlung der ersten und zweiten Bereiche des Stahlblechbauteils kommt, als dies im Produktionsofen möglich ist.With the method according to the invention and the heat treatment device according to the invention, a corresponding temperature profile can be economically imposed on sheet steel components with several first and/or second regions, which can also have a complex shape, since the surface emitters used here result in a more selective treatment of the first and second regions of the sheet steel component in the post-treatment station than is possible in the production furnace.
Weitere Vorteile, Besonderheiten und zweckmäßige Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Darstellung bevorzugter Ausführungsbeispiele anhand der Abbildungen.Further advantages, special features and expedient developments of the invention emerge from the subclaims and the following presentation of preferred embodiments with reference to the figures.
Von den Abbildungen zeigt:
-
Fig. 1 eine erfindungsgemäße Wärmebehandlungsvorrichtung in einer Draufsicht -
Fig. 2 ein Stahlblechbauteil mit ersten und zweiten Bereichen in einer Draufsicht -
Fig.3 ein Beispiel eines anderen Stahlblechbauteils in Draufsicht nach Ausführung des erfindungsgemäßen Verfahrens
-
Fig.1 a heat treatment device according to the invention in a plan view -
Fig.2 a sheet steel component with first and second regions in a plan view -
Fig.3 an example of another sheet steel component in plan view after implementation of the method according to the invention
Es können auch mehr thermische Nachbehandlungsstationen 150 vorgesehen sein. Die Anzahl der vorteilhafterweise vorzusehenden thermischen Nachbehandlungsstationen 150 hängt von dem Verhältnis der Zykluszeiten des Produktionsofens 110 und der thermischen Nachbehandlungsstation 150 ab, wobei die Zykluszeiten von den zu erreichenden Temperaturen abhängig und somit unter anderem abhängig sind von dem verarbeiteten Material sowie der Geometrie und Materialdicke des Stahlblechbauteils 200.More thermal
Die hier gezeigten Ausführungsformen stellen nur Beispiele für die vorliegende Erfindung dar und dürfen daher nicht einschränkend verstanden werden.The embodiments shown here are only examples of the present invention and should therefore not be understood as limiting.
- 100100
- WärmebehandlungsvorrichtungHeat treatment device
- 110110
- ProduktionsofenProduction furnace
- 120120
- EinlauftischInfeed table
- 121121
- AuslauftischDischarge table
- 130130
- erste Handlingvorrichtungfirst handling device
- 131131
- zweite Handlingvorrichtungsecond handling device
- 150150
- thermische Nachbehandlungsstationthermal post-treatment station
- 151151
- StahlungswärmequelleRadiation heat source
- 200200
- StahlblechbauteilSheet steel component
- 210210
- erster Bereichfirst area
- 220220
- zweiter Bereichsecond area
- 300300
- HandlingvorrichtungHandling device
Claims (14)
- Method for forming a temperature profile in a sheet-steel component (200), wherein the sheet-steel component (200) can be brought to a temperature below the AC3 temperature in one or more first regions (210) and to a temperature above the AC3 temperature in one or more second regions (220),
characterized in that
the sheet-steel component (200) is firstly preheated in a gas-heated production furnace (110), and the sheet-steel component (200) is then transferred to a thermal post-treatment station (150), wherein a radiant-heat source (151) is moved over the component in the thermal post-treatment station (150), with which radiant-heat source the one or more first regions (210) of the sheet-steel component (200) can selectively be kept at a temperature below the AC3 temperature or cooled further and the one or more second regions (220) of the sheet-steel component (200) are selectively heated to or kept at a temperature above the AC3 temperature, wherein the radiant-heat source (151) is a field with vertical-cavity surface-emitting lasers (VCSELs), which emit radiation in the infrared range. - Method according to Claim 1, characterized in that the surface emitters emit radiation in the near-infrared range between 780 nm and 3 µm.
- Method according to Claim 1 or 2, characterized in that
the surface emitters can be actuated in groups. - Method according to Claim 1 or 2, characterized in that
the surface emitters can be actuated individually. - Method according to one of the preceding claims,
characterized in that
the sheet-steel component (200) is heated to a temperature below the AC3 temperature in the production furnace (110). - Method according to one of Claims 1 to 4,
characterized in that
the sheet-steel component (200) is heated to a temperature above the AC3 temperature in the production furnace (110). - Method according to one of Claims 1 to 4,
characterized in that
the production furnace (110) has multiple zones of different temperatures, wherein the sheet-steel component (200) is heated to a temperature above approximately 900°C in a first zone or in multiple first zones, wherein it is cooled in the zones which follow said one or more first zones in the direction of flow to the extent that it has a temperature of less than approximately 900°C when transferred to the post-treatment station. - Method according to Claim 7, characterized in that the sheet-steel component (200) is cooled in the zones which follow the first zone or the first zones in the direction of flow to the extent that it has a temperature of approximately 600°C when transferred to the post-treatment station.
- Heat treatment device (100), comprising a gas-heated production furnace (110) for pre-heating a sheet-steel component (200) and a thermal post-treatment station (150) for forming a temperature profile in the sheet-steel component (200),
characterized in that
the post-treatment station (150) comprises a radiant-heat source (151), wherein the radiant-heat source (151) comprises a field with vertical-cavity surface-emitting lasers (VCSELs), which emit radiation in the infrared range. - Heat treatment device (100) according to Claim 8,
characterized in that
radiation in the near-infrared range can be emitted by the surface emitters. - Heat treatment device (100) according to either of Claims 8 and 9, characterized in that
the surface emitters can be actuated in groups. - Heat treatment device (100) according to either of Claims 8 and 9, characterized in that
the surface emitters can be actuated individually. - Heat treatment device (100) according to one of Claims 8 to 11, characterized in that
the post-treatment station (150) directly adjoins the production furnace (110). - Heat treatment device (100) according to one of Claims 8 to 12, characterized in that
the radiant-heat source (151) is arranged pivotably in the post-treatment station (150).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015215179.4A DE102015215179A1 (en) | 2015-08-07 | 2015-08-07 | Method of heat treatment and heat treatment device |
PCT/EP2016/068746 WO2017025460A1 (en) | 2015-08-07 | 2016-08-05 | Method for heat treatment of a sheet steel component and heat treatment apparatus therefor |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3332041A1 EP3332041A1 (en) | 2018-06-13 |
EP3332041C0 EP3332041C0 (en) | 2024-04-10 |
EP3332041B1 true EP3332041B1 (en) | 2024-04-10 |
Family
ID=56618158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16750160.0A Active EP3332041B1 (en) | 2015-08-07 | 2016-08-05 | Method for heat treatment of a sheet steel component and heat treatment apparatus therefor |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180231311A1 (en) |
EP (1) | EP3332041B1 (en) |
CN (1) | CN108026603B (en) |
DE (1) | DE102015215179A1 (en) |
ES (1) | ES2978873T3 (en) |
PL (1) | PL3332041T3 (en) |
WO (1) | WO2017025460A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015113407B4 (en) | 2015-08-13 | 2018-01-11 | Ebner Industrieofenbau Gmbh | Furnace apparatus for heat treating a metal board |
DE102017128574B3 (en) | 2017-12-01 | 2019-03-14 | Ebner Industrieofenbau Gmbh | Temperature control unit for a furnace device for heat treating a circuit board |
DE102020106139A1 (en) * | 2020-03-06 | 2021-09-09 | Schwartz Gmbh | Thermal treatment of a component |
DE102021003946A1 (en) | 2021-07-30 | 2023-02-02 | Neuman Aluminium Austria Gmbh | PROCESS FOR HEAT TREATMENT OF METALLIC SEMI-FINISHED PRODUCTS AND HEAT TREATMENT SYSTEM |
DE102022130152A1 (en) | 2022-11-15 | 2024-05-16 | Schwartz Gmbh | Thermal treatment of a metallic component |
DE102022130154A1 (en) * | 2022-11-15 | 2024-05-16 | Schwartz Gmbh | Thermal treatment of a metallic component |
DE102022130153A1 (en) * | 2022-11-15 | 2024-05-16 | Schwartz Gmbh | Thermal treatment of a metallic component |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008030279A1 (en) * | 2008-06-30 | 2010-01-07 | Benteler Automobiltechnik Gmbh | Partial thermoforming and curing by means of infrared lamp heating |
DE102011057007A1 (en) * | 2011-12-23 | 2013-06-27 | Benteler Automobiltechnik Gmbh | Method for producing a motor vehicle component and motor vehicle component |
DE102011056444A1 (en) * | 2011-12-14 | 2013-08-08 | Voestalpine Metal Forming Gmbh | Method and device for partial hardening of sheet metal components |
WO2017080624A1 (en) * | 2015-11-13 | 2017-05-18 | Hardmesch Ab | Device and method for providing a selective heat treatment on a metal sheet |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7977611B2 (en) * | 2007-07-19 | 2011-07-12 | United Technologies Corporation | Systems and methods for providing localized heat treatment of metal components |
DE102007057855B3 (en) | 2007-11-29 | 2008-10-30 | Benteler Automobiltechnik Gmbh | Production of moldings with structure zones of different ductility comprises heat treatment of aluminum-silicon coated high-tensile steel blank, followed by treating zones at different temperature |
JP4575976B2 (en) * | 2008-08-08 | 2010-11-04 | アイシン高丘株式会社 | Local heating apparatus and method |
DE102009014670B4 (en) * | 2009-03-27 | 2011-01-13 | Thyssenkrupp Sofedit S.A.S | Method and hot forming plant for the production of press-hardened shaped components from sheet steel |
DE102010004081C5 (en) * | 2010-01-06 | 2016-11-03 | Benteler Automobiltechnik Gmbh | Method for thermoforming and curing a circuit board |
ES2345029B1 (en) * | 2010-04-19 | 2011-07-18 | Autotech Engineering, Aie | STRUCTURAL COMPONENT OF A VEHICLE AND MANUFACTURING PROCEDURE. |
JP2011255413A (en) * | 2010-06-11 | 2011-12-22 | Toyoda Iron Works Co Ltd | Device for heating steel sheet, method for manufacturing press-formed article, and press-formed article |
CA2744233A1 (en) * | 2010-06-24 | 2011-12-24 | Magna International Inc. | Tailored properties by post hot forming processing |
DE102010048209C5 (en) * | 2010-10-15 | 2016-05-25 | Benteler Automobiltechnik Gmbh | Method for producing a hot-formed press-hardened metal component |
EP2497840B2 (en) | 2011-03-10 | 2020-02-26 | Schwartz GmbH | Oven system for partially heating steel blanks |
JP2014522911A (en) * | 2011-06-30 | 2014-09-08 | エープナー インドゥストリーオーフェンバウ ゲー・エム・ベー・ハー | Method for heating a molded part for subsequent press hardening and a continuous furnace for partially heating a molded part preheated to a predetermined temperature |
JP5746960B2 (en) * | 2011-12-15 | 2015-07-08 | 豊田鉄工株式会社 | Infrared heating device |
WO2013137308A1 (en) * | 2012-03-13 | 2013-09-19 | 株式会社アステア | Method for strengthening steel plate member |
DE102012102194A1 (en) | 2012-03-15 | 2013-09-19 | Benteler Automobiltechnik Gmbh | Furnace useful for thermal treatment of metallic components, comprises heat source, preferably radiant heat source provided in first temperature zone such that first portion of component is heated and/or maintained at specific temperature |
CN104220606A (en) * | 2012-03-29 | 2014-12-17 | 爱信高丘株式会社 | Metal processing method and metal article processed thereby |
JP5740419B2 (en) * | 2013-02-01 | 2015-06-24 | アイシン高丘株式会社 | Infrared heating method of steel sheet, thermoforming method, infrared furnace and vehicle parts |
DE102013104229B3 (en) * | 2013-04-25 | 2014-10-16 | N. Bättenhausen Industrielle Wärme- und Elektrotechnik GmbH | Device for press hardening of components |
DE202014010318U1 (en) * | 2014-01-23 | 2015-04-01 | Eva Schwartz | Heat treatment device |
DE102014101539B9 (en) * | 2014-02-07 | 2016-08-11 | Benteler Automobiltechnik Gmbh | Hot forming line and method of making hot formed sheet metal products |
DE102014110415B4 (en) * | 2014-07-23 | 2016-10-20 | Voestalpine Stahl Gmbh | Method for heating steel sheets and apparatus for carrying out the method |
KR20170074858A (en) * | 2014-09-22 | 2017-06-30 | 오토테크 엔지니어링 에이.아이.이. | Controlled Deformations in Metallic Pieces |
EP2998410A1 (en) * | 2014-09-22 | 2016-03-23 | Autotech Engineering A.I.E. | Method for laser beam heat treatment of press hardened components and press hardened components |
DE102015112293A1 (en) * | 2015-07-28 | 2017-02-02 | Hydro Aluminium Rolled Products Gmbh | Method and apparatus for the adaption of temperature-adapting metal bands |
PT3156506T (en) * | 2015-10-15 | 2019-03-19 | Automation Press And Tooling A P & T Ab | Partial radiation heating method for producing press hardened parts and arrangement for such production |
US11740023B2 (en) * | 2016-12-22 | 2023-08-29 | Autotech Engineering, S.L. | Method for heating a blank and heating system |
-
2015
- 2015-08-07 DE DE102015215179.4A patent/DE102015215179A1/en active Pending
-
2016
- 2016-08-05 US US15/751,002 patent/US20180231311A1/en not_active Abandoned
- 2016-08-05 CN CN201680046328.4A patent/CN108026603B/en active Active
- 2016-08-05 PL PL16750160.0T patent/PL3332041T3/en unknown
- 2016-08-05 ES ES16750160T patent/ES2978873T3/en active Active
- 2016-08-05 EP EP16750160.0A patent/EP3332041B1/en active Active
- 2016-08-05 WO PCT/EP2016/068746 patent/WO2017025460A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008030279A1 (en) * | 2008-06-30 | 2010-01-07 | Benteler Automobiltechnik Gmbh | Partial thermoforming and curing by means of infrared lamp heating |
DE102011056444A1 (en) * | 2011-12-14 | 2013-08-08 | Voestalpine Metal Forming Gmbh | Method and device for partial hardening of sheet metal components |
DE102011057007A1 (en) * | 2011-12-23 | 2013-06-27 | Benteler Automobiltechnik Gmbh | Method for producing a motor vehicle component and motor vehicle component |
WO2017080624A1 (en) * | 2015-11-13 | 2017-05-18 | Hardmesch Ab | Device and method for providing a selective heat treatment on a metal sheet |
Non-Patent Citations (1)
Title |
---|
MOENCH HOLGER ET AL: "High Power VCSEL Systems : A tool for digital thermal processing", LASER TECHNIK JOURNAL, vol. 11, no. 2, 1 April 2014 (2014-04-01), pages 43 - 47, XP055828652, ISSN: 1613-7728, DOI: 10.1002/latj.201400024 * |
Also Published As
Publication number | Publication date |
---|---|
WO2017025460A1 (en) | 2017-02-16 |
US20180231311A1 (en) | 2018-08-16 |
EP3332041C0 (en) | 2024-04-10 |
CN108026603A (en) | 2018-05-11 |
EP3332041A1 (en) | 2018-06-13 |
DE102015215179A1 (en) | 2017-02-09 |
PL3332041T3 (en) | 2024-08-26 |
CN108026603B (en) | 2020-06-09 |
ES2978873T3 (en) | 2024-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3332041B1 (en) | Method for heat treatment of a sheet steel component and heat treatment apparatus therefor | |
EP2497840B2 (en) | Oven system for partially heating steel blanks | |
EP2905346B1 (en) | Heat treatment process | |
DE102011101991B3 (en) | Heat treatment of hardenable sheet metal components | |
EP3172345B1 (en) | Method for heating up steel sheets | |
DE102011056444B3 (en) | Method and device for partial hardening of sheet metal components | |
EP3212348B1 (en) | Method for producing a component by subjecting a sheet bar of steel to a forming process | |
AT15097U1 (en) | Heat treatment device | |
EP3420111B1 (en) | Process for targeted heat treatment of individual component zones | |
DE102017110864B3 (en) | Method and device for producing hardened sheet steel components with different sheet thicknesses | |
AT15722U1 (en) | Heat treatment process and heat treatment device | |
EP3408420B1 (en) | Method of heat treating a metallic component | |
DE102013108044B3 (en) | Heat sink with spacer | |
DE102016124539B4 (en) | Process for manufacturing locally hardened sheet steel components | |
EP3408416B1 (en) | Heat treatment method and heat treatment device | |
WO2017137259A1 (en) | Heat treatment method and heat treatment device | |
DE112016003023T5 (en) | SYSTEM FOR CONDENSING MATERIAL WITH A LASER AND METHOD THEREFOR | |
DE102022130153A1 (en) | Thermal treatment of a metallic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180305 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210803 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230516 |
|
REG | Reference to a national code |
Ref document number: 502016016460 Country of ref document: DE Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: C21D0008040000 Ipc: C21D0001340000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F27B 9/06 20060101ALI20231220BHEP Ipc: C21D 9/48 20060101ALI20231220BHEP Ipc: C21D 8/04 20060101ALI20231220BHEP Ipc: F27D 11/12 20060101ALI20231220BHEP Ipc: F27B 9/12 20060101ALI20231220BHEP Ipc: C21D 1/34 20060101AFI20231220BHEP |
|
INTG | Intention to grant announced |
Effective date: 20240111 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016016460 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240424 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240502 |
|
P04 | Withdrawal of opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240427 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2978873 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240923 |
|
U20 | Renewal fee paid [unitary effect] |
Year of fee payment: 9 Effective date: 20240827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240711 |